1
|
Yanas A, Shweta H, Owens MC, Liu KF, Goldman YE. RNA helicases DDX3X and DDX3Y form nanometer-scale RNA-protein clusters that support catalytic activity. Curr Biol 2024; 34:5714-5727.e6. [PMID: 39591970 PMCID: PMC11978499 DOI: 10.1016/j.cub.2024.10.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/16/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024]
Abstract
DEAD-box helicases, crucial for many aspects of RNA metabolism, often contain intrinsically disordered regions (IDRs) whose functions remain unclear. Using multiparameter confocal microscopy, we reveal that sex chromosome-encoded homologous RNA helicases, DDX3X and DDX3Y, form nanometer-scale RNA-protein clusters (RPCs) that foster their catalytic activities in vitro and in cells. The IDRs are critical for the formation of these RPCs. A thorough analysis of the catalytic cycle of DDX3X and DDX3Y by ensemble biochemistry and single-molecule photon bursts in the confocal microscope showed that RNA release is a major step that differentiates the unwinding activities of DDX3X and DDX3Y. The N-terminal IDRs of DDX3X and DDX3Y are both the drivers of RPC formation and the major differentiators of their enzymatic activities. Our findings provide new insights that the nanoscale helicase RPCs may be the normal state of these helicases under non-stressed conditions that promote their RNA unwinding and might act as nucleation points for stress granule formation. This mechanism may apply broadly among other members of the DEAD-box helicase family.
Collapse
Affiliation(s)
- Amber Yanas
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Him Shweta
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael C Owens
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathy Fange Liu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Institute for RNA Innovation, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Center for Genome Integrity, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Yale E Goldman
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
2
|
Owens MC, Shen H, Yanas A, Mendoza-Figueroa MS, Lavorando E, Wei X, Shweta H, Tang HY, Goldman YE, Liu KF. Specific catalytically impaired DDX3X mutants form sexually dimorphic hollow condensates. Nat Commun 2024; 15:9553. [PMID: 39500865 PMCID: PMC11538506 DOI: 10.1038/s41467-024-53636-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 10/12/2024] [Indexed: 11/08/2024] Open
Abstract
Mutations in the RNA helicase DDX3X, implicated in various cancers and neurodevelopmental disorders, often impair RNA unwinding and translation. However, the mechanisms underlying the impairment and the differential interactions of DDX3X mutants with wild-type (WT) X-linked DDX3X and Y-linked homolog DDX3Y remain elusive. This study reveals that specific DDX3X mutants more frequently found in disease form distinct hollow condensates in cells. Using a combined structural, biochemical, and single-molecule microscopy study, we show that reduced ATPase and RNA release activities contribute to condensate formation and these catalytic deficits result from inhibiting the catalytic cycle at multiple steps. Proteomic investigations further demonstrate that these hollow condensates sequester WT DDX3X/DDX3Y and other proteins crucial for diverse signaling pathways. WT DDX3X enhances the dynamics of heterogeneous mutant/WT hollow condensates more effectively than DDX3Y. These findings offer valuable insights into the catalytic defects of specific DDX3X mutants and their differential interactions with wild-type DDX3X and DDX3Y, potentially explaining sex biases in disease.
Collapse
Affiliation(s)
- Michael C Owens
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hui Shen
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Amber Yanas
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Maria Saraí Mendoza-Figueroa
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ellen Lavorando
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Xiaoyu Wei
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Him Shweta
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Departments of Pharmacology and Molecular and Cellular Biology, University of California at Davis, Davis, CA, 95616, USA
| | - Hsin-Yao Tang
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Yale E Goldman
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Departments of Pharmacology and Molecular and Cellular Biology, University of California at Davis, Davis, CA, 95616, USA.
| | - Kathy Fange Liu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Penn Institute for RNA Innovation, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Penn Center for Genome Integrity, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
3
|
Lenz G. Heterogeneity generating capacity in tumorigenesis and cancer therapeutics. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167226. [PMID: 38734320 DOI: 10.1016/j.bbadis.2024.167226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/26/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Cells of multicellular organisms generate heterogeneity in a controlled and transient fashion during embryogenesis, which can be reactivated in pathologies such as cancer. Although genomic heterogeneity is an important part of tumorigenesis, continuous generation of phenotypic heterogeneity is central for the adaptation of cancer cells to the challenges of tumorigenesis and response to therapy. Here I discuss the capacity of generating heterogeneity, hereafter called cell hetness, in cancer cells both as the activation of hetness oncogenes and inactivation of hetness tumor suppressor genes, which increase the generation of heterogeneity, ultimately producing an increase in adaptability and cell fitness. Transcriptomic high hetness states in therapy-tolerant cell states denote its importance in cancer resistance to therapy. The definition of the concept of hetness will allow the understanding of its origins, its control during embryogenesis, its loss of control in tumorigenesis and cancer therapeutics and its active targeting.
