1
|
Liu H, Xu F, Zhang M, Niu X, Dang S, Zhang W. ADAMTS18 deficiency leads to abnormal brain methylation metabolism, dysregulated neuroinflammatory response, and unsound blood-brain barrier structure in mice. Metab Brain Dis 2025; 40:179. [PMID: 40227359 DOI: 10.1007/s11011-025-01609-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 04/07/2025] [Indexed: 04/15/2025]
Abstract
ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family is a group of secretory proteases involved in the maintenance of central nervous system (CNS) homeostasis and neuronal disease. ADAMTS18 is a member of this family and has been linked to the integrity of the human brain's white matter. However, the cellular and molecular basis of ADAMTS18 in brain metabolism and homeostasis remains unclear. In this study, a total of 47,719 genes were identified in 8 independent wild type (WT) and Adamts18 knockout (KO) mouse brain samples using brain transcriptomic analysis. The abundance of 100 genes in brain was significantly different between WT and KO mice. ADAMTS18 deficiency resulted in decreased S-adenosine homocysteine hydrolase (SAHH) levels, impaired brain methyl cycle metabolism and dysregulation of neuroinflammatory-related factors (e.g., Lrg1, and Lcn2) in mouse brain. The number and branching complexity of microglia in brain tissue of Adamts18 KO mice were significantly reduced. Adamts18 KO mice also showed poor blood-brain barrier (BBB) integrity. Mechanically, ADAMTS18 deficiency resulted in significant downregulation of Il- 34, Csf1r, Cx3cl1, Cx3cr1, Fn, Tgfb1, Tgfbr2, Smad4 and Sall1 genes related to microglia expansion, migration, characteristic development and maintenance. BBB integrity related markers Glut1, Plvap, Zo- 1, Occludin or Aqp- 4 were partially dysregulated in the brain tissue of Adamts18 KO mice and significantly deteriorated after LPS stimulation. Collectively, these results shed light on the significance of ADAMTS18 in brain methyl cycle metabolism, neuroinflammatory regulation and BBB structure maintenance.
Collapse
Affiliation(s)
- Hanlin Liu
- Key Laboratory of Brain Functional Genomics (East China Normal University), Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Science, Ministry of Education, East China Normal University, Shanghai, China
| | - Fangmin Xu
- Key Laboratory of Brain Functional Genomics (East China Normal University), Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Science, Ministry of Education, East China Normal University, Shanghai, China
| | - Mengxi Zhang
- Key Laboratory of Brain Functional Genomics (East China Normal University), Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Science, Ministry of Education, East China Normal University, Shanghai, China
| | - Xiaohan Niu
- Key Laboratory of Brain Functional Genomics (East China Normal University), Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Science, Ministry of Education, East China Normal University, Shanghai, China
| | - Suying Dang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Wei Zhang
- Key Laboratory of Brain Functional Genomics (East China Normal University), Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Science, Ministry of Education, East China Normal University, Shanghai, China.
| |
Collapse
|
2
|
Wang M, Liu H, Zhang M, Niu X, Sun M, Wang F, Ni Y, Hong T, Zhang W, Dang S. The secreted protease ADAMTS18 links early isoform transformation and maturation of glomerular basement membrane macromolecules to the integrity of the glomerular filtration barrier. Biochem Biophys Res Commun 2025; 750:151386. [PMID: 39879696 DOI: 10.1016/j.bbrc.2025.151386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 01/22/2025] [Indexed: 01/31/2025]
Abstract
The glomerular filtration barrier (GFB) has a unique spatial structure, including porous capillary endothelial cells, glomerular basal membrane (GBM) and highly specialized podocytes. This special structure is essential for the hemofiltration process of nephrons. GBM is the central meshwork structure of GFB formed by the assembly and fusion of various extracellular matrix (ECM) macromolecules, such as laminins and collagens, which undergo isoform transformation and maturation that may require precise regulation by metalloproteinases. However, the role of metalloproteinase in GFB integrity remains elusive. A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTSs) gene family members are known for their roles in ECM remodeling. In this study, we found that ADAMTS18 was secreted by capillary endothelial cell within the glomeruli of human fetal kidney and mouse kidney. Adamts18 knockout (Adamts18-/-) mice exhibited early proteinuria with GFB dysplasia, including podocyte invagination surrounded by glomerular capillary network and microvillus of podocytes. Mechanistically, ADAMTS18 regulated the isoform transformation and maturation of GBM macromolecules. The levels of mature LAMA5 isoform and fibronectin were significantly lower in Adamts18-/- glomeruli than in Adamts18+/+ glomeruli. Co-immunoprecipitation (IP) results showed that the LAMA5 fragment (5XAU) was a novel interacting protein of ADAMTS18 and could be pulled down by ADAMTS18. These new findings shed light on the biological role of metalloproteinase in GFB integrity and related kidney diseases.
