1
|
Brar HK, Chen E, Chang F, Lu SA, Longowal DK, Moon KM, Foster LJ, Reiner N, Nandan D. Leishmania regulates host YY1: Comparative proteomic analysis identifies infection modulated YY1 dependent proteins. PLoS One 2025; 20:e0323227. [PMID: 40373059 PMCID: PMC12080872 DOI: 10.1371/journal.pone.0323227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 04/04/2025] [Indexed: 05/17/2025] Open
Abstract
The protein Yin-Yang 1 (YY1) is a ubiquitous multifunctional transcription factor. Interestingly, there are several cellular functions controlled by YY1 that could play a role in Leishmania pathogenesis. Leishmaniasis is a human disease caused by protozoan parasites of the genus Leishmania. This study examined the potential role of macrophage YY1 in promoting Leishmania intracellular survival. Deliberate knockdown of YY1 resulted in attenuated survival of Leishmania in infected macrophages, suggesting a role of YY1 in Leishmania persistence. Biochemical fractionation studies revealed Leishmania infection caused redistribution of YY1 to the cytoplasm from the nucleus where it is primarily located. Inhibition of nuclear transport by leptomycin B attenuates infection-mediated YY1 redistribution and reduces Leishmania survival. This suggests that Leishmania induces the translocation of YY1 from the nucleus to the cytoplasm of infected cells, where it may regulate host molecules to favour parasite survival. A label-free quantitative whole proteome approach showed that the expression of a large number of macrophage proteins was dependent on the YY1 level. Interestingly, several of these proteins were modulated in Leishmania-infected cells, revealing YY1-dependent host response and suggesting their potential role in Leishmania pathogenesis. Together, this study identifies YY1 as a novel virulence factor that promotes Leishmania survival inside host macrophages.
Collapse
Affiliation(s)
- Harsimran Kaur Brar
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eleanor Chen
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Fabian Chang
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shawna Angel Lu
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dilraj Kaur Longowal
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kyung-Mee Moon
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Leonard J. Foster
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Neil Reiner
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Devki Nandan
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Li T, Zhu J, Yu Q, Zhu Y, Wu C, Zheng X, Chen N, Pei P, Yang K, Wang K, Hu L. Dietary Flavonoid Quercetin Supplement Promotes Antiviral Innate Responses Against Vesicular Stomatitis Virus Infection by Reshaping the Bacteriome and Host Metabolome in Mice. Mol Nutr Food Res 2024; 68:e2300898. [PMID: 38752791 DOI: 10.1002/mnfr.202300898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/28/2024] [Indexed: 07/21/2024]
Abstract
SCOPE Active ingredients in functional foods exhibit broad-spectrum antiviral activity. The objective of this study is to investigate the protective effect of quercetin derived from bee propolis, a natural product with antiviral activity and modulating effects on the gut microbiota, against vesicular stomatitis virus (VSV) infection. METHODS AND RESULTS Through a cellular-based study, this study demonstrates that quercetin can modulate the activity of interferon-regulating factor 3 (IRF3). In vivo, it shows that quercetin protects mice from VSV infection by enhancing interferon production and inhibiting the production of proinflammatory cytokines. The study conducts 16S rRNA-based gut microbiota and nontargets metabolomics analyses to elucidate the mechanisms underlying quercetin-mediated bidirectional communication between the gut microbiome and host metabolome during viral infection. Quercetin not only ameliorates VSV-induced dysbiosis of the intestinal flora but also alters serum metabolites related to lipid metabolism. Cross-correlations between the gut bacteriome and the serum metabolome indicate that quercetin can modulate phosphatidylcholine (16:0/0:0) and 5-acetylamino-6-formylamino-3-methyluracil to prevent VSV infection. CONCLUSION This study systematically elucidates the anti-VSV mechanism of quercetin through gut bacteriome and host metabolome assays, offering new insights into VSV treatment and revealing the mechanisms behind a novel disease management strategy using dietary flavonoid supplements.
