1
|
Thierry M, Dupont L, Legrand D, Jacob S. Phenotypic and dispersal plasticity are not alternative strategies for organisms to face thermal changes. Proc Biol Sci 2025; 292:20242796. [PMID: 40300624 PMCID: PMC12040457 DOI: 10.1098/rspb.2024.2796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/18/2025] [Accepted: 03/25/2025] [Indexed: 05/01/2025] Open
Abstract
To buffer the effects of local environmental changes, organisms may modify their phenotypic traits (i.e. phenotypic plasticity) or disperse towards other potential habitats (i.e. dispersal plasticity). Despite extensive work studying either 'local phenotypic plasticity' or 'dispersal plasticity' independently, little is known about their potential covariation and interplay. These strategies are classically viewed as alternatives. However, this expectation has been challenged by theoretical work suggesting that they may instead evolve together under some environmental contexts. Here, we experimentally quantified morphological, movement and dispersal plasticity in response to thermal changes in 12 strains of the ciliate Tetrahymena thermophila. We showed that phenotypic and dispersal plasticity are not alternative strategies, with half of the strains expressing simultaneously all dimensions of plasticity in response to thermal changes. Furthermore, the extent of morphological and movement plasticity weakly but significantly differed between residents and dispersers. Interestingly, we found no covariation between these different plasticity dimensions, suggesting that they may evolve independently, which pleads for studying which environmental contexts favour the evolution of each. The fact that phenotypic and dispersal plasticity are not alternative strategies and may affect the expression of one another opens interesting perspectives about their joint evolution and the potential consequences of their interplay.
Collapse
Affiliation(s)
- Mélanie Thierry
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), UMR 5300 CNRS-IRD-TINP-UT3, CNRS, Toulouse, France
- Station d'Ecologie Théorique et Expérimentale, CNRS, Moulis, France
| | - Léonard Dupont
- Station d'Ecologie Théorique et Expérimentale, CNRS, Moulis, France
| | - Delphine Legrand
- Station d'Ecologie Théorique et Expérimentale, CNRS, Moulis, France
| | - Staffan Jacob
- Station d'Ecologie Théorique et Expérimentale, CNRS, Moulis, France
| |
Collapse
|
2
|
Koné DCE, Jacob S, Huet M, Philippe H, Legrand D. The phenotypic and demographic response to the combination of copper and thermal stressors strongly varies within the ciliate species, Tetrahymena thermophila. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13307. [PMID: 39344497 PMCID: PMC11440147 DOI: 10.1111/1758-2229.13307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/08/2024] [Indexed: 10/01/2024]
Abstract
Copper pollution can alter biological and trophic functions. Organisms can utilise different tolerance strategies, including accumulation mechanisms (intracellular vacuoles, external chelation, etc.) to maintain themselves in copper-polluted environments. Accumulation mechanisms can influence the expression of other phenotypic traits, allowing organisms to deal with copper stress. Whether copper effects on accumulation strategies interact with other environmental stressors such as temperature and how this may differ within species are still unsolved questions. Here, we tested experimentally whether the combined effect of copper and temperature modulates traits linked to demography, morphology, movement and accumulation in six strains of the ciliate Tetrahymena thermophila. We also explored whether copper accumulation might modulate environmental copper concentration effects on phenotypic and demographic traits. Results showed high intraspecific variability in the phenotypic and demographic response to copper, with interactive effects between temperature and copper. In addition, they suggested an attenuation effect of copper accumulation on the sensitivity of traits to copper, but with great variation between strains, temperatures and copper concentrations. Diversity of responses among strains and their thermal dependencies pleads for the integration of intraspecific variability and multiple stressors approaches in ecotoxicological studies, thus improving the reliability of assessments of the effects of pollutants on biodiversity.
