1
|
Bulemo PM, Kim DH, Shin H, Cho HJ, Koo WT, Choi SJ, Park C, Ahn J, Güntner AT, Penner RM, Kim ID. Selectivity in Chemiresistive Gas Sensors: Strategies and Challenges. Chem Rev 2025; 125:4111-4183. [PMID: 40198852 DOI: 10.1021/acs.chemrev.4c00592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
The demand for highly functional chemical gas sensors has surged due to the increasing awareness of human health to monitor metabolic disorders or noncommunicable diseases, safety measures against harmful greenhouse and/or explosive gases, and determination of food freshness. Over the years of dedicated research, several types of chemiresistive gas sensors have been realized with appreciable sensitivities toward various gases. However, critical issues such as poor selectivity and sluggish response/recovery speeds continue to impede their widespread commercialization. Specifically, the mechanisms behind the selective response of some chemiresistive materials toward specific gas analytes remain unclear. In this review, we discuss state-of-the-art strategies employed to attain gas-selective chemiresistive materials, with particular emphasis on materials design, surface modification or functionalization with catalysts, defect engineering, material structure control, and integration with physical/chemical gas filtration media. The nature of material surface-gas interactions and the supporting mechanisms are elucidated, opening opportunities for optimizing the materials design, fine-tuning the gas sensing performance, and guiding the selection of the most appropriate materials for the accurate detection of specific gases. This review concludes with recommendations for future research directions and potential opportunities for further selectivity improvements.
Collapse
Affiliation(s)
- Peresi Majura Bulemo
- Department of Mechanical and Industrial Engineering, University of Dar es Salaam, P.O. Box 35131, Dar es Salaam, Tanzania
| | - Dong-Ha Kim
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hamin Shin
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Advanced Nanosensor Research Center, KI Nanocentury, KAIST, Daejeon 34141, Republic of Korea
- Human-Centered Sensing Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, CH-8092 Zürich, Switzerland
| | - Hee-Jin Cho
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Advanced Nanosensor Research Center, KI Nanocentury, KAIST, Daejeon 34141, Republic of Korea
| | - Won-Tae Koo
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Advanced Nanosensor Research Center, KI Nanocentury, KAIST, Daejeon 34141, Republic of Korea
| | - Seon-Jin Choi
- Division of Materials of Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
- Institute of Nano Science and Technology, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Chungseong Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Advanced Nanosensor Research Center, KI Nanocentury, KAIST, Daejeon 34141, Republic of Korea
| | - Jaewan Ahn
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Advanced Nanosensor Research Center, KI Nanocentury, KAIST, Daejeon 34141, Republic of Korea
| | - Andreas T Güntner
- Human-Centered Sensing Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, CH-8092 Zürich, Switzerland
| | - Reginald M Penner
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Advanced Nanosensor Research Center, KI Nanocentury, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
2
|
Sawatmuenwai P, Kaewket K, Ngamchuea K. Electrochemical Analysis of Methanol with Nafion-Coated Copper Oxide Nanoparticles. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2024; 2024:1809578. [PMID: 39371604 PMCID: PMC11455596 DOI: 10.1155/2024/1809578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/19/2024] [Indexed: 10/08/2024]
Abstract
This work introduces a Nafion-coated copper(I) oxide nanoparticle electrode (Nafion/Cu2O/GC) designed for the electrochemical detection of methanol (CH3OH). The responses of the composite material toward CH3OH were enhanced by the selective permeation of CH3OH through the hydrophilic channels of the Nafion membrane in combination with the electroactivity of Cu2O nanoparticles. The sensor displayed a linear detection range of 0.33-100 mM CH3OH with a sensitivity of 0.17 μA·mM-1 and a detection limit (3 s/m) of 0.10 mM. It exhibited excellent reproducibility with a relative standard deviation of <5%. The sensor's practical applicability was demonstrated through recovery studies on hand sanitizer samples, achieving ca. 100% recovery. The sensor was further used to elucidate CH3OH adsorption on activated carbon, revealing that the process conforms to the Langmuir isotherm model.
