1
|
Hwang D, Kim T, Kyun S, Jang I, Kim J, Park HY, Kim SW, Lim K. Exercise-Induced Hippocampal Neurogenesis Is Attenuated by Inhibition of Monocarboxylate Transporter 2. Mol Neurobiol 2025:10.1007/s12035-025-04986-3. [PMID: 40338456 DOI: 10.1007/s12035-025-04986-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 04/18/2025] [Indexed: 05/09/2025]
Abstract
Several studies have suggested that lactate mediates exercise-induced hippocampal neurogenesis. To investigate this, we used a monocarboxylate transporter (MCT) inhibitor, alpha-cyano-4-hydroxycinnamic acid (4CIN), to attenuate the signaling effect of endogenous lactate in the hippocampus. Ten-week-old ICR mice were intraperitoneally injected with 100 mg/kg 4CIN before beginning moderate-intensity treadmill exercise 5 days a week for 8 weeks. After 8 weeks of intervention, we evaluated hippocampal neurogenesis, hippocampal protein expression relevant to neurogenesis, and learning and memory function using histology, western blotting, and behavioral tests, respectively. We found that the inhibition of MCT2 by 4CIN led to a reduction in the number of exercise-induced newly generated neurons in the dentate gyrus, and the hippocampal protein expression level of the neurogenesis marker was in line with these histological results. Furthermore, we showed that the inhibition of MCT2 negated the improvements in learning and memory induced by exercise training. Based on these results, we propose that lactate is a potential mediator of exercise-induced hippocampal neurogenesis.
Collapse
Affiliation(s)
- Deunsol Hwang
- Physical Activity and Performance Institute, Konkuk University, Seoul, Republic of Korea
- Department of Sports Medicine and Science in Graduate School, Konkuk University, Seoul, Republic of Korea
| | - Taeho Kim
- Physical Activity and Performance Institute, Konkuk University, Seoul, Republic of Korea
- Department of Sports Medicine and Science in Graduate School, Konkuk University, Seoul, Republic of Korea
| | - Sunghwan Kyun
- Physical Activity and Performance Institute, Konkuk University, Seoul, Republic of Korea
- Department of Sports Medicine and Science in Graduate School, Konkuk University, Seoul, Republic of Korea
| | - Inkwon Jang
- Physical Activity and Performance Institute, Konkuk University, Seoul, Republic of Korea
- Department of Sports Medicine and Science in Graduate School, Konkuk University, Seoul, Republic of Korea
| | - Jisu Kim
- Physical Activity and Performance Institute, Konkuk University, Seoul, Republic of Korea
- Department of Sports Medicine and Science in Graduate School, Konkuk University, Seoul, Republic of Korea
| | - Hun-Young Park
- Physical Activity and Performance Institute, Konkuk University, Seoul, Republic of Korea
- Department of Sports Medicine and Science in Graduate School, Konkuk University, Seoul, Republic of Korea
| | - Sung-Woo Kim
- Physical Activity and Performance Institute, Konkuk University, Seoul, Republic of Korea
- Department of Sports Medicine and Science in Graduate School, Konkuk University, Seoul, Republic of Korea
| | - Kiwon Lim
- Physical Activity and Performance Institute, Konkuk University, Seoul, Republic of Korea.
- Department of Sports Medicine and Science in Graduate School, Konkuk University, Seoul, Republic of Korea.
- Department of Physical Education, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Li Z, Liang Z, Qi H, Luo X, Wang M, Du Z, Guo W. Lactate shuttling links histone lactylation to adult hippocampal neurogenesis in mice. Dev Cell 2025; 60:1182-1198.e8. [PMID: 39765233 DOI: 10.1016/j.devcel.2024.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/28/2024] [Accepted: 12/10/2024] [Indexed: 01/20/2025]
Abstract
Lactate has emerged as a central metabolic fuel and an important signaling molecule. Its availability participates in various brain functions. Although lactate homeostasis is vital for adult hippocampal neurogenesis and cognition, it is still unknown how shuttles lactate across the plasma membrane of neural stem cells (NSCs) to control their activity and neurogenic potential. In this study, we show that monocarboxylate transporter (MCT)1 and MCT2, respectively, control efflux and influx of lactate in the murine NSCs, thereby maintaining intracellular lactate homeostasis. Mechanistically, lactate shuttling links histone lactylation to govern NSC proliferation through MDM2-p53 signaling pathway. Notably, genetic ablation of MCT2 from NSCs or pharmacological inhibition of MDM2-P53 interaction prevents voluntary running-induced NSC proliferation in the murine adult hippocampus. Taken together, our findings demonstrate that lactate shuttling controls histone lactylation, which acts as a nexus for controlling adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Zhimin Li
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100093, China
| | - Ziqi Liang
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100093, China
| | - Huan Qi
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xing Luo
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Min Wang
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhuo Du
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100093, China
| | - Weixiang Guo
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
3
|
Zhang S, Xia J, He W, Zou Y, Liu W, Li L, Huang Z, Li Q, Qi Z, Liu W. From energy metabolism to mood regulation: The rise of lactate as a therapeutic target. J Adv Res 2025:S2090-1232(25)00262-0. [PMID: 40262720 DOI: 10.1016/j.jare.2025.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/28/2025] [Accepted: 04/13/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Disruption of cerebral energy metabolism is increasingly recognized as a key factor in the pathophysiology of mood disorders. Lactate, beyond its role as a metabolic byproduct, is now understood to be a critical player in brain energy homeostasis and a modulator of neuronal function. Recent advances in understanding lactate shuttling between astrocytes and neurons have opened new avenues for exploring its multifaceted roles in mood regulation. Exercise, known to modulate brain lactate levels, further underscores the potential of lactate as a therapeutic target in mood disorders. AIM OF REVIEW This review delves into the alterations in cerebral lactate associated with mood disorders, emphasizing their implications for brain energy dynamics and signaling pathways. Additionally, we discuss the therapeutic potential of lactate in mood disorders, particularly through its capacity to remodel cerebral function. We conclude by assessing the promise of exercise-induced lactate production as a novel strategy for mood disorder treatment. KEY SCIENTIFIC CONCEPTS OF THE REVIEW Alterations in brain lactate may contribute to the pathogenesis of mood disorders. In several studies, lactate is not only a substrate for brain energy metabolism, but also a molecule that triggers signaling cascades. Specifically, lactate is involved in the regulation of neurogenesis, neuroplasticity, endothelial cell function, and microglia lysosomal acidification, therefore improving mood disorders. Meanwhile, exercise as a low-risk intervention strategy can improve mood disorders through lactate regulation. Thus, the evidence from this review supports that lactate could be a potential therapeutic target for mood disorder, contributing to a deeper understanding of mood disorder pathogenesis and intervention.
