1
|
Fan Q, Jiao M, Huangfu H, Chen L, Li B, Cao Z, Luo X, Xu J. Whole-Genome Sequence Analysis, Probiotic Potential, and Safety Assessment of the Marine Bacterium Paraliobacillus zengyii CGMCC1.16464. Mar Drugs 2025; 23:202. [PMID: 40422792 DOI: 10.3390/md23050202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 04/30/2025] [Accepted: 05/06/2025] [Indexed: 05/28/2025] Open
Abstract
Paraliobacillus zengyii CGMCC1.16464 (P. zengyii) is a novel antiviral probiotic candidate strain. To ensure its safety as a potential probiotic, a safety evaluation was conducted in this study. The safety and functional potential of P. zengyii were systematically assessed through genomic bioinformatics analysis, in vitro experiments, and acute oral toxicity tests in mice. Genomic analysis revealed that P. zengyii is rich in genes related to carbohydrate and amino acid metabolisms and carries genes encoding antimicrobial and antiviral agents (such as ectoine, type III polyketide synthase, and lasso peptides). It also expresses gastrointestinal tolerance-related proteins (ClpC, GroEL, and ClpP). Its resistance to polymyxins is an inherent trait with no risk of plasmid-mediated transfer. In vitro experiments confirmed that P. zengyii is somewhat tolerant to bile salts and acidic environments and does not exhibit hemolytic or gelatinase activity. Importantly, an acute oral toxicity test in mice revealed that after intervention with high, medium, or low doses, no significant abnormalities in the body weight, organ index, or tissue morphology of the mice were observed. In conclusion, P. zengyii exhibited good safety and probiotic potential in terms of genomic safety, metabolic function, and in vitro and in vivo toxicities, providing a theoretical basis for the development of novel functional probiotics.
Collapse
Affiliation(s)
- Qianjin Fan
- School of Medicine, Nankai University, Tianjin 300071, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Mengqi Jiao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Haoyue Huangfu
- School of Medicine, Nankai University, Tianjin 300071, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Lan Chen
- Center of Reverse Microbial Etiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Beijie Li
- Center of Reverse Microbial Etiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Zhijie Cao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xuelian Luo
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- Center of Reverse Microbial Etiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Jianguo Xu
- School of Medicine, Nankai University, Tianjin 300071, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- Center of Reverse Microbial Etiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
2
|
Zhou L, Mei S, Ma X, Wuyun Q, Cai Z, Chen C, Ding H, Yan J. Multi-omics insights into the pathogenesis of diabetic cardiomyopathy: epigenetic and metabolic profiles. Epigenomics 2025; 17:33-48. [PMID: 39623870 PMCID: PMC11727868 DOI: 10.1080/17501911.2024.2435257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 11/25/2024] [Indexed: 12/24/2024] Open
Abstract
AIM Diabetic cardiomyopathy (DbCM), a complex metabolic disease, greatly threatens human health due to therapeutic limitations. Multi-omics approaches facilitate the elucidation of its intrinsic pathological changes. METHODS Metabolomics, RNA-seq, proteomics, and assay of transposase-accessible chromatin (ATAC-seq) were utilized to elucidate multidimensional molecular alterations in DbCM. RESULTS In the heart and plasma of mice with DbCM, metabolomic analysis demonstrated significant differences in branched-chain amino acids (BCAAs) and lipids. Subsequent RNA-seq and proteomics showed that the key genes, including BCKDHB, PPM1K, Cpt1b, Fabp4, Acadm, Acadl, Acadvl, HADH, HADHA, HADHB, Eci1, Eci2, PDK4, and HMGCS2, were aberrantly regulated, contributing to the disorder of BCAAs and fatty acids. ATAC-seq analysis underscored the pivotal role of epigenetic regulation by revealing dynamic shifts in chromatin accessibility and a robust positive correlation with gene expression patterns in diabetic cardiomyopathy mice. Furthermore, motif analysis identified that KLF15 as a critical transcription factor in DbCM, regulating the core genes implicated with BCAAs metabolism. CONCLUSION Our research delved into the metabolic alterations and epigenetic landscape and revealed that KLF15 may be a promising candidate for therapeutic intervention in DbCM.