Collapse
Affiliation(s)
- Pantipa Sawatmuenwai
- School of ChemistryInstitute of ScienceSuranaree University of Technology, 111 University Avenue, Suranaree, Muang, Nakhon Ratchasima 30000, Thailand
| | - Keerakit Kaewket
- School of ChemistryInstitute of ScienceSuranaree University of Technology, 111 University Avenue, Suranaree, Muang, Nakhon Ratchasima 30000, Thailand
| | - Kamonwad Ngamchuea
- School of ChemistryInstitute of ScienceSuranaree University of Technology, 111 University Avenue, Suranaree, Muang, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
3
|
van den Broek J, Keller SD, Goodall I, Parish-Virtue K, Bauer-Christoph C, Fuchs J, Tsipi D, Güntner AT, Blum T, Mathurin JC, Steiger MG, Shirvani R, Gössinger M, Graf M, Anderhub P, Z'graggen D, Hüsser C, Faigle B, Agapios A. Handheld methanol detector for beverage analysis: interlaboratory validation. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3859-3866. [PMID: 38847307 DOI: 10.1039/d4ay00919c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Methanol is a toxic alcohol contained in alcoholic beverages as a natural byproduct of fermentation or added intentionally to counterfeits to increase profit. To ensure consumer safety, many countries and the EU have established strict legislation limits for methanol content. Methanol concentration is mostly detected by laboratory instrumentation since mobile devices for routine on-site testing of beverages in distilleries, at border stations or even at home are not available. Here, we validated a handheld methanol detector for beverage analysis in an ISO 5725 interlaboratory trial: a total of 119 measurements were performed by 17 independent participants (distilleries, universities, authorities, and competence centers) from six countries on samples with relevant methanol concentrations (0.1, 1.5 vol%). The detector was based on a microporous separation filter and a nanostructured gas sensor allowing on-site measurement of methanol down to 0.01 vol% (in the liquid) within only 2 min by laymen. The detector showed excellent repeatability (<5.4%), reproducibility (<9.5%) and small bias (<0.012 vol%). Additional measurements on various methanol-spiked alcoholic beverages (whisky, rum, gin, vodka, tequila, port, sherry, liqueur) indicated that the detector is not interfered by environmental temperature and spirit composition, featuring excellent linearity (R2 > 0.99) down to methanol concentrations of 0.01 vol%. This device has been recently commercialized (Alivion Spark M-20) with comparable accuracy to the gold-standard gas chromatography and can be readily applied for final product inspection, intake control of raw materials or to identify toxic counterfeit products.
Collapse
Affiliation(s)
| | | | - Ian Goodall
- Scotch Whisky Research Institute, UK-EH144AP Riccarton, UK
| | | | | | - Johannes Fuchs
- Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit, DE-97082 Würzburg, Germany
| | - Despina Tsipi
- General Chemical State Laboratory, GR-11521 Athens, Greece
| | - Andreas T Güntner
- Human-centered Sensing Laboratory, ETH Zürich, CH-8092 Zürich, Switzerland
| | - Thomas Blum
- Research Division Food Microbial Systems, Agroscope, CH-8820 Wädenswil, Switzerland
| | | | - Matthias G Steiger
- Institute of Chemical, Environmental and Bioscience Engineering, Research Group Biochemistry, TU Wien, AT-1060 Vienna, Austria
| | - Roghayeh Shirvani
- Institute of Chemical, Environmental and Bioscience Engineering, Research Group Biochemistry, TU Wien, AT-1060 Vienna, Austria
| | - Manfred Gössinger
- Department of Fruit Processing, Federal College and Research Institute for Viticulture and Pomology Klosterneuburg, AT-3400 Klosterneuburg, Austria
| | - Monika Graf
- Department of Fruit Processing, Federal College and Research Institute for Viticulture and Pomology Klosterneuburg, AT-3400 Klosterneuburg, Austria
| | | | | | | | | | - Agapiou Agapios
- Department of Chemistry, University of Cyprus, CY-1678 Nicosia, Cyprus
| |
Collapse
|
4
|
Omari S, Ng'ong'a F, Kimotho J. In vitro assessment and comparison of quality of alcohol-based hand rubs, pre- and peri-COVID-19 pandemic outbreak in Kenya. F1000Res 2024; 12:1546. [PMID: 38778804 PMCID: PMC11109557 DOI: 10.12688/f1000research.140226.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Background In the wake of the coronavirus disease 2019 (COVID-19) pandemic, the World Health Organization recommended the use of alcohol-based hand rubs (ABHRs) to curb transmission, leading to increased production and use. This has posed a danger of production and use of poor-quality ABHRs. Methods This study assessed and compared the quality of ABHRs in the Kenyan market that were produced before and after the outbreak of the COVID-19 pandemic in March 2020. Quality testing was carried out against European EN 1500:2013 and Kenyan EAS 789:2013 Standards and 20 samples analyzed for alcohol content by GC-FID. Results The study found that 27.8% of the peri-COVID-19 pandemic sanitizers had less than 90% bactericidal reduction activity as compared to 12.5% manufactured pre-COVID-19 pandemic. Only 25% peri-COVID-19 pandemic ABHRs met the EAS 789:2013 acceptable limit of over 60% alcohol content. Product adulteration with methanol was found in 20 % of the samples with only 5% complying with FDA approval limit of <0.063% v/v methanol. Study found no correlation between the total alcohol content and the efficacy of ABHRs. Conclusions The study found that more substandard products were produced during the pandemic. This raises a concern about possible emergence of alcohol resistant strains of microorganisms. The study therefore recommends an adequate quality monitoring system to curb against substandard products.