Collapse
Affiliation(s)
- Tingting Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou, 215123, China
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Jinfeng Zhu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou, 215123, China
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Roma, 00133, Italy
| | - Qifeng Yu
- Department of General Surgery, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, 316021, China
| | - Yinrui Zhu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou, 215123, China
| | - Chao Wu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Xing Zheng
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Nannan Chen
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Pei Pei
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou, 215123, China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou, 215123, China
| | - Kai Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Lin Hu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou, 215123, China
| |
Collapse
|
3
|
Yang D, Geng T, Harrison AG, Cahoon JG, Xing J, Jiao B, Wang M, Cheng C, Hill RE, Wang H, Vella AT, Cheng G, Wang Y, Wang P. UBR5 promotes antiviral immunity by disengaging the transcriptional brake on RIG-I like receptors. Nat Commun 2024; 15:780. [PMID: 38278841 PMCID: PMC10817939 DOI: 10.1038/s41467-024-45141-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
The Retinoic acid-Inducible Gene I (RIG-I) like receptors (RLRs) are the major viral RNA sensors essential for the initiation of antiviral immune responses. RLRs are subjected to stringent transcriptional and posttranslational regulations, of which ubiquitination is one of the most important. However, the role of ubiquitination in RLR transcription is unknown. Here, we screen 375 definite ubiquitin ligase knockout cell lines and identify Ubiquitin Protein Ligase E3 Component N-Recognin 5 (UBR5) as a positive regulator of RLR transcription. UBR5 deficiency reduces antiviral immune responses to RNA viruses, while increases viral replication in primary cells and mice. Ubr5 knockout mice are more susceptible to lethal RNA virus infection than wild type littermates. Mechanistically, UBR5 mediates the Lysine 63-linked ubiquitination of Tripartite Motif Protein 28 (TRIM28), an epigenetic repressor of RLRs. This modification prevents intramolecular SUMOylation of TRIM28, thus disengages the TRIM28-imposed brake on RLR transcription. In sum, UBR5 enables rapid upregulation of RLR expression to boost antiviral immune responses by ubiquitinating and de-SUMOylating TRIM28.
Collapse
Affiliation(s)
- Duomeng Yang
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA.
| | - Tingting Geng
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Andrew G Harrison
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Jason G Cahoon
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Jian Xing
- Department of Neuroscience, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Baihai Jiao
- Department of Medicine, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Mark Wang
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Chao Cheng
- Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Robert E Hill
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine at the University of Edinburgh, Western General Hospital, Edinburgh, EH4, 2XU, UK
| | - Huadong Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Anthony T Vella
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Gong Cheng
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Yanlin Wang
- Department of Medicine, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Penghua Wang
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA.
| |
Collapse
|
4
|
Gudgeon J, Marín-Rubio JL, Trost M. The role of macrophage scavenger receptor 1 (MSR1) in inflammatory disorders and cancer. Front Immunol 2022; 13:1012002. [PMID: 36325338 PMCID: PMC9618966 DOI: 10.3389/fimmu.2022.1012002] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/28/2022] [Indexed: 08/27/2023] Open
Abstract
Macrophage scavenger receptor 1 (MSR1), also named CD204, holds key inflammatory roles in multiple pathophysiologic processes. Present primarily on the surface of various types of macrophage, this receptor variably affects processes such as atherosclerosis, innate and adaptive immunity, lung and liver disease, and more recently, cancer. As highlighted throughout this review, the role of MSR1 is often dichotomous, being either host protective or detrimental to the pathogenesis of disease. We will discuss the role of MSR1 in health and disease with a focus on the molecular mechanisms influencing MSR1 expression, how altered expression affects disease process and macrophage function, the limited cell signalling pathways discovered thus far, the emerging role of MSR1 in tumour associated macrophages as well as the therapeutic potential of targeting MSR1.
Collapse
Affiliation(s)
| | - José Luis Marín-Rubio
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Matthias Trost
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| |
Collapse
|