Collapse
Affiliation(s)
- Sen Zhang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China; College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Jie Xia
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China; Department of Physical Education, Shanghai Jiao Tong University, Shanghai, China
| | - Wenke He
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China; College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Yong Zou
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China; College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Wenbin Liu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China; School of Physical Education, Shanxi University, Taiyuan, China
| | - Lingxia Li
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China; College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Zhuochun Huang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China; College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Qing Li
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China; College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Zhengtang Qi
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China; College of Physical Education and Health, East China Normal University, Shanghai, China.
| | - Weina Liu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China; College of Physical Education and Health, East China Normal University, Shanghai, China.
| |
Collapse
|
4
|
Yang H, Mo N, Tong L, Dong J, Fan Z, Jia M, Yue J, Wang Y. Microglia lactylation in relation to central nervous system diseases. Neural Regen Res 2025; 20:29-40. [PMID: 38767474 PMCID: PMC11246148 DOI: 10.4103/nrr.nrr-d-23-00805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/09/2023] [Accepted: 01/08/2024] [Indexed: 05/22/2024] Open
Abstract
The development of neurodegenerative diseases is closely related to the disruption of central nervous system homeostasis. Microglia, as innate immune cells, play important roles in the maintenance of central nervous system homeostasis, injury response, and neurodegenerative diseases. Lactate has been considered a metabolic waste product, but recent studies are revealing ever more of the physiological functions of lactate. Lactylation is an important pathway in lactate function and is involved in glycolysis-related functions, macrophage polarization, neuromodulation, and angiogenesis and has also been implicated in the development of various diseases. This review provides an overview of the lactate metabolic and homeostatic regulatory processes involved in microglia lactylation, histone versus non-histone lactylation, and therapeutic approaches targeting lactate. Finally, we summarize the current research on microglia lactylation in central nervous system diseases. A deeper understanding of the metabolic regulatory mechanisms of microglia lactylation will provide more options for the treatment of central nervous system diseases.
Collapse
Affiliation(s)
- Hui Yang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Nan Mo
- Department of Clinical Laboratory, The Fourth Clinical Medical College of Zhejiang University of Traditional Chinese Medicine (Hangzhou First People’s Hospital), Hangzhou, Zhejiang Province, China
| | - Le Tong
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Jianhong Dong
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Ziwei Fan
- Department of Orthopedics (Spine Surgery), the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Mengxian Jia
- Department of Orthopedics (Spine Surgery), the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Juanqing Yue
- Department of Pathology, Affiliated Hangzhou First People’s Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Ying Wang
- Department of Clinical Research Center, Affiliated Hangzhou First People’s Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang Province, China
| |
Collapse
|
5
|
Liu S, Zhou S. Lactate: A New Target for Brain Disorders. Neuroscience 2024; 552:100-111. [PMID: 38936457 DOI: 10.1016/j.neuroscience.2024.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
Lactate in the brain is produced endogenously and exogenously. The primary functional cells that produce lactate in the brain are astrocytes. Astrocytes release lactate to act on neurons, thereby affecting neuronal function, through a process known as the astrocyte-neuron shuttle. Lactate affects microglial function as well and inhibits microglia-mediated neuroinflammation. Lactate also provides energy, acts as a signaling molecule, and promotes neurogenesis. This article summarizes the role of lactate in cells, animals, and humans. Lactate is a protective molecule against stress in healthy organisms and in the early stages of brain disorders. Thus, lactate may be a potential therapeutic target for brain disorders. Further research on the role of lactate in microglia may have great prospects. This article provides a new perspective and research direction for the study of lacate in brain disorders.
Collapse
Affiliation(s)
- Shunfeng Liu
- College of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541199, China; Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China.
| | - Shouhong Zhou
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541199, China; Basic Medical College, Guilin Medical University, Guilin 541199, China.
| |
Collapse
|
6
|
Frame AK, Sinka JL, Courchesne M, Muhammad RA, Grahovac-Nemeth S, Bernards MA, Bartha R, Cumming RC. Altered neuronal lactate dehydrogenase A expression affects cognition in a sex- and age-dependent manner. iScience 2024; 27:110342. [PMID: 39055955 PMCID: PMC11269950 DOI: 10.1016/j.isci.2024.110342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/15/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
The astrocyte-neuron lactate shuttle (ANLS) model posits that astrocyte-generated lactate is transported to neurons to fuel memory processes. However, neurons express high levels of lactate dehydrogenase A (LDHA), the rate-limiting enzyme of lactate production, suggesting a cognitive role for neuronally generated lactate. It was hypothesized that lactate metabolism in neurons is critical for learning and memory. Here transgenic mice were generated to conditionally induce or knockout (KO) the Ldha gene in CNS neurons of adult mice. High pattern separation memory was enhanced by neuronal Ldha induction in young females, and by neuronal Ldha KO in aged females. In older mice, Ldha induction caused cognitive deficits whereas Ldha KO caused cognitive improvements. Genotype-associated cognitive changes were often only observed in one sex or oppositely in males and females. Thus, neuronal-generated lactate has sex-specific cognitive effects, is largely indispensable at young age, and may be detrimental to learning and memory with aging.