Collapse
Affiliation(s)
- Samuel Omari
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
- Innovation and Technology Transfer Division, Kenya Medical Research Institute, Nairobi, Kenya
| | - Florence Ng'ong'a
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - James Kimotho
- Innovation and Technology Transfer Division, Kenya Medical Research Institute, Nairobi, Kenya
| |
Collapse
|
5
|
Prakobdi C, Nacapricha D, Bunchuay T, Saetear P. Exploitations of Schiff's test and iodoform test for an effective quality assessment of alcohol-based hand sanitizers. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123076. [PMID: 37392537 PMCID: PMC10299952 DOI: 10.1016/j.saa.2023.123076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/22/2023] [Accepted: 06/24/2023] [Indexed: 07/03/2023]
Abstract
In the period of the corona virus disease 2019 (COVID-19) outbreak, an alcohol-based hand sanitizer is one of the most in-demand products for disinfection purposes. Two major concerns are adulteration of methanol, which causes toxicity to human health, and the concentration of legal alcohol in hand sanitizers due to their effect on antivirus. In this work, the first report of the entire quality assessment of alcohol-based hand sanitizers in terms of detection of methanol adulteration and quantification of ethanol is presented. Detection of adulterated methanol is carried out based on Schiff's reagent after the oxidation of methanol to formaldehyde, giving a bluish-purple solution to detect at 591 nm. In cases where a colorless solution is observed, an iodoform reaction with turbidimetric detection is then performed for quantitative analysis of legal alcohol (ethanol or isopropanol). To comply with the regulation of quality assessment of alcohol-based hand sanitizers, a regulation chart with four safety zones is also presented, employing a combination of two developed tests. The coordinates of a point (x, y) obtained from the two tests are extrapolated to the safety zone in the regulation chart. The regulation chart also showed consistency of analytical results as compared with the gas chromatography-flame ionization detector.
Collapse
Affiliation(s)
- Chirapha Prakobdi
- Flow Innovation-Research for Science and Technology Laboratories (Firstlabs), Thailand; Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Duangjai Nacapricha
- Flow Innovation-Research for Science and Technology Laboratories (Firstlabs), Thailand; Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Thanthapatra Bunchuay
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Phoonthawee Saetear
- Flow Innovation-Research for Science and Technology Laboratories (Firstlabs), Thailand; Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
6
|
Alam S, Rahat MMR, Upoma NJ, Halder C, Moulick SP, Islam MM, Liu W, Habib A. Assessment of quality of commercial hand sanitizers using Fourier transform infrared spectroscopy and gas chromatography. MethodsX 2023; 11:102274. [PMID: 37484519 PMCID: PMC10362314 DOI: 10.1016/j.mex.2023.102274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/28/2023] [Indexed: 07/25/2023] Open
Abstract
Since the beginning of the COVID-19 pandemic, the use and manufacture of alcohol-based hand sanitizers increased exponentially. Efficacy of hand sanitizers mainly depends on active ingredients like ethanol and isopropanol (IPA). Even though methanol is extremely hazardous to people, it is still illegally used in hand sanitizers in Bangladesh. Developing a quick and simple analytical method for detecting and quantifying ethanol/IPA/methanol is crucial. Here, Fourier transform infrared spectroscopy (FTIR) was used to identify and quantify alcohol content in commercially available hand sanitizers in a quick and easy way. Comparing the FTIR and GC data, provided quite similar results. Unlike previous studies by FTIR, C-H, CH3-C-CH3 stretching, and C-H bending vibrational modes were employed to construct analytical calibration curves to detect and quantify alcohol in hand sanitizers. According to FTIR and GC findings, ethanol and IPA content were found to be 43-82% and 40-69%, and 56-64% and 61-66%, respectively, whereas ethanol was labeled at 66-80% and IPA at 65-70%. FTIR and GC revealed methanol content ranging from 37 to 98 and 19 to 81%, respectively. Also, the FTIR was significantly faster than the GC. Therefore, FTIR can be used to commercially analyze the quality of hand sanitizers.•FTIR was used to identify and quantify alcohol content in commercially available hand sanitizers in a quick and easy way.•Comparing the FTIR and GC data, provided quite similar results.•Out of ten samples, five contained ethanol, three IPA, and two methanol.
Collapse
Affiliation(s)
- Saima Alam
- Department of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| | | | | | - Chandan Halder
- Department of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| | - Shyama Prosad Moulick
- Chemical Research Division, BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhanmondi, Dhaka 1205, Bangladesh
| | - Md. Monarul Islam
- Chemical Research Division, BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhanmondi, Dhaka 1205, Bangladesh
| | - Wenben Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ahsan Habib
- Department of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| |
Collapse
|
7
|
Mishra T, Vuppu S. Toxicity of chemical-based hand sanitizers on children and the development of natural alternatives: a computational approach. Crit Rev Toxicol 2023; 53:572-599. [PMID: 37916473 DOI: 10.1080/10408444.2023.2270496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/03/2023] [Indexed: 11/03/2023]
Abstract
The unintended exposure of children to hand sanitizers poses a high risk of potentially fatal complications. Skin irritation, dryness, cracking, peeling, hypoglycemia, apnea, and acidosis are examples of unintended consequences of hand sanitizer. The sanitizer reportedly kills normal microbial flora on hands, which usually promotes innate immunity among children under 12. Children are more susceptible to the toxicity associated with the chemical constituents of marketed chemical-based hand sanitizers; however, the studies to develop sanitizer formulations for children are rudimentary. The adverse events limit the use of hand sanitizers specifically in children because of their sensitive and delicate skin. Additionally, it is reported that many chemical-based hand sanitizer formulations, especially alcohol-based ones may also contain contaminants like methanol, acetaldehyde, benzene, isopropanol, and ethyl-acetate. These contaminants are found to be hazardous to human health exhibiting toxicity on ingestion, inhalation, or dermal exposure, especially in children. Therefore, it is important to design novel, innovative, safer sanitizer formulations for children. The study aims to discuss the toxic contaminants in chemical-based sanitizer formulations and propose a design for novel herbal formulations with minimal toxicity and adverse effects, especially for children. The review focuses on ADMET analysis of the common contaminants in hand sanitizers, molecular docking, Lipinski's rule of five analysis, and molecular simulation studies to analyze the efficacy of interaction with the receptor leading to anti-microbial activity and drug-likeness of the compound. The in silico methods can effectively validate the potential efficacy of novel formulations of hand sanitizers designed for children as an efficient alternative to chemical-based sanitizers with greater efficacy and the absence of toxic contaminants.