Collapse
Affiliation(s)
- Guido Lenz
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
4
|
Song QH, Zhao KX, Huang S, Chen T, He L. Escape from X-chromosome inactivation and sex differences in Alzheimer's disease. Rev Neurosci 2024; 35:341-354. [PMID: 38157427 DOI: 10.1515/revneuro-2023-0108] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024]
Abstract
Sex differences exist in the onset and progression of Alzheimer's disease. Globally, women have a higher prevalence, while men with Alzheimer's disease experience earlier mortality and more pronounced cognitive decline than women. The cause of sex differences in Alzheimer's disease remains unclear. Accumulating evidence suggests the potential role of X-linked genetic factors in the sex difference of Alzheimer's disease (AD). During embryogenesis, a remarkable process known as X-chromosome inactivation (XCI) occurs in females, leading to one of the X chromosomes undergoing transcriptional inactivation, which balances the effects of two X chromosomes in females. Nevertheless, certain genes exceptionally escape from XCI, which provides a basis for dual expression dosage of specific genes in females. Based on recent research findings, we explore key escape genes and their potential therapeutic use associated with Alzheimer's disease. Also, we discuss their possible role in driving the sex differences in Alzheimer's disease. This will provide new perspectives for precision medicine and gender-specific treatment of AD.
Collapse
Affiliation(s)
- Qing-Hua Song
- Department of Pharmacology, China Pharmaceutical University, No. 24 Tong Jia Xiang, Nanjing 210009, Jiangsu Province, China
| | - Ke-Xuan Zhao
- Department of Pharmacology, China Pharmaceutical University, No. 24 Tong Jia Xiang, Nanjing 210009, Jiangsu Province, China
| | - Shuai Huang
- Department of Pharmacology, China Pharmaceutical University, No. 24 Tong Jia Xiang, Nanjing 210009, Jiangsu Province, China
| | - Tong Chen
- Department of Pharmacology, China Pharmaceutical University, No. 24 Tong Jia Xiang, Nanjing 210009, Jiangsu Province, China
| | - Ling He
- Department of Pharmacology, China Pharmaceutical University, No. 24 Tong Jia Xiang, Nanjing 210009, Jiangsu Province, China
| |
Collapse
|
5
|
Rosa E Silva I, Smetana JHC, de Oliveira JF. A comprehensive review on DDX3X liquid phase condensation in health and neurodevelopmental disorders. Int J Biol Macromol 2024; 259:129330. [PMID: 38218270 DOI: 10.1016/j.ijbiomac.2024.129330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/22/2023] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
DEAD-box helicases are global regulators of liquid-liquid phase separation (LLPS), a process that assembles membraneless organelles inside cells. An outstanding member of the DEAD-box family is DDX3X, a multi-functional protein that plays critical roles in RNA metabolism, including RNA transcription, splicing, nucleocytoplasmic export, and translation. The diverse functions of DDX3X result from its ability to bind and remodel RNA in an ATP-dependent manner. This capacity enables the protein to act as an RNA chaperone and an RNA helicase, regulating ribonucleoprotein complex assembly. DDX3X and its orthologs from mouse, yeast (Ded1), and C. elegans (LAF-1) can undergo LLPS, driving the formation of neuronal granules, stress granules, processing bodies or P-granules. DDX3X has been related to several human conditions, including neurodevelopmental disorders, such as intellectual disability and autism spectrum disorder. Although the research into the pathogenesis of aberrant biomolecular condensation in neurodegenerative diseases is increasing rapidly, the role of LLPS in neurodevelopmental disorders is underexplored. This review summarizes current findings relevant for DDX3X phase separation in neurodevelopment and examines how disturbances in the LLPS process can be related to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ivan Rosa E Silva
- Brazilian Biosciences National Laboratory, Center for Research in Energy and Materials, Campinas, SP, Brazil
| | | | | |
Collapse
|
6
|
Maloney E, Duffy D. Deciphering the relationship between temperature and immunity. DISCOVERY IMMUNOLOGY 2024; 3:kyae001. [PMID: 38567294 PMCID: PMC10917241 DOI: 10.1093/discim/kyae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/01/2023] [Accepted: 01/29/2024] [Indexed: 04/04/2024]
Abstract
Fever is a hallmark symptom of disease across the animal kingdom. Yet, despite the evidence linking temperature fluctuation and immune response, much remains to be discovered about the molecular mechanisms governing these interactions. In patients with rheumatoid arthritis, for instance, it is clinically accepted that joint temperature can predict disease progression. But it was only recently demonstrated that the mitochondria of stimulated T cells can rise to an extreme 50°C, potentially indicating a cellular source of these localized 'fevers'. A challenge to dissecting these mechanisms is a bidirectional interplay between temperature and immunity. Heat shock response is found in virtually all organisms, activating protective pathways when cells are exposed to elevated temperatures. However, the temperature threshold that activates these pathways can vary