Collapse
Affiliation(s)
| | - Staffan Jacob
- Centre National de la Recherche ScientifiqueStation d'Ecologie Théorique et Expérimentale, UAR2029MoulisAriègeFrance
| | - Michèle Huet
- Centre National de la Recherche ScientifiqueStation d'Ecologie Théorique et Expérimentale, UAR2029MoulisAriègeFrance
| | - Hervé Philippe
- Centre National de la Recherche ScientifiqueStation d'Ecologie Théorique et Expérimentale, UAR2029MoulisAriègeFrance
| | - Delphine Legrand
- Centre National de la Recherche ScientifiqueStation d'Ecologie Théorique et Expérimentale, UAR2029MoulisAriègeFrance
| |
Collapse
|
3
|
Thierry M, Cote J, Bestion E, Legrand D, Clobert J, Jacob S. The interplay between abiotic and biotic factors in dispersal decisions in metacommunities. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230137. [PMID: 38913055 PMCID: PMC11391301 DOI: 10.1098/rstb.2023.0137] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/23/2024] [Accepted: 03/01/2024] [Indexed: 06/25/2024] Open
Abstract
Suitable conditions for species to survive and reproduce constitute their ecological niche, which is built by abiotic conditions and interactions with conspecifics and heterospecifics. Organisms should ideally assess and use information about all these environmental dimensions to adjust their dispersal decisions depending on their own internal conditions. Dispersal plasticity is often considered through its dependence on abiotic conditions or conspecific density and, to a lesser extent, with reference to the effects of interactions with heterospecifics, potentially leading to misinterpretation of dispersal drivers. Here, we first review the evidence for the effects of and the potential interplays between abiotic factors, biotic interactions with conspecifics and heterospecifics and phenotype on dispersal decisions. We then present an experimental test of these potential interplays, investigating the effects of density and interactions with conspecifics and heterospecifics on temperature-dependent dispersal in microcosms of Tetrahymena ciliates. We found significant differences in dispersal rates depending on the temperature, density and presence of another strain or species. However, the presence and density of conspecifics and heterospecifics had no effects on the thermal-dependency of dispersal. We discuss the causes and consequences of the (lack of) interplay between the different environmental dimensions and the phenotype for metacommunity assembly and dynamics. This article is part of the theme issue 'Diversity-dependence of dispersal: interspecific interactions determine spatial dynamics'.
Collapse
Affiliation(s)
- Mélanie Thierry
- Station d'Ecologie Théorique et Expérimentale, UAR 2029, CNRS , Moulis 09200, France
| | - Julien Cote
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), UMR 5300 CNRS-IRD-TINP-UT3 Université Toulouse III - Paul Sabatier, Bât. 4R1, 118 route de Narbonne , Toulouse Cedex 9 31062, France
| | - Elvire Bestion
- Station d'Ecologie Théorique et Expérimentale, UAR 2029, CNRS , Moulis 09200, France
| | - Delphine Legrand
- Station d'Ecologie Théorique et Expérimentale, UAR 2029, CNRS , Moulis 09200, France
| | - Jean Clobert
- Station d'Ecologie Théorique et Expérimentale, UAR 2029, CNRS , Moulis 09200, France
| | - Staffan Jacob
- Station d'Ecologie Théorique et Expérimentale, UAR 2029, CNRS , Moulis 09200, France
| |
Collapse
|
4
|
Jacob S, Dupont L, Haegeman B, Thierry M, Campana JLM, Legrand D, Cote J, Raffard A. Phenotypic plasticity and the effects of thermal fluctuations on specialists and generalists. Proc Biol Sci 2024; 291:20240256. [PMID: 38889786 DOI: 10.1098/rspb.2024.0256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/17/2024] [Indexed: 06/20/2024] Open
Abstract
Classical theories predict that relatively constant environments should generally favour specialists, while fluctuating environments should be selected for generalists. However, theoretical and empirical results have pointed out that generalist organisms might, on the contrary, perform poorly under fluctuations. In particular, if generalism is underlaid by phenotypic plasticity, performance of generalists should be modulated by the temporal characteristics of environmental fluctuations. Here, we used experiments in microcosms of Tetrahymena thermophila ciliates and a mathematical model to test whether the period or autocorrelation of thermal fluctuations mediate links between the level of generalism and the performance of organisms under fluctuations. In the experiment, thermal fluctuations consistently impeded performance compared with constant conditions. However, the intensity of this effect depended on the level of generalism: while the more specialist strains performed better under fast or negatively autocorrelated fluctuations, plastic generalists performed better under slow or positively autocorrelated fluctuations. Our model suggests that these effects of fluctuations on organisms' performance may result from a time delay in the expression of plasticity, restricting its benefits to slow enough fluctuations. This study points out the need to further investigate the temporal dynamics of phenotypic plasticity to better predict its fitness consequences under environmental fluctuations.