Collapse
Affiliation(s)
- Toshika Mishra
- Department of Biotechnology, Science, Innovation, and Society Research Lab 115, Hexagon (SMV), Vellore Institute of Technology, Vellore, India
| | - Suneetha Vuppu
- Department of Biotechnology, Science, Innovation, and Society Research Lab 115, Hexagon (SMV), Vellore Institute of Technology, Vellore, India
| |
Collapse
|
8
|
Saracini J, de Assis ICM, Peiter GC, Busso C, de Oliveira RJ, Felix JF, Bini RA, Schneider R. Borophosphate glasses as active agents for antimicrobial hydrogels. Int J Pharm 2023; 644:123323. [PMID: 37597596 DOI: 10.1016/j.ijpharm.2023.123323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/21/2023]
Abstract
Herein we report the synthesis of transition-metal-free potassium borophosphate glasses and their application as bactericidal and bacteriostatic material. The antimicrobial activity was achieved through a simple change in the molar ratio of boron and phosphorus atoms, making borophosphate glass soluble in water. The glasses were analyzed by X-ray powder diffraction, Raman spectroscopy, laser-induced breakdown spectroscopy, and water absorption. The addition of a boron compound is required to obtain potassium-based phosphate glasses. Moreover, the change in the phosphorus and boron molar ratio (P/B), 2, 1 or 0.5 affects the glass solubilization in water, which increases with the phosphorus content. The glass materials were submitted to tests of biological activity against the bacteria Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. These water-soluble borophosphate glasses were employed in the development of hydrogel formulations using Carbopol®. Phosphorous-rich samples at a concentration of 15 % (w/w) in hydrogel showed better antimicrobial activity against S. aureus and E. coli, when compared to other samples, including commercial alcohol hand sanitizer gel, with an average size of the inhibition halo of 24.02±1.43 and 19.24±1.63mm, respectively.
Collapse
Affiliation(s)
- Jaqueline Saracini
- Universidade Estadual do Oeste do Paraná, Centro de Engenharias e Ciências Exatas-CECE, 85903-000, Toledo, PR, Brazil
| | - Iago C M de Assis
- Federal University of Technology - Paraná, Group of Polymers and Nanostructures, 85902-490, Toledo, PR, Brazil
| | - Gabrielle Caroline Peiter
- Federal University of Technology - Paraná, Group of Polymers and Nanostructures, 85902-490, Toledo, PR, Brazil
| | - Cleverson Busso
- Federal University of Technology - Paraná, Group of Polymers and Nanostructures, 85902-490, Toledo, PR, Brazil
| | - Rodrigo J de Oliveira
- Universidade Estadual da Paraíba, Physical Chemistry of Materials Group, 58429-500, Campina Grande, PB, Brazil
| | - Jorlandio F Felix
- Universidade de Brasília, Instituto de Física-Núcleo de Física Aplicada, 70910-900, Brasília, DF, Brazil
| | - Rafael A Bini
- Federal University of Technology - Paraná, Group of Polymers and Nanostructures, 85902-490, Toledo, PR, Brazil
| | - Ricardo Schneider
- Universidade Estadual do Oeste do Paraná, Centro de Engenharias e Ciências Exatas-CECE, 85903-000, Toledo, PR, Brazil; Federal University of Technology - Paraná, Group of Polymers and Nanostructures, 85902-490, Toledo, PR, Brazil.
| |
Collapse
|
9
|
Bastide GMGBH, Remund AL, Oosthuizen DN, Derron N, Gerber PA, Weber IC. Handheld device quantifies breath acetone for real-life metabolic health monitoring. SENSORS & DIAGNOSTICS 2023; 2:918-928. [PMID: 37465007 PMCID: PMC10351029 DOI: 10.1039/d3sd00079f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/10/2023] [Indexed: 07/20/2023]
Abstract
Non-invasive breath analysis with mobile health devices bears tremendous potential to guide therapeutic treatment and personalize lifestyle changes. Of particular interest is the breath volatile acetone, a biomarker for fat burning, that could help in understanding and treating metabolic diseases. Here, we report a hand-held (6 × 10 × 19.5 cm3), light-weight (490 g), and simple device for rapid acetone detection in breath. It comprises a tailor-made end-tidal breath sampling unit, connected to a sensor and a pump for on-demand breath sampling, all operated using a Raspberry Pi microcontroller connected with a HDMI touchscreen. Accurate acetone detection is enabled by introducing a catalytic filter and a separation column, which remove and separate undesired interferents from acetone upstream of the sensor. This way, acetone is detected selectively even in complex gas mixtures containing highly concentrated interferents. This device accurately tracks breath acetone concentrations in the exhaled breath of five volunteers during a ketogenic diet, being as high as 26.3 ppm. Most importantly, it can differentiate small acetone changes during a baseline visit as well as before and after an exercise stimulus, being as low as 0.5 ppm. It is stable for at least four months (122 days), and features excellent bias and precision of 0.03 and 0.6 ppm at concentrations below 5 ppm, as validated by proton-transfer-reaction time-of-flight mass spectrometry (PTR-ToF-MS). Hence, this detector is highly promising for simple-in-use, non-invasive, and routine monitoring of acetone to guide therapeutic treatment and track lifestyle changes.