Collapse
Affiliation(s)
- Ariel K. Frame
- Department of Biology, Western University, London, ON N6A 5B7, Canada
| | - Jessica L. Sinka
- Department of Biology, Western University, London, ON N6A 5B7, Canada
| | - Marc Courchesne
- Department of Biology, Western University, London, ON N6A 5B7, Canada
| | | | | | - Mark A. Bernards
- Department of Biology, Western University, London, ON N6A 5B7, Canada
| | - Robert Bartha
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Robert C. Cumming
- Department of Biology, Western University, London, ON N6A 5B7, Canada
| |
Collapse
|
7
|
Plourde G, Roumes H, Suissa L, Hirt L, Doche É, Pellerin L, Bouzier-Sore AK, Quintard H. Neuroprotective effects of lactate and ketone bodies in acute brain injury. J Cereb Blood Flow Metab 2024; 44:1078-1088. [PMID: 38603600 PMCID: PMC11179615 DOI: 10.1177/0271678x241245486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 04/13/2024]
Abstract
The goal of neurocritical care is to prevent and reverse the pathologic cascades of secondary brain injury by optimizing cerebral blood flow, oxygen supply and substrate delivery. While glucose is an essential energetic substrate for the brain, we frequently observe a strong decrease in glucose delivery and/or a glucose metabolic dysregulation following acute brain injury. In parallel, during the last decades, lactate and ketone bodies have been identified as potential alternative fuels to provide energy to the brain, both under physiological conditions and in case of glucose shortage. They are now viewed as integral parts of brain metabolism. In addition to their energetic role, experimental evidence also supports their neuroprotective properties after acute brain injury, regulating in particular intracranial pressure control, decreasing ischemic volume, and leading to an improvement in cognitive functions as well as survival. In this review, we present preclinical and clinical evidence exploring the mechanisms underlying their neuroprotective effects and identify research priorities for promoting lactate and ketone bodies use in brain injury.
Collapse
Affiliation(s)
- Guillaume Plourde
- Division of Intensive Care Medicine, Department of Medicine, Centre hospitalier de l’Université de Montréal, Montréal, Canada
| | - Hélène Roumes
- Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB), Univ. Bordeaux, CNRS, CRMSB/UMR 5536, Bordeaux, France
| | | | - Lorenz Hirt
- Division of Neurology, Department of Clinical Neuroscience, Centre hospitalier universitaire vaudois, Lausanne, Suisse
| | - Émilie Doche
- Neurovascular Unit, CHU de Marseille, Marseille, France
| | - Luc Pellerin
- IRMETIST Inserm U1313, Université et CHU de Poitiers, Poitiers, France
| | - Anne-Karine Bouzier-Sore
- Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB), Univ. Bordeaux, CNRS, CRMSB/UMR 5536, Bordeaux, France
| | - Hervé Quintard
- Division of Intensive Care Medicine, Department of Anesthesiology, Clinical Pharmacology, Intensive Care and Emergency Medicine, Hôpitaux universitaires de Genéve, Genéve, Suisse
| |
Collapse
|
8
|
Wu Y, Hu H, Liu W, Zhao Y, Xie F, Sun Z, Zhang L, Dong H, Wang X, Qian L. Hippocampal Lactate-Infusion Enhances Spatial Memory Correlated with Monocarboxylate Transporter 2 and Lactylation. Brain Sci 2024; 14:327. [PMID: 38671979 PMCID: PMC11048250 DOI: 10.3390/brainsci14040327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Lactate has emerged as a key player in regulating neural functions and cognitive processes. Beyond its function as an energy substrate and signal molecule, recent research has revealed lactate to serve as an epigenetic regulator in the brain. However, the molecular mechanisms by which lactate regulates spatial memory and its role in the prevention of cognitive disorders remain unclear. Herein, we injected L-lactate (10 μmol/kg/d for 6 d) into the mouse's hippocampus, followed by the Morris water maze (MWM) test and molecular analyses. Improved spatial memory performances were observed in mice injected with lactate. Besides, lactate upregulated the expression of synaptic proteins post-synaptic density 95 (PSD95), synaptophysin (SYP), and growth associated protein 43 (GAP43) in hippocampal tissues and HT22 cells, suggesting a potential role in synaptic transmission and memory formation. The facilitative role of monocarboxylate transporter 2 (MCT2), a neuron-specific lactate transporter, in this process was confirmed, as MCT2 antagonists attenuated the lactate-induced upregulation of synaptic proteins. Moreover, lactate induced protein lactylation, a post-translational modification, which could be suppressed by MCT2 inhibition. RNA sequencing of lactated-injected hippocampal tissues revealed a comprehensive gene expression profile influenced by lactate, with significant changes in genes associated with transcriptional progress. These data demonstrate that hippocampal lactate injection enhances spatial memory in mice, potentially through the upregulation of synaptic proteins and induction of protein lactylation, with MCT2 playing a crucial role in these processes. Our findings shed light on the multi-faceted role of lactate in neural function and memory regulation, opening new avenues for therapeutic interventions targeting cognitive disorders.
Collapse
Affiliation(s)
- Yuhan Wu
- Beijing Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing 100039, China; (Y.W.); (H.H.); (W.L.); (Y.Z.); (F.X.); (Z.S.); (L.Z.); (H.D.)
| | - Hui Hu
- Beijing Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing 100039, China; (Y.W.); (H.H.); (W.L.); (Y.Z.); (F.X.); (Z.S.); (L.Z.); (H.D.)
| | - Weiwei Liu
- Beijing Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing 100039, China; (Y.W.); (H.H.); (W.L.); (Y.Z.); (F.X.); (Z.S.); (L.Z.); (H.D.)
- College of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Yun Zhao
- Beijing Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing 100039, China; (Y.W.); (H.H.); (W.L.); (Y.Z.); (F.X.); (Z.S.); (L.Z.); (H.D.)
| | - Fang Xie
- Beijing Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing 100039, China; (Y.W.); (H.H.); (W.L.); (Y.Z.); (F.X.); (Z.S.); (L.Z.); (H.D.)
| | - Zhaowei Sun
- Beijing Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing 100039, China; (Y.W.); (H.H.); (W.L.); (Y.Z.); (F.X.); (Z.S.); (L.Z.); (H.D.)
| | - Ling Zhang
- Beijing Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing 100039, China; (Y.W.); (H.H.); (W.L.); (Y.Z.); (F.X.); (Z.S.); (L.Z.); (H.D.)
| | - Huafeng Dong
- Beijing Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing 100039, China; (Y.W.); (H.H.); (W.L.); (Y.Z.); (F.X.); (Z.S.); (L.Z.); (H.D.)
