1
|
Ryan P, Lee J. In vitro senescence and senolytic functional assays. Biomater Sci 2025. [PMID: 40375674 DOI: 10.1039/d4bm01684j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
A detailed understanding of aging biology and the development of anti-aging therapeutic strategies remain imperative yet inherently challenging due to the protracted nature of aging. Cellular senescence arises naturally through replicative exhaustion and is accelerated by clinical treatments or environmental stressors. The accumulation of senescent cells-defined by a loss of mitogenic potential, resistance to apoptosis, and acquisition of a pro-inflammatory secretory phenotype-has been implicated as a key driver of chronic disease, tissue degeneration, and organismal aging. Recent studies have highlighted the therapeutic promise of senolytic drugs, which selectively eliminate senescent cells. Compelling results from preclinical animal studies and ongoing clinical trials underscore this potential. However, the clinical translation of senolytics requires further pharmacological validation to refine selectivity, minimize toxicity, and determine optimal dosing. Equally important is the evaluation of senolytics' potential to restore tissue structure and function by reducing the senescent cell burden. In vitro tissue culture models offer a powerful platform to advance these efforts. This review summarizes the current landscape of in vitro systems used for inducing cellular senescence-referred to as "senescence assays"-and for screening senolytic drugs-referred to as "senolytic assays". We conclude by discussing key challenges to improving mechanistic insight, predictive accuracy, and clinical relevance in senolytic drug development, as well as emerging applications of senolytic therapies.
Collapse
Affiliation(s)
- Patrick Ryan
- Molecular & Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, 01003, USA.
| | - Jungwoo Lee
- Molecular & Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, 01003, USA.
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts, 01003, USA
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Massachusetts, 01003, USA
| |
Collapse
|
2
|
Laouris P, Muñoz-Espín D. Current Methodologies to Assess Cellular Senescence in Cancer. Methods Mol Biol 2025; 2906:21-44. [PMID: 40082348 DOI: 10.1007/978-1-0716-4426-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Cellular senescence plays a critical role in cancer, acting as both a tumor-suppressive and tumor-promoting mechanism. Senescent cells undergo stable cell-cycle arrest in response to various stressors, including DNA damage and oncogenic signaling, and exhibit a complex secretory phenotype known as the senescence-associated secretory phenotype (SASP), which can impact the tumor microenvironment. The hallmarks of senescence include cell-cycle arrest, secretion of pro-inflammatory factors, structural changes, and metabolic alterations. These features, while initially suppressing tumorigenesis, can later contribute to cancer progression under certain conditions. Methods for studying senescence in preclinical models include in vitro assays, ex vivo tissue analysis, and in vivo detection techniques. Emerging therapeutic strategies focus on exploiting senescence for cancer treatment, particularly through the use of senolytic agents that selectively eliminate senescent cells and senomorphic compounds that modulate SASP activity. However, the identification of reliable and universal biomarkers for senescence remains a challenge, necessitating a multimarker approach to accurately detect and characterize senescent cells in various contexts.
Collapse
Affiliation(s)
- Panayiotis Laouris
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Daniel Muñoz-Espín
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK.
- CRUK Cambridge Centre Thoracic Cancer Programme, Cambridge, UK.
| |
Collapse
|
3
|
Sugiyama Y, Kawabe Y, Harada T, Aoki Y, Tsuji K, Sugiyama D, Maruyama M. Elimination of physiological senescent cutaneous cells in a novel p16-dependent senolytic mouse model impacts lipid metabolism in skin aging. Genes Cells 2024; 29:1085-1094. [PMID: 39284569 DOI: 10.1111/gtc.13163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/23/2024] [Accepted: 09/03/2024] [Indexed: 11/08/2024]
Abstract
The evidence of the correlation between cellular senescence and aging has increased in research with animal models. These models have been intentionally generated to target and regulate cellular senescent cells with the promoter activity of p16Ink4a or p19Arf, genes that are highly expressed in aging cells. However, the senolytic efficiency in various organs and cells from these models represents unexpected variation and diversity in some cases. We have generated a novel knock-in model, p16tdT-hDTR mice, which possess tdTomato and human diphtheria toxin receptor (hDTR) downstream of Cdkn2a, an endogenous p16Ink4a gene. We successfully demonstrated that p16-derived tdTomato and hDTR expressions are observed in these mouse embryo fibroblasts and following treatment with diphtheria toxin (DT) eliminates those cells. Furthermore, we demonstrated the efficacy of eliminating p16-positive cells in vivo, and also observed a tendency to decrease their cutaneous SA-β-gal activity after subcutaneous DT injection into p16tdT-hDTR mice. In particular, comprehensive gene expression analysis in skin revealed that upregulated genes related to lipid metabolisms with aging exhibited remarkable expressions under the senolysis. These results clearly unveiled p16-positive senescent cells contribute to age-related changes in skin.
Collapse
Affiliation(s)
- Yuma Sugiyama
- Department of Inflammation and Immunosenescence, Geroscience Research Center, Research Institute, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Yoichiro Kawabe
- Department of Inflammation and Immunosenescence, Geroscience Research Center, Research Institute, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Tanenobu Harada
- Department of Inflammation and Immunosenescence, Geroscience Research Center, Research Institute, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Yu Aoki
- Daiichi-Sankyo Healthcare, Tokyo, Japan
| | | | | | - Mitsuo Maruyama
- Department of Inflammation and Immunosenescence, Geroscience Research Center, Research Institute, National Center for Geriatrics and Gerontology, Aichi, Japan
- Department of Aging Research, Nagoya University Graduate School of Medicine, Aichi, Japan
| |
Collapse
|
4
|
Ungvari Z, Ungvari A, Fekete M, Kiss C, Győrffy B. Senescence-related genes as prognostic indicators in breast cancer survival. GeroScience 2024:10.1007/s11357-024-01384-w. [PMID: 39432147 DOI: 10.1007/s11357-024-01384-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024] Open
Abstract
Breast cancer is a leading cause of cancer-related mortality among women worldwide, particularly affecting those in their later years. As the incidence of breast cancer increases with age, understanding the biological mechanisms that link aging and cancer becomes crucial. Cellular senescence, a hallmark of aging, plays a dual role in cancer by inhibiting tumorigenesis while also contributing to tumor progression through the senescence-associated secretory phenotype (SASP). This study aims to investigate the prognostic significance of senescence-related genes in breast cancer. We utilized the SenMayo gene list, a comprehensive set of senescence-related genes, to analyze gene expression data from a large cohort of breast cancer samples. The data was sourced from the Kaplan-Meier plotter, an integrated database that compiles gene expression information from multiple independent cohorts. Cox proportional hazards regression and false discovery rate (FDR) corrections were employed to evaluate the correlation between gene expression and survival outcomes, aiming to establish a prognostic signature. Our findings demonstrate that higher expression levels of senescence-related genes are significantly associated with improved survival, while lower expression levels correlate with shorter survival outcomes. These results suggest that senescence-related pathways play a protective role in breast cancer, potentially serving as valuable prognostic indicators. The identification of a prognostic signature based on senescence-related genes underscores the importance of cellular senescence in breast cancer progression and survival. Our study highlights the potential of senescence-related biomarkers in enhancing patient stratification and informing treatment strategies, contributing to the growing body of literature on the intersection of aging and cancer.