Collapse
Affiliation(s)
- Staffan Jacob
- Station d'Écologie Théorique et Expérimentale, UAR2029, CNRS, Moulis 09200, France
| | - Léonard Dupont
- Station d'Écologie Théorique et Expérimentale, UAR2029, CNRS, Moulis 09200, France
| | - Bart Haegeman
- CNRS/Sorbonne Université, UMR7621 Laboratoire d'Océanographie Microbienne, Banyuls-sur-Mer, France
| | - Mélanie Thierry
- Station d'Écologie Théorique et Expérimentale, UAR2029, CNRS, Moulis 09200, France
| | - Julie L M Campana
- Station d'Écologie Théorique et Expérimentale, UAR2029, CNRS, Moulis 09200, France
| | - Delphine Legrand
- Station d'Écologie Théorique et Expérimentale, UAR2029, CNRS, Moulis 09200, France
| | - Julien Cote
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), UMR 5300, CNRS-IRD-TINP-UT3, Toulouse 31062 Cedex 9, France
| | - Allan Raffard
- Université catholique de Louvain, Earth and Life Institute, Biodiversity Research Centre, Louvain-la-Neuve, Belgium
| |
Collapse
|
5
|
de Bruin T, De Laender F, Jadoul J, Schtickzelle N. Intraspecific demographic and trait responses to environmental change drivers are linked in two species of ciliate. BMC Ecol Evol 2024; 24:47. [PMID: 38632521 PMCID: PMC11022343 DOI: 10.1186/s12862-024-02241-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/11/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Over the past decade, theory and observations have suggested intraspecific variation, trait-based differences within species, as a buffer against biodiversity loss from multiple environmental changes. This buffering effect can only occur when different populations of the same species respond differently to environmental change. More specifically, variation of demographic responses fosters buffering of demography, while variation of trait responses fosters buffering of functioning. Understanding how both responses are related is important for predicting biodiversity loss and its consequences. In this study, we aimed to empirically assess whether population-level trait responses to multiple environmental change drivers are related to the demographic response to these drivers. To this end, we measured demographic and trait responses in microcosm experiments with two species of ciliated protists. For three clonal strains of each species, we measured responses to two environmental change drivers (climate change and pollution) and their combination. We also examined if relationships between demographic and trait responses existed across treatments and strains. RESULTS We found different demographic responses across strains of the same species but hardly any interactive effects between the two environmental change drivers. Also, trait responses (summarized in a survival strategy index) varied among strains within a species, again with no driver interactions. Demographic and trait responses were related across all strains of both species tested in this study: Increasing intrinsic growth and self-limitation were associated with a shift in survival strategy from sit-and-wait towards flee. CONCLUSIONS Our results support the existence of a link between a population's demographic and trait responses to environmental change drivers in two species of ciliate. Future work could dive deeper into the specifics of phenotypical trait values, and changes therein, related to specific life strategies in different species of ciliate and other zooplankton grazers.
Collapse
Affiliation(s)
- Tessa de Bruin
- Earth and Life Institute (ELI), Biodiversity Research Center (BDIV), Université Catholique de Louvain, Louvain‑La‑Neuve, Belgium.