within the same organism, with human immune cells, in particular, demonstrating differential sensitivity to heat. Such inter-cellular variation may be clinically relevant given the small but significant temperature differences seen between tissues, ages, and sexes. Greater understanding of how such small temperature perturbations mediate immune responses may provide new explanations for persistent questions in disease such as sex disparity in disease prevalence. Notably, the prevalence and severity of many maladies are rising with climate change, suggesting temperature fluctuations can interact with disease on multiple levels. As global temperatures are rising, and our body temperatures are falling, questions regarding temperature-immune interactions are increasingly critical. Here, we review this aspect of environmental interplay to better understand temperature's role in immune variation and subsequent risk of disease.
Collapse
Affiliation(s)
- Elizabeth Maloney
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
- Frontiers of Innovation in Research and Education PhD Program, LPI Doctoral School, Paris, France
| | - Darragh Duffy
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| |
Collapse
|
7
|
Radford EJ, Tan HK, Andersson MHL, Stephenson JD, Gardner EJ, Ironfield H, Waters AJ, Gitterman D, Lindsay S, Abascal F, Martincorena I, Kolesnik-Taylor A, Ng-Cordell E, Firth HV, Baker K, Perry JRB, Adams DJ, Gerety SS, Hurles ME. Saturation genome editing of DDX3X clarifies pathogenicity of germline and somatic variation. Nat Commun 2023; 14:7702. [PMID: 38057330 PMCID: PMC10700591 DOI: 10.1038/s41467-023-43041-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/30/2023] [Indexed: 12/08/2023] Open
Abstract
Loss-of-function of DDX3X is a leading cause of neurodevelopmental disorders (NDD) in females. DDX3X is also a somatically mutated cancer driver gene proposed to have tumour promoting and suppressing effects. We perform saturation genome editing of DDX3X, testing in vitro the functional impact of 12,776 nucleotide variants. We identify 3432 functionally abnormal variants, in three distinct classes. We train a machine learning classifier to identify functionally abnormal variants of NDD-relevance. This classifier has at least 97% sensitivity and 99% specificity to detect variants pathogenic for NDD, substantially out-performing in silico predictors, and resolving up to 93% of variants of uncertain significance. Moreover, functionally-abnormal variants can account for almost all of the excess nonsynonymous DDX3X somatic mutations seen in DDX3X-driven cancers. Systematic maps of variant effects generated in experimentally tractable cell types have the potential to transform clinical interpretation of both germline and somatic disease-associated variation.
Collapse
Affiliation(s)
- Elizabeth J Radford
- Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
- Department of Paediatrics, University of Cambridge, Level 8, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Hong-Kee Tan
- Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | | | | | - Eugene J Gardner
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | | | | | | | | | | | | | | | - Elise Ng-Cordell
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
- Department of Psychology, University of British Columbia, Vancouver, Canada
| | - Helen V Firth
- Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
- Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Kate Baker
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
- Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - John R B Perry
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | | | | | | |
Collapse
|
8
|
Owens MC, Shen H, Yanas A, Mendoza-Figueroa MS, Lavorando E, Wei X, Shweta H, Tang HY, Goldman YE, Liu KF. Mutant forms of DDX3X with diminished catalysis form hollow condensates that exhibit sex-specific regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.19.533240. [PMID: 38076929 PMCID: PMC10705264 DOI: 10.1101/2023.03.19.533240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Mutations in the RNA helicase DDX3X, implicated in various cancers and neurodevelopmental disorders, often impair RNA unwinding and translation. However, the mechanisms underlying this impairment and the differential interactions of DDX3X mutants with wild-type (WT) X-linked DDX3X and Y-linked homolog DDX3Y remain elusive. This study reveals that specific DDX3X mutants more frequently found in disease form distinct hollow condensates in cells. Using a combined structural, biochemical, and single-molecule microscopy study, we show that reduced ATPase and RNA release activities contribute to condensate formation and the catalytic deficits result from inhibiting the catalytic cycle at multiple steps. Proteomic investigations further demonstrate that these hollow condensates sequester WT DDX3X/DDX3Y and other proteins crucial for diverse signaling pathways. WT DDX3X enhances the dynamics of heterogeneous mutant/WT hollow condensates more effectively than DDX3Y. These findings offer valuable insights into the catalytic defects of specific DDX3X mutants and their differential interactions with wild-type DDX3X and DDX3Y, potentially explaining sex biases in disease.