Collapse
Affiliation(s)
- Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Anna Ungvari
- Healthy Aging Program, Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary.
| | - Monika Fekete
- Healthy Aging Program, Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary
| | - Csaba Kiss
- Department of Bioinformatics, Semmelweis University, 1094, Budapest, Hungary
- Cancer Biomarker Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, 1094, Budapest, Hungary
- Cancer Biomarker Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, 1117, Budapest, Hungary
- Department of Biophysics, Medical School, University of Pecs, 7624, Pecs, Hungary
| |
Collapse
|
5
|
Ungvari Z, Ungvari A, Bianchini G, Győrffy B. Prognostic significance of a signature based on senescence-related genes in colorectal cancer. GeroScience 2024; 46:4495-4504. [PMID: 38658505 PMCID: PMC11336146 DOI: 10.1007/s11357-024-01164-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
Colorectal cancer, recognized as a quintessential age-related disease, underscores the intricate interplay between aging mechanisms and disease pathogenesis. Cellular senescence, a DNA damage-induced cellular stress response, is characterized by cell cycle arrest, the expression of an inflammatory senescence-associated secretory phenotype, and alterations in extracellular matrix metabolism. It is widely recognized as a fundamental and evolutionarily conserved mechanism of aging. Guided by geroscience principles, which assert that the pathogenesis of age-related diseases involves cellular mechanisms of aging, this study delves into the role of senescence-related genes in colon cancer progression. Leveraging a gene set reflective of senescence-associated pathways, we employed uni- and multivariate Cox proportional hazards survival analysis combined with the determination of the false discovery rate to analyze correlations between gene expression and survival. The integrated database of 1130 colon cancer specimens with available relapse-free survival time and relapse event data from ten independent cohorts provided a robust platform for survival analyses. We identified senescence-related genes associated with differential expression levels linked to shorter survival. Our findings unveil a prognostic signature utilizing cellular senescence-related genes (hazard ratio: 2.73, 95% CI 2.12-3.52, p = 6.4E - 16), offering valuable insights into survival prediction in colon cancer. Multivariate analysis underscored the independence of the senescence-related signature from available epidemiological and pathological variables. This study highlights the potential of senescence-related genes as prognostic biomarkers. Overall, our results underscore the pivotal role of cellular senescence, a fundamental mechanism of aging, in colon cancer progression.
Collapse
Affiliation(s)
- Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Anna Ungvari
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary.
| | | | - Balázs Győrffy
- Dept. of Bioinformatics, Semmelweis University, 1094, Budapest, Hungary
- Dept. of Biophysics, Medical School, University of Pecs, 7624, Pecs, Hungary
- Cancer Biomarker Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, 1117, Budapest, Hungary
| |
Collapse
|
6
|
Dong Z, Luo Y, Yuan Z, Tian Y, Jin T, Xu F. Cellular senescence and SASP in tumor progression and therapeutic opportunities. Mol Cancer 2024; 23:181. [PMID: 39217404 PMCID: PMC11365203 DOI: 10.1186/s12943-024-02096-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Cellular senescence (CS), a permanent and irreversible arrest of the cell cycle and proliferation leading to the degeneration of cellular structure and function, has been implicated in various key physiological and pathological processes, particularly in cancer. Initially, CS was recognized as a barrier to tumorigenesis, serving as an intrinsic defense mechanism to protect cells from malignant transformation. However, increasing evidence suggests that senescent cells can promote tumor progression to overt malignancy, primarily through a set of factors known as senescence-associated secretory phenotypes (SASPs), including chemokines, growth factors, cytokines, and stromal metalloproteinases. These factors significantly reshape the tumor microenvironment (TME), enabling tumors to evade immune destruction. Interestingly, some studies have also suggested that SASPs may impede tumor development by enhancing immunosurveillance. These opposing roles highlight the complexity and heterogeneity of CS and SASPs in diverse cancers. Consequently, there has been growing interest in pharmacological interventions targeting CS or SASPs in cancer therapy, such as senolytics and senomorphics, to either promote the clearance of senescent cells or mitigate the harmful effects of SASPs. In this review, we will interpret the concept of CS, delve into the role of SASPs in reshaping the TME, and summarize recent advances in anti-tumor strategies targeting CS or SASPs.
Collapse
Affiliation(s)
- Zening Dong
- Hepatobiliary and Splenic Surgery Ward, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yahan Luo
- Shanghai TCM-Integrated Hospital, Shanghai University of TCM, Shanghai, China
| | - Zhangchen Yuan
- Hepatobiliary and Splenic Surgery Ward, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu Tian
- Hepatobiliary and Splenic Surgery Ward, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tianqiang Jin
- Hepatobiliary and Splenic Surgery Ward, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Feng Xu
- Hepatobiliary and Splenic Surgery Ward, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
7
|
Jain SS, Burton Sojo G, Sun H, Friedland BN, McNamara ME, Schmidt MO, Wellstein A. The Role of Aging and Senescence in Immune Checkpoint Inhibitor Response and Toxicity. Int J Mol Sci 2024; 25:7013. [PMID: 39000121 PMCID: PMC11241020 DOI: 10.3390/ijms25137013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/16/2024] Open
Abstract
Cellular senescence accumulates with age and has been shown to impact numerous physiological and pathological processes, including immune function. The role of cellular senescence in cancer is multifaceted, but the impact on immune checkpoint inhibitor response and toxicity has not been fully evaluated. In this review, we evaluate the impact of cellular senescence in various biological compartments, including the tumor, the tumor microenvironment, and the immune system, on immune checkpoint inhibitor efficacy and toxicity. We provide an overview of the impact of cellular senescence in normal and pathological contexts and examine recent studies that have connected aging and cellular senescence to immune checkpoint inhibitor treatment in both the pre-clinical and clinical contexts. Overall, senescence plays a multi-faceted, context-specific role and has been shown to modulate immune-related adverse event incidence as well as immune checkpoint inhibitor response.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anton Wellstein
- Georgetown Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA; (S.S.J.)