| | - Frederik De Laender
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life-Earth-Environment (ILEE), Namur Institute for Complex Systems (NAXYS), Université de Namur, Namur, Belgium
| | - Julie Jadoul
- Earth and Life Institute (ELI), Biodiversity Research Center (BDIV), Université Catholique de Louvain, Louvain‑La‑Neuve, Belgium
| | - Nicolas Schtickzelle
- Earth and Life Institute (ELI), Biodiversity Research Center (BDIV), Université Catholique de Louvain, Louvain‑La‑Neuve, Belgium
| |
Collapse
|
6
|
Brans V, Manzi F, Jacob S, Schtickzelle N. Demography and movement patterns of a freshwater ciliate: The influence of oxygen availability. Ecol Evol 2024; 14:e11291. [PMID: 38660468 PMCID: PMC11040103 DOI: 10.1002/ece3.11291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 03/27/2024] [Accepted: 04/05/2024] [Indexed: 04/26/2024] Open
Abstract
In freshwater habitats, aerobic animals and microorganisms can react to oxygen deprivation by a series of behavioural and physiological changes, either as a direct consequence of hindered performance or as adaptive responses towards hypoxic conditions. Since oxygen availability can vary throughout the water column, different strategies exist to avoid hypoxia, including that of active 'flight' from low-oxygen sites. Alternatively, some organisms may invest in slower movement, saving energy until conditions return to more favourable levels, which may be described as a 'sit-and-wait' strategy. Here, we aimed to determine which, if any, of these strategies could be used by the freshwater ciliate Tetrahymena thermophila when faced with decreasing levels of oxygen availability in the culture medium. We manipulated oxygen flux into clonal cultures of six strains (i.e. genotypes) and followed their growth kinetics for several weeks using automated image analysis, allowing to precisely quantify changes in density, morphology and movement patterns. Oxygen effects on demography and morphology were comparable across strains: reducing oxygen flux decreased the growth rate and maximal density of experimental cultures, while greatly expanding the duration of their stationary phase. Cells sampled during their exponential growth phase were larger and had a more elongated shape under hypoxic conditions, likely mirroring a shift in resource investment towards individual development rather than frequent divisions. In addition to these general patterns, we found evidence for intraspecific variability in movement responses to oxygen limitation. Some strains showed a reduction in swimming speed, potentially associated with a 'sit-and-wait' strategy; however, the frequent alteration of movement paths towards more linear trajectories also suggests the existence of an inducible 'flight response' in this species. Considering the inherent costs of turns associated with non-linear movement, such a strategy may allow ciliates to escape suboptimal environments at a low energetic cost.
Collapse
Affiliation(s)
- Victor Brans
- Biodiversity Research Centre, Earth and Life InstituteUniversité catholique de LouvainLouvain‐la‐NeuveBelgium
| | - Florent Manzi
- Biodiversity Research Centre, Earth and Life InstituteUniversité catholique de LouvainLouvain‐la‐NeuveBelgium
| | - Staffan Jacob
- Centre National de la Recherche Scientifique (CNRS)Station d'Ecologie Théorique et Expérimentale (UAR2029)MoulisFrance
| | - Nicolas Schtickzelle
- Biodiversity Research Centre, Earth and Life InstituteUniversité catholique de LouvainLouvain‐la‐NeuveBelgium
| |
Collapse
|
7
|
Wan KY, Poon RN. Mechanisms and functions of multiciliary coordination. Curr Opin Cell Biol 2024; 86:102286. [PMID: 38035649 DOI: 10.1016/j.ceb.2023.102286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/20/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023]
Abstract
Ciliated organisms are present in virtually every branch of the eukaryotic tree of life. In diverse systems, cilia operate in a coordinated manner to drive fluid flows, or even propel entire organisms. How do groups of motile cilia coordinate their activity within a cell or across a tissue to fulfil essential functions of life? In this review, we highlight the latest developments in our understanding of the mechanisms and functions of multiciliary coordination in diverse systems. We explore new and emerging trends in bioimaging, analytical, and computational methods, which together with their application in new model systems, have conspired to deliver important insights into one of the most fundamental questions in cellular dynamics.
