1
|
Ahanonu B, Crowther A, Kania A, Rosa-Casillas M, Basbaum AI. Long-term optical imaging of the spinal cord in awake behaving mice. Nat Methods 2024; 21:2363-2375. [PMID: 39533007 DOI: 10.1038/s41592-024-02476-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/16/2024] [Indexed: 11/16/2024]
Abstract
Advances in optical imaging and fluorescent biosensors enable study of the spatiotemporal and long-term neural dynamics in the brain of awake animals. However, methodological difficulties and fibrosis limit similar advances in the spinal cord. Here, to overcome these obstacles, we combined in vivo application of fluoropolymer membranes that inhibit fibrosis, a redesigned implantable spinal imaging chamber and improved motion correction methods that together permit imaging of the spinal cord in awake behaving mice, for months to over a year. We demonstrated a robust ability to monitor axons, identified a spinal cord somatotopic map, performed months-long imaging in freely moving mice, conducted Ca2+ imaging of neural dynamics in behaving mice responding to pain-provoking stimuli and observed persistent microglial changes after nerve injury. The ability to couple in vivo imaging and behavior at the spinal cord level will drive insights not previously possible at a key location for somatosensory transmission to the brain.
Collapse
Affiliation(s)
- Biafra Ahanonu
- Department of Anatomy, University of California, San Francisco, CA, USA
| | - Andrew Crowther
- Department of Anatomy, University of California, San Francisco, CA, USA
| | - Artur Kania
- Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada
- Department of Cell Biology and Anatomy, and Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | | | - Allan I Basbaum
- Department of Anatomy, University of California, San Francisco, CA, USA.
| |
Collapse
|
2
|
Takahashi T, Zhang H, Agetsuma M, Nabekura J, Otomo K, Okamura Y, Nemoto T. Large-scale cranial window for in vivo mouse brain imaging utilizing fluoropolymer nanosheet and light-curable resin. Commun Biol 2024; 7:232. [PMID: 38438546 PMCID: PMC10912766 DOI: 10.1038/s42003-024-05865-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 01/26/2024] [Indexed: 03/06/2024] Open
Abstract
Two-photon microscopy enables in vivo imaging of neuronal activity in mammalian brains at high resolution. However, two-photon imaging tools for stable, long-term, and simultaneous study of multiple brain regions in same mice are lacking. Here, we propose a method to create large cranial windows covering such as the whole parietal cortex and cerebellum in mice using fluoropolymer nanosheets covered with light-curable resin (termed the 'Nanosheet Incorporated into light-curable REsin' or NIRE method). NIRE method can produce cranial windows conforming the curved cortical and cerebellar surfaces, without motion artifacts in awake mice, and maintain transparency for >5 months. In addition, we demonstrate that NIRE method can be used for in vivo two-photon imaging of neuronal ensembles, individual neurons and subcellular structures such as dendritic spines. The NIRE method can facilitate in vivo large-scale analysis of heretofore inaccessible neural processes, such as the neuroplastic changes associated with maturation, learning and neural pathogenesis.
Collapse
Affiliation(s)
- Taiga Takahashi
- Division of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- Department of Medical and Robotic Engineering Design, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo, 125-8585, Japan
| | - Hong Zhang
- Micro/Nano Technology Center, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa, 259-1292, Japan
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300350, China
| | - Masakazu Agetsuma
- Division of Homeostatic Development, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan
- Quantum Regenerative and Biomedical Engineering Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Chiba Inage-ku, Chiba, 263-8555, Japan
| | - Junichi Nabekura
- School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- Division of Homeostatic Development, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan
| | - Kohei Otomo
- Division of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- Department of Biochemistry and Systems Biomedicine, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Yosuke Okamura
- Micro/Nano Technology Center, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa, 259-1292, Japan
- Department of Applied Chemistry, School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa, 259-1292, Japan
- Course of Applied Science, Graduate School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa, 259-1292, Japan
| | - Tomomi Nemoto
- Division of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
- School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
| |
Collapse
|
3
|
Feng W, Liu CJ, Wang L, Zhang C. An optical clearing imaging window: Realization of mouse brain imaging and manipulation through scalp and skull. J Cereb Blood Flow Metab 2023; 43:2105-2119. [PMID: 36999642 PMCID: PMC10925863 DOI: 10.1177/0271678x231167729] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 02/20/2023] [Accepted: 03/10/2023] [Indexed: 04/01/2023]
Abstract
Cortical visualization is essential to understand the dynamic changes in brain microenvironment under physiopathological conditions. However, the turbid scalp and skull severely limit the imaging depth and resolution. Existing cranial windows require invasive scalp excision and various subsequent skull treatments. Non-invasive in vivo imaging of skull bone marrow, meninges, and cortex through scalp and skull with high resolution yet remains a challenge. In this work, a non-invasive trans-scalp/skull optical clearing imaging window is proposed for cortical and calvarial imaging, which is achieved by applying a novel skin optical clearing reagent. The imaging depth and resolution are greatly enhanced in near infrared imaging and optical coherence tomography imaging. Combining this imaging window with adaptive optics, we achieve the visualization and manipulation of the calvarial and cortical microenvironment through the scalp and skull using two-photon imaging for the first time. Our method provides a well-performed imaging window and paves the way for intravital brain studies with the advantages of easy-operation, convenience and non-invasiveness.