| |
Collapse
|
8
|
Tsushima H, Tada H, Asai A, Hirose M, Hosoyama T, Watanabe A, Murakami T, Sugimoto M. Roles of pigment epithelium-derived factor in exercise-induced suppression of senescence and its impact on lung pathology in mice. Aging (Albany NY) 2024; 16:10670-10693. [PMID: 38954512 PMCID: PMC11272117 DOI: 10.18632/aging.205976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024]
Abstract
Senescent cells contribute to tissue aging and underlie the pathology of chronic diseases. The benefits of eliminating senescent cells have been demonstrated in several disease models, and the efficacy of senolytic drugs is currently being tested in humans. Exercise training has been shown to reduce cellular senescence in several tissues; however, the mechanisms responsible remain unclear. We found that myocyte-derived factors significantly extended the replicative lifespan of fibroblasts, suggesting that myokines mediate the anti-senescence effects of exercise. A number of proteins within myocyte-derived factors were identified by mass spectrometry. Among these, pigment epithelium-derived factor (PEDF) exerted inhibitory effects on cellular senescence. Eight weeks of voluntary running increased Pedf levels in skeletal muscles and suppressed senescence markers in the lungs. The administration of PEDF reduced senescence markers in multiple tissues and attenuated the decline in respiratory function in the pulmonary emphysema mouse model. We also showed that blood levels of PEDF inversely correlated with the severity of COPD in patients. Collectively, these results strongly suggest that PEDF contributes to the beneficial effects of exercise, potentially suppressing cellular senescence and its associated pathologies.
Collapse
Affiliation(s)
- Hiromichi Tsushima
- Laboratory of Molecular and Cellular Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo 173-0015, Japan
| | - Hirobumi Tada
- Department of Nutrition, Shigakkan University, Aichi 474-8651, Japan
- Research Institute, National Center for Geriatrics and Gerontology, Aichi 474-8511, Japan
| | - Azusa Asai
- Research Institute, National Center for Geriatrics and Gerontology, Aichi 474-8511, Japan
| | - Mikako Hirose
- Laboratory of Molecular and Cellular Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo 173-0015, Japan
| | - Tohru Hosoyama
- Research Institute, National Center for Geriatrics and Gerontology, Aichi 474-8511, Japan
| | - Atsushi Watanabe
- Research Institute, National Center for Geriatrics and Gerontology, Aichi 474-8511, Japan
| | - Taro Murakami
- Department of Nutrition, Shigakkan University, Aichi 474-8651, Japan
| | - Masataka Sugimoto
- Laboratory of Molecular and Cellular Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo 173-0015, Japan
- Research Institute, National Center for Geriatrics and Gerontology, Aichi 474-8511, Japan
| |
Collapse
|
9
|
Elshazly AM, Shahin U, Al Shboul S, Gewirtz DA, Saleh T. A Conversation with ChatGPT on Contentious Issues in Senescence and Cancer Research. Mol Pharmacol 2024; 105:313-327. [PMID: 38458774 PMCID: PMC11026153 DOI: 10.1124/molpharm.124.000871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/10/2024] Open
Abstract
Artificial intelligence (AI) platforms, such as Generative Pretrained Transformer (ChatGPT), have achieved a high degree of popularity within the scientific community due to their utility in providing evidence-based reviews of the literature. However, the accuracy and reliability of the information output and the ability to provide critical analysis of the literature, especially with respect to highly controversial issues, has generally not been evaluated. In this work, we arranged a question/answer session with ChatGPT regarding several unresolved questions in the field of cancer research relating to therapy-induced senescence (TIS), including the topics of senescence reversibility, its connection to tumor dormancy, and the pharmacology of the newly emerging drug class of senolytics. ChatGPT generally provided responses consistent with the available literature, although occasionally overlooking essential components of the current understanding of the role of TIS in cancer biology and treatment. Although ChatGPT, and similar AI platforms, have utility in providing an accurate evidence-based review of the literature, their outputs should still be considered carefully, especially with respect to unresolved issues in tumor biology. SIGNIFICANCE STATEMENT: Artificial Intelligence platforms have provided great utility for researchers to investigate biomedical literature in a prompt manner. However, several issues arise when it comes to certain unresolved biological questions, especially in the cancer field. This work provided a discussion with ChatGPT regarding some of the yet-to-be-fully-elucidated conundrums of the role of therapy-induced senescence in cancer treatment and highlights the strengths and weaknesses in utilizing such platforms for analyzing the scientific literature on this topic.
Collapse
Affiliation(s)
- Ahmed M Elshazly
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia (A.M.E., D.A.G.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt (A.M.E.); and Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, Jordan (U.S., S.A.S., T.S.)
| | - Uruk Shahin
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia (A.M.E., D.A.G.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt (A.M.E.); and Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, Jordan (U.S., S.A.S., T.S.)
| | - Sofian Al Shboul
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia (A.M.E., D.A.G.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt (A.M.E.); and Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, Jordan (U.S., S.A.S., T.S.)
| | - David A Gewirtz
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia (A.M.E., D.A.G.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt (A.M.E.); and Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, Jordan (U.S., S.A.S., T.S.)
| | - Tareq Saleh
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia (A.M.E., D.A.G.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt (A.M.E.); and Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, Jordan (U.S., S.A.S., T.S.)