Collapse
Affiliation(s)
- Kirsty Y Wan
- Living Systems Institute, University of Exeter, Stocker Road, EX4 4QD, UK.
| | - Rebecca N Poon
- Living Systems Institute, University of Exeter, Stocker Road, EX4 4QD, UK
| |
Collapse
|
8
|
Derelle R, Verdonck R, Jacob S, Huet M, Akerman I, Philippe H, Legrand D. The macronuclear genomic landscape within Tetrahymena thermophila. Microb Genom 2024; 10:001175. [PMID: 38206129 PMCID: PMC10868616 DOI: 10.1099/mgen.0.001175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
The extent of intraspecific genomic variation is key to understanding species evolutionary history, including recent adaptive shifts. Intraspecific genomic variation remains poorly explored in eukaryotic micro-organisms, especially in the nuclear dimorphic ciliates, despite their fundamental role as laboratory model systems and their ecological importance in many ecosystems. We sequenced the macronuclear genome of 22 laboratory strains of the oligohymenophoran Tetrahymena thermophila, a model species in both cellular biology and evolutionary ecology. We explored polymorphisms at the junctions of programmed eliminated sequences, and reveal their utility to barcode very closely related cells. As for other species of the genus Tetrahymena, we confirm micronuclear centromeres as gene diversification centres in T. thermophila, but also reveal a two-speed evolution in these regions. In the rest of the genome, we highlight recent diversification of genes coding for extracellular proteins and cell adhesion. We discuss all these findings in relation to this ciliate's ecology and cellular characteristics.
Collapse
Affiliation(s)
- Romain Derelle
- Station d’Ecologie Théorique et Expérimentale, UAR2029, CNRS, Moulis, France
- Present address: NIHR Health Protection Research Unit in Respiratory Infections, National Heart and Lung Institute, Imperial College London, London, UK
| | - Rik Verdonck
- Station d’Ecologie Théorique et Expérimentale, UAR2029, CNRS, Moulis, France
- Present address: Centre for Environmental Sciences, Environmental Biology, Hasselt University, Diepenbeek, Belgium
| | - Staffan Jacob
- Station d’Ecologie Théorique et Expérimentale, UAR2029, CNRS, Moulis, France
| | - Michèle Huet
- Station d’Ecologie Théorique et Expérimentale, UAR2029, CNRS, Moulis, France
| | - Ildem Akerman
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Hervé Philippe
- Station d’Ecologie Théorique et Expérimentale, UAR2029, CNRS, Moulis, France
| | - Delphine Legrand
- Station d’Ecologie Théorique et Expérimentale, UAR2029, CNRS, Moulis, France
| |
Collapse
|
9
|
Cote J, Dahirel M, Schtickzelle N, Altermatt F, Ansart A, Blanchet S, Chaine AS, De Laender F, De Raedt J, Haegeman B, Jacob S, Kaltz O, Laurent E, Little CJ, Madec L, Manzi F, Masier S, Pellerin F, Pennekamp F, Therry L, Vong A, Winandy L, Bonte D, Fronhofer EA, Legrand D. Dispersal syndromes in challenging environments: A cross-species experiment. Ecol Lett 2022; 25:2675-2687. [PMID: 36223413 PMCID: PMC9828387 DOI: 10.1111/ele.14124] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 01/12/2023]
Abstract
Dispersal is a central biological process tightly integrated into life-histories, morphology, physiology and behaviour. Such associations, or syndromes, are anticipated to impact the eco-evolutionary dynamics of spatially structured populations, and cascade into ecosystem processes. As for dispersal on its own, these syndromes are likely neither fixed nor random, but conditional on the experienced environment. We experimentally studied how dispersal propensity varies with individuals' phenotype and local environmental harshness using 15 species ranging from protists to vertebrates. We reveal a general phenotypic dispersal syndrome across studied species, with dispersers being larger, more active and having a marked locomotion-oriented morphology and a strengthening of the link between dispersal and some phenotypic traits with environmental harshness. Our proof-of-concept metacommunity model further reveals cascading effects of context-dependent syndromes on the local and regional organisation of functional diversity. Our study opens new avenues to advance our understanding of the functioning of spatially structured populations, communities and ecosystems.