| | - Xue Wang
- Institute of Military Cognition and Brain Sciences, Beijing 100850, China
| | - Lingjia Qian
- Beijing Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing 100039, China; (Y.W.); (H.H.); (W.L.); (Y.Z.); (F.X.); (Z.S.); (L.Z.); (H.D.)
| |
Collapse
|
9
|
Chamaa F, Magistretti PJ, Fiumelli H. Astrocyte-derived lactate in stress disorders. Neurobiol Dis 2024; 192:106417. [PMID: 38296112 DOI: 10.1016/j.nbd.2024.106417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/04/2023] [Accepted: 01/23/2024] [Indexed: 02/05/2024] Open
Abstract
Stress disorders are psychiatric disorders arising following stressful or traumatic events. They could deleteriously affect an individual's health because they often co-occur with mental illnesses. Considerable attention has been focused on neurons when considering the neurobiology of stress disorders. However, like other mental health conditions, recent studies have highlighted the importance of astrocytes in the pathophysiology of stress-related disorders. In addition to their structural and homeostatic support role, astrocytes actively serve several functions in regulating synaptic transmission and plasticity, protecting neurons from toxic compounds, and providing metabolic support for neurons. The astrocyte-neuron lactate shuttle model sets forth the importance of astrocytes in providing lactate for the metabolic supply of neurons under intense activity. Lactate also plays a role as a signaling molecule and has been recently studied regarding its antidepressant activity. This review discusses the involvement of astrocytes and brain energy metabolism in stress and further reflects on the importance of lactate as an energy supply in the brain and its emerging antidepressant role in stress-related disorders.
Collapse
Affiliation(s)
- Farah Chamaa
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Pierre J Magistretti
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Hubert Fiumelli
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia.
| |
Collapse
|
10
|
Luo X, Xu M, Guo W. Adult neurogenesis research in China. Dev Growth Differ 2023; 65:534-545. [PMID: 37899611 DOI: 10.1111/dgd.12900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 10/31/2023]
Abstract
Neural stem cells are multipotent stem cells that generate functional newborn neurons through a process called neurogenesis. Neurogenesis in the adult brain is tightly regulated and plays a pivotal role in the maintenance of brain function. Disruption of adult neurogenesis impairs cognitive function and is correlated with numerous neurologic disorders. Deciphering the mechanisms underlying adult neurogenesis not only advances our understanding of how the brain functions, but also offers new insight into neurologic diseases and potentially contributes to the development of effective treatments. The field of adult neurogenesis is experiencing significant growth in China. Chinese researchers have demonstrated a multitude of factors governing adult neurogenesis and revealed the underlying mechanisms of and correlations between adult neurogenesis and neurologic disorders. Here, we provide an overview of recent advancements in the field of adult neurogenesis due to Chinese scientists.
Collapse
Affiliation(s)
- Xing Luo
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Graduate School, University of Chinese Academy of Sciences, Beijing, China
| | - Mingyue Xu
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Graduate School, University of Chinese Academy of Sciences, Beijing, China
| | - Weixiang Guo
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Graduate School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Kolotyeva NA, Gilmiyarova FN, Averchuk AS, Baranich TI, Rozanova NA, Kukla MV, Tregub PP, Salmina AB. Novel Approaches to the Establishment of Local Microenvironment from Resorbable Biomaterials in the Brain In Vitro Models. Int J Mol Sci 2023; 24:14709. [PMID: 37834155 PMCID: PMC10572431 DOI: 10.3390/ijms241914709] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
The development of brain in vitro models requires the application of novel biocompatible materials and biopolymers as scaffolds for controllable and effective cell growth and functioning. The "ideal" brain in vitro model should demonstrate the principal features of brain plasticity like synaptic transmission and remodeling, neurogenesis and angiogenesis, and changes in the metabolism associated with the establishment of new intercellular connections. Therefore, the extracellular scaffolds that are helpful in the establishment and maintenance of local microenvironments supporting brain plasticity mechanisms are of critical importance. In this review, we will focus on some carbohydrate metabolites-lactate, pyruvate, oxaloacetate, malate-that greatly contribute to the regulation of cell-to-cell communications and metabolic plasticity of brain cells and on some resorbable biopolymers that may reproduce the local microenvironment enriched in particular cell metabolites.
Collapse
Affiliation(s)
| | - Frida N. Gilmiyarova
- Department of Fundamental and Clinical Biochemistry with Laboratory Diagnostics, Samara State Medical University, 443099 Samara, Russia
| | - Anton S. Averchuk
- Brain Science Institute, Research Center of Neurology, 125367 Moscow, Russia
| | - Tatiana I. Baranich
- Brain Science Institute, Research Center of Neurology, 125367 Moscow, Russia
| | | | - Maria V. Kukla
- Brain Science Institute, Research Center of Neurology, 125367 Moscow, Russia
| | - Pavel P. Tregub
- Brain Science Institute, Research Center of Neurology, 125367 Moscow, Russia
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Alla B. Salmina
- Brain Science Institute, Research Center of Neurology, 125367 Moscow, Russia
| |
Collapse
|
12
|
Zalouli V, Rajavand H, Bayat M, Khaleghnia J, Sharifianjazi F, Jafarinazhad F, Beheshtizadeh N. Adult hippocampal neurogenesis (AHN) controls central nervous system and promotes peripheral nervous system regeneration via physical exercise. Biomed Pharmacother 2023; 165:115078. [PMID: 37390707 DOI: 10.1016/j.biopha.2023.115078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023] Open
Abstract
Physical exercise has beneficial effects on adult hippocampal neurogenesis (AHN) and cognitive processes, including learning. Although it is not known if anaerobic resistance training and high-intensity interval training, which involve alternating brief bouts of highly intense anaerobic activity with rest periods, have comparable effects on AHN. Also, while less thoroughly investigated, individual genetic diversity in the overall response to physical activity is likely to play a key role in the effects of exercise on AHN. Physical exercise has been shown to improve health on average, although the benefits may vary from person to person, perhaps due to genetic differences. Maximal aerobic capacity and metabolic health may improve significantly with aerobic exercise for some people, while the same amount of training may have little effect on others. This review discusses the AHN's capability for peripheral nervous system (PNS) regeneration and central nervous system (CNS) control via physical exercise. Exercise neurogenicity, effective genes, growth factors, and the neurotrophic factors involved in PNS regeneration and CNS control were discussed. Also, some disorders that could be affected by AHN and physical exercise are summarized.