| |
Collapse
|
10
|
McGrath MK, Abolhassani A, Guy L, Elshazly AM, Barrett JT, Mivechi NF, Gewirtz DA, Schoenlein PV. Autophagy and senescence facilitate the development of antiestrogen resistance in ER positive breast cancer. Front Endocrinol (Lausanne) 2024; 15:1298423. [PMID: 38567308 PMCID: PMC10986181 DOI: 10.3389/fendo.2024.1298423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Estrogen receptor positive (ER+) breast cancer is the most common breast cancer diagnosed annually in the US with endocrine-based therapy as standard-of-care for this breast cancer subtype. Endocrine therapy includes treatment with antiestrogens, such as selective estrogen receptor modulators (SERMs), selective estrogen receptor downregulators (SERDs), and aromatase inhibitors (AIs). Despite the appreciable remission achievable with these treatments, a substantial cohort of women will experience primary tumor recurrence, subsequent metastasis, and eventual death due to their disease. In these cases, the breast cancer cells have become resistant to endocrine therapy, with endocrine resistance identified as the major obstacle to the medical oncologist and patient. To combat the development of endocrine resistance, the treatment options for ER+, HER2 negative breast cancer now include CDK4/6 inhibitors used as adjuvants to antiestrogen treatment. In addition to the dysregulated activity of CDK4/6, a plethora of genetic and biochemical mechanisms have been identified that contribute to endocrine resistance. These mechanisms, which have been identified by lab-based studies utilizing appropriate cell and animal models of breast cancer, and by clinical studies in which gene expression profiles identify candidate endocrine resistance genes, are the subject of this review. In addition, we will discuss molecular targeting strategies now utilized in conjunction with endocrine therapy to combat the development of resistance or target resistant breast cancer cells. Of approaches currently being explored to improve endocrine treatment efficacy and patient outcome, two adaptive cell survival mechanisms, autophagy, and "reversible" senescence, are considered molecular targets. Autophagy and/or senescence induction have been identified in response to most antiestrogen treatments currently being used for the treatment of ER+ breast cancer and are often induced in response to CDK4/6 inhibitors. Unfortunately, effective strategies to target these cell survival pathways have not yet been successfully developed. Thus, there is an urgent need for the continued interrogation of autophagy and "reversible" senescence in clinically relevant breast cancer models with the long-term goal of identifying new molecular targets for improved treatment of ER+ breast cancer.
Collapse
Affiliation(s)
- Michael K. McGrath
- Georgia Cancer Center, Augusta University, Augusta, GA, United States
- Department of Cellular Biology & Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Ali Abolhassani
- Georgia Cancer Center, Augusta University, Augusta, GA, United States
- Department of Cellular Biology & Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Luke Guy
- Georgia Cancer Center, Augusta University, Augusta, GA, United States
- Department of Cellular Biology & Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Ahmed M. Elshazly
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, United States
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - John T. Barrett
- Georgia Cancer Center, Augusta University, Augusta, GA, United States
- Department of Radiation Oncology, Georgia Cancer Center, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Nahid F. Mivechi
- Georgia Cancer Center, Augusta University, Augusta, GA, United States
- Department of Radiation Oncology, Georgia Cancer Center, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - David A. Gewirtz
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, United States
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Patricia V. Schoenlein
- Georgia Cancer Center, Augusta University, Augusta, GA, United States
- Department of Cellular Biology & Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| |
Collapse
|
11
|
Sugimoto M. Targeting cellular senescence: A promising approach in respiratory diseases. Geriatr Gerontol Int 2024; 24 Suppl 1:60-66. [PMID: 37604771 DOI: 10.1111/ggi.14653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 08/23/2023]
Abstract
Cellular senescence serves as a significant tumor suppression mechanism in mammals. Cellular senescence is induced in response to various stressors and acts as a safeguard against the uncontrolled proliferation of damaged cells that could lead to malignant transformation. Senescent cells also exhibit a distinctive feature known as the senescence-associated secretory phenotype (SASP), wherein they secrete a range of bioactive molecules, including pro-inflammatory cytokines, growth factors, and proteases. These SASP components have both local and systemic effects, influencing the surrounding microenvironment and distant tissues, and have been implicated in the processes of tissue aging and the development of chronic diseases. Recent studies utilizing senolysis models have shed light on the potential therapeutic implications of targeting senescent cells. The targeting of senescent cell may alleviate the detrimental effects associated with cellular senescence and its SASP components. Senolytics have shown promise in preclinical studies for treating age-related pathologies and chronic diseases, including cancer, cardiovascular disorders, and neurodegenerative conditions. Respiratory diseases have emerged as a significant global health concern, responsible for a considerable number of deaths worldwide. Extensive research conducted in both human subjects and animal models has demonstrated the involvement of cellular senescence in the pathogenesis of respiratory diseases. Chronic pulmonary conditions such as chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis have been linked to the accumulation of senescent cells. This review aims to present the findings from research on respiratory diseases that have utilized systems targeting senescent cells and to identify potential therapeutic strategies for the clinical management of these conditions. Geriatr Gerontol Int 2024; 24: 60-66.
Collapse
Affiliation(s)
- Masataka Sugimoto
- Laboratory of Molecular and Cellular Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| |
Collapse
|
12
|
Kureel SK, Blair B, Sheetz MP. Recent Advancement in Elimination Strategies and Potential Rejuvenation Targets of Senescence. Adv Biol (Weinh) 2024; 8:e2300461. [PMID: 37857532 DOI: 10.1002/adbi.202300461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Indexed: 10/21/2023]
Abstract
Cellular senescence is a state of exiting the cell cycle, resisting apoptosis, and changing phenotype. Senescent cells (SCs) can be identified by large, distorted morphology and irreversible inability to replicate. In early development, senescence has beneficial roles like tissue patterning and wound healing, where SCs are cleared by the immune system. However, there is a steep rise in SC number as organisms age. The issue with SC accumulation stems from the loss of cellular function, alterations of the microenvironment, and secretions of pro-inflammatory molecules, consisting of cytokines, chemokines, matrix metalloproteinases (MMPs), interleukins, and extracellular matrix (ECM)-associated molecules. This secreted cocktail is referred to as the senescence-associated secretory phenotype (SASP), a hallmark of cellular senescence. The SASP promotes inflammation and displays a bystander effect where paracrine signaling turns proliferating cells into senescent states. To alleviate age-associated diseases, researchers have developed novel methods and techniques to selectively eliminate SCs in aged individuals. Although studies demonstrated that selectively killing SCs improves age-related disorders, there are drawbacks to SC removal. Considering favorable aspects of senescence in the body, this paper reviews recent advancements in elimination strategies and potential rejuvenation targets of senescence to bring researchers in the field up to date.
