1
|
Bush BJ, Mohamed A, Andrews EJ, Cain G, Fawole A, Johnson H, Arocho A, Qiao Z, Paul KN, Ehlen JC. Sleep patterns predicting stress resilience are dependent on sex. Neuropsychopharmacology 2025:10.1038/s41386-025-02124-0. [PMID: 40382501 DOI: 10.1038/s41386-025-02124-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 04/29/2025] [Accepted: 04/30/2025] [Indexed: 05/20/2025]
Abstract
Sleep disturbances and stress have a well-established link with neuropsychiatric illness; however, the nature of this relationship remains unclear. Recently, studies using the mouse social-defeat stress model revealed a causal role for non-rapid eye movement (NREM) sleep in the maladaptive behavioral responses to stress. These results suggest a novel function for NREM sleep; as a response by cortical neurons to mitigate the maladaptive effects of stress. A major limitation in many social defeat studies has been the exclusion of females. Women exhibit a greater prevalence of both affective disorders and sleep disturbances compared to men, thus there is a clear need to understand sleep-stress interactions in females. The present study adapts recently developed female social-defeat stress models to allow social-defeat and EEG in male-female pairs. Our findings duplicate the behavioral responses that occur in other female, nondiscriminatory, and male models of social-defeat stress. Analysis of electroencephalographic (EEG) recordings, before exposure to stress, reveal that resilience is associated with differences in both NREM and REM sleep that are dependent on sex. After social defeat stress, NREM sleep was increased only in resilient males. In females, susceptibility to stress was associated with increased durations in NREM-sleep bouts. A potential cause of these sleep differences was also identified prior to stress exposure, sex differences in recovery from NREM-sleep loss; thus, suggesting an underlying sex-difference in the homeostatic process regulating sleep interactions with social-defeat stress. These findings suggest that NREM sleep quality is lower in resilient females, whereas the amount of REM sleep is decreased in susceptible females-when compared to males of the same behavioral phenotype. Overall, our findings reveal sexual dimorphism in both the sleep characteristics predicting resilience and sleep changes induced by social-defeat stress.
Collapse
Affiliation(s)
- Brittany J Bush
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Affra Mohamed
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Eva-Jeneé Andrews
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Gabrielle Cain
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Ayobami Fawole
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Hadiya Johnson
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Ashton Arocho
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Zhimei Qiao
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Ketema N Paul
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | | |
Collapse
|
2
|
Narain P, Petković A, Šušić M, Haniffa S, Anwar M, Arnoux M, Drou N, Antonio-Saldi G, Chaudhury D. Nighttime-specific differential gene expression in suprachiasmatic nucleus and habenula is associated with resilience to chronic social stress. Transl Psychiatry 2024; 14:407. [PMID: 39358331 PMCID: PMC11447250 DOI: 10.1038/s41398-024-03100-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
The molecular mechanisms that link stress and biological rhythms still remain unclear. The habenula (Hb) is a key brain region involved in regulating diverse types of emotion-related behaviours while the suprachiasmatic nucleus (SCN) is the body's central clock. To investigate the effects of chronic social stress on transcription patterns, we performed gene expression analysis in the Hb and SCN of stress-naïve and stress-exposed mice. Our analysis revealed a large number of differentially expressed genes and enrichment of synaptic and cell signalling pathways between resilient and stress-naïve mice at zeitgeber 16 (ZT16) in both the Hb and SCN. This transcriptomic signature was nighttime-specific and observed only in stress-resilient mice. In contrast, there were relatively few differences between the stress-susceptible and stress-naïve groups across time points. Our results reinforce the functional link between circadian gene expression patterns and differential responses to stress, thereby highlighting the importance of temporal expression patterns in homoeostatic stress responses.
Collapse
Affiliation(s)
- Priyam Narain
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Aleksa Petković
- Department of Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Marko Šušić
- Department of Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Salma Haniffa
- Department of Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Mariam Anwar
- Department of Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Marc Arnoux
- Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Nizar Drou
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | | | - Dipesh Chaudhury
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, UAE.
- Department of Biology, New York University Abu Dhabi, Abu Dhabi, UAE.