Collapse
Affiliation(s)
- Li Zhou
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Shuai Mei
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Xiaozhu Ma
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Qidamugai Wuyun
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Ziyang Cai
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Chen Chen
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Hu Ding
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Jiangtao Yan
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
3
|
de Oliveira Silva T, Lunardon G, Lino CA, de Almeida Silva A, Zhang S, Irigoyen MCC, Lu YW, Mably JD, Barreto-Chaves MLM, Wang DZ, Diniz GP. Senescent cell depletion alleviates obesity-related metabolic and cardiac disorders. Mol Metab 2025; 91:102065. [PMID: 39557194 PMCID: PMC11636344 DOI: 10.1016/j.molmet.2024.102065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/06/2024] [Accepted: 11/07/2024] [Indexed: 11/20/2024] Open
Abstract
Obesity is a major contributor to metabolic and cardiovascular disease. Although senescent cells have been shown to accumulate in adipose tissue, the role of senescence in obesity-induced metabolic disorders and in cardiac dysfunction is not yet clear; therefore, the therapeutic potential of managing senescence in obesity-related metabolic and cardiac disorders remains to be fully defined. OBJECTIVE We investigated the beneficial effects of a senolytic cocktail (dasatinib and quercetin) on senescence and its influence on obesity-related parameters. METHODS AND RESULTS We found that the increase in body weight and adiposity, glucose intolerance, insulin resistance, dyslipidemia, hyperleptinemia, and hepatic disorders which were induced by an obesogenic diet were alleviated by senolytic cocktail treatment in mice. Treatment with senolytic compounds eliminated senescent cells, counteracting the activation of the senescence program and DNA damage in white adipose tissue (WAT) observed with an obesogenic diet. Moreover, the senolytic cocktail prevented the brown adipose tissue (BAT) whitening and increased the expression of the thermogenic gene profile in BAT and pWAT. In the hearts of obese mice, senolytic combination abolished myocardial maladaptation, reducing the senescence-associated secretory phenotype (SASP) and DNA damage, repressing cardiac hypertrophy, and improving diastolic dysfunction. Additionally, we showed that treatment with the senolytic cocktail corrected gene expression programs associated with fatty acid metabolism, oxidative phosphorylation, the P53 pathway, and DNA repair, which were all downregulated in obese mice. CONCLUSIONS Collectively, these data suggest that a senolytic cocktail can prevent the activation of the senescence program in the heart and WAT and activate the thermogenic program in BAT. Our results suggest that targeting senescent cells may be a novel therapeutic strategy for alleviating obesity-related metabolic and cardiac disorders.
Collapse
Affiliation(s)
- Tábatha de Oliveira Silva
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil; Center for Regenerative Medicine, USF Health Heart Institute, University of South Florida, Tampa, FL, USA
| | - Guilherme Lunardon
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Caroline A Lino
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Amanda de Almeida Silva
- Hypertension Unit, Heart Institute (InCor), School of Medicine, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Shiju Zhang
- Center for Regenerative Medicine, USF Health Heart Institute, University of South Florida, Tampa, FL, USA
| | | | - Yao Wei Lu
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Medicine, and Hastings Center for Pulmonary Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - John D Mably
- Center for Regenerative Medicine, USF Health Heart Institute, University of South Florida, Tampa, FL, USA
| | | | - Da-Zhi Wang
- Center for Regenerative Medicine, USF Health Heart Institute, University of South Florida, Tampa, FL, USA
| | - Gabriela P Diniz
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil; Center for Regenerative Medicine, USF Health Heart Institute, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
4
|
Croft AJ, Kelly C, Chen D, Haw TJ, Balachandran L, Murtha LA, Boyle AJ, Sverdlov AL, Ngo DTM. Sex-based differences in short- and longer-term diet-induced metabolic heart disease. Am J Physiol Heart Circ Physiol 2024; 326:H1219-H1251. [PMID: 38363215 PMCID: PMC11381029 DOI: 10.1152/ajpheart.00467.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/30/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Sex-based differences in the development of obesity-induced cardiometabolic dysfunction are well documented, however, the specific mechanisms are not completely understood. Obesity has been linked to dysregulation of the epitranscriptome, but the role of N6-methyladenosine (m6A) RNA methylation has not been investigated in relation to the sex differences during obesity-induced cardiac dysfunction. In the current study, male and female C57BL/6J mice were subjected to short- and long-term high-fat/high-sucrose (HFHS) diet to induce obesogenic stress. Cardiac echocardiography showed males developed systolic and diastolic dysfunction after 4 mo of diet, but females maintained normal cardiac function despite both sexes being metabolically dysfunctional. Cardiac m6A machinery gene expression was differentially regulated by duration of HFHS diet in male, but not female mice, and left ventricular ejection fraction correlated with RNA machinery gene levels in a sex- and age-dependent manner. RNA-sequencing of cardiac transcriptome revealed that females, but not males may undergo protective cardiac remodeling early in the course of obesogenic stress. Taken together, our study demonstrates for the first time that cardiac RNA methylation machinery genes are regulated early during obesogenic stress in a sex-dependent manner and may play a role in the sex differences observed in cardiometabolic dysfunction.NEW & NOTEWORTHY Sex differences in obesity-associated cardiomyopathy are well documented but incompletely understood. We show for the first time that RNA methylation machinery genes may be regulated in response to obesogenic diet in a sex- and age-dependent manner and levels may correspond to cardiac systolic function. Our cardiac RNA-seq analysis suggests female, but not male mice may be protected from cardiac dysfunction by a protective cardiac remodeling response early during obesogenic stress.