Collapse
Affiliation(s)
- Sanjay Kumar Kureel
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Brandon Blair
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Michael P Sheetz
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| |
Collapse
|
13
|
Gazzillo A, Volponi C, Soldani C, Polidoro MA, Franceschini B, Lleo A, Bonavita E, Donadon M. Cellular Senescence in Liver Cancer: How Dying Cells Become "Zombie" Enemies. Biomedicines 2023; 12:26. [PMID: 38275386 PMCID: PMC10813254 DOI: 10.3390/biomedicines12010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Liver cancer represents the fourth leading cause of cancer-associated death worldwide. The heterogeneity of its tumor microenvironment (TME) is a major contributing factor of metastasis, relapse, and drug resistance. Regrettably, late diagnosis makes most liver cancer patients ineligible for surgery, and the frequent failure of non-surgical therapeutic options orientates clinical research to the investigation of new drugs. In this context, cellular senescence has been recently shown to play a pivotal role in the progression of chronic inflammatory liver diseases, ultimately leading to cancer. Moreover, the stem-like state triggered by senescence has been associated with the emergence of drug-resistant, aggressive tumor clones. In recent years, an increasing number of studies have emerged to investigate senescence-associated hepatocarcinogenesis and its derived therapies, leading to promising results. In this review, we intend to provide an overview of the recent evidence that unveils the role of cellular senescence in the most frequent forms of primary and metastatic liver cancer, focusing on the involvement of this mechanism in therapy resistance.
Collapse
Affiliation(s)
- Aurora Gazzillo
- Cellular and Molecular Oncoimmunology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (A.G.); (C.V.); (E.B.)
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy;
| | - Camilla Volponi
- Cellular and Molecular Oncoimmunology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (A.G.); (C.V.); (E.B.)
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy;
| | - Cristiana Soldani
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (C.S.); (M.A.P.); (B.F.)
| | - Michela Anna Polidoro
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (C.S.); (M.A.P.); (B.F.)
| | - Barbara Franceschini
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (C.S.); (M.A.P.); (B.F.)
| | - Ana Lleo
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy;
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (C.S.); (M.A.P.); (B.F.)
- Division of Internal Medicine and Hepatology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Eduardo Bonavita
- Cellular and Molecular Oncoimmunology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (A.G.); (C.V.); (E.B.)
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy;
| | - Matteo Donadon
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (C.S.); (M.A.P.); (B.F.)
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
- Department of General Surgery, University Maggiore Hospital della Carità, 28100 Novara, Italy
| |
Collapse
|
14
|
Manousakis E, Miralles CM, Esquerda MG, Wright RHG. CDKN1A/p21 in Breast Cancer: Part of the Problem, or Part of the Solution? Int J Mol Sci 2023; 24:17488. [PMID: 38139316 PMCID: PMC10743848 DOI: 10.3390/ijms242417488] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Cyclin-dependent kinase inhibitor 1A (Cip1/Waf1/CDKN1A/p21) is a well-established protein, primarily recognised for its pivotal role in the cell cycle, where it induces cell cycle arrest by inhibiting the activity of cyclin-dependent kinases (CDKs). Over the years, extensive research has shed light on various additional mechanisms involving CDKN1A/p21, implicating it in processes such as apoptosis, DNA damage response (DDR), and the regulation of stem cell fate. Interestingly, p21 can function either as an oncogene or as a tumour suppressor in these contexts. Complicating matters further, the expression of CDKN1A/p21 is elevated in certain tumour types while downregulated in others. In this comprehensive review, we provide an overview of the multifaceted functions of CDKN1A/p21, present clinical data pertaining to cancer patients, and delve into potential strategies for targeting CDKN1A/p21 as a therapeutic approach to cancer. Manipulating CDKN1A/p21 shows great promise for therapy given its involvement in multiple cancer hallmarks, such as sustained cell proliferation, the renewal of cancer stem cells (CSCs), epithelial-mesenchymal transition (EMT), cell migration, and resistance to chemotherapy. Given the dual role of CDKN1A/p21 in these processes, a more in-depth understanding of its specific mechanisms of action and its regulatory network is imperative to establishing successful therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | - Roni H. G. Wright
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Barcelona, Spain
| |
Collapse
|
15
|
Chen D, Wang J, Li Y, Xu C, Fanzheng M, Zhang P, Liu L. LncRNA NEAT1 suppresses cellular senescence in hepatocellular carcinoma via KIF11-dependent repression of CDKN2A. Clin Transl Med 2023; 13:e1418. [PMID: 37752791 PMCID: PMC10522973 DOI: 10.1002/ctm2.1418] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/02/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths worldwide. Therapeutic options for advanced HCC are limited, which is due to a lack of full understanding of pathogenesis. Cellular senescence is a state of cell cycle arrest, which plays important roles in the pathogenesis of HCC. Mechanisms underlying hepatocellular senescence are not fully understood. LncRNA NEAT1 acts as an oncogene and contributes to the development of HCC. Whether NEAT1 modulates hepatocellular senescence in HCC is unknown. METHODS The role of NEAT1 and KIF11 in cellular senescence and tumor growth in HCC was assessed both in vitro and in vivo. RNA pulldown, mass spectrometry, Chromatin immunoprecipitation (ChIP), luciferase reporter assays, RNA FISH and immunofluorescence (IF) staining were used to explore the detailed molecular mechanism of NEAT1 and KIF11 in cellular senescence of HCC. RESULTS We found that NEAT1 was upregulated in tumor tissues and hepatoma cells, which negatively correlated with a senescence biomarker CDKN2A encoding p16INK4a and p14ARF proteins. NEAT1 was reduced in senescent hepatoma cells induced by doxorubicin (DOXO) or serum starvation. Furthermore, NEAT1 deficiency caused senescence in cultured hepatoma cells, and protected against the progression of HCC in a mouse model. During senescence, NEAT1 translocated into cytosol and interacted with a motor protein KIF11, resulting in KIF11 protein degradation and subsequent increased expression of CDKN2A in cultured hepatoma cells. Furthermore, KIF11 knockdown caused senescence in cultured hepatoma cells. Genetic deletion of Kif11 in hepatocytes inhibited the development of HCC in a mouse model. CONCLUSIONS Conclusively, NEAT1 overexpression reduces senescence and promotes tumor progression in HCC tissues and hepatoma cells, whereas NEAT1 deficiency causes senescence and inhibits tumor progression in HCC. This is associated with KIF11-dependent repression of CDKN2A. These findings lay the foundation to develop potential therapies for HCC by inhibiting NEAT1 and KIF11 or inducing senescence.