- Center for Brain and Health, New York University Abu Dhabi, Abu Dhabi, UAE.
| |
Collapse
|
3
|
Simon L, Admon R. From childhood adversity to latent stress vulnerability in adulthood: the mediating roles of sleep disturbances and HPA axis dysfunction. Neuropsychopharmacology 2023; 48:1425-1435. [PMID: 37391592 PMCID: PMC10425434 DOI: 10.1038/s41386-023-01638-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/29/2023] [Accepted: 06/16/2023] [Indexed: 07/02/2023]
Abstract
Childhood adversity is a prominent predisposing risk factor for latent stress vulnerability, expressed as an elevated likelihood of developing stress-related psychopathology upon subsequent exposure to trauma in adulthood. Sleep disturbances have emerged as one of the most pronounced maladaptive behavioral outcomes of childhood adversity and are also a highly prevalent core feature of stress-related psychopathology, including post-traumatic stress disorder (PTSD). After reviewing the extensive literature supporting these claims, the current review addresses the notion that childhood adversity-induced sleep disturbances may play a causal role in elevating individuals' stress vulnerability in adulthood. Corroborating this, sleep disturbances that predate adult trauma exposure have been associated with an increased likelihood of developing stress-related psychopathology post-exposure. Furthermore, novel empirical evidence suggests that sleep disturbances, including irregularity of the sleep-wake cycle, mediate the link between childhood adversity and stress vulnerability in adulthood. We also discuss cognitive and behavioral mechanisms through which such a cascade may evolve, highlighting the putative role of impaired memory consolidation and fear extinction. Next, we present evidence to support the contribution of the hypothalamic-pituitary-adrenal (HPA) axis to these associations, stemming from its critical role in stress and sleep regulatory pathways. Childhood adversity may yield bi-directional effects within the HPA stress and sleep axes in which sleep disturbances and HPA axis dysfunction reinforce each other, leading to elevated stress vulnerability. To conclude, we postulate a conceptual path model from childhood adversity to latent stress vulnerability in adulthood and discuss the potential clinical implications of these notions, while highlighting directions for future research.
Collapse
Affiliation(s)
- Lisa Simon
- School of Psychological Sciences, University of Haifa, Haifa, Israel
| | - Roee Admon
- School of Psychological Sciences, University of Haifa, Haifa, Israel.
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel.
| |
Collapse
|
4
|
Li L, Liang T, Jiang T, Li Y, Yang L, Wu L, Yang J, Ding Y, Wang J, Chen M, Zhang J, Xie X, Wu Q. Gut microbiota: Candidates for a novel strategy for ameliorating sleep disorders. Crit Rev Food Sci Nutr 2023; 64:10772-10788. [PMID: 37477274 DOI: 10.1080/10408398.2023.2228409] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
The aim of this review was to evaluate the feasibility of treating sleep disorders using novel gut microbiota intervention strategies. Multiple factors can cause sleep disorders, including an imbalance in the gut microbiota. Studies of the microbiome-gut-brain axis have revealed bidirectional communication between the central nervous system and gut microbes, providing a more comprehensive understanding of mood and behavioral regulatory patterns. Changes in the gut microbiota and its metabolites can stimulate the endocrine, nervous, and immune systems, which regulate the release of neurotransmitters and alter the activity of the central nervous system, ultimately leading to sleep disorders. Here, we review the main factors affecting sleep, discuss possible pathways and molecular mechanisms of the interaction between sleep and the gut microbiota, and compare common gut microbiota intervention strategies aimed at improving sleep physiology.