Collapse
Affiliation(s)
- Wei Feng
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Zhanjiang, China
- Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
| | - Chun-jie Liu
- Center for Artificial Intelligence Biology, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Lisi Wang
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Zhanjiang, China
- Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
| | - Chao Zhang
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Zhanjiang, China
- Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
4
|
Ahanonu B, Crowther A, Kania A, Casillas MR, Basbaum A. Long-term optical imaging of the spinal cord in awake, behaving animals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541477. [PMID: 37292913 PMCID: PMC10245895 DOI: 10.1101/2023.05.22.541477] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Advances in optical imaging approaches and fluorescent biosensors have enabled an understanding of the spatiotemporal and long-term neural dynamics in the brain of awake animals. However, methodological difficulties and the persistence of post-laminectomy fibrosis have greatly limited similar advances in the spinal cord. To overcome these technical obstacles, we combined in vivo application of fluoropolymer membranes that inhibit fibrosis; a redesigned, cost-effective implantable spinal imaging chamber; and improved motion correction methods that together permit imaging of the spinal cord in awake, behaving mice, for months to over a year. We also demonstrate a robust ability to monitor axons, identify a spinal cord somatotopic map, conduct Ca2+ imaging of neural dynamics in behaving animals responding to pain-provoking stimuli, and observe persistent microglial changes after nerve injury. The ability to couple neural activity and behavior at the spinal cord level will drive insights not previously possible at a key location for somatosensory transmission to the brain.
Collapse
Affiliation(s)
- Biafra Ahanonu
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
- These authors contributed equally
| | - Andrew Crowther
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
- These authors contributed equally
| | - Artur Kania
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, H2W 1R7, Canada
- Department of Cell Biology and Anatomy, and Division of Experimental Medicine, McGill University, Montréal, QC, H3A 2B2, Canada
| | - Mariela Rosa Casillas
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Allan Basbaum
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
- Lead Contact
| |
Collapse
|
5
|
Xiong H, Tang F, Guo Y, Xu R, Lei P. Neural Circuit Changes in Neurological Disorders: Evidence from in vivo Two-photon Imaging. Ageing Res Rev 2023; 87:101933. [PMID: 37061201 DOI: 10.1016/j.arr.2023.101933] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 04/11/2023] [Indexed: 04/17/2023]
Abstract
Neural circuits, such as synaptic plasticity and neural activity, are critical components of healthy brain function. The consequent dynamic remodeling of neural circuits is an ongoing procedure affecting neuronal activities. Disruption of this essential process results in diseases. Advanced microscopic applications such as two-photon laser scanning microscopy have recently been applied to understand neural circuit changes during disease since it can visualize fine structural and functional cellular activation in living animals. In this review, we have summarized the latest work assessing the dynamic rewiring of postsynaptic dendritic spines and modulation of calcium transients in neurons of the intact living brain, focusing on their potential roles in neurological disorders (e.g. Alzheimer's disease, stroke, and epilepsy). Understanding the fine changes that occurred in the brain during disease is crucial for future clinical intervention developments.