Collapse
Affiliation(s)
- Min Wang
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Science, East China Normal University, China
| | - Hanlin Liu
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Science, East China Normal University, China
| | - Mengxi Zhang
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Science, East China Normal University, China
| | - Xiaohan Niu
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Science, East China Normal University, China
| | - Min Sun
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Science, East China Normal University, China
| | - Fang Wang
- Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingyin Ni
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Hong
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Science, East China Normal University, China
| | - Wei Zhang
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Science, East China Normal University, China.
| | - Suying Dang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Zhang X, Yang F, Zhang J, Zhu T, Zhao X, Liu Y, Wen J, Gu H, Wang G, Ren X, Chen A, Qu L. Genomic variation responding to artificial selection on different lines of Pekin duck. Poult Sci 2025; 104:104785. [PMID: 39813863 PMCID: PMC11783388 DOI: 10.1016/j.psj.2025.104785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/20/2024] [Accepted: 01/05/2025] [Indexed: 01/18/2025] Open
Abstract
Understanding the genomic variation in Pekin duck under artificial selection is important for improving the utilization of duck genetic resources. Here, the genomic changes in Pekin duck were analyzed by using the genome resequencing data from 96 individual samples, including 2 conservation populations and 4 breeding populations with different breeding backgrounds. The population structure, runs of homozygosity (ROH), effective population number (Ne), and other genetic parameters were analyzed. The breeding populations showed lower genetic diversity compared to the conservation populations. Maple Leaf duck and Cherry Valley duck retained low genetic diversity compared to other breeding populations, with Cherry Valley duck showing the lowest diversity and the highest inbreeding coefficient. This suggested that Cherry Valley and Maple Leaf ducks have undergone intensive selection compared to other breeding populations. By the analysis of runs of homozygosity (ROHs), some genes (e.g., IGF1R) associated with growth traits were identified. By the analysis of the selection signal, strong selection characteristics in certain genomic regions during the breeding of Peking duck across different selected lines were observed. In addition, copy number variations (CNVs) in Pekin duck populations were analyzed. Six regions of interest were identified, containing RPA1, DOT1L, SLC25A42, RALYL, TRPA1, and IGFBP2. Furthermore, the allele frequency distribution of these genes showed significant differences between breeding populations and conservation populations, indicating that these candidate genes could have undergone strong selection pressure during long-term selection for improved production. These findings contribute to a deeper understanding of the distinct evolutionary processes in Pekin ducks under artificial selection and provide valuable insights for future breeding strategies.
Collapse
Affiliation(s)
- Xinye Zhang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2#, Beijing 100193, China
| | - Fangxi Yang
- Beijing Nankou Duck Breeding Technology Co. Ltd., Beijing, China
| | - Jinxin Zhang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2#, Beijing 100193, China
| | - Tao Zhu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2#, Beijing 100193, China
| | - Xiurong Zhao
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2#, Beijing 100193, China
| | - Yuchen Liu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2#, Beijing 100193, China
| | - Junhui Wen
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2#, Beijing 100193, China
| | - Hongchang Gu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2#, Beijing 100193, China
| | - Gang Wang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2#, Beijing 100193, China
| | - Xufang Ren
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2#, Beijing 100193, China
| | - Anqi Chen
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2#, Beijing 100193, China
| | - Lujiang Qu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2#, Beijing 100193, China.