Collapse
Affiliation(s)
- Grégoire M G B H Bastide
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zurich CH-8092 Zurich Switzerland
- Department of Endocrinology, Diabetology, and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH) CH-8091 Zurich Switzerland
| | - Anna L Remund
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zurich CH-8092 Zurich Switzerland
- Department of Endocrinology, Diabetology, and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH) CH-8091 Zurich Switzerland
| | - Dina N Oosthuizen
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zurich CH-8092 Zurich Switzerland
- Department of Mechanical and Industrial Engineering, Northeastern University 467 Egan Center 02115 MA Boston USA
| | - Nina Derron
- Department of Endocrinology, Diabetology, and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH) CH-8091 Zurich Switzerland
| | - Philipp A Gerber
- Department of Endocrinology, Diabetology, and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH) CH-8091 Zurich Switzerland
| | - Ines C Weber
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zurich CH-8092 Zurich Switzerland
- Department of Endocrinology, Diabetology, and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH) CH-8091 Zurich Switzerland
| |
Collapse
|
10
|
Weber IC, Oosthuizen DN, Mohammad RW, Mayhew CA, Pratsinis SE, Güntner AT. Dynamic Breath Limonene Sensing at High Selectivity. ACS Sens 2023. [PMID: 37377394 DOI: 10.1021/acssensors.3c00439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Liver diseases (e.g., cirrhosis, cancer) cause more than two million deaths per year worldwide. This is partly attributed to late diagnosis and insufficient screening techniques. A promising biomarker for noninvasive and inexpensive liver disease screening is breath limonene that can indicate a deficiency of the cytochrome P450 liver enzymes. Here, we introduce a compact and low-cost detector for dynamic and selective breath limonene sensing. It comprises a chemoresistive sensor based on Si/WO3 nanoparticles pre-screened by a packed bed Tenax separation column at room temperature. We demonstrate selective limonene detection down to 20 parts per billion over up to three orders of magnitude higher concentrated acetone, ethanol, hydrogen, methanol, and 2-propanol in gas mixtures, as well as robustness to 10-90% relative humidity. Most importantly, this detector recognizes the individual breath limonene dynamics of four healthy volunteers following the ingestion (swallowing or chewing) of a limonene capsule. Limonene release and subsequent metabolization are monitored from breath measurements in real time and in excellent agreement (R2 = 0.98) with high-resolution proton transfer reaction mass spectrometry. This study demonstrates the potential of the detector as a simple-to-use and noninvasive device for the routine monitoring of limonene levels in exhaled breath to facilitate early diagnosis of liver dysfunction.
Collapse
Affiliation(s)
- Ines C Weber
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, CH-8092 Zürich, Switzerland
- Department of Endocrinology, Diabetology, and Clinical Nutrition, University Hospital Zürich (USZ) and University of Zürich (UZH), CH-8091 Zürich, Switzerland
| | - Dina N Oosthuizen
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, CH-8092 Zürich, Switzerland
| | - Rawan W Mohammad
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, CH-8092 Zürich, Switzerland
| | - Chris A Mayhew
- Institute for Breath Research, Universität Innsbruck, Innsbruck A-6020, Austria
| | - Sotiris E Pratsinis
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, CH-8092 Zürich, Switzerland
| | - Andreas T Güntner
- Department of Endocrinology, Diabetology, and Clinical Nutrition, University Hospital Zürich (USZ) and University of Zürich (UZH), CH-8091 Zürich, Switzerland
- Human-centered Sensor Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, CH-8092 Zürich, Switzerland
| |
Collapse
|
11
|
Nisbar ND, Jamal Khair SK, Bujang NB, Mohd Yusop AY. Determination of ethanol, isopropyl alcohol and methanol in alcohol-based hand sanitiser to ensure product quality, safety and efficacy. Sci Rep 2023; 13:9478. [PMID: 37301842 PMCID: PMC10257369 DOI: 10.1038/s41598-023-36283-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
The Coronavirus Disease-2019 (COVID-19) outbreak is an unprecedented global pandemic, sparking grave public health emergencies. One of the measures to reduce COVID-19 transmissions recommended by the World Health Organization is hand hygiene, i.e., washing hands with soap and water or disinfecting them using an alcohol-based hand sanitiser (ABHS). Unfortunately, competing ABHSs with unknown quality, safety, and efficacy thrived, posing yet another risk to consumers. This study aims to develop, optimise, and validate a gas chromatography-mass spectrometry (GC-MS)-based analytical method to simultaneously identify and quantify ethanol or isopropyl alcohol as the active ingredient in ABHS, with simultaneous determination of methanol as an impurity. The GC-MS was operated in Electron Ionisation mode, and Selected Ion Monitoring was chosen as the data acquisition method for quantitation. The analytical method was validated for liquid and gel ABHSs, covering the specificity, linearity and range, accuracy, and precisions, including the limit of detection and the limit of quantitation. The specificity of each target analyte was established using the optimised chromatographic separation with unique quantifier and qualifier ions. The linearity was ascertained with a coefficient of determination (r2) of > 0.9994 over the corresponding specification range. Respectively, the accuracy and precisions were satisfactory within 98.99 to 101.09% and < 3.04% of the relative standard deviation. The method was successfully applied to 69 ABHS samples, where 14 contained insufficient amounts of the active ingredient. Alarmingly, four samples comprised a high amount of methanol ranging from 5.3 to 19.4% with respect to the active alcohol percentage, which may pose significant short- and long-term health issues, leading to life-threatening crises for consumers. The method established would benefit in protecting the public against the potential harm due to substandard or unsafe ABHS products, primarily due to the presence of hazardous impurities such as methanol.