Collapse
Affiliation(s)
- Vahideh Zalouli
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hosnieh Rajavand
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahdi Bayat
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Medicine and Surgery, Physical Activity and Health Promotion, University of Tor Vergata, Rome, Italy
| | - Jalil Khaleghnia
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Sport Sciences, Khavaran Institute of Higher Education, Mashhad, Iran
| | - Fariborz Sharifianjazi
- Department of Natural Sciences, School of Science and Technology, University of Georgia, Tbilisi 0171, Georgia
| | - Farzad Jafarinazhad
- Yeditepe University, Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation, Istanbul, Turkey.
| | - Nima Beheshtizadeh
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Ordonez-Moreno LA, Haddad M, Chakrabarti P, Khatib-Massalha E, Fruchtman H, Boura-Halfon S, Petrovich-Kopitman E, Lapidot T, Kollet O. Lactate-a new player in G-CSF-induced mobilization of hematopoietic stem/progenitor cells. Leukemia 2023; 37:1757-1761. [PMID: 37138018 DOI: 10.1038/s41375-023-01917-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/05/2023]
Affiliation(s)
| | - Montaser Haddad
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Priyasmita Chakrabarti
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Eman Khatib-Massalha
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
- Wellcome-Medical Research Council (MRC) Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Harry Fruchtman
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sigalit Boura-Halfon
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Tsvee Lapidot
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel.
| | - Orit Kollet
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
14
|
Hong H, Su J, Zhang Y, Xu G, Huang C, Bao G, Cui Z. A novel role of lactate: Promotion of Akt-dependent elongation of microglial process. Int Immunopharmacol 2023; 119:110136. [PMID: 37075668 DOI: 10.1016/j.intimp.2023.110136] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/21/2023] [Accepted: 03/31/2023] [Indexed: 04/21/2023]
Abstract
As a key component of the innate immune system, over-activation of microglia that occurs in nervous system diseases is usually accompanied by retraction of their branched processes. Reversal of microglial process retraction is a potential strategy to prevent neuroinflammation. In our previous studies, we reported some molecules that can promote the elongation of microglial processes under in vitro and in vivo conditions, such as butyrate, β-hydroxybutyrate, sulforaphane, diallyl disulfide, compound C, and KRIBB11. Here, we found that lactate, a molecule that mimics endogenous lactic acid and has been shown to suppress neuroinflammation, reversibly triggered significant elongations of processes in microglia under cultured and in vivo conditions. Pretreatment with lactate also prevented lipopolysaccharide (LPS)-induced shortening of microglial processes under cultured and in vivo conditions, pro-inflammatory responses in primary cultured microglia and prefrontal cortex, and depression-like behaviors in mice. Mechanistic studies revealed that incubation with lactate increased phospho-Akt levels in primary cultured microglia and inhibition of Akt blocked the pro-elongation effect of lactate on the microglial process under cultured and in vivo conditions, suggesting that the regulatory effect of lactate on the microglial process is dependent on activation of Akt. Inhibition of Akt also abolished the preventive effect of lactate on LPS-induced inflammatory responses in primary cultured microglia and prefrontal cortex and on LPS-induced depression-like behaviors in mice. Overall, these results demonstrate that lactate can induce Akt-mediated elongation of the microglial process, which appropriately contributes to the inhibition of microglia-mediated neuroinflammation.
Collapse
Affiliation(s)
- Hongxiang Hong
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong 226001, Jiangsu Province, China
| | - Jianbin Su
- Department of Endocrinology, The Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong 226001, Jiangsu Province, China
| | - Yi Zhang
- Department of Pharmacy, The First People's Hospital of Yancheng, Yancheng First Hospital, Affiliated of Nanjing University Medical School, #66 Renmin South Road, Yancheng 224006, Jiangsu Province, China; Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu Province, China
| | - Guanhua Xu
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong 226001, Jiangsu Province, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu Province, China
| | - Guofeng Bao
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong 226001, Jiangsu Province, China
| | - Zhiming Cui
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong 226001, Jiangsu Province, China.
| |
Collapse
|
15
|
Hwang D, Kim J, Kyun S, Jang I, Kim T, Park HY, Lim K. Exogenous lactate augments exercise-induced improvement in memory but not in hippocampal neurogenesis. Sci Rep 2023; 13:5838. [PMID: 37037890 PMCID: PMC10086059 DOI: 10.1038/s41598-023-33017-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 04/05/2023] [Indexed: 04/12/2023] Open
Abstract
Adult hippocampal neurogenesis (AHN), the lifelong process of formation of new neurons in the mammalian brain, plays an important role in learning and memory. Exercise is an effective enhancer of AHN; however, the molecular mediators of exercise-induced AHN are unknown. Recently, lactate was considered as an important mediator of exercise-induced AHN. Therefore, we hypothesized that exercise with lactate intake could augment exercise-induced AHN. This study was conducted for 5 weeks with 7-week-old ICR male mice that performed mild-intensity exercise (just below lactate threshold, 55-60%VO2max) with or without oral administration of lactate 5 days/week. Cell proliferation, neuronal differentiation, neurogenesis-relevant factors, reference and retention memory, and spatial working memory were evaluated at the end of the experiment. The results showed that AHN was enhanced by lactate intake, but exercise-induced AHN was not augmented by exercise with lactate intake. Nevertheless, exercise-induced improvement in reference and retention memory was augmented by exercise with lactate intake. And spatial working memory was promoted by the co-treatment, also protein expression of hippocampal FNDC5, BDNF, PGC1α, and MCT2 were elevated by the co-treatment. Therefore, our findings suggest that lactate has a potential to be developed as a novel supplement that improves the positive effects of exercise on the hippocampus and its cognitive function.