| |
Collapse
|
4
|
Chipeta C, Aragon-Martin J, Chandra A. Zonulopathies as Genetic Disorders of the Extracellular Matrix. Genes (Basel) 2024; 15:1632. [PMID: 39766898 PMCID: PMC11675282 DOI: 10.3390/genes15121632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/01/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
The zonular fibres are formed primarily of fibrillin-1, a large extracellular matrix (ECM) glycoprotein, and also contain other constituents such as LTBP-2, ADAMTSL6, MFAP-2 and EMILIN-1, amongst others. They are critical for sight, holding the crystalline lens in place and being necessary for accommodation. Zonulopathies refer to conditions in which there is a lack or disruption of zonular support to the lens and may clinically be manifested as ectopia lens (EL)-defined as subluxation of the lens outside of the pupillary plane or frank displacement (dislocation) into the vitreous or anterior segment. Genes implicated in EL include those intimately involved in the formation and function of these glycoproteins as well as other genes involved in the extracellular matrix (ECM). As such, genetic pathogenic variants causing EL are primarily disorders of the ECM, causing zonular weakness by (1) directly affecting the protein components of the zonule, (2) affecting proteins involved in the regulation of zonular formation and (3) causing the dysregulation of ECM components leading to progressive zonular weakness. Herein, we discuss the clinical manifestations of zonulopathy and the underlying pathogenetic mechanisms.
Collapse
Affiliation(s)
- Chimwemwe Chipeta
- Department of Ophthalmology, Southend University Hospital, Southend-on-Sea SS0 0RY, UK;
- Vision and Eye Research Institute, Anglia Ruskin University, Cambridge CB1 2LZ, UK
| | - Jose Aragon-Martin
- Barts & The London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK;
| | - Aman Chandra
- Department of Ophthalmology, Southend University Hospital, Southend-on-Sea SS0 0RY, UK;
- Vision and Eye Research Institute, Anglia Ruskin University, Cambridge CB1 2LZ, UK
| |
Collapse
|
5
|
Wang L, He L, Yi W, Wang M, Xu F, Liu H, Nie J, Pan YH, Dang S, Zhang W. ADAMTS18-fibronectin interaction regulates the morphology of liver sinusoidal endothelial cells. iScience 2024; 27:110273. [PMID: 39040056 PMCID: PMC11261151 DOI: 10.1016/j.isci.2024.110273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/12/2024] [Accepted: 06/12/2024] [Indexed: 07/24/2024] Open
Abstract
Liver sinusoidal endothelial cells (LSECs) have a unique morphological structure known as "fenestra" that plays a crucial role in liver substance exchange and homeostasis maintenance. In this study, we demonstrate that ADAMTS18 protease is primarily secreted by fetal liver endothelial cells. ADAMTS18 deficiency leads to enlarged fenestrae and increased porosity of LSECs, microthrombus formation in liver vessels, and an imbalance of liver oxidative stress. These defects worsen carbon tetrachloride (CCl4)-induced liver fibrosis and diethylnitrosamine (DEN)/high-fat-induced hepatocellular carcinoma (HCC) in adult Adamts18-deficient mice. Mechanically, ADAMTS18 functions as a modifier of fibronectin (FN) to regulate the morphological acquisition of LSECs via the vascular endothelial growth factor A (VEGFA) signaling pathways. Collectively, a mechanism is proposed for LSEC morphogenesis and liver homeostasis maintenance via ADAMTS18-FN-VEGFA niches.
Collapse
Affiliation(s)
- Liya Wang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| | - Li He
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| | - Weijia Yi
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| | - Min Wang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| | - Fangmin Xu
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| | - Hanlin Liu
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiahui Nie
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| | - Yi-Hsuan Pan
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| | - Suying Dang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Zhang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
6
|
Talvi S, Jokinen J, Sipilä K, Rappu P, Zhang FP, Poutanen M, Rantakari P, Heino J. Embigin deficiency leads to delayed embryonic lung development and high neonatal mortality in mice. iScience 2024; 27:108914. [PMID: 38318368 PMCID: PMC10839689 DOI: 10.1016/j.isci.2024.108914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/20/2023] [Accepted: 01/11/2024] [Indexed: 02/07/2024] Open
Abstract
Embigin (Gp70), a receptor for fibronectin and an ancillary protein for monocarboxylate transporters, is known to regulate stem cell niches in sebaceous gland and bone marrow. Here, we show that embigin expression is at high level during early mouse embryogenesis and that embigin is essential for lung development. Markedly increased neonatal mortality of Emb-/- mice can be explained by the compromised lung maturation: in Emb-/- mice (E17.5) the number and the size of the small airways and distal airspace are significantly smaller, there are fewer ATI and ATII cells, and the alkaline phosphatase activity in amniotic fluid is lower. Emb-/- lungs show less peripheral branching already at E12.5, and embigin is highly expressed in lung primordium. Thus, embigin function is essential at early pseudoglandular stage or even earlier. Furthermore, our RNA-seq analysis and Ki67 staining results support the idea that the development of Emb-/- lungs is rather delayed than defected.
