1
|
Soares LOS, de Araujo GF, Gomes TB, Júnior SFS, Cuprys AK, Soares RM, Saggioro EM. Antioxidant system alterations and oxidative stress caused by polyfluoroalkyl substances (PFAS) in exposed biota: a review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 977:179395. [PMID: 40245819 DOI: 10.1016/j.scitotenv.2025.179395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/19/2025]
Abstract
Contamination of aquatic and terrestrial organisms by Perfluoroalkyl substances (PFAS), emerging contaminants, is widespread, as these compounds are present in water, soil, air, and food, owing to their environmental persistence. PFAS exposure induces biochemical process alterations associated with the disruption of the antioxidant defense system in several species. This review aims to discuss how PFAS-induced antioxidant system alterations lead to changes in biochemical processes in different organisms exposed to these pollutants. This disruption, then leads to an imbalance in antioxidant defense systems, contributing to the formation of reactive oxidative species (ROS), which, in turn, can be exacerbate oxidative stress, induce cellular damage, enhance lipid peroxidation, destabilize lysosomal membranes, and cause genotoxic effects, ultimately compromising DNA integrity. In acute tests, PFAS have led to mortality, growth inhibition, diminished behavioral and locomotor abilities, and reproductive impairment. PFAS-induced effects differ with varying species or types of substances, and further bioaccumulation through food chains exacerbates environmental contamination, carrying considerable risks. These findings demonstrate the complex and enduring impact of PFAS on environmental health, emphasizing the importance of this review in corroborating studies on sub-lethal toxicity in exposed organisms and how these effects reflect on the environment.
Collapse
Affiliation(s)
- Lorena Oliveira Souza Soares
- Laboratory of Environmental Health Assessment and Promotion, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil 4365, 21045-900 Rio de Janeiro, RJ, Brazil; Post-Graduate Program in Public Health and Environment, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Av. Leopoldo Bulhões 1480, 21041-210 Rio de Janeiro, RJ, Brazil
| | - Gabriel Farias de Araujo
- Laboratory of Environmental Health Assessment and Promotion, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil 4365, 21045-900 Rio de Janeiro, RJ, Brazil
| | - Thais Braga Gomes
- Laboratory of Environmental Health Assessment and Promotion, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil 4365, 21045-900 Rio de Janeiro, RJ, Brazil; Post-Graduate Program in Public Health and Environment, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Av. Leopoldo Bulhões 1480, 21041-210 Rio de Janeiro, RJ, Brazil
| | - Sidney Fernandes Sales Júnior
- Laboratory of Environmental Health Assessment and Promotion, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil 4365, 21045-900 Rio de Janeiro, RJ, Brazil
| | - Agnieszka Katarzyna Cuprys
- Faculty of Science and Technology, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Raquel Moraes Soares
- Post-Graduate Program in Environmental Technology and Water Resources, Department of Civil and Environmental Engineering - FT, University of Brasília, Darcy Ribeiro Campus, Via L3 Norte, 70910-900 Brasília, DF, Brazil
| | - Enrico Mendes Saggioro
- Laboratory of Environmental Health Assessment and Promotion, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil 4365, 21045-900 Rio de Janeiro, RJ, Brazil; Post-Graduate Program in Public Health and Environment, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Av. Leopoldo Bulhões 1480, 21041-210 Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
2
|
Xu D, Ding W, Gong X, Tan X, Li H, Li F, Zhang M, Huang Y, Su Y, Cheng HM. Graphene oxide with 1-nm-thick adlayer for efficient and near-instant removal of per- and polyfluoroalkyl substances. Natl Sci Rev 2025; 12:nwaf092. [PMID: 40196394 PMCID: PMC11974386 DOI: 10.1093/nsr/nwaf092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/25/2025] [Accepted: 03/06/2025] [Indexed: 04/09/2025] Open
Abstract
The environmental occurrence of anthropogenic chemicals-especially persistent micropollutants of per- and polyfluoroalkyl substances (PFAS)-raises pressing concerns for global drinking-water safety. Adsorption is an effective technology for removing PFAS but is limited by unsatisfactory adsorption capacity and efficiency. We report a strategy to attach polyamine adlayers to graphene oxide (GO) nanosheets that produces highly charged and monodispersed 2D adsorbents of a GO nanosheet sandwiched between two 1-nm-thick polyamine adlayers. This adsorbent has a high adsorption capacity for PFAS of ∼3070 mg/g-tens of times greater than that of GO and commercial activated carbon. It also provides almost instant adsorption of a variety of PFAS and reaches 57%-95% of its equilibrium capacity in a minute and removes ∼100% of PFAS from contaminated water sources within a few minutes, transforming real-life PFAS-contaminated water into safe drinking water. Experiment and theory show that the planar nature of the 2D adsorbent combined with its abundant surface adsorption sites that electrostatically attract the polar groups of the PFAS, and hydrogen bonding and hydrophobic-hydrophobic interactions with their non-polar groups, account for its ultra-high adsorption capacity and rapid removal efficiency. We also show that regeneration of the adsorbents removes the adsorbed PFAS and allows subsequent destruction, demonstrating a closed-loop treatment solution for micropollutant contamination.