Collapse
Affiliation(s)
- Danlei Chen
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhuiChina
- Anhui Province Key Laboratory of Hepatopancreatobiliary SurgeryHefeiAnhuiChina
- Anhui Provincial Clinical Research Center for Hepatobiliary DiseasesHefeiAnhuiChina
| | - Jinghao Wang
- Zhejiang Cancer HospitalHangzhou Institute of MedicineChinese Academy of SciencesHangzhouZhejiangChina
| | - Yang Li
- Zhejiang Cancer HospitalHangzhou Institute of MedicineChinese Academy of SciencesHangzhouZhejiangChina
| | - Chenglin Xu
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhuiChina
| | - Meng Fanzheng
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhuiChina
- Anhui Province Key Laboratory of Hepatopancreatobiliary SurgeryHefeiAnhuiChina
- Anhui Provincial Clinical Research Center for Hepatobiliary DiseasesHefeiAnhuiChina
| | - Pengfei Zhang
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhuiChina
- Zhejiang Cancer HospitalHangzhou Institute of MedicineChinese Academy of SciencesHangzhouZhejiangChina
| | - Lianxin Liu
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhuiChina
- Anhui Province Key Laboratory of Hepatopancreatobiliary SurgeryHefeiAnhuiChina
- Anhui Provincial Clinical Research Center for Hepatobiliary DiseasesHefeiAnhuiChina
| |
Collapse
|
16
|
Kharouf N, Flanagan TW, Hassan SY, Shalaby H, Khabaz M, Hassan SL, Megahed M, Haikel Y, Santourlidis S, Hassan M. Tumor Microenvironment as a Therapeutic Target in Melanoma Treatment. Cancers (Basel) 2023; 15:3147. [PMID: 37370757 DOI: 10.3390/cancers15123147] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The role of the tumor microenvironment in tumor growth and therapy has recently attracted more attention in research and drug development. The ability of the microenvironment to trigger tumor maintenance, progression, and resistance is the main cause for treatment failure and tumor relapse. Accumulated evidence indicates that the maintenance and progression of tumor cells is determined by components of the microenvironment, which include stromal cells (endothelial cells, fibroblasts, mesenchymal stem cells, and immune cells), extracellular matrix (ECM), and soluble molecules (chemokines, cytokines, growth factors, and extracellular vesicles). As a solid tumor, melanoma is not only a tumor mass of monolithic tumor cells, but it also contains supporting stroma, ECM, and soluble molecules. Melanoma cells are continuously in interaction with the components of the microenvironment. In the present review, we focus on the role of the tumor microenvironment components in the modulation of tumor progression and treatment resistance as well as the impact of the tumor microenvironment as a therapeutic target in melanoma.
Collapse
Affiliation(s)
- Naji Kharouf
- Biomaterials and Bioengineering, Institut National de la Santé et de la Recherche Médicale, Université de Strasbourg, Unité Mixte de Recherche 1121, 67000 Strasbourg, France
- Department of Endodontics and Conservative Dentistry, Faculty of Dental Medicine, University of Strasbourg, 67000 Strasbourg, France
| | - Thomas W Flanagan
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA 70112, USA
| | - Sofie-Yasmin Hassan
- Department of Chemistry, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany
| | - Hosam Shalaby
- Department of Urology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Marla Khabaz
- Department of Production, Beta Factory for Veterinary Pharmaceutical Industries, Damascus 0100, Syria
| | - Sarah-Lilly Hassan
- Department of Chemistry, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany
| | - Mosaad Megahed
- Clinic of Dermatology, University Hospital of Aachen, 52074 Aachen, Germany
| | - Youssef Haikel
- Biomaterials and Bioengineering, Institut National de la Santé et de la Recherche Médicale, Université de Strasbourg, Unité Mixte de Recherche 1121, 67000 Strasbourg, France
- Department of Endodontics and Conservative Dentistry, Faculty of Dental Medicine, University of Strasbourg, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Simeon Santourlidis
- Epigenetics Core Laboratory, Institute of Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Mohamed Hassan
- Biomaterials and Bioengineering, Institut National de la Santé et de la Recherche Médicale, Université de Strasbourg, Unité Mixte de Recherche 1121, 67000 Strasbourg, France
- Department of Endodontics and Conservative Dentistry, Faculty of Dental Medicine, University of Strasbourg, 67000 Strasbourg, France
- Research Laboratory of Surgery-Oncology, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
17
|
Suda M, Paul KH, Minamino T, Miller JD, Lerman A, Ellison-Hughes GM, Tchkonia T, Kirkland JL. Senescent Cells: A Therapeutic Target in Cardiovascular Diseases. Cells 2023; 12:1296. [PMID: 37174697 PMCID: PMC10177324 DOI: 10.3390/cells12091296] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Senescent cell accumulation has been observed in age-associated diseases including cardiovascular diseases. Senescent cells lack proliferative capacity and secrete senescence-associated secretory phenotype (SASP) factors that may cause or worsen many cardiovascular diseases. Therapies targeting senescent cells, especially senolytic drugs that selectively induce senescent cell removal, have been shown to delay, prevent, alleviate, or treat multiple age-associated diseases in preclinical models. Some senolytic clinical trials have already been completed or are underway for a number of diseases and geriatric syndromes. Understanding how cellular senescence affects the various cell types in the cardiovascular system, such as endothelial cells, vascular smooth muscle cells, fibroblasts, immune cells, progenitor cells, and cardiomyocytes, is important to facilitate translation of senotherapeutics into clinical interventions. This review highlights: (1) the characteristics of senescent cells and their involvement in cardiovascular diseases, focusing on the aforementioned cardiovascular cell types, (2) evidence about senolytic drugs and other senotherapeutics, and (3) the future path and clinical potential of senotherapeutics for cardiovascular diseases.