Collapse
Affiliation(s)
- Julien Cote
- Centre National de la Recherche Scientifique (CNRS)Université Paul Sabatier; UMR5174 EDB (Laboratoire Evolution & Diversité Biologique)Toulouse CedexFrance
| | - Maxime Dahirel
- Univ Rennes, CNRS, ECOBIO (Ecosystèmes, Biodiversité, Évolution)—UMR6553RennesFrance,Department of BiologyGhent UniversityGhentBelgium
| | - Nicolas Schtickzelle
- Univ. Catholique de LouvainEarth and Life Institute, Biodiversity Research CentreLouvain‐la‐NeuveBelgium
| | - Florian Altermatt
- Eawag: Department of Aquatic EcologySwiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland,Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZürichSwitzerland
| | - Armelle Ansart
- Univ Rennes, CNRS, ECOBIO (Ecosystèmes, Biodiversité, Évolution)—UMR6553RennesFrance
| | - Simon Blanchet
- Centre National de la Recherche Scientifique (CNRS)Station d'Ecologie Théorique et Expérimentale (UAR2029)MoulisFrance
| | - Alexis S. Chaine
- Centre National de la Recherche Scientifique (CNRS)Station d'Ecologie Théorique et Expérimentale (UAR2029)MoulisFrance,Institute for Advanced Studies in Toulouse, Toulouse School of EconomicsToulouseFrance
| | - Frederik De Laender
- Research Unit in Environmental and Evolutionary Biology, Namur Institute of Complex Systems, and the Institute of Life, Earth, and EnvironmentUniversity of NamurNamurBelgium
| | - Jonathan De Raedt
- Research Unit in Environmental and Evolutionary Biology, Namur Institute of Complex Systems, and the Institute of Life, Earth, and EnvironmentUniversity of NamurNamurBelgium,Laboratory of Environmental Toxicology and Applied EcologyGhent UniversityGhentBelgium
| | - Bart Haegeman
- Centre National de la Recherche Scientifique (CNRS)Station d'Ecologie Théorique et Expérimentale (UAR2029)MoulisFrance
| | - Staffan Jacob
- Centre National de la Recherche Scientifique (CNRS)Station d'Ecologie Théorique et Expérimentale (UAR2029)MoulisFrance
| | - Oliver Kaltz
- ISEM, Univ MontpellierCNRS, EPHE, IRDMontpellierFrance
| | - Estelle Laurent
- Univ. Catholique de LouvainEarth and Life Institute, Biodiversity Research CentreLouvain‐la‐NeuveBelgium
| | - Chelsea J. Little
- Eawag: Department of Aquatic EcologySwiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland,Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZürichSwitzerland,School of Environmental ScienceSimon Fraser UniversityBurnabyBritish ColumbiaCanada
| | - Luc Madec
- Univ Rennes, CNRS, ECOBIO (Ecosystèmes, Biodiversité, Évolution)—UMR6553RennesFrance
| | - Florent Manzi
- ISEM, Univ MontpellierCNRS, EPHE, IRDMontpellierFrance,Department of Ecosystem ResearchLeibniz‐Institute of Freshwater Ecology and Inland FisheriesBerlinGermany
| | | | - Felix Pellerin
- Centre National de la Recherche Scientifique (CNRS)Université Paul Sabatier; UMR5174 EDB (Laboratoire Evolution & Diversité Biologique)Toulouse CedexFrance
| | - Frank Pennekamp
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZürichSwitzerland
| | - Lieven Therry
- Centre National de la Recherche Scientifique (CNRS)Université Paul Sabatier; UMR5174 EDB (Laboratoire Evolution & Diversité Biologique)Toulouse CedexFrance,Centre National de la Recherche Scientifique (CNRS)Station d'Ecologie Théorique et Expérimentale (UAR2029)MoulisFrance
| | - Alexandre Vong
- Centre National de la Recherche Scientifique (CNRS)Station d'Ecologie Théorique et Expérimentale (UAR2029)MoulisFrance
| | - Laurane Winandy
- Centre National de la Recherche Scientifique (CNRS)Université Paul Sabatier; UMR5174 EDB (Laboratoire Evolution & Diversité Biologique)Toulouse CedexFrance,Centre National de la Recherche Scientifique (CNRS)Station d'Ecologie Théorique et Expérimentale (UAR2029)MoulisFrance
| | - Dries Bonte
- Department of BiologyGhent UniversityGhentBelgium
| | - Emanuel A. Fronhofer