Collapse
Affiliation(s)
- Dingxin Xu
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Wenhui Ding
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xinyu Gong
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xianjun Tan
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Hang Li
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Fei Li
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Mingrui Zhang
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yuxiong Huang
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yang Su
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Hui-Ming Cheng
- Shenzhen Key Laboratory of Energy Materials for Carbon Neutrality, Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Faculty of Materials Science and Energy Engineering, Shenzhen Institute of Advanced Technology, Shenzhen 518055, China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
3
|
Jrad A, Das G, Alkhatib N, Prakasam T, Benyettou F, Varghese S, Gándara F, Olson M, Kirmizialtin S, Trabolsi A. Cationic covalent organic framework for the fluorescent sensing and cooperative adsorption of perfluorooctanoic acid. Nat Commun 2024; 15:10490. [PMID: 39622838 PMCID: PMC11612209 DOI: 10.1038/s41467-024-53945-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/29/2024] [Indexed: 12/06/2024] Open
Abstract
The contamination of water by per- and polyfluorinated substances (PFAS) is a pressing global issue due to their harmful effects on health and the environment. This study explores a cationic covalent organic framework (COF), TG-PD COF, for the efficient detection and removal of perfluorooctanoic acid (PFOA) from water. Synthesized via a simple sonochemical method, TG-PD COF shows remarkable selectivity and sensitivity to PFOA, with a detection limit as low as 1.8 µg·L⁻¹. It achieves significant PFOA adsorption exceeding 2600 mg·g⁻¹ within seconds over several cycles in batch mode and complete removal at environmentally relevant concentrations in column adsorption. Results reveal unique adsorption behavior characterized by two phases, leveraging PFOA aggregation through hydrophobic interactions. Computer simulations elucidate the mechanisms underlying TG-PD COF's sensing, adsorption, and charge transfer dynamics. Our findings position this COF design strategy as a promising solution for combating PFAS contamination in water bodies worldwide.
Collapse
Affiliation(s)
- Asmaa Jrad
- NYUAD Water Research Center, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
- Chemistry Program, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Gobinda Das
- Chemistry Program, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Nour Alkhatib
- Chemistry Program, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
- Department of Chemistry, New York University, New York, New York, 10003, USA
| | - Thirumurugan Prakasam
- Chemistry Program, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Farah Benyettou
- Chemistry Program, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Sabu Varghese
- Core Technologies Platform, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Felipe Gándara
- Instituto de Ciencia de Materiales de Madrid-CSIC, C. Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain
| | - Mark Olson
- Department of Physical and Environmental Sciences, Texas A&M University-Corpus Christi, 6300 Ocean Dr., Corpus Christi, TX, 78412, USA
| | - Serdal Kirmizialtin
- Chemistry Program, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates.
- Department of Chemistry, New York University, New York, New York, 10003, USA.
- Center for Smart Engineering Materials, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates.
| | - Ali Trabolsi
- NYUAD Water Research Center, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates.
- Chemistry Program, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
4
|
Van Thang V, Tran Duy Nguyen N, Nadagouda MN, Aminabhavi TM, Vasseghian Y, Joo SW. Effective removal of perfluorooctanoic acid from water using PVA@UiO-66-NH 2/GO composite materials via adsorption. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122248. [PMID: 39180825 DOI: 10.1016/j.jenvman.2024.122248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
This study introduces an innovative approach using highly efficient nanocomposite materials to effectively remove PFAS from water, demonstrating remarkable adsorption capabilities. The nanocomposite was synthesized by integrating a zirconium-based metal-organic framework (MOF) called UiO-66 with graphene oxide (GO) within a polyvinyl alcohol (PVA) matrix. The resulting PVA@UiO-66/GO material features flower-like UiO-66 MOF crystals embedded in the PVA and GO matrix. Various kinetic models were applied to determine the rate constants and adsorption capacities, with the Langmuir isotherm indicating an adsorption capacity of 9.904 mg/g. Thermodynamic analysis confirmed the process's spontaneity and exothermic nature. The UiO-66-NH2/GO/PVA composite also demonstrated high reusability, maintaining substantial PFOA removal efficiency across multiple cycles, with optimal reduction occurring at approximately pH 5. Overall, the PVA@UiO-66/GO composites offer an effective, sustainable, and environmentally friendly solution for PFAS removal in water purification.