Collapse
Affiliation(s)
- Longyan Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, People's Republic of China
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Tingting Liang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, People's Republic of China
| | - Tong Jiang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, People's Republic of China
| | - Ying Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, People's Republic of China
| | - Lingshuang Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, People's Republic of China
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Lei Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, People's Republic of China
| | - Juan Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, People's Republic of China
| | - Yu Ding
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, People's Republic of China
| | - Juan Wang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, People's Republic of China
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, People's Republic of China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, People's Republic of China
| | - Xinqiang Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, People's Republic of China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, People's Republic of China
| |
Collapse
|
5
|
Haniffa S, Narain P, Hughes MA, Petković A, Šušić M, Mlambo V, Chaudhury D. Chronic social stress blunts core body temperature and molecular rhythms of Rbm3 and Cirbp in mouse lateral habenula. Open Biol 2023; 13:220380. [PMID: 37463657 PMCID: PMC10353891 DOI: 10.1098/rsob.220380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 06/29/2023] [Indexed: 07/19/2023] Open
Abstract
Chronic social stress in mice causes behavioural and physiological changes that result in perturbed rhythms of body temperature, activity and sleep-wake cycle. To further understand the link between mood disorders and temperature rhythmicity in mice that are resilient or susceptible to stress, we measured core body temperature (Tcore) before and after exposure to chronic social defeat stress (CSDS). We found that Tcore amplitudes of stress-resilient and susceptible mice are dampened during exposure to CSDS. However, following CSDS, resilient mice recovered temperature amplitude faster than susceptible mice. Furthermore, the interdaily stability (IS) of temperature rhythms was fragmented in stress-exposed mice during CSDS, which recovered to control levels following stress. There were minimal changes in locomotor activity after stress exposure which correlates with regular rhythmic expression of Prok2 - an output signal of the suprachiasmatic nucleus. We also determined that expression of thermosensitive genes Rbm3 and Cirbp in the lateral habenula (LHb) were blunted 1 day after CSDS. Rhythmic expression of these genes recovered 10 days later. Overall, we show that CSDS blunts Tcore and thermosensitive gene rhythms. Tcore rhythm recovery is faster in stress-resilient mice, but Rbm3 and Cirbp recovery is uniform across the phenotypes.
Collapse
Affiliation(s)
- Salma Haniffa
- Department of Biology, Science Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Priyam Narain
- Centre for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Michelle Ann Hughes
- Department of Biology, Science Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Aleksa Petković
- Department of Biology, Science Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Marko Šušić
- Department of Biology, Science Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Vongai Mlambo
- Department of Biology, Science Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Dipesh Chaudhury
- Department of Biology, Science Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
6
|
Haniffa S, Narain P, Hughes MA, Petković A, Šušić M, Mlambo V, Chaudhury D. Chronic social stress blunts core body temperature and molecular rhythms of Rbm3and Cirbpin mouse lateral habenula.. [DOI: 10.1101/2023.01.02.522528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
Abstract
AbstractChronic social stress in mice causes behavioral and physiological changes that result in perturbed rhythms of body temperature, activity and sleep-wake cycle. To further understand the link between mood disorders and temperature rhythmicity in mice that are resilient or susceptible to stress, we measured core body temperature (Tcore) before and after exposure to chronic social defeat stress (CSDS). We found that Tcore amplitudes of stress-resilient and susceptible mice are dampened during exposure to CSDS. However, following CSDS, resilient mice recovered temperature amplitude faster than susceptible mice. Furthermore, the interdaily stability (IS) of temperature rhythms was fragmented in stress-exposed mice during CSDS, which recovered to control levels following stress. There were minimal changes in locomotor activity after stress exposure which correlates with regular rhythmic expression ofProk2- an output signal of the suprachiasmatic nucleus. We also determined that expression of thermosensitive genesRbm3andCirbpin the lateral habenula (LHb) were blunted 1-day after CSDS. Rhythmic expression of these genes recovered 10 days later. Overall, we show that CSDS blunts Tcore and thermosensitive gene rhythms. Tcore rhythm recovery is faster in stress-resilient mice, butRbm3andCirbprecovery is uniform across the phenotypes.
Collapse
|
7
|
Bush BJ, Donnay C, Andrews EJA, Lewis-Sanders D, Gray CL, Qiao Z, Brager AJ, Johnson H, Brewer HCS, Sood S, Saafir T, Benveniste M, Paul KN, Ehlen JC. Non-rapid eye movement sleep determines resilience to social stress. eLife 2022; 11:e80206. [PMID: 36149059 PMCID: PMC9586557 DOI: 10.7554/elife.80206] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Resilience, the ability to overcome stressful conditions, is found in most mammals and varies significantly among individuals. A lack of resilience can lead to the development of neuropsychiatric and sleep disorders, often within the same individual. Despite extensive research into the brain mechanisms causing maladaptive behavioral-responses to stress, it is not clear why some individuals exhibit resilience. To examine if sleep has a determinative role in maladaptive behavioral-response to social stress, we investigated individual variations in resilience using a social-defeat model for male mice. Our results reveal a direct, causal relationship between sleep amount and resilience-demonstrating that sleep increases after social-defeat stress only occur in resilient mice. Further, we found that within the prefrontal cortex, a regulator of maladaptive responses to stress, pre-existing differences in sleep regulation predict resilience. Overall, these results demonstrate that increased NREM sleep, mediated cortically, is an active response to social-defeat stress that plays a determinative role in promoting resilience. They also show that differences in resilience are strongly correlated with inter-individual variability in sleep regulation.