Collapse
Affiliation(s)
- Nur Dayana Nisbar
- Centre of Compliance and Quality Control, National Pharmaceutical Regulatory Agency, Ministry of Health Malaysia, Selangor, Malaysia
| | - Sara Khalida Jamal Khair
- Centre of Compliance and Quality Control, National Pharmaceutical Regulatory Agency, Ministry of Health Malaysia, Selangor, Malaysia
| | - Nur Baizura Bujang
- Centre of Compliance and Quality Control, National Pharmaceutical Regulatory Agency, Ministry of Health Malaysia, Selangor, Malaysia
| | - Ahmad Yusri Mohd Yusop
- Centre of Compliance and Quality Control, National Pharmaceutical Regulatory Agency, Ministry of Health Malaysia, Selangor, Malaysia.
| |
Collapse
|
12
|
Ponzoni A. A Statistical Analysis of Response and Recovery Times: The Case of Ethanol Chemiresistors Based on Pure SnO 2. SENSORS (BASEL, SWITZERLAND) 2022; 22:6346. [PMID: 36080803 PMCID: PMC9459747 DOI: 10.3390/s22176346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Response and recovery times are among the most important parameters for gas sensors. Their optimization has been pursued through several strategies, including the control over the morphology of the sensitive material. The effectiveness of these approaches is typically proven by comparing different sensors studied in the same paper under the same conditions. Additionally, tables comparing the results of the considered paper with those available in the literature are often reported. This is fundamental to frame the results of individual papers in a more general context; nonetheless, it suffers from the many differences occurring at the experimental level between different research groups. To face this issue, in the present paper, we adopt a statistical approach to analyze the response and recovery times reported in the literature for chemiresistors based on pure SnO2 for ethanol detection, which was chosen as a case study owing to its available statistic. The adopted experimental setup (of the static or dynamic type) emerges as the most important parameter. Once the statistic is split into these categories, morphological and sensor-layout effects also emerge. The observed results are discussed in terms of different diffusion phenomena whose balance depends on the testing conditions adopted in different papers.
Collapse
Affiliation(s)
- Andrea Ponzoni
- National Institute of Optics (INO) Unit of Brescia, National Research Council (CNR), 25123 Brescia, Italy; ; Tel.: +39-030-3711440
- National Institute of Optics (INO) Unit of Lecco, National Research Council (CNR), 23900 Lecco, Italy
| |
Collapse
|
13
|
Esteves C, Palma SICJ, Costa HMA, Alves C, Santos GMC, Ramou E, Carvalho AL, Alves V, Roque ACA. Tackling Humidity with Designer Ionic Liquid-Based Gas Sensing Soft Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107205. [PMID: 34873762 PMCID: PMC7613046 DOI: 10.1002/adma.202107205] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/12/2021] [Indexed: 05/13/2023]
Abstract
Relative humidity is simultaneously a sensing target and a contaminant in gas and volatile organic compound (VOC) sensing systems, where strategies to control humidity interference are required. An unmet challenge is the creation of gas-sensitive materials where the response to humidity is controlled by the material itself. Here, humidity effects are controlled through the design of gelatin formulations in ionic liquids without and with liquid crystals as electrical and optical sensors, respectively. In this design, the anions [DCA]- and [Cl]- of room temperature ionic liquids from the 1-butyl-3-methylimidazolium family tailor the response to humidity and, subsequently, sensing of VOCs in dry and humid conditions. Due to the combined effect of the materials formulations and sensing mechanisms, changing the anion from [DCA]- to the much more hygroscopic [Cl]- , leads to stronger electrical responses and much weaker optical responses to humidity. Thus, either humidity sensors or humidity-tolerant VOC sensors that do not require sample preconditioning or signal processing to correct humidity impact are obtained. With the wide spread of 3D- and 4D-printing and intelligent devices, the monitoring and tuning of humidity in sustainable biobased materials offers excellent opportunities in e-nose sensing arrays and wearable devices compatible with operation at room conditions.