Collapse
Affiliation(s)
- Vu Van Thang
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea
| | | | - Mallikarjuna N Nadagouda
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, 45435, United States
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka, 580 031, India; Korea University, Seoul, South Korea.
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam-603103, Tamil Nadu, India.
| | - Sang-Woo Joo
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea.
| |
Collapse
|
5
|
Hu WP, Yang YQ, Lee CH, Vu CA, Chen WY. Comparing solution-gate and bottom-gate nanowire field-effect transistors on pH sensing with different salt concentrations and surface modifications. Talanta 2024; 271:125731. [PMID: 38309116 DOI: 10.1016/j.talanta.2024.125731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/24/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
Field-effect transistors (FETs) have been developed as pH sensors by using various device structures, fabrication technologies, and sensing film materials. Different transistor structures, like extended-gate (EG) FETs, floating-gate FET sensors, and dual-gate (DG) FETs, can enhance the sensor performance. In this article, we report the effects of using solution-gate and bottom-gate FET configurations on pH sensing and investigate the influence of different ionic concentrations of buffers in the measured signals. The surface charge of hafnium dioxide (HfO2) affected by the buffer pH, with/without the modification of polyethylene glycol (PEG) terminated with hydroxyl groups, and the location of applied gate voltage are vital factors to the sensor performance in pH sensing. Based on the results, the solution-gate FET exhibits good pH sensitivity even in the high ionic strength solutions of bis-tris propane (BTP), and these values of pH sensitivity are close to the Nernst limit (59.2 mV/pH). In general, silane-PEG-OH modification can reduce the deviations of measured signals in pH sensing. The performance of bottom-gate FET is inferior in the BTP buffers with high ionic solutions but suitable to be operated in low ionic concentrations, such as 0.1, 1, and 10 mM BTP buffers. The size of the ions was also studied and discussed. The solution-gate FET demonstrates excellent performance under high ionic strengths, meaning a more significant potential for detecting biological molecules under physiological conditions.
Collapse
Affiliation(s)
- Wen-Pin Hu
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, 41354, Taiwan
| | - Yong-Qi Yang
- Department of Chemical and Materials Engineering, National Central University, Jhong-Li, 32001, Taiwan
| | - Chia-Hsuan Lee
- Department of Chemical and Materials Engineering, National Central University, Jhong-Li, 32001, Taiwan
| | - Cao-An Vu
- Department of Chemical and Materials Engineering, National Central University, Jhong-Li, 32001, Taiwan
| | - Wen-Yih Chen
- Department of Chemical and Materials Engineering, National Central University, Jhong-Li, 32001, Taiwan.
| |
Collapse
|
6
|
He Y, Cheng X, Gunjal SJ, Zhang C. Advancing PFAS Sorbent Design: Mechanisms, Challenges, and Perspectives. ACS MATERIALS AU 2024; 4:108-114. [PMID: 38496039 PMCID: PMC10941273 DOI: 10.1021/acsmaterialsau.3c00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/30/2023] [Accepted: 10/24/2023] [Indexed: 03/19/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a group of synthetic chemicals characterized with persistence and multisurface resistance. Their accumulation in the environment and toxicity to human beings have contributed to the rapid development of regulations worldwide since 2002. The sorption strategy, taking advantage of intermolecular interactions for PFAS capture, provides a promising and efficient solution to the treatment of PFAS contaminated sources. Hydrophobic and electrostatic interactions are the two commonly found in commercially available PFAS sorbents, with the fluorous interaction being the novel mechanism applied for sorbent selectivity. The main object of this Perspective is to provide a critical review on the current design criteria of PFAS sorbents, with particular focus on their sorption and interaction mechanisms as well as limitations. An outlook on future innovative design for efficient PFAS sorbents is also provided.