Collapse
Affiliation(s)
- Masayoshi Suda
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Karl H. Paul
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
- Department of Physiology and Pharmacology, Karolinska Institutet, Solnavägen 9, 171 65 Solna, Sweden
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| | - Jordan D. Miller
- Division of Cardiovascular Surgery, Mayo Clinic College of Medicine, 200 First St., S.W., Rochester, MN 55905, USA
| | - Amir Lerman
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| | - Georgina M. Ellison-Hughes
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, Guy’s Campus, King’s College London, London SE1 1UL, UK
- Centre for Stem Cells and Regenerative Medicine, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, Guy’s Campus, King’s College London, London SE1 1UL, UK
| | - Tamar Tchkonia
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| | - James L. Kirkland
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
- Division of General Internal Medicine, Department of Medicine, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| |
Collapse
|
18
|
Faggioli F, Velarde MC, Wiley CD. Cellular Senescence, a Novel Area of Investigation for Metastatic Diseases. Cells 2023; 12:cells12060860. [PMID: 36980201 PMCID: PMC10047218 DOI: 10.3390/cells12060860] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Metastasis is a systemic condition and the major challenge among cancer types, as it can lead to multiorgan vulnerability. Recently, attention has been drawn to cellular senescence, a complex stress response condition, as a factor implicated in metastatic dissemination and outgrowth. Here, we examine the current knowledge of the features required for cells to invade and colonize secondary organs and how senescent cells can contribute to this process. First, we describe the role of senescence in placentation, itself an invasive process which has been linked to higher rates of invasive cancers. Second, we describe how senescent cells can contribute to metastatic dissemination and colonization. Third, we discuss several metabolic adaptations by which senescent cells could promote cancer survival along the metastatic journey. In conclusion, we posit that targeting cellular senescence may have a potential therapeutic efficacy to limit metastasis formation.
Collapse
Affiliation(s)
- Francesca Faggioli
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
- Istituto di Ricerca Genetica e Biomedica (IRGB-CNR) uos Milan, Via Fantoli 15/16, 20090 Milan, Italy
- Correspondence: ; Tel.: +39-02-82245211
| | - Michael C. Velarde
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City PH 1101, Philippines
| | - Christopher D. Wiley
- Jean Mayer USDA Human Nutrition Research Center on Aging, Boston, MA 02111, USA
- School of Medicine, Tufts University, Boston, MA 02111, USA
| |
Collapse
|
19
|
Can 3D bioprinting solve the mystery of senescence in cancer therapy? Ageing Res Rev 2022; 81:101732. [PMID: 36100069 DOI: 10.1016/j.arr.2022.101732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/30/2022] [Accepted: 09/08/2022] [Indexed: 01/31/2023]
Abstract
Tumor dormancy leading to cancer relapse is still a poorly understood mechanism. Several cell states such as quiescence and diapause can explain the persistence of tumor cells in a dormant state, but the potential role of tumor cell senescence has been met with hesitance given the historical understanding of the senescent growth arrest as irreversible. However, recent evidence has suggested that senescence might contribute to dormancy and relapse, although its exact role is not fully developed. This limited understanding is largely due to the paucity of reliable study models. The current 2D cell modeling is overly simplistic and lacks the appropriate representation of the interactions between tumor cells (senescent or non-senescent) and the other cell types within the tumor microenvironment (TME), as well as with the extracellular matrix (ECM). 3D cell culture models, including 3D bioprinting techniques, offer a promising approach to better recapitulate the native cancer microenvironment and would significantly improve our understanding of cancer biology and cellular response to treatment, particularly Therapy-Induced Senescence (TIS), and its contribution to tumor dormancy and cancer recurrence. Fabricating a novel 3D bioprinted model offers excellent opportunities to investigate both the role of TIS in tumor dormancy and the utility of senolytics (drugs that selectively eliminate senescent cells) in targeting dormant cancer cells and mitigating the risk for resurgence. In this review, we discuss literature on the possible contribution of TIS in tumor dormancy, provide examples on the current 3D models of senescence, and propose a novel 3D model to investigate the ultimate role of TIS in mediating overall response to therapy.
Collapse
|
20
|
Palbociclib Enhances Migration and Invasion of Cancer Cells via Senescence-Associated Secretory Phenotype-Related CCL5 in Non-Small-Cell Lung Cancer. JOURNAL OF ONCOLOGY 2022; 2022:2260625. [PMID: 37181790 PMCID: PMC10175017 DOI: 10.1155/2022/2260625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022]
Abstract
Palbociclib is the first CDK4/6 inhibitor approved by FDA and has been studied in many types of cancer. However, some studies showed that it could induce epithelial-mesenchymal transition (EMT) of cancer cells. To test the effect of palbociclib on non-small-cell lung cancer (NSCLC) cells, we treated NSCLC cells with different concentrations of palbociclib and detected its effects via MTT, migration and invasion assays, and apoptosis test. Further RNA sequencing was performed in the cells treated with 2 μM palbociclib or control. And Gene Ontology, Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Set Enrichment Analysis (GSEA), and protein-protein interaction network (PPI) were analyzed to explore the mechanism of palbociclib. The results showed that palbociclib significantly inhibited the growth of NSCLC cells and promoted apoptosis of cells, however, enhanced the migration and invasion abilities of cancer cells. RNA sequencing showed that cell cycle, inflammation-/immunity-related signaling, cytokine-cytokine receptor interaction, and cell senescence pathways were involved in the process, and CCL5 was one of the significantly differential genes affected by palbociclib. Further experiments showed that blocking CCL5-related pathways could reverse the malignant phenotype induced by palbociclib. Our results revealed that palbociclib-induced invasion and migration might be due to senescence-associated secretory phenotype (SASP) rather than EMT and suggested that SASP could act as a potential target to potentiate the antitumor effects of palbociclib in cancer treatment.
Collapse
|
21
|
Schmitt CA, Wang B, Demaria M. Senescence and cancer - role and therapeutic opportunities. Nat Rev Clin Oncol 2022; 19:619-636. [PMID: 36045302 PMCID: PMC9428886 DOI: 10.1038/s41571-022-00668-4] [Citation(s) in RCA: 391] [Impact Index Per Article: 130.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2022] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a state of stable, terminal cell cycle arrest associated with various macromolecular changes and a hypersecretory, pro-inflammatory phenotype. Entry of cells into senescence can act as a barrier to tumorigenesis and, thus, could in principle constitute a desired outcome for any anticancer therapy. Paradoxically, studies published in the past decade have demonstrated that, in certain conditions and contexts, malignant and non-malignant cells with lastingly persistent senescence can acquire pro-tumorigenic properties. In this Review, we first discuss the major mechanisms involved in the antitumorigenic functions of senescent cells and then consider the cell-intrinsic and cell-extrinsic factors that participate in their switch towards a tumour-promoting role, providing an overview of major translational and emerging clinical findings. Finally, we comprehensively describe various senolytic and senomorphic therapies and their potential to benefit patients with cancer. The entry of cells into senescence can act as a barrier to tumorigenesis; however, in certain contexts senescent malignant and non-malignant cells can acquire pro-tumorigenic properties. The authors of this Review discuss the cell-intrinsic and cell-extrinsic mechanisms involved in both the antitumorigenic and tumour-promoting roles of senescent cells, and describe the potential of various senolytic and senomorphic therapeutic approaches in oncology. Cellular senescence is a natural barrier to tumorigenesis; senescent cells are widely detected in premalignant lesions from patients with cancer. Cellular senescence is induced by anticancer therapy and can contribute to some treatment-related adverse events (TRAEs). Senescent cells exert both protumorigenic and antitumorigenic effects via cell-autonomous and paracrine mechanisms. Pharmacological modulation of senescence-associated phenotypes has the potential to improve therapy efficacy and reduce the incidence of TRAEs.