Collapse
Affiliation(s)
- Deunsol Hwang
- Laboratory of Exercise and Nutrition, Department of Sports Medicine and Science in Graduate School, Konkuk University, Seoul, Republic of Korea
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul, Republic of Korea
| | - Jisu Kim
- Laboratory of Exercise and Nutrition, Department of Sports Medicine and Science in Graduate School, Konkuk University, Seoul, Republic of Korea
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul, Republic of Korea
| | - Sunghwan Kyun
- Laboratory of Exercise and Nutrition, Department of Sports Medicine and Science in Graduate School, Konkuk University, Seoul, Republic of Korea
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul, Republic of Korea
| | - Inkwon Jang
- Laboratory of Exercise and Nutrition, Department of Sports Medicine and Science in Graduate School, Konkuk University, Seoul, Republic of Korea
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul, Republic of Korea
| | - Taeho Kim
- Laboratory of Exercise and Nutrition, Department of Sports Medicine and Science in Graduate School, Konkuk University, Seoul, Republic of Korea
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul, Republic of Korea
| | - Hun-Young Park
- Laboratory of Exercise and Nutrition, Department of Sports Medicine and Science in Graduate School, Konkuk University, Seoul, Republic of Korea
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul, Republic of Korea
| | - Kiwon Lim
- Laboratory of Exercise and Nutrition, Department of Sports Medicine and Science in Graduate School, Konkuk University, Seoul, Republic of Korea.
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul, Republic of Korea.
- Department of Physical Education, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
16
|
Petrelli F, Scandella V, Montessuit S, Zamboni N, Martinou JC, Knobloch M. Mitochondrial pyruvate metabolism regulates the activation of quiescent adult neural stem cells. SCIENCE ADVANCES 2023; 9:eadd5220. [PMID: 36857455 PMCID: PMC9977184 DOI: 10.1126/sciadv.add5220] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Cellular metabolism is important for adult neural stem/progenitor cell (NSPC) behavior. However, its role in the transition from quiescence to proliferation is not fully understood. We here show that the mitochondrial pyruvate carrier (MPC) plays a crucial and unexpected part in this process. MPC transports pyruvate into mitochondria, linking cytosolic glycolysis to mitochondrial tricarboxylic acid cycle and oxidative phosphorylation. Despite its metabolic key function, the role of MPC in NSPCs has not been addressed. We show that quiescent NSPCs have an active mitochondrial metabolism and express high levels of MPC. Pharmacological MPC inhibition increases aspartate and triggers NSPC activation. Furthermore, genetic Mpc1 ablation in vitro and in vivo also activates NSPCs, which differentiate into mature neurons, leading to overall increased hippocampal neurogenesis in adult and aged mice. These findings highlight the importance of metabolism for NSPC regulation and identify an important pathway through which mitochondrial pyruvate import controls NSPC quiescence and activation.
Collapse
Affiliation(s)
- Francesco Petrelli
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
- Department of Cell Biology, University of Geneva, Geneva, Switzerland
| | - Valentina Scandella
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Sylvie Montessuit
- Department of Cell Biology, University of Geneva, Geneva, Switzerland
| | - Nicola Zamboni
- Institute for Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | | | - Marlen Knobloch
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
17
|
Vohra R, Sanz-Morello B, Tams ALM, Mouhammad ZA, Freude KK, Hannibal J, Aldana BI, Bergersen LH, Kolko M. Prevention of Cell Death by Activation of Hydroxycarboxylic Acid Receptor 1 (GPR81) in Retinal Explants. Cells 2022; 11:cells11132098. [PMID: 35805182 PMCID: PMC9265426 DOI: 10.3390/cells11132098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/22/2022] [Accepted: 06/30/2022] [Indexed: 12/22/2022] Open
Abstract
Background: Progressive retinal ganglion cell (RGC) dysfunction and death are common characteristics of retinal neurodegenerative diseases. Recently, hydroxycarboxylic acid receptor 1 (HCA1R, GPR81) was identified as a key modulator of mitochondrial function and cell survival. Thus, we aimed to test whether activation of HCA1R with 3,5-Dihydroxybenzoic acid (DHBA) also promotes RGC survival and improves energy metabolism in mouse retinas. Methods: Retinal explants were treated with 5 mM of the HCA1R agonist, 3,5-DHBA, for 2, 4, 24, and 72 h. Additionally, explants were also treated with 15 mM of L-glutamate to induce toxicity. Tissue survival was assessed through lactate dehydrogenase (LDH) viability assays. RGC survival was measured through immunohistochemical (IHC) staining. Total ATP levels were quantified through bioluminescence assays. Energy metabolism was investigated through stable isotope labeling and gas chromatography-mass spectrometry (GC-MS). Lactate and nitric oxide levels were measured through colorimetric assays. Results: HCA1R activation with 3,5-DHBAincreased retinal explant survival. During glutamate-induced death, 3,5-DHBA treatment also increased survival. IHC analysis revealed that 3,5-DHBA treatment promoted RGC survival in retinal wholemounts. 3,5-DHBA treatment also enhanced ATP levels in retinal explants, whereas lactate levels decreased. No effects on glucose metabolism were observed, but small changes in lactate metabolism were found. Nitric oxide levels remained unaltered in response to 3,5-DHBA treatment. Conclusion: The present study reveals that activation of HCA1R with 3,5-DHBA treatment has a neuroprotective effect specifically on RGCs and on glutamate-induced retinal degeneration. Hence, HCA1R agonist administration may be a potential new strategy for rescuing RGCs, ultimately preventing visual disability.
Collapse
Affiliation(s)
- Rupali Vohra
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark; (B.S.-M.); (A.L.M.T.); (Z.A.M.); (B.I.A.)
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark;
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark
- Correspondence: (R.V.); (M.K.)
| | - Berta Sanz-Morello
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark; (B.S.-M.); (A.L.M.T.); (Z.A.M.); (B.I.A.)
| | - Anna Luna Mølgaard Tams
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark; (B.S.-M.); (A.L.M.T.); (Z.A.M.); (B.I.A.)
| | - Zaynab Ahmad Mouhammad
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark; (B.S.-M.); (A.L.M.T.); (Z.A.M.); (B.I.A.)
| | - Kristine Karla Freude
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark;
| | - Jens Hannibal
- Department of Clinical Biochemistry, Bispebjerg Hospital, University of Copenhagen, 2400 Copenhagen, Denmark;
| | - Blanca Irene Aldana
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark; (B.S.-M.); (A.L.M.T.); (Z.A.M.); (B.I.A.)
| | - Linda Hildegaard Bergersen
- Brain Energy Muscle Group, University of Oslo, NO-0318 Oslo, Norway;
- Center for Healthy Aging, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Miriam Kolko
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark; (B.S.-M.); (A.L.M.T.); (Z.A.M.); (B.I.A.)