- Eawag: Department of Aquatic EcologySwiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland,Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZürichSwitzerland,ISEM, Univ MontpellierCNRS, EPHE, IRDMontpellierFrance
| | - Delphine Legrand
- Centre National de la Recherche Scientifique (CNRS)Station d'Ecologie Théorique et Expérimentale (UAR2029)MoulisFrance
| |
Collapse
|
10
|
Junker AD, Woodhams LG, Soh AWJ, O’Toole ET, Bayly PV, Pearson CG. Basal bodies bend in response to ciliary forces. Mol Biol Cell 2022; 33:ar146. [PMID: 36287828 PMCID: PMC9727800 DOI: 10.1091/mbc.e22-10-0468-t] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Motile cilia beat with an asymmetric waveform consisting of a power stroke that generates a propulsive force and a recovery stroke that returns the cilium back to the start. Cilia are anchored to the cell cortex by basal bodies (BBs) that are directly coupled to the ciliary doublet microtubules (MTs). We find that, consistent with ciliary forces imposing on BBs, bending patterns in BB triplet MTs are responsive to ciliary beating. BB bending varies as environmental conditions change the ciliary waveform. Bending occurs where striated fibers (SFs) attach to BBs and mutants with short SFs that fail to connect to adjacent BBs exhibit abnormal BB bending, supporting a model in which SFs couple ciliary forces between BBs. Finally, loss of the BB stability protein Poc1, which helps interconnect BB triplet MTs, prevents the normal distributed BB and ciliary bending patterns. Collectively, BBs experience ciliary forces and manage mechanical coupling of these forces to their surrounding cellular architecture for normal ciliary beating.
Collapse
Affiliation(s)
- Anthony D. Junker
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Louis G. Woodhams
- Department of Mechanical Engineering and Material Science, Washington University in St. Louis, St. Louis, MO 63130
| | - Adam W. J. Soh
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Eileen T. O’Toole
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80302
| | - Philip V. Bayly
- Department of Mechanical Engineering and Material Science, Washington University in St. Louis, St. Louis, MO 63130
| | - Chad G. Pearson
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045,*Address correspondence to: Chad G. Pearson ()
| |
Collapse
|
11
|
Campana JLM, Raffard A, Chaine AS, Huet M, Legrand D, Jacob S. Dispersal plasticity driven by variation in fitness across species and environmental gradients. Ecol Lett 2022; 25:2410-2421. [PMID: 36198081 PMCID: PMC9827879 DOI: 10.1111/ele.14101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/07/2022] [Accepted: 08/12/2022] [Indexed: 01/12/2023]
Abstract
Dispersal plasticity, when organisms adjust their dispersal decisions depending on their environment, can play a major role in ecological and evolutionary dynamics, but how it relates to fitness remains scarcely explored. Theory predicts that high dispersal plasticity should evolve when environmental gradients have a strong impact on fitness. Using microcosms, we tested in five species of the genus Tetrahymena whether dispersal plasticity relates to differences in fitness sensitivity along three environmental gradients. Dispersal plasticity was species- and environment-dependent. As expected, dispersal plasticity was generally related to fitness sensitivity, with higher dispersal plasticity when fitness is more affected by environmental gradients. Individuals often preferentially disperse out of low fitness environments, but leaving environments that should yield high fitness was also commonly observed. We provide empirical support for a fundamental, but largely untested, assumption in dispersal theory: the extent of dispersal plasticity correlates with fitness sensitivity to the environment.