Collapse
Affiliation(s)
- Carina Esteves
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, 2829-516, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, 2829-516, Portugal
| | - Susana I C J Palma
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, 2829-516, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, 2829-516, Portugal
| | - Henrique M A Costa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, 2829-516, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, 2829-516, Portugal
| | - Cláudia Alves
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, 2829-516, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, 2829-516, Portugal
| | - Gonçalo M C Santos
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, 2829-516, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, 2829-516, Portugal
| | - Efthymia Ramou
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, 2829-516, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, 2829-516, Portugal
| | - Ana Luísa Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, 2829-516, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, 2829-516, Portugal
| | - Vitor Alves
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, 2829-516, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, 2829-516, Portugal
| | - Ana C A Roque
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, 1349-017, Portugal
| |
Collapse
|
14
|
Jang M, Yang H, Shin G, Koo JM, Hwang SY, Park J, X. Oh D. Determination of Methanol in Commercialized Alcohol-based Hand Sanitizing and Other Similar Products using Headspace GC-MS. CURR ANAL CHEM 2022. [DOI: 10.2174/1573411018666220107145321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Demand for alcohol-based products, including gel- and aqueous-type hand sanitizers, room sprays, and mouthwashes, has sharply increased during the ongoing COVID-19 pandemic because of their microbicidal properties. However, toxic methanol can be found from intentional addition of methanol by manufacturers and invariable production during the manufacture alcohol (ethanol). Although the FDA has recommended that such products should contain less than 630 ppm of methanol, it is only a temporary measure established specifically to regulate such products during the current COVID-19 pandemic and hence is not strictly regulated.
Objective:
This study aims to detect and quantify the level of methanol in alcohol-based products. However, some manufacturers unethically add methanol in their products and promote them as methanol-free. Besides, they do not provide proficiency and toxicity test results. Therefore, these kinds of products need to be analyzed to determine if they are acceptable to use.
Method:
This study qualitatively and quantitatively investigates the amount of methanol in commercial alcohol-based products using a newly developed headspace gas chromatography/mass spectrometry method. Moreover, alcohol beverages which contain methanol were analyzed to be compared with the levels of methanol in alcohol-based products and determine if their methanol levels are acceptable.
Results:
Methanol concentrations in gel-type hand sanitizers (517 ppm) and mouthwashes (202 ppm) were similar to those in white wine (429 ppm) and beer (256 ppm), respectively, while that of aqueous-type hand sanitizers (1139 ppm) is 1.5 times more than that of red wine (751 ppm).
Conclusion:
Methanol levels in most of the alcohol-based products did not exceed the FDA-recommended limit.
Collapse
Affiliation(s)
- Min Jang
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44425, Republic of Korea
| | - Hyemin Yang
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44425, Republic of Korea
| | - Giyoung Shin
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44425, Republic of Korea
| | - Jun Mo Koo
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44425, Republic of Korea
| | - Sung Yeon Hwang
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44425, Republic of Korea
| | - Jeyoung Park
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44425, Republic of Korea
| | - Dongyeop X. Oh
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44425, Republic of Korea
| |
Collapse
|
15
|
Liu H, Wu R, Guo Q, Hua Z, Wu Y. Electronic Nose Based on Temperature Modulation of MOS Sensors for Recognition of Excessive Methanol in Liquors. ACS OMEGA 2021; 6:30598-30606. [PMID: 34805688 PMCID: PMC8600621 DOI: 10.1021/acsomega.1c04350] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/27/2021] [Indexed: 05/08/2023]
Abstract
An electronic nose based on metal oxide semiconductor (MOS) sensors has been used to identify liquors with excessive methanol. The technique for a square wave temperature modulated MOS sensor was applied to generate the response patterns and a back-propagation neural network was used for pattern recognition. The parameters of temperature modulation were optimized according to the difference in response features of target gases (methanol and ethanol). Liquors with excessive methanol were qualitatively and quantitatively identified by the neural network. The results showed that our electronic nose system could well identify the liquors with excessive methanol with more than 92% accuracy. This electronic nose based on temperature modulation is a promising portable adjunct to other available techniques for quality assurance of liquors and other alcoholic beverages.