Collapse
Affiliation(s)
- Amanda J Croft
- School of Medicine and Public Health, College of Health Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Conagh Kelly
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
| | - Dongqing Chen
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
| | - Tatt Jhong Haw
- School of Medicine and Public Health, College of Health Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Lohis Balachandran
- School of Medicine and Public Health, College of Health Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Lucy A Murtha
- School of Medicine and Public Health, College of Health Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Andrew J Boyle
- School of Medicine and Public Health, College of Health Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Hunter New England Local Health District, Newcastle, New South Wales, Australia
| | - Aaron L Sverdlov
- School of Medicine and Public Health, College of Health Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Hunter New England Local Health District, Newcastle, New South Wales, Australia
| | - Doan T M Ngo
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
5
|
Miao BB, Dong W, Gu YX, Han ZF, Luo X, Ke CH, You WW. OmicsSuite: a customized and pipelined suite for analysis and visualization of multi-omics big data. HORTICULTURE RESEARCH 2023; 10:uhad195. [PMID: 38023482 PMCID: PMC10673651 DOI: 10.1093/hr/uhad195] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/20/2023] [Indexed: 12/01/2023]
Abstract
With the advancements in high-throughput sequencing technologies such as Illumina, PacBio, and 10X Genomics platforms, and gas/liquid chromatography-mass spectrometry, large volumes of biological data in multiple formats can now be obtained through multi-omics analysis. Bioinformatics is constantly evolving and seeking breakthroughs to solve multi-omics problems; however, it is challenging for most experimental biologists to analyse data using command-line interfaces, coding, and scripting. Based on experience with multi-omics, we have developed OmicsSuite, a desktop suite that comprehensively integrates statistics and multi-omics analysis and visualization. The suite has 175 sub-applications in 12 categories, including Sequence, Statistics, Algorithm, Genomics, Transcriptomics, Enrichment, Proteomics, Metabolomics, Clinical, Microorganism, Single Cell, and Table Operation. We created the user interface with Sequence View, Table View, and intelligent components based on JavaFX and the popular Shiny framework. The multi-omics analysis functions were developed based on BioJava and 300+ packages provided by the R CRAN and Bioconductor communities, and it encompasses over 3000 adjustable parameter interfaces. OmicsSuite can directly read multi-omics raw data in FastA, FastQ, Mutation Annotation Format, mzML, Matrix, and HDF5 formats, and the programs emphasize data transfer directions and pipeline analysis functions. OmicsSuite can produce pre-publication images and tables, allowing users to focus on biological aspects. OmicsSuite offers multi-omics step-by-step workflows that can be easily applied to horticultural plant breeding and molecular mechanism studies in plants. It enables researchers to freely explore the molecular information contained in multi-omics big data (Source: https://github.com/OmicsSuite/, Website: https://omicssuite.github.io, v1.3.9).
Collapse
Affiliation(s)
- Ben-Ben Miao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Wei Dong
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou 510055, Guangdong, China
| | - Yi-Xin Gu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, Guangdong, China
| | - Zhao-Fang Han
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Xuan Luo
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Cai-Huan Ke
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Wei-Wei You
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, Fujian, China
- Fujian Institute for Sustainable Oceans, Xiamen University, Xiamen 361102, Fujian, China
| |
Collapse
|