Collapse
Affiliation(s)
| | - Allan Raffard
- Université catholique de Louvain, Earth and Life Institute, Biodiversity Research CentreLouvain‐la‐NeuveBelgium,Present address:
Univ. Savoie Mont Blanc, INRAE, CARRTELThonon‐les‐BainsFrance
| | - Alexis S. Chaine
- Station d'Ecologie Théorique et ExpérimentaleUAR CNRS 2029MoulisFrance
| | - Michèle Huet
- Station d'Ecologie Théorique et ExpérimentaleUAR CNRS 2029MoulisFrance
| | - Delphine Legrand
- Station d'Ecologie Théorique et ExpérimentaleUAR CNRS 2029MoulisFrance
| | - Staffan Jacob
- Station d'Ecologie Théorique et ExpérimentaleUAR CNRS 2029MoulisFrance
| |
Collapse
|
12
|
Soh AWJ, Pearson CG. Ciliate cortical organization and dynamics for cell motility: Comparing ciliates and vertebrates. J Eukaryot Microbiol 2022; 69:e12880. [PMID: 34897878 PMCID: PMC9188629 DOI: 10.1111/jeu.12880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The generation of efficient fluid flow is crucial for organismal development and homeostasis, sexual reproduction, and motility. Multi-ciliated cells possess fields of motile cilia that beat in synchrony to propel fluid. Ciliary arrays are remarkably conserved in their organization and function. Ciliates have polarized multi-ciliary arrays (MCAs) to promote fluid flow for cell motility. The ciliate cortex is decorated with hundreds of basal bodies (BB) forming linear rows along the cell's anterior-posterior axis. BBs scaffold and position cilia to form the organized ciliary array. Nascent BBs assemble at the base of BBs. As nascent BBs mature, they integrate into the cortical BB and cytoskeletal network and nucleate their own cilium. The organization of MCAs is balanced between cortical stability and cortical dynamism. The cortical cytoskeletal network both establishes and maintains a stable organization of the MCA in the face of mechanical forces exerted by ciliary beating. At the same time, MCA organization is plastic, such that it remodels for optimal ciliary mobility during development and in response to environmental conditions. Such plasticity promotes effective feeding and ecological behavior required for these organisms. Together, these properties allow an organism to effectively sense, adapt to, and move through its environment.
Collapse
Affiliation(s)
- Adam W. J. Soh
- Anschutz Medical Campus, Department of Cell and Developmental Biology, University of Colorado, Aurora, CO 80045
| | - Chad G. Pearson
- Anschutz Medical Campus, Department of Cell and Developmental Biology, University of Colorado, Aurora, CO 80045
| |
Collapse
|
13
|
Cayuela H, Jacob S, Schtickzelle N, Verdonck R, Philippe H, Laporte M, Huet M, Bernatchez L, Legrand D. Transgenerational plasticity of dispersal‐related traits in a ciliate: genotype‐dependency and fitness consequences. OIKOS 2022. [DOI: 10.1111/oik.08846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Hugo Cayuela
- Dépt de Biologie, Inst. de Biologie Intégrative et des Systèmes (IBIS), Univ. Laval, Pavillon Charles‐Eugène‐Marchand Québec QC Canada
- Dept of Ecology and Evolution, Univ. of Lausanne Lausanne Switzerland
| | - Staffan Jacob
- Theoretical and Experimental Ecology Station (UAR 2029), National Centre for Scientific Research (CNRS), Paul Sabatier Univ. (UPS) Moulis France
| | - Nicolas Schtickzelle
- Univ. Catholique de Louvain, Earth and Life Inst., Biodiversity Research Centre Louvain‐la‐Neuve Belgium
| | - Rik Verdonck
- Theoretical and Experimental Ecology Station (UAR 2029), National Centre for Scientific Research (CNRS), Paul Sabatier Univ. (UPS) Moulis France
| | - Hervé Philippe
- Theoretical and Experimental Ecology Station (UAR 2029), National Centre for Scientific Research (CNRS), Paul Sabatier Univ. (UPS) Moulis France
- Dépt de Biochimie, Centre Robert‐Cedergren, Univ. de Montréal Montréal QC Canada
| | - Martin Laporte
- Ministère des Forêts, de la Faune et des Parc (MFFP) du Québec Québec QC Canada
| | - Michèle Huet
- Theoretical and Experimental Ecology Station (UAR 2029), National Centre for Scientific Research (CNRS), Paul Sabatier Univ. (UPS) Moulis France
| | - Louis Bernatchez
- Dépt de Biologie, Inst. de Biologie Intégrative et des Systèmes (IBIS), Univ. Laval, Pavillon Charles‐Eugène‐Marchand Québec QC Canada
| | - Delphine Legrand
- Theoretical and Experimental Ecology Station (UAR 2029), National Centre for Scientific Research (CNRS), Paul Sabatier Univ. (UPS) Moulis France
| |
Collapse
|