Collapse
Affiliation(s)
- Huabin Liu
- Tianjin Key Laboratory of
Electronic Materials and Devices, School of Electronic and Information
Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Ruijie Wu
- Tianjin Key Laboratory of
Electronic Materials and Devices, School of Electronic and Information
Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Qianyu Guo
- Tianjin Key Laboratory of
Electronic Materials and Devices, School of Electronic and Information
Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Zhongqiu Hua
- Tianjin Key Laboratory of
Electronic Materials and Devices, School of Electronic and Information
Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Yi Wu
- Tianjin Key Laboratory of
Electronic Materials and Devices, School of Electronic and Information
Engineering, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
16
|
Ng JK, Tay FH, Wray PS, Mohd Saberi SS, Ken Ting KK, Khor SM, Chan KLA. Inexpensive Portable Infrared Device to Detect and Quantify Alcohols in Hand Sanitizers for Public Health and Safety. Anal Chem 2021; 93:15015-15023. [PMID: 34730329 DOI: 10.1021/acs.analchem.1c02652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The onset of Covid-19 pandemic has resulted in the exponential growth of alcohol-based hand rub (ABHR)/hand sanitizer use. Reports have emerged of ABHR products containing methanol, a highly toxic compound to humans, exposing users to acute and chronic medical illnesses. While gas chromatography-mass spectrometry (GC-MS) remains the gold-standard method for the detection and identification of impurities in ABHRs, there exist limitations at widespread volume testing. This paper demonstrates the capability of an inexpensive portable pyroelectric linear array infrared spectrometer to rapidly test ABHR and compare the performance with a benchtop Fourier transform infrared spectrometer and HS-GC-MS. Multicomponent partial least square quantification models were built with performance found to be comparable between the two spectrometers and with the HS-GC-MS. Furthermore, the portable spectrometer was field-tested with real-world samples in Malaysia on both retail products (Group A) and freely deployed public dispensers (Group B) between May and November 2020. A total of 386 samples were tested. Only 75.2% of Group A met the criteria of safe and effective ABHR [no detectable methanol and alcohol concentration above 60% (v/v)], while <50% of Group B did. In addition, 7.4 and 18.8% of Group A and Group B, respectively, were found to contain methanol above permissible limits. The high percentage of sub-standard and methanol-containing samples combined with the frequent use of ABHR by the public highlights the need for and importance of a portable and rapid testing device for widespread screening of ABHR against falsified products and protects the general public.
Collapse
Affiliation(s)
- Jee Kwan Ng
- JPS Partners, Kota Kemuning, 40460 Shah Alam Selangor, Malaysia.,IDIR Solutions, Jalan Kpk 1/2, Kawasan Perindustrian Kundang, 48020 Rawang, Selangor
| | - Feng Huai Tay
- IDIR Solutions, Jalan Kpk 1/2, Kawasan Perindustrian Kundang, 48020 Rawang, Selangor
| | - Patrick Steven Wray
- IDIR Solutions, Jalan Kpk 1/2, Kawasan Perindustrian Kundang, 48020 Rawang, Selangor
| | | | - Kenny Kai Ken Ting
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Sook Mei Khor
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ka Lung Andrew Chan
- IDIR Solutions, Jalan Kpk 1/2, Kawasan Perindustrian Kundang, 48020 Rawang, Selangor.,Institute of Pharmaceutical Sciences, School of Cancer and Pharmaceutical Science, King's College London, SE1 9NH London, U.K
| |
Collapse
|
17
|
Toma K, Iwasaki K, Zhang G, Iitani K, Arakawa T, Iwasaki Y, Mitsubayashi K. Biochemical Methanol Gas Sensor (MeOH Bio-Sniffer) for Non-Invasive Assessment of Intestinal Flora from Breath Methanol. SENSORS (BASEL, SWITZERLAND) 2021; 21:4897. [PMID: 34300636 PMCID: PMC8309873 DOI: 10.3390/s21144897] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/18/2022]
Abstract
Methanol (MeOH) in exhaled breath has potential for non-invasive assessment of intestinal flora. In this study, we have developed a biochemical gas sensor (bio-sniffer) for MeOH in the gas phase using fluorometry and a cascade reaction with two enzymes, alcohol oxidase (AOD) and formaldehyde dehydrogenase (FALDH). In the cascade reaction, oxidation of MeOH was initially catalyzed by AOD to produce formaldehyde, and then this formaldehyde was successively oxidized via FALDH catalysis together with reduction of oxidized form of β-nicotinamide adenine dinucleotide (NAD+). As a result of the cascade reaction, reduced form of NAD (NADH) was produced, and MeOH vapor was measured by detecting autofluorescence of NADH. In the development of the MeOH bio-sniffer, three conditions were optimized: selecting a suitable FALDH for better discrimination of MeOH from ethanol in the cascade reaction; buffer pH that maximizes the cascade reaction; and materials and methods to prevent leaking of NAD+ solution from an AOD-FALDH membrane. The dynamic range of the constructed MeOH bio-sniffer was 0.32-20 ppm, which encompassed the MeOH concentration in exhaled breath of healthy people. The measurement of exhaled breath of a healthy subject showed a similar sensorgram to the standard MeOH vapor. These results suggest that the MeOH bio-sniffer exploiting the cascade reaction will become a powerful tool for the non-invasive intestinal flora testing.
Collapse
Affiliation(s)
- Koji Toma
- Department of Biomedical Devices and Instrumentation, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan; (K.T.); (K.I.); (T.A.)
| | - Kanako Iwasaki
- Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; (K.I.); (G.Z.)
| | - Geng Zhang
- Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; (K.I.); (G.Z.)
| | - Kenta Iitani
- Department of Biomedical Devices and Instrumentation, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan; (K.T.); (K.I.); (T.A.)
| | - Takahiro Arakawa
- Department of Biomedical Devices and Instrumentation, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan; (K.T.); (K.I.); (T.A.)
| | - Yasuhiko Iwasaki
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, Osaka 564-8680, Japan;
| | - Kohji Mitsubayashi
- Department of Biomedical Devices and Instrumentation, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan; (K.T.); (K.I.); (T.A.)
- Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; (K.I.); (G.Z.)
| |
Collapse
|