Collapse
Affiliation(s)
- Brittany J Bush
- Neuroscience Institute, Morehouse School of MedicineAtlantaUnited States
| | - Caroline Donnay
- Neuroscience Institute, Morehouse School of MedicineAtlantaUnited States
| | | | | | - Cloe L Gray
- Neuroscience Institute, Morehouse School of MedicineAtlantaUnited States
| | - Zhimei Qiao
- Neuroscience Institute, Morehouse School of MedicineAtlantaUnited States
| | - Allison J Brager
- Behavioral Biology Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of ResearchSilver SpringUnited States
| | - Hadiya Johnson
- Neuroscience Institute, Morehouse School of MedicineAtlantaUnited States
| | - Hamadi CS Brewer
- Neuroscience Institute, Morehouse School of MedicineAtlantaUnited States
| | - Sahil Sood
- Neuroscience Institute, Morehouse School of MedicineAtlantaUnited States
| | - Talib Saafir
- Neuroscience Institute, Morehouse School of MedicineAtlantaUnited States
| | - Morris Benveniste
- Neuroscience Institute, Morehouse School of MedicineAtlantaUnited States
| | - Ketema N Paul
- Department of Integrative Biology and Physiology, University of California, Los AngelesLos AngelesUnited States
| | | |
Collapse
|
8
|
McCarthy B, O’Neill G, Abu-Ghannam N. Potential Psychoactive Effects of Microalgal Bioactive Compounds for the Case of Sleep and Mood Regulation: Opportunities and Challenges. Mar Drugs 2022; 20:493. [PMID: 36005495 PMCID: PMC9410000 DOI: 10.3390/md20080493] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 01/25/2023] Open
Abstract
Sleep deficiency is now considered an emerging global epidemic associated with many serious health problems, and a major cause of financial and social burdens. Sleep and mental health are closely connected, further exacerbating the negative impact of sleep deficiency on overall health and well-being. A major drawback of conventional treatments is the wide range of undesirable side-effects typically associated with benzodiazepines and antidepressants, which can be more debilitating than the initial disorder. It is therefore valuable to explore the efficiency of other remedies for complementarity and synergism with existing conventional treatments, leading to possible reduction in undesirable side-effects. This review explores the relevance of microalgae bioactives as a sustainable source of valuable phytochemicals that can contribute positively to mood and sleep disorders. Microalgae species producing these compounds are also catalogued, thus creating a useful reference of the state of the art for further exploration of this proposed approach. While we highlight possibilities awaiting investigation, we also identify the associated issues, including minimum dose for therapeutic effect, bioavailability, possible interactions with conventional treatments and the ability to cross the blood brain barrier. We conclude that physical and biological functionalization of microalgae bioactives can have potential in overcoming some of these challenges.
Collapse
Affiliation(s)
- Bozena McCarthy
- Environmental Sustainability & Health Institute (ESHI), Technological University Dublin, Grangegorman, D07 H6K8 Dublin 7, Ireland; (B.M.); (G.O.)
| | - Graham O’Neill
- Environmental Sustainability & Health Institute (ESHI), Technological University Dublin, Grangegorman, D07 H6K8 Dublin 7, Ireland; (B.M.); (G.O.)
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin, Grangegorman, D07 H6K8 Dublin 7, Ireland
| | - Nissreen Abu-Ghannam
- Environmental Sustainability & Health Institute (ESHI), Technological University Dublin, Grangegorman, D07 H6K8 Dublin 7, Ireland; (B.M.); (G.O.)
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin, Grangegorman, D07 H6K8 Dublin 7, Ireland
| |
Collapse
|