Collapse
Affiliation(s)
- Salli Talvi
- Department of Life Technologies, University of Turku, 20014 Turku, Finland
- Medicity Research Laboratory, University of Turku, 20014 Turku, Finland
- InFLAMES Research Flagship, University of Turku, 20014 Turku, Finland
| | - Johanna Jokinen
- Department of Life Technologies, University of Turku, 20014 Turku, Finland
- Medicity Research Laboratory, University of Turku, 20014 Turku, Finland
- InFLAMES Research Flagship, University of Turku, 20014 Turku, Finland
| | - Kalle Sipilä
- Department of Life Technologies, University of Turku, 20014 Turku, Finland
- Centre for Stem Cells and Regenerative Medicine, King’s College London, London WC2R2LS, UK
| | - Pekka Rappu
- Department of Life Technologies, University of Turku, 20014 Turku, Finland
- InFLAMES Research Flagship, University of Turku, 20014 Turku, Finland
| | - Fu-Ping Zhang
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, 20014 Turku, Finland
- Turku Center for Disease Modeling, University of Turku, 20014 Turku, Finland
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Matti Poutanen
- InFLAMES Research Flagship, University of Turku, 20014 Turku, Finland
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, 20014 Turku, Finland
- Turku Center for Disease Modeling, University of Turku, 20014 Turku, Finland
| | - Pia Rantakari
- InFLAMES Research Flagship, University of Turku, 20014 Turku, Finland
- Institute of Biomedicine, University of Turku, 20014 Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20014 Turku, Finland
| | - Jyrki Heino
- Department of Life Technologies, University of Turku, 20014 Turku, Finland
- Medicity Research Laboratory, University of Turku, 20014 Turku, Finland
- InFLAMES Research Flagship, University of Turku, 20014 Turku, Finland
| |
Collapse
|
7
|
Xu B, Zhang JE, Ye L, Yuan CW. The Role of the ADAMTS18 Gene-Induced Immune Microenvironment in Mouse Kidney Development. Biomedicines 2024; 12:396. [PMID: 38397998 PMCID: PMC10887409 DOI: 10.3390/biomedicines12020396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
The aim of this study is to investigate the role of the ADAMTS18 gene in regulating the renal development of mice. PAS staining was used to observe the kidney development of E12.5-E17.5 mice, while immunofluorescence staining and RT-PCR were used to observe the expression of ADAMTS18. Ureteric bud (UB) branches were observed using immunofluorescence staining using the UB marker E-cadherin, and the apoptosis and proliferation of posterior renal mesenchymal cells were analyzed using TUNEL and PH3 fluorescence staining. Flow cytometry was used to analyze the immune cell infiltration, and western blotting (WB) was used to analyze the expression of PD-1/PD-L1 and CTLA-4. As a result, the ADAMTS18 gene expression gradually increased as the kidney continued to mature during embryonic development. Compared with that in the control and vector groups, UB branching was significantly reduced in the ADAMTS18 deletion group (p < 0.05), but that deletion of ADAMTS18 did not affect posterior renal mesenchymal cell proliferation or apoptosis (p > 0.05). Compared with those in the control and vector groups, the proportion of embryonic kidney B cells and the proportion of CD8+ cells were significantly greater after ADAMTS18 was knocked down (p < 0.05), but the difference in neutrophil counts was not significant (p > 0.05). The WB analysis revealed that the PD-1/PD-L1 and CTLA-4 expression was significantly increased after ADAMTS18 was knocked down (p < 0.05). In conclusion, the ADAMTS18 gene may be involved in mice kidney development by regulating the immune microenvironment and activating immune checkpoints. Deletion of the ADAMTS18 gene may be unfavorable for kidney development.