Collapse
|
9
|
Pedro Amorim Neto D, Vitor Pereira de Godoy J, Tostes K, Pelegrini Bosque B, Vieira Rodrigues P, Aparecida Rocco S, Luis Sforça M, de Castro Fonseca M. Metabolic Disturbances in the Gut-brain Axis of a Mouse Model of MPTP-induced Parkinsonism Evaluated by Nuclear Magnetic Resonance. Neuroscience 2023; 526:21-34. [PMID: 37331688 DOI: 10.1016/j.neuroscience.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/22/2023] [Accepted: 06/12/2023] [Indexed: 06/20/2023]
Abstract
Parkinson's Disease is a synucleinopathy that primarily affects the dopaminergic cells of the central nervous system, leading to motor and gastrointestinal disturbances. However, intestinal peripheral neurons undergo a similar neurodegeneration process, marked by α-synuclein (αSyn) accumulation and loss of mitochondrial homeostasis. We investigated the metabolic alterations in different biometrics that compose the gut-brain axis (blood, brain, large intestine, and feces) in an MPTP-induced mouse model of sporadic Parkinson's Disease. Animals received escalating administration of MPTP. Tissues and fecal pellets were collected, and the metabolites were identified through the untargeted Nuclear Magnetic Resonance spectroscopic (1H NMR) technique. We found differences in many metabolites from all the tissues evaluated. The differential expression of metabolites in these samples mainly reflects inflammatory aspects, cytotoxicity, and mitochondrial impairment (oxidative stress and energy metabolism) in the animal model used. The direct evaluation of fecal metabolites revealed changes in several classes of metabolites. This data reinforces previous studies showing that Parkinson's disease is associated with metabolic perturbation not only in brain-related tissues, but also in periphery structures such as the gut. In addition, the evaluation of the microbiome and metabolites from gut and feces emerge as promising sources of information for understanding the evolution and progression of sporadic Parkinson's Disease.
Collapse
Affiliation(s)
- Dionísio Pedro Amorim Neto
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - João Vitor Pereira de Godoy
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Katiane Tostes
- Hospital de Amor, Hospital de Cancer de Barretos, Barretos, São Paulo, Brazil
| | - Beatriz Pelegrini Bosque
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Paulla Vieira Rodrigues
- Department of Structural and Functional Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Silvana Aparecida Rocco
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Mauricio Luis Sforça
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Matheus de Castro Fonseca
- Laboratory of Sarkis Mazmanian, Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA.
| |
Collapse
|
10
|
Zhang S, Pei G, Li B, Li P, Lin Y. Abnormal phase separation of biomacromolecules in human diseases. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1133-1152. [PMID: 37475546 PMCID: PMC10423695 DOI: 10.3724/abbs.2023139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023] Open
Abstract
Membrane-less organelles (MLOs) formed through liquid-liquid phase separation (LLPS) are associated with numerous important biological functions, but the abnormal phase separation will also dysregulate the physiological processes. Emerging evidence points to the importance of LLPS in human health and diseases. Nevertheless, despite recent advancements, our knowledge of the molecular relationship between LLPS and diseases is frequently incomplete. In this review, we outline our current understanding about how aberrant LLPS affects developmental disorders, tandem repeat disorders, cancers and viral infection. We also examine disease mechanisms driven by aberrant condensates, and highlight potential treatment approaches. This study seeks to expand our understanding of LLPS by providing a valuable new paradigm for understanding phase separation and human disorders, as well as to further translate our current knowledge regarding LLPS into therapeutic discoveries.