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark
- Correspondence: (R.V.); (M.K.)
| |
Collapse
|
18
|
Metabolic lactate production coordinates vasculature development and progenitor behavior in the developing mouse neocortex. Nat Neurosci 2022; 25:865-875. [PMID: 35726058 DOI: 10.1038/s41593-022-01093-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 05/11/2022] [Indexed: 01/01/2023]
Abstract
Proper neural progenitor behavior in conjunction with orderly vasculature formation is fundamental to the development of the neocortex. However, the mechanisms coordinating neural progenitor behavior and vessel growth remain largely elusive. Here we show that robust metabolic production of lactate by radial glial progenitors (RGPs) co-regulates vascular development and RGP division behavior in the developing mouse neocortex. RGPs undergo a highly organized lineage progression program to produce diverse neural progeny. Systematic single-cell metabolic state analysis revealed that RGPs and their progeny exhibit distinct metabolic features associated with specific cell types and lineage progression statuses. Symmetrically dividing, proliferative RGPs preferentially express a cohort of genes that support glucose uptake and anaerobic glycolysis. Consequently, they consume glucose in anaerobic metabolism and produce a high level of lactate, which promotes vessel growth. Moreover, lactate production enhances RGP proliferation by maintaining mitochondrial length. Together, these results suggest that specific metabolic states and metabolites coordinately regulate vasculature formation and progenitor behavior in neocortical development.
Collapse
|
19
|
Wang Z, Li H, Wang H, Li X, Zhang Q, Wang H, Li K, Qiu Y. TRIM72 exerts antitumor effects in breast cancer and modulates lactate production and MCT4 promoter activity by interacting with PPP3CA. Anticancer Drugs 2022; 33:489-501. [PMID: 35324524 PMCID: PMC8997701 DOI: 10.1097/cad.0000000000001304] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 02/23/2022] [Indexed: 11/25/2022]
Abstract
A hypoxic tumor microenvironment (TME) promotes cancer progression, yet its value as a therapeutic target remains underexploited. Tripartite motif-containing 72 (TRIM72) may protect cells against various stresses including hypoxia. Recently, low TRIM72 expression has been implicated in cancer progression. However, the biological role and molecular mechanism of TRIM72 in breast cancer (BC) remain unclear. Herein, we analyzed the TRIM72 expression in BC tissue and cell lines by western blot (WB) and quantitative reverse transcription-PCR. We established the overexpression of TRIM72 using plasmids and lentiviral-mediated upregulation, as well as downregulation of protein phosphatase 3 catalytic subunit alpha (PPP3CA) by siRNA. The tumor-suppressive roles of TRIM72 were assessed on BT549 and MDA-MB-231 cells by MTS, Transwell, and flow cytometry assays in vitro and in xenografted tumors in vivo. The molecular mechanism of TRIM72 was investigated by luciferase reporter and co-immunoprecipitation (Co-IP) assay. Lactate production was measured by ELISA under hypoxic environments induced by CoCl2. Moreover, the expression of PI3K/Akt/mTOR pathway-associated proteins was detected by WB in BC cells. Results showed that TRIM72 was downregulated in BC. Overexpression of TRIM72 inhibited tumor proliferation and invasion in vitro and in a xenograft tumor model. Mechanistically, PPP3CA altered the inhibitory effects of TRIM72 on hypoxia-induced lactate production and monocarboxylate transporter 4-promoter activity, as well as the effect of the PI3K/Akt/mTOR signaling pathway. Our study suggests that TRIM72 modulates the TME and plays tumor-suppressive roles in BC progression. Therefore, TRIM72 may serve as a potential therapeutic target in BC.
Collapse
Affiliation(s)
- Zheng Wang
- Laboratory Medicine Center, The First School of Clinical Medicine, Southern Medical University
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong
| | - Haixia Li
- Laboratory Medicine Center, The First School of Clinical Medicine, Southern Medical University
| | - Hongxia Wang
- Laboratory Medicine Center, The First School of Clinical Medicine, Southern Medical University
| | - Xin Li
- Laboratory Medicine Center, The First School of Clinical Medicine, Southern Medical University
| | - Qiong Zhang
- Clinic Laboratory, Zhuzhou Central Hospital, Zhuzhou, Hunan
| | - Haifang Wang
- Laboratory Medicine Center, The First School of Clinical Medicine, Southern Medical University
| | - Kui Li
- Huayin Medical Laboratory Center Co., Ltd, Guangzhou, Guangdong, China
| | - Yurong Qiu
- Laboratory Medicine Center, The First School of Clinical Medicine, Southern Medical University
- Huayin Medical Laboratory Center Co., Ltd, Guangzhou, Guangdong, China
| |
Collapse
|
20
|
Lactate Neuroprotection against Transient Ischemic Brain Injury in Mice Appears Independent of HCAR1 Activation. Metabolites 2022; 12:metabo12050465. [PMID: 35629969 PMCID: PMC9145226 DOI: 10.3390/metabo12050465] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 01/25/2023] Open
Abstract
Lactate can protect against damage caused by acute brain injuries both in rodents and in human patients. Besides its role as a metabolic support and alleged preferred neuronal fuel in stressful situations, an additional signaling mechanism mediated by the hydroxycarboxylic acid receptor 1 (HCAR1) was proposed to account for lactate’s beneficial effects. However, the administration of HCAR1 agonists to mice subjected to middle cerebral artery occlusion (MCAO) at reperfusion did not appear to exert any relevant protective effect. To further evaluate the involvement of HCAR1 in the protection against ischemic damage, we looked at the effect of HCAR1 absence. We subjected wild-type and HCAR1 KO mice to transient MCAO followed by treatment with either vehicle or lactate. In the absence of HCAR1, the ischemic damage inflicted by MCAO was less pronounced, with smaller lesions and a better behavioral outcome than in wild-type mice. The lower susceptibility of HCAR1 KO mice to ischemic injury suggests that lactate-mediated protection is not achieved or enhanced by HCAR1 activation, but rather attributable to its metabolic effects or related to other signaling pathways. Additionally, in light of these results, we would disregard HCAR1 activation as an interesting therapeutic strategy for stroke patients.