Collapse
Affiliation(s)
- Ben Xu
- Department of Urology, Peking University First Hospital and Institute of Urology, Peking University, Beijing 100034, China
| | | | | | | |
Collapse
|
8
|
Nie J, Dang S, Zhu R, Lu T, Zhang W. ADAMTS18 deficiency associates extracellular matrix dysfunction with a higher risk of HER2-positive mammary tumorigenesis and metastasis. Breast Cancer Res 2024; 26:19. [PMID: 38287441 PMCID: PMC10826190 DOI: 10.1186/s13058-024-01771-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/16/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Human epidermal growth factor receptor 2 (HER2)-positive breast cancer accounts for about 20% of all breast cancer cases and is correlated with a high relapse rate and poor prognosis. ADAMTS18 is proposed as an important functional tumor suppressor gene involved in multiple malignancies, including breast cancer. It functions as an extracellular matrix (ECM) modifier. However, it remains unclear whether ADAMTS18 affects mammary tumorigenesis and malignant progression through its essential ECM regulatory function. METHODS To elucidate the role of ADAMTS18 in HER2-positive mammary tumorigenesis and metastasis in vivo, we compared the incidence of mammary tumor and metastasis between Adamts18-knockout (MMTV)-Her2/ErbB2/Neu+ transgenic mice (i.e., Her2t/w/Adamts18-/-) and Adamts18-wildtype (MMTV)-Her2/ErbB2/Neu+ transgenic mice (i.e., Her2t/w/Adamts18+/+). The underlying mechanisms by which ADAMTS18 regulates HER2-positive tumorigenesis and metastasis were investigated by pathology, cell culture, Western blot and immunochemistry. RESULTS Adamts18 mRNA is mainly expressed in myoepithelial cells of the mammary duct. ADAMTS18 deficiency leads to a significantly increased incidence of mammary tumors and metastasis, as well as mammary hyperplasia in mice, over 30 months of observation. The proliferation, migration and invasion capacities of primary Her2t/w/Adamts18-/- mammary tumor cells are significantly higher than those of primary Her2t/w/Adamts18+/+ mammary tumor cells in vitro. At 30 months of age, the expression levels of laminin (LNα5), fibronectin (FN) and type I collagen (ColI) in the mammary glands of Her2t/w/Adamts18-/- mice are significantly increased, and the activities of integrin-mediated PI3K/AKT, ERK and JNK signaling pathways are enhanced. CONCLUSIONS ADAMTS18 deficiency leads to alterations in mammary ECM components (e.g., LNα5, FN, ColI), which are associated with a higher risk of HER2-positive mammary tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Jiahui Nie
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Science, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Suying Dang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai, 200025, China.
| | - Rui Zhu
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Science, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Tiantian Lu
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Science, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Wei Zhang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Science, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China.
| |
Collapse
|
9
|
Wang L, Sun M, Zhang Q, Dang S, Zhang W. ADAMTS18 regulates early branching morphogenesis of lacrimal gland and has a significant association with the risk of dry eye in mice. Exp Eye Res 2022; 218:109020. [PMID: 35240198 DOI: 10.1016/j.exer.2022.109020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/31/2022] [Accepted: 02/22/2022] [Indexed: 11/04/2022]
Abstract
ADAMTS18 is an orphan member of the ADAMTS family of metalloproteinase. ADAMTS18 mutation has been linked to developmental eye disorders, such as retinal dystrophies and ectopia lentis. Here, we report a new function of ADAMTS18 in modulating the lacrimal gland (LG) branching morphogenesis, and an association with dry eye in mice. Adamts18 mRNA was found to be enriched in the epithelium of branching tips of embryonic (E) LG, but its expression was barely detectable after 2 weeks of birth. Histological analyses of E16.5-E17.5 LG showed that ADAMTS18 deficiency resulted in a significant reduction of epithelial branching in embryonic LG. In vitro culture of E15.5 LG explants showed that the numbers of epithelial buds and branches in Adamts18 knockout (Adamts18-/-) LGs were significantly decreased when compared to those of wild type (Adamts18+/+) LGs after 0 h, 24 h, and 48 h of culture. Increased fibronectin deposition was detected in LG mesenchyme of E16.5 Adamts18-/- mice. At 14 months of age, Adamts18-/- mice manifested multiple LG pathological changes, including acinar atrophy and irregular duct ectasis with periductal fibrosis. The tear volume was significantly decreased in Adamts18-/- mice at 4 months of age, which corresponds to early adulthood in humans.