Collapse
Affiliation(s)
- Songhao Zhang
- State Key Laboratory of Membrane BiologyTsinghua University-Peking University Joint Centre for Life SciencesSchool of Life SciencesTsinghua UniversityBeijing100084China
- IDG/McGovern Institute for Brain Research at Tsinghua UniversityBeijing100084China
| | - Gaofeng Pei
- State Key Laboratory of Membrane BiologyTsinghua University-Peking University Joint Centre for Life SciencesSchool of Life SciencesTsinghua UniversityBeijing100084China
- Frontier Research Center for Biological StructureTsinghua UniversityBeijing100084China
| | - Boya Li
- State Key Laboratory of Membrane BiologyTsinghua University-Peking University Joint Centre for Life SciencesSchool of Life SciencesTsinghua UniversityBeijing100084China
- IDG/McGovern Institute for Brain Research at Tsinghua UniversityBeijing100084China
| | - Pilong Li
- State Key Laboratory of Membrane BiologyTsinghua University-Peking University Joint Centre for Life SciencesSchool of Life SciencesTsinghua UniversityBeijing100084China
- Frontier Research Center for Biological StructureTsinghua UniversityBeijing100084China
| | - Yi Lin
- State Key Laboratory of Membrane BiologyTsinghua University-Peking University Joint Centre for Life SciencesSchool of Life SciencesTsinghua UniversityBeijing100084China
- IDG/McGovern Institute for Brain Research at Tsinghua UniversityBeijing100084China
| |
Collapse
|
11
|
Arna AB, Patel H, Singh RS, Vizeacoumar FS, Kusalik A, Freywald A, Vizeacoumar FJ, Wu Y. Synthetic lethal interactions of DEAD/H-box helicases as targets for cancer therapy. Front Oncol 2023; 12:1087989. [PMID: 36761420 PMCID: PMC9905851 DOI: 10.3389/fonc.2022.1087989] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/28/2022] [Indexed: 01/26/2023] Open
Abstract
DEAD/H-box helicases are implicated in virtually every aspect of RNA metabolism, including transcription, pre-mRNA splicing, ribosomes biogenesis, nuclear export, translation initiation, RNA degradation, and mRNA editing. Most of these helicases are upregulated in various cancers and mutations in some of them are associated with several malignancies. Lately, synthetic lethality (SL) and synthetic dosage lethality (SDL) approaches, where genetic interactions of cancer-related genes are exploited as therapeutic targets, are emerging as a leading area of cancer research. Several DEAD/H-box helicases, including DDX3, DDX9 (Dbp9), DDX10 (Dbp4), DDX11 (ChlR1), and DDX41 (Sacy-1), have been subjected to SL analyses in humans and different model organisms. It remains to be explored whether SDL can be utilized to identity druggable targets in DEAD/H-box helicase overexpressing cancers. In this review, we analyze gene expression data of a subset of DEAD/H-box helicases in multiple cancer types and discuss how their SL/SDL interactions can be used for therapeutic purposes. We also summarize the latest developments in clinical applications, apart from discussing some of the challenges in drug discovery in the context of targeting DEAD/H-box helicases.
Collapse
Affiliation(s)
- Ananna Bhadra Arna
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Hardikkumar Patel
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ravi Shankar Singh
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Frederick S. Vizeacoumar
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Anthony Kusalik
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Andrew Freywald
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Franco J. Vizeacoumar
- Division of Oncology, College of Medicine, University of Saskatchewan and Saskatchewan Cancer Agency, Saskatoon, SK, Canada,*Correspondence: Yuliang Wu, ; Franco J. Vizeacoumar,
| | - Yuliang Wu
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada,*Correspondence: Yuliang Wu, ; Franco J. Vizeacoumar,
| |
Collapse
|
12
|
Hu HY, Liu YJ. Sequestration of cellular native factors by biomolecular assemblies: Physiological or pathological? BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119360. [PMID: 36087810 DOI: 10.1016/j.bbamcr.2022.119360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
In addition to native-state structures, biomolecules often form condensed supramolecular assemblies or cellular membraneless organelles that are critical for cell life. These biomolecular assemblies, generally including liquid-like droplets (condensates) and amyloid-like aggregates, can sequester or recruit their interacting partners, so as to either modulate various cellular behaviors or even cause disorders. This review article summarizes recent advances in the sequestration of native factors by biomolecular assemblies and discusses their potential consequences on cellular function, homeostasis, and disease pathology.