Collapse
Affiliation(s)
- Yutong He
- Australian
Institute for Bioengineering and Nanotechnology, The University of
Queensland, Brisbane 4072, Australia
- The
Centre for Advanced Imaging, The University
of Queensland, Brisbane 4072, Australia
| | - Xinrong Cheng
- Australian
Institute for Bioengineering and Nanotechnology, The University of
Queensland, Brisbane 4072, Australia
- The
Centre for Advanced Imaging, The University
of Queensland, Brisbane 4072, Australia
| | - Samruddhi Jayendra Gunjal
- Australian
Institute for Bioengineering and Nanotechnology, The University of
Queensland, Brisbane 4072, Australia
- The
Centre for Advanced Imaging, The University
of Queensland, Brisbane 4072, Australia
| | - Cheng Zhang
- Australian
Institute for Bioengineering and Nanotechnology, The University of
Queensland, Brisbane 4072, Australia
- The
Centre for Advanced Imaging, The University
of Queensland, Brisbane 4072, Australia
| |
Collapse
|
7
|
Trzcinski AP, Harada K. Combined adsorption and electrochemical oxidation of perfluorooctanoic acid (PFOA) using graphite intercalated compound. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19946-19960. [PMID: 38367112 PMCID: PMC10927886 DOI: 10.1007/s11356-024-32449-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/08/2024] [Indexed: 02/19/2024]
Abstract
Perfluorooctanoic acid (PFOA) is a bioaccumulative synthetic chemical containing strong C-F bonds and is one of the most common per- and polyfluoroalkyl substances (PFAS) detected in the environment. Graphite intercalated compound (GIC) flakes were used to adsorb and degrade PFOA through electrochemical oxidation. The adsorption followed the Langmuir model with a loading capacity of 2.6 µg PFOA g-1 GIC and a second-order kinetics (3.354 g µg-1 min-1). 99.4% of PFOA was removed by the process with a half-life of 15 min. When PFOA molecules broke down, they released various by-products, such as short-chain perfluoro carboxylic acids like PFHpA, PFHxA, and PFBA. This breakdown indicates the cleavage of the perfluorocarbon chain and the release of CF2 units, suggesting a transformation or degradation of the original compound into these smaller acids. Shorter-chain perfluorinated compounds had slower degradation rates compared to longer-chain ones. Combining these two methods (adsorption and in situ electrochemical oxidation) was found to be advantageous because adsorption can initially concentrate the PFOA molecules, making it easier for the electrochemical process to target and degrade them. The electrochemical process can potentially break down or transform the PFAS compounds into less harmful substances through oxidation or other reactions.
Collapse
Affiliation(s)
- Antoine P Trzcinski
- School of Agriculture and Environmental Science, University of Southern Queensland, West Street, Queensland, 4350, Australia.
| | - Kouji Harada
- Department of Health and Environmental Sciences, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| |
Collapse
|
8
|
Zango ZU, Ethiraj B, Al-Mubaddel FS, Alam MM, Lawal MA, Kadir HA, Khoo KS, Garba ZN, Usman F, Zango MU, Lim JW. An overview on human exposure, toxicity, solid-phase microextraction and adsorptive removal of perfluoroalkyl carboxylic acids (PFCAs) from water matrices. ENVIRONMENTAL RESEARCH 2023; 231:116102. [PMID: 37196688 DOI: 10.1016/j.envres.2023.116102] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/02/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
Perfluoroalkyl carboxylic acids (PFCAs) are sub-class of perfluoroalkyl substances commonly detected in water matrices. They are persistent in the environment, hence highly toxic to living organisms. Their occurrence at trace amount, complex nature and prone to matrix interference make their extraction and detection a challenge. This study consolidates current advancements in solid-phase extraction (SPE) techniques for the trace-level analysis of PFCAs from water matrices. The advantages of the methods in terms of ease of applications, low-cost, robustness, low solvents consumption, high pre-concentration factors, better extraction efficiency, good selectivity and recovery of the analytes have been emphasized. The article also demonstrated effectiveness of some porous materials for the adsorptive removal of the PFCAs from the water matrices. Mechanisms of the SPE/adsorption techniques have been discussed. The success and limitations of the processes have been elucidated.
Collapse
Affiliation(s)
- Zakariyya Uba Zango
- Department of Chemistry, College of Natural and Applied Science, Al-Qalam University Katsina, 2137, Katsina, Nigeria; Institute of Semi-Arid Zone Studies, Al-Qalam University Katsina, 2137, Katsina, Nigeria.
| | - Baranitharan Ethiraj
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India
| | - Fahad S Al-Mubaddel
- Department of Chemical Engineering, College of Engineering, King Saud University, Riyadh, 11421, Saudi Arabia; Fellow, King Abdullah City for Renewable and Atomic Energy: Energy Research and Innovation Center, (ERIC), Riyadh, 11451, Saudi Arabia
| | - Mohammad Mahtab Alam
- Department of Basic Medical Sciences, College of Applied Medical Science, King Khalid University, Abha, 61421, Saudi Arabia
| | | | - Haliru Aivada Kadir
- Department of Quality Assurance and Control, Dangote Cement Plc, Kogi State, Nigeria
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan.
| | | | - Fahad Usman
- Institute of Semi-Arid Zone Studies, Al-Qalam University Katsina, 2137, Katsina, Nigeria
| | - Muttaqa Uba Zango
- Department of Civil Engineering, Kano University of Science and Technology, Wudil, P.M.B. 3244, Kano, Nigeria
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| |
Collapse
|