Collapse
Affiliation(s)
- Liya Wang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| | - Min Sun
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| | - Qi Zhang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| | - Suying Dang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Wei Zhang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
10
|
Mougin Z, Huguet Herrero J, Boileau C, Le Goff C. ADAMTS Proteins and Vascular Remodeling in Aortic Aneurysms. Biomolecules 2021; 12:12. [PMID: 35053160 PMCID: PMC8773774 DOI: 10.3390/biom12010012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
Extracellular matrix (ECM) in the vascular wall is a highly dynamic structure composed of a set of different molecules such as elastins, collagens, fibronectin (Fn), laminins, proteoglycans, and polysaccharides. ECM undergoes remodeling processes to regulate vascular smooth muscle and endothelial cells' proliferation, differentiation, and adhesion. Abnormalities affecting the ECM can lead to alteration in cellular behavior and from this, this can conduce to the development of pathologies. Metalloproteases play a key role in maintaining the homeostasis of ECM by mediating the cleavage of different ECM components. There are different types of metalloproteases: matrix metalloproteinases (MMPs), disintegrin and metalloproteinases (ADAMs), and ADAMs with thrombospondin motifs (ADAMTSs). ADAMTSs have been found to participate in cardiovascular physiology and diseases and specifically in aortic aneurysms. This review aims to decipher the potential role of ADAMTS proteins in the physiopathologic development of Thoracic Aortic Aneurysms (TAA) and Abdominal Aortic Aneurysms (AAA). This review will focus on what is known on the ADAMTS family involved in human aneurysms from human tissues to mouse models. The recent findings on THSD4 (encoding ADAMTSL6) mutations in TAA give a new insight on the involvement of the ADAMTS family in TAA.
Collapse
Affiliation(s)
- Zakaria Mougin
- INSERM U1148, Laboratory of Vascular Translational Science, Université de Paris, Hôpital Bichat, F-75018 Paris, France; (Z.M.); (J.H.H.); (C.B.)
| | - Julia Huguet Herrero
- INSERM U1148, Laboratory of Vascular Translational Science, Université de Paris, Hôpital Bichat, F-75018 Paris, France; (Z.M.); (J.H.H.); (C.B.)
| | - Catherine Boileau
- INSERM U1148, Laboratory of Vascular Translational Science, Université de Paris, Hôpital Bichat, F-75018 Paris, France; (Z.M.); (J.H.H.); (C.B.)
- Département de Génétique, AP-HP, Hôpital Bichat, F-75018 Paris, France
| | - Carine Le Goff
- INSERM U1148, Laboratory of Vascular Translational Science, Université de Paris, Hôpital Bichat, F-75018 Paris, France; (Z.M.); (J.H.H.); (C.B.)