Collapse
Affiliation(s)
- Huan Xiong
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China; Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan, Chengdu, 610041, China
| | - Fei Tang
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan, Chengdu, 610041, China
| | - Yujie Guo
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan, Chengdu, 610041, China
| | - Ruxiang Xu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan, Chengdu, 610041, China.
| |
Collapse
|
6
|
Yeon C, Im JM, Kim M, Kim YR, Chung E. Cranial and Spinal Window Preparation for in vivo Optical Neuroimaging in Rodents and Related Experimental Techniques. Exp Neurobiol 2022; 31:131-146. [PMID: 35786637 PMCID: PMC9272117 DOI: 10.5607/en22015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/03/2022] [Accepted: 06/15/2022] [Indexed: 11/19/2022] Open
Abstract
Optical neuroimaging provides an effective neuroscience tool for multi-scale investigation of the neural structures and functions, ranging from molecular, cellular activities to the inter-regional connectivity assessment. Amongst experimental preparations, the implementation of an artificial window to the central nervous system (CNS) is primarily required for optical visualization of the CNS and associated brain activities through the opaque skin and bone. Either thinning down or removing portions of the skull or spine is necessary for unobstructed long-term in vivo observations, for which types of the cranial and spinal window and applied materials vary depending on the study objectives. As diversely useful, a window can be designed to accommodate other experimental methods such as electrophysiology or optogenetics. Moreover, auxiliary apparatuses would allow the recording in synchrony with behavior of large-scale brain connectivity signals across the CNS, such as olfactory bulb, cerebral cortex, cerebellum, and spinal cord. Such advancements in the cranial and spinal window have resulted in a paradigm shift in neuroscience, enabling in vivo investigation of the brain function and dysfunction at the microscopic, cellular level. This Review addresses the types and classifications of windows used in optical neuroimaging while describing how to perform in vivo studies using rodent models in combination with other experimental modalities during behavioral tests. The cranial and spinal window has enabled longitudinal examination of evolving neural mechanisms via in situ visualization of the brain. We expect transformable and multi-functional cranial and spinal windows to become commonplace in neuroscience laboratories, further facilitating advances in optical neuroimaging systems.
Collapse
Affiliation(s)
- Chanmi Yeon
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Jeong Myo Im
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Minsung Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Young Ro Kim
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA.,Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | - Euiheon Chung
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea.,AI Graduate School, Gwangju Institute of Science and Technology, Gwangju 61005, Korea.,Research Center for Photon Science Technology, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| |
Collapse
|
7
|
Zhang C, Liu C, Feng W. A Long-Term Clearing Cranial Window for Longitudinal Imaging of Cortical and Calvarial Ischemic Injury through the Intact Skull. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105893. [PMID: 35396810 PMCID: PMC9189679 DOI: 10.1002/advs.202105893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/01/2022] [Indexed: 05/26/2023]
Abstract
Skull is a reservoir for supplying immune cells that mediate brain immune surveillance. However, during intravital optical imaging of brain, conventional cranial windows requiring skull thinning or removal disrupt brain immunity integrity. Here, a novel long-term clearing cranial window (LCCW) based on the intact skull, dedicated to chronic skull transparency maintenance, is proposed. It significantly improves optical imaging resolution and depth, by which the cortical and calvarial vascular injury and regeneration processes after ischemic injury are longitudinally monitored in awake mice. Results show that calvarial blood vessels recover earlier than the cortex. And the transcriptome analysis reveals that gene expression patterns and immune cells abundances exist substantial differences between brain and skull after ischemic injury, which may be one of the causes for the time lag between their vascular recovery. These findings bring great enlightenment to vascular regeneration and reconstruction. Moreover, LCCW provides a minimally invasive approach for imaging the brain and skull bone marrow.