Collapse
Affiliation(s)
- Clemens A Schmitt
- Charité Universitätsmedizin Berlin, Medical Department of Hematology, Oncology and Tumour Immunology, and Molekulares Krebsforschungszentrum-MKFZ, Campus Virchow Klinikum, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Johannes Kepler University, Linz, Austria.,Kepler University Hospital, Department of Hematology and Oncology, Linz, Austria.,Deutsches Konsortium für Translationale Krebsforschung (German Cancer Consortium), Partner site Berlin, Berlin, Germany
| | - Boshi Wang
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, the Netherlands
| | - Marco Demaria
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, the Netherlands.
| |
Collapse
|
22
|
Zhou W, Wu M, Lin H, Chen W, Lu G, Yang F, Chen Y, Chen G. Potential value of tumor stiffness and sE-cadherin in predicting the response to neoadjuvant therapy in HER2-positive breast cancers. Future Oncol 2022; 18:2817-2825. [PMID: 35730465 DOI: 10.2217/fon-2022-0326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: This prospective study compared the diagnostic value of tumor stiffness and serum soluble E-cadherin (sE-cadherin) expression for predicting response to neoadjuvant therapy in HER2-positive breast cancers. Methods: 112 patients with early or locally advanced HER2-positive breast cancer were enrolled. Maximum stiffness (Emax), mean stiffness (Emean) and their relative changes were assessed at t0 and t2. sE-cadherin levels were analyzed using ELISA. Pathological complete response was defined as no invasive disease in the breast and axilla (ypT0/is, ypN0) after surgery. The ability of tumor stiffness, sE-cadherin and the combination of ΔEmean (the relative change in Emean after the second cycle of neoadjuvant therapy) and sE-cadherin in predicting tumor responses was assessed using receiver operating characteristic curves and the Z-test. Results: Tumor stiffness and sE-cadherin decreased during neoadjuvant therapy. ΔEmean and sE-cadherin revealed the best predictive performance, with areas under the curve (AUCs) of 0.843 and 0.857, respectively. No significant differences in AUCs were reported between ΔEmean and sE-cadherin (p = 0.795). The combined use of ΔEmean and sE-cadherin showed the highest sensitivity and specificity (93.22 and 90.57%, respectively), with an AUC of 0.937. Conclusion: The combination of ΔEmean and sE-cadherin may improve the predictive power of each single factor. Although further verification is required, this study may promote noninvasive prediction of neoadjuvant therapy responses and help personalize the treatment regimen.
Collapse
Affiliation(s)
- Weixia Zhou
- Department of Ultrasound, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang Province, China
| | - Meng Wu
- Department of Ultrasound, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang Province, China
| | - Hongxia Lin
- Department of Ultrasound, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang Province, China
| | - Wanjun Chen
- Department of Ultrasound, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang Province, China
| | - Guowen Lu
- Department of Breast & Thyroid Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang Province, China
| | - Feibiao Yang
- Department of Breast & Thyroid Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang Province, China
| | - Yaling Chen
- Department of Ultrasound, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Gun Chen
- Department of Pathology, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang Province, China
| |
Collapse
|
23
|
Kawamoto S, Matsumoto T, Takasugi M, Hara E. The 6th international cell senescence association conference. Genes Cells 2022; 27:517-525. [PMID: 35726163 DOI: 10.1111/gtc.12970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 11/28/2022]
Abstract
The 6th conference of the international cell senescence association (ICSA) on the theme of "A New Era of Senescence Research: The Challenge of Controlling Aging and Cancer" was held on December 12-15, 2021 in Osaka, Japan as a Hybrid Meeting. The conference brought together basic and translational scientists to discuss recent developments in the field of cellular senescence research. In recent years, the study of cellular senescence has become a very hot field of research. It is clear that the ICSA, founded in 2015, has played an important role in this process. The 6th ICSA conference has provided another opportunity for exchanges and new connections between basic and translational scientists. The scientific program consisted of keynote lectures, invited talks, short talks selected from abstracts, a poster session, and luncheon seminars sponsored by the Japanese Society of Anti-Aging Medicine. In the Meet the Editor session, Dr Christoph Schmitt, Editor-in-Chief of Nature Metabolism, gave a short presentation about the journal and answered questions from the audience. Being a hybrid meeting, there was only so much that could be done, but we hope that the meeting was fruitful.
Collapse
Affiliation(s)
- Shimpei Kawamoto
- Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Tomonori Matsumoto
- Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Masaki Takasugi
- Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Eiji Hara
- Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| |
Collapse
|
24
|
Kawaguchi K, Hashimoto M, Mikawa R, Asai A, Sato T, Sugimoto M. Protocol for assessing senescence-associated lung pathologies in mice. STAR Protoc 2021; 2:100993. [PMID: 34927099 PMCID: PMC8649400 DOI: 10.1016/j.xpro.2021.100993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Cellular senescence underlies tissue aging and aging-associated pathologies, as well as lung pathology. We and others have shown that elimination of senescent cells alleviates pulmonary diseases such as fibrosis and emphysema in animal models. We herein describe a protocol for assessing senescence-dependent lung phenotypes in mice. This protocol describes the use of ARF-DTR mice for semi-genetic elimination of lung senescent cells, followed by a pulmonary function test and the combination with pulmonary disease models to study lung pathologies. For complete details on the use and execution of this protocol, please refer to Hashimoto et al. (2016), Kawaguchi et al. (2021), and Mikawa et al. (2018). Cellular senescence promotes lung aging and diseases Detection and elimination of senescent lung cells in ARF-DTR mice Assessment of senescence-associated phenotypes in lung tissue
Collapse
|