| |
Collapse
|
11
|
Danopoulos S, Bhattacharya S, Deutsch G, Nih LR, Slaunwhite C, Mariani TJ, Al Alam D. Prenatal histological, cellular, and molecular anomalies in trisomy 21 lung. J Pathol 2021; 255:41-51. [PMID: 34050678 PMCID: PMC9109699 DOI: 10.1002/path.5735] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/12/2021] [Accepted: 05/25/2021] [Indexed: 11/10/2022]
Abstract
Down syndrome (DS), also known as trisomy 21 (T21), is the most common human chromosomal anomaly. Although DS can affect many organ systems, lung and heart disease are the leading causes of death. An abundance of existing data suggests that lung abnormalities originate postnatally in DS. However, a single report of branching insufficiency in DS has inferred a potential prenatal origin. The histology of T21 fetal lungs (n = 15) was assessed by an experienced pathologist. Spatial differences in cellular phenotypes were examined using immunohistochemistry (IHC). Comprehensive gene expression in prenatal T21 lungs (n = 19), and age-matched controls (n = 19), was performed using high-throughput RNA sequencing (RNAseq) and validated by RT-qPCR. Histopathological abnormalities were observed in approximately half of T21 prenatal lung samples analyzed, which included dilated terminal airways/acinar tubules, dilated lymphatics, and arterial wall thickening. IHC for Ki67 revealed significant reductions in epithelial and mesenchymal cell proliferation, predominantly in tissues displaying pathology. IHC demonstrated that airway smooth muscle was reduced and discontinuous in the proximal airway in conjunction with reduced SOX2. RNAseq identified 118 genes significantly dysregulated (FDR < 0.05) in T21 lung when unadjusted and 316 genes when adjusted for age. Ontology analysis showed that IFN pathway genes were appreciably upregulated, whereas complement and coagulation cascades and extracellular matrix pathway genes were downregulated. RT-qPCR confirmed the changes in genes associated with these pathways in prenatal T21 lungs. Our data demonstrate that specific histological, cellular, and molecular abnormalities occur prenatally in different compartments of human T21 lung, which could be representative of premature stage progression. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Soula Danopoulos
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Soumyaroop Bhattacharya
- Pediatric Molecular and Personalized Medicine Program and Division of Neonatology, University of Rochester, Rochester, NY, USA
| | - Gail Deutsch
- Seattle Children’s Research Institute, Seattle, WA, USA
| | - Lina R Nih
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Chris Slaunwhite
- Pediatric Molecular and Personalized Medicine Program and Division of Neonatology, University of Rochester, Rochester, NY, USA
| | - Thomas J Mariani
- Pediatric Molecular and Personalized Medicine Program and Division of Neonatology, University of Rochester, Rochester, NY, USA
| | - Denise Al Alam
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| |
Collapse
|
12
|
Lin X, Wu T, Wang L, Dang S, Zhang W. ADAMTS18 deficiency leads to preputial gland hypoplasia and fibrosis in male mice. Reprod Biol 2021; 21:100542. [PMID: 34388417 DOI: 10.1016/j.repbio.2021.100542] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/28/2022]
Abstract
ADAMTSs (A disintegrin and metalloproteinase with thrombospondin motifs) are a family of 19 secreted zinc metalloproteinases that play a major role in the assembly and degradation of the extracellular matrix (ECM) during development, morphogenesis, tissue repair, and remodeling. ADAMTS18 is a poorly characterized member of the ADAMTS family. Previously, ADAMTS18 was found to participate in the development of female reproductive tract in mice. However, whether ADAMTS18 also plays a role in the development of male reproductive system remains unclear. In this study, Adamts18 mRNA was found to be highly expressed in the basal cells of the developing preputial gland. Male Adamts18 knockout (Adamts18-/-) mice exhibit abnormal preputial gland morphogenesis, including reduced size and sharp outline. Histological analyses of preputial gland from 2-week-old male Adamts18-/- mice showed significant atrophy of the whole gland. Preputial glands from 7 months and older Adamts18-/- mice appeared macroscopic swelling on their surface. Histologically, preputial gland swelling is characterized by tissue fibrosis and thicker keratinized squamous cell layer. Preputial gland lesions in age-matched male Adamts18+/+ mice were barely detected. ADAMTS18 deficiency does not lead to significant changes in morphogenesis of prostate and testis in male mice. These results indicate that ADAMTS18 is required for normal morphogenesis and homeostasis of the preputial gland in male mice.