Collapse
Affiliation(s)
- Chao Zhang
- Zhanjiang Institute of Clinical MedicineCentral People's Hospital of ZhanjiangZhanjiangGuangdong524045China
- Zhanjiang Central HospitalGuangdong Medical UniversityZhanjiangGuangdong524045China
| | - Chun‐Jie Liu
- Center for Computational and Genomic MedicineThe Children's Hospital of PhiladelphiaPhiladelphiaPA19104USA
| | - Wei Feng
- Zhanjiang Institute of Clinical MedicineCentral People's Hospital of ZhanjiangZhanjiangGuangdong524045China
- Zhanjiang Central HospitalGuangdong Medical UniversityZhanjiangGuangdong524045China
| |
Collapse
|
8
|
Fluorine-containing bio-inert polymers: Roles of intermediate water. Acta Biomater 2022; 138:34-56. [PMID: 34700043 DOI: 10.1016/j.actbio.2021.10.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/06/2021] [Accepted: 10/18/2021] [Indexed: 12/13/2022]
Abstract
Fluorine-containing polymers are used not only in industrial processes but also in medical applications, because they exhibit excellent heat, weather, and chemical resistance. As these polymers are not easily degraded in our body, it is difficult to use them in applications that require antithrombotic properties, such as artificial blood vessels. The material used for medical applications should not only be stable in vivo, but it should also be inert to biomolecules such as proteins or cells. In this review, this property is defined as "bio-inert," and previous studies in this field are summarized. Bio-inert materials are less recognized as foreign substances by proteins or cells in the living body, and they must be covered at interfaces designed with the concept of intermediate water (IW). On the basis of this concept, we present here the current understanding of bio-inertness and unusual blood compatibility found in fluoropolymers used in biomedical applications. IW is the water that interacts with materials with moderate strength and has been quantified by a variety of analytical methods and simulations. For example, by using differential scanning calorimetry (DSC) measurements, IW was defined as water frozen at around -40°C. To consider the role of the IW, quantification methods of the hydration state of polymers are also summarized. These investigations have been conducted independently because of the conflict between hydrophobic fluorine and bio-inert properties that require hydrophilicity. In recent years, not many materials have been developed that incorporate the good points of both aspects, and their properties have seldom been linked to the hydration state. This has been critically performed now. Furthermore, fluorine-containing polymers in medical use are reviewed. Finally, this review also describes the molecular design of the recently reported fluorine-containing bio-inert polymers for controlling their hydration state. STATEMENT OF SIGNIFICANCE: A material covered with a hydration layer known as intermediate water that interacts moderately with other objects is difficult to be recognized as a foreign substance and exhibits bio-inert properties. Fluoropolymers show high durability, but conflict with bio-inert characteristics requiring hydrophilicity as these research studies have been conducted independently. On the other hand, materials that combine the advantages of both hydrophobic and hydrophilic features have been developed recently. Here, we summarize the molecular architecture and analysis methods that control intermediate water and provide a guideline for designing novel fluorine-containing bio-inert materials.
Collapse
|
9
|
Takahashi T, Zhang H, Otomo K, Okamura Y, Nemoto T. Protocol for constructing an extensive cranial window utilizing a PEO-CYTOP nanosheet for in vivo wide-field imaging of the mouse brain. STAR Protoc 2021; 2:100542. [PMID: 34027495 PMCID: PMC8134076 DOI: 10.1016/j.xpro.2021.100542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Large-scale optical measurements have revealed the anatomical and functional connectivity among brain regions underlying brain functions. Here, we describe how to construct a cranial window utilizing a polyethylene-oxide-coated CYTOP (PEO-CYTOP) nanosheet that suppresses bleeding on the brain surface of mice. We demonstrate in vivo two-photon imaging through the PEO-CYTOP nanosheet at the subcellular resolution in the parietal region of the mouse brain. This protocol improves the surgical procedure and expands the optically observable regions, thereby promoting understanding of brain function. For complete details on the use and execution of this protocol, please refer to Takahashi et al. (2020). Detailed protocol for constructing a vast cranial window for in vivo mouse brain imaging Preparation and brain-sealing method of PEO-CYTOP nanosheet Instruction to make a large cranial hole with a depressant for intracranial pressure
Collapse
Affiliation(s)
- Taiga Takahashi
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi 444-8787, Japan.,Division of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi 444-8787, Japan.,School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Higashiyama 5-1, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Hong Zhang
- Department of Applied Chemistry, School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan.,Micro/Nano Technology Center, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan
| | - Kohei Otomo
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi 444-8787, Japan.,Division of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi 444-8787, Japan.,School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Higashiyama 5-1, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Yosuke Okamura
- Department of Applied Chemistry, School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan.,Micro/Nano Technology Center, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan
| | - Tomomi Nemoto
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi 444-8787, Japan.,Division of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi 444-8787, Japan.,School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Higashiyama 5-1, Myodaiji, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|