Collapse
|
21
|
Abdi S, Javanmehr N, Ghasemi-Kasman M, Bali HY, Pirzadeh M. Stem Cell-based Therapeutic and Diagnostic Approaches in Alzheimer's Disease. Curr Neuropharmacol 2022; 20:1093-1115. [PMID: 34970956 PMCID: PMC9886816 DOI: 10.2174/1570159x20666211231090659] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/24/2021] [Accepted: 09/21/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative impairment mainly recognized by memory loss and cognitive deficits. However, the current therapies against AD are mostly limited to palliative medications, prompting researchers to investigate more efficient therapeutic approaches for AD, such as stem cell therapy. Recent evidence has proposed that extensive neuronal and synaptic loss and altered adult neurogenesis, which is perceived pivotal in terms of plasticity and network maintenance, occurs early in the course of AD, which exacerbates neuronal vulnerability to AD. Thus, regeneration and replenishing the depleted neuronal networks by strengthening the endogenous repair mechanisms or exogenous stem cells and their cargoes is a rational therapeutic approach. Currently, several stem cell-based therapies as well as stem cell products like exosomes, have shown promising results in the early diagnosis of AD. OBJECTIVE This review begins with a comparison between AD and normal aging pathophysiology and a discussion on open questions in the field. Next, summarizing the current stem cell-based therapeutic and diagnostic approaches, we declare the advantages and disadvantages of each method. Also, we comprehensively evaluate the human clinical trials of stem cell therapies for AD. METHODOLOGY Peer-reviewed reports were extracted through Embase, PubMed, and Google Scholar until 2021. RESULTS With several ongoing clinical trials, stem cells and their derivatives (e.g., exosomes) are an emerging and encouraging field in diagnosing and treating neurodegenerative diseases. Although stem cell therapies have been successful in animal models, numerous clinical trials in AD patients have yielded unpromising results, which we will further discuss.
Collapse
Affiliation(s)
- Sadaf Abdi
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Nima Javanmehr
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran;,Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran,Address correspondence to this author at the Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, P.O. Box 4136747176, Babol, Iran; Tel/Fax: +98-11-32190557; E-mail:
| | | | - Marzieh Pirzadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
22
|
Gorina YV, Salmina AB, Erofeev AI, Can Z, Bolshakova AV, Balaban PM, Bezprozvanny IB, Vlasova OL. Metabolic Plasticity of Astrocytes. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021060016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
23
|
Zocher S, Overall RW, Berdugo-Vega G, Rund N, Karasinsky A, Adusumilli VS, Steinhauer C, Scheibenstock S, Händler K, Schultze JL, Calegari F, Kempermann G. De novo DNA methylation controls neuronal maturation during adult hippocampal neurogenesis. EMBO J 2021; 40:e107100. [PMID: 34337766 PMCID: PMC8441477 DOI: 10.15252/embj.2020107100] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 06/28/2021] [Accepted: 07/02/2021] [Indexed: 11/20/2022] Open
Abstract
Adult neurogenesis enables the life‐long addition of functional neurons to the hippocampus and is regulated by both cell‐intrinsic molecular programs and behavioral activity. De novo DNA methylation is crucial for embryonic brain development, but its role during adult hippocampal neurogenesis has remained unknown. Here, we show that de novo DNA methylation is critical for maturation and functional integration of adult‐born neurons in the mouse hippocampus. Bisulfite sequencing revealed that de novo DNA methyltransferases target neuronal enhancers and gene bodies during adult hippocampal neural stem cell differentiation, to establish neuronal methylomes and facilitate transcriptional up‐regulation of neuronal genes. Inducible deletion of both de novo DNA methyltransferases Dnmt3a and Dnmt3b in adult neural stem cells did not affect proliferation or fate specification, but specifically impaired dendritic outgrowth and synaptogenesis of newborn neurons, thereby hampering their functional maturation. Consequently, abolishing de novo DNA methylation modulated activation patterns in the hippocampal circuitry and caused specific deficits in hippocampus‐dependent learning and memory. Our results demonstrate that proper establishment of neuronal methylomes during adult neurogenesis is fundamental for hippocampal function.
Collapse
Affiliation(s)
- Sara Zocher
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Rupert W Overall
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Gabriel Berdugo-Vega
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Nicole Rund
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Anne Karasinsky
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Vijay S Adusumilli
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Christina Steinhauer
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Sina Scheibenstock
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Kristian Händler
- PRECISE Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases, University of Bonn, Bonn, Germany
| | - Joachim L Schultze
- PRECISE Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases, University of Bonn, Bonn, Germany
| | - Federico Calegari
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Gerd Kempermann
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
24
|
Zocher S, Kempermann G. Generation of mouse hippocampal neural precursor cell lines with CRISPR/Cas9-mediated gene knockouts. STAR Protoc 2021; 2:100472. [PMID: 33948565 PMCID: PMC8080521 DOI: 10.1016/j.xpro.2021.100472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Genetic manipulation of neural precursor cells is an important tool to study mechanisms underlying proliferation, fate specification, and neuron formation. The CRISPR/Cas9 system enables efficient genome editing but requires the clonal expansion of cells containing the desired mutation. Here, we describe a protocol for the effective generation of clonal mouse hippocampal neural precursor lines with CRISPR/Cas9-based gene knockouts. Edited cell lines can be used to investigate gene regulatory networks driving neuronal differentiation and for modeling of diseases that involve hippocampal neurogenesis. For complete details on the use and execution of this protocol, please refer to Pötzsch et al. (2021).
Collapse
Affiliation(s)
- Sara Zocher
- German Center for Neurodegenerative Diseases, Tatzberg 41, Germany and Center for Regenerative Therapies Dresden, Fetscherstraße 101, 01307 Dresden, Germany
| | - Gerd Kempermann
- German Center for Neurodegenerative Diseases, Tatzberg 41, Germany and Center for Regenerative Therapies Dresden, Fetscherstraße 101, 01307 Dresden, Germany
| |
Collapse
|