Collapse
Affiliation(s)
- Xiaotian Lin
- Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Brain Functional Genomics, East China Normal University, Shanghai, 200062, China
| | - Taojing Wu
- Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Brain Functional Genomics, East China Normal University, Shanghai, 200062, China
| | - Liya Wang
- Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Brain Functional Genomics, East China Normal University, Shanghai, 200062, China
| | - Suying Dang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Wei Zhang
- Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Brain Functional Genomics, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
13
|
Yang N, Zhang Q, Ye S, Lu T, Sun M, Wang L, Wang M, Pan YH, Dang S, Zhang W. Adamts18 Deficiency Causes Spontaneous SMG Fibrogenesis in Adult Mice. J Dent Res 2021; 101:226-234. [PMID: 34323105 DOI: 10.1177/00220345211029270] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Chronic sclerosing sialadenitis of the submandibular gland (also known as Küttner tumor) is characterized by concomitant swelling of the submandibular glands secondary to strong lymphocytic infiltration and fibrosis. The pathogenesis of this disease has been unclear, but it is associated with immune disorders. ADAMTS18 is a member of the ADAMTS superfamily of extracellular proteinases. In this study, we showed that Adamts18 is highly expressed in submandibular salivary gland (SMG) during embryonic development and decreases but is retained in adult SMG tissue in mice. Adamts18 deficiency led to reduced cleft formation and epithelial branching in embryonic SMG before embryonic day 15.5 in mice. No significant histologic changes in the later stages of branching or the morphology of SMG were detected in Adamts18-/- mice. However, Adamts18 deficiency causes spontaneous SMG fibrogenesis and fibrosis in adult mice. At 8 wk of age, Adamts18-/- mice began to manifest the first signs of pathologic changes of mild fibrosis and CD11b+ cell infiltration in SMG tissues. At ≥8 mo, all male and female Adamts18-/- mice developed unilateral or bilateral SMG scleroma that is similar to patients with chronic sclerosing sialadenitis of the submandibular gland. Adamts18-/- mice also showed secretory dysfunction and severe dental caries. Histologically, SMG scleroma is characterized by progressive periductal fibrosis, acinar atrophy, irregular duct ectasis, and dense infiltration of IgG-positive plasma cells. A significant infiltration of CD4+ T lymphocytes and CD11b+ monocytes and macrophages was also detected in the SMG scleroma of Adamts18-/- mice. The levels of TGF-β1, IL-6, and IL-33 were significantly increased in Adamts18-/- SMGs, which induces chronic inflammation and myofibroblast activation, ultimately leading to fibrosis. This study indicates that Adamts18 regulates the early branching morphogenesis of embryonic SMG and plays a role in protecting from spontaneous SMG fibrogenesis via modulating local inflammation, autoimmune reaction, and myofibroblast activation in adult mice.
Collapse
Affiliation(s)
- N Yang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| | - Q Zhang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| | - S Ye
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| | - T Lu
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| | - M Sun
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| | - L Wang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| | - M Wang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| | - Y H Pan
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| | - S Dang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - W Zhang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
14
|
Ye S, Yang N, Lu T, Wu T, Wang L, Pan YH, Cao X, Yuan X, Wisniewski T, Dang S, Zhang W. Adamts18 modulates the development of the aortic arch and common carotid artery. iScience 2021; 24:102672. [PMID: 34189436 PMCID: PMC8215225 DOI: 10.1016/j.isci.2021.102672] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/04/2021] [Accepted: 05/27/2021] [Indexed: 02/05/2023] Open
Abstract
Members of a disintegrin and metalloproteinases with thrombospondin motif (ADAMTS) family have been implicated in various vascular diseases. However, their functional roles in early embryonic vascular development are unknown. In this study, we showed that Adamts18 is highly expressed at E11.5-E14.5 in cells surrounding the embryonic aortic arch (AOAR) and the common carotid artery (CCA) during branchial arch artery development in mice. Adamts18 deficiency was found to cause abnormal development of AOAR, CCA, and the third and fourth branchial arch appendages, leading to hypoplastic carotid body, thymus, and variation of middle cerebral artery. Adamts18 was shown to affect the accumulation of extracellular matrix (ECM) components, in particular fibronectin (Fn), around AOAR and CCA. As a result of increased Fn accumulation, the Notch3 signaling pathway was activated to promote the differentiation of cranial neural crest cells (CNCCs) to vascular smooth muscle cells. These data indicate that Adamts18-mediated ECM homeostasis is crucial for the differentiation of CNCCs.
Collapse
Affiliation(s)
- Shuai Ye
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Ning Yang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Tiantian Lu
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Taojing Wu
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Liya Wang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Yi-Hsuan Pan
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Xiaohua Cao
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Xiaobing Yuan
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Thomas Wisniewski
- Departments of Neurology, Pathology and Psychiatry, New York University Langone Health, New York, NY, USA
| | - Suying Dang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai 200025, China
| | - Wei Zhang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| |
Collapse
|