Collapse
Affiliation(s)
- Hong-Yu Hu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, PR China.
| | - Ya-Jun Liu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
13
|
Mukherjee C, Sengupta D, Maganti L, Mahendar M, Bhattacharyya D, Sengupta K. Slower diffusion and anomalous association of R453W lamin A protein alter nuclear architecture in AD-EDMD. RSC Adv 2022; 12:32129-32141. [PMID: 36415558 PMCID: PMC9644913 DOI: 10.1039/d2ra05620h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/28/2022] [Indexed: 09/08/2024] Open
Abstract
Lamins maintain the shape and rigidity of the nucleus in the form of a proteinaceous scaffold underneath the inner nuclear membrane (INM) and provide anchorage to chromatin and other nuclear proteins. Mutations in the human LMNA gene encoding lamin A/C cause about 16 different diseases with distinct phenotypes collectively termed as laminopathies which affect primarily the muscle tissues as well as adipose tissues, neuromuscular junctions and multiple other organs in progeroid syndromes. Lamins contain several domains of which Ig-fold is one of the well characterized and structured domains that harbours many mutations leading to deleterious interactions with other nuclear proteins. In this work, we have elucidated the effects of 3 such mutations namely R453W, W498C and W498R on the dynamics and flexibility of the Ig-fold domain and the consequent effect on the assembly into lamina by live cell imaging, fluorescence correlation spectroscopy (FCS) and molecular dynamics (MD) simulations. From our simulation studies, we concluded that R453W exhibits the highest fluctuation at the residues 475 and 525 in the Ig fold domain compared to the wild type and other mutants. This resulted in pronounced random self-association which could be corroborated by lower diffusivity values obtained from FCS. This is the first report where such an alteration in the full length has been documented by gross changes in diffusional properties as a sequel to a mutation in the Ig fold domain.
Collapse
Affiliation(s)
- Chandrayee Mukherjee
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute 1/AF Bidhannagar Kolkata 700064 West Bengal India
| | - Duhita Sengupta
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute 1/AF Bidhannagar Kolkata 700064 West Bengal India
| | - Lakshmi Maganti
- Computational Science Division, Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute 1/AF Bidhannagar Kolkata 700064 West Bengal India
| | - M Mahendar
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute 1/AF Bidhannagar Kolkata 700064 West Bengal India
| | - Dhananjay Bhattacharyya
- Computational Science Division, Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute 1/AF Bidhannagar Kolkata 700064 West Bengal India
| | - Kaushik Sengupta
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute 1/AF Bidhannagar Kolkata 700064 West Bengal India
| |
Collapse
|
14
|
Banani SF, Afeyan LK, Hawken SW, Henninger JE, Dall'Agnese A, Clark VE, Platt JM, Oksuz O, Hannett NM, Sagi I, Lee TI, Young RA. Genetic variation associated with condensate dysregulation in disease. Dev Cell 2022; 57:1776-1788.e8. [PMID: 35809564 PMCID: PMC9339523 DOI: 10.1016/j.devcel.2022.06.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 03/11/2022] [Accepted: 06/14/2022] [Indexed: 12/18/2022]
Abstract
A multitude of cellular processes involve biomolecular condensates, which has led to the suggestion that diverse pathogenic mutations may dysregulate condensates. Although proof-of-concept studies have identified specific mutations that cause condensate dysregulation, the full scope of the pathological genetic variation that affects condensates is not yet known. Here, we comprehensively map pathogenic mutations to condensate-promoting protein features in putative condensate-forming proteins and find over 36,000 pathogenic mutations that plausibly contribute to condensate dysregulation in over 1,200 Mendelian diseases and 550 cancers. This resource captures mutations presently known to dysregulate condensates, and experimental tests confirm that additional pathological mutations do indeed affect condensate properties in cells. These findings suggest that condensate dysregulation may be a pervasive pathogenic mechanism underlying a broad spectrum of human diseases, provide a strategy to identify proteins and mutations involved in pathologically altered condensates, and serve as a foundation for mechanistic insights into disease and therapeutic hypotheses.
Collapse
Affiliation(s)
- Salman F Banani
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lena K Afeyan
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Susana W Hawken
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Program of Computational & Systems Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | - Victoria E Clark
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jesse M Platt
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ozgur Oksuz
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Nancy M Hannett
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Ido Sagi
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Tong Ihn Lee
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|