1
|
Bolideei M, Barzigar R, Gahrouei RB, Mohebbi E, Haider KH, Paul S, Paul MK, Mehran MJ. Applications of Gene Editing and Nanotechnology in Stem Cell-Based Therapies for Human Diseases. Stem Cell Rev Rep 2025; 21:905-934. [PMID: 40014250 DOI: 10.1007/s12015-025-10857-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2025] [Indexed: 02/28/2025]
Abstract
Stem cell research is a dynamic and fast-advancing discipline with great promise for the treatment of diverse human disorders. The incorporation of gene editing technologies, including ZFNs, TALENs, and the CRISPR/Cas system, in conjunction with progress in nanotechnology, is fundamentally transforming stem cell therapy and research. These innovations not only provide a glimmer of optimism for patients and healthcare practitioners but also possess the capacity to radically reshape medical treatment paradigms. Gene editing and nanotechnology synergistically enhance stem cell-based therapies' precision, efficiency, and applicability, offering transformative potential for treating complex diseases and advancing regenerative medicine. Nevertheless, it is important to acknowledge that these technologies also give rise to ethical considerations and possible hazards, such as inadvertent genetic modifications and the development of genetically modified organisms, therefore creating a new age of designer infants. This review emphasizes the crucial significance of gene editing technologies and nanotechnology in the progress of stem cell treatments, particularly for degenerative pathologies and injuries. It emphasizes their capacity to restructure and comprehensively revolutionize medical treatment paradigms, providing fresh hope and optimism for patients and healthcare practitioners.
Collapse
Affiliation(s)
- Mansoor Bolideei
- Department of Respiratory and Critical Care Medicine, the Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Rambod Barzigar
- Department of Biotechnology, SJCE Technical Campus, JSS Research Foundation, University of Mysore, Mysore, 570006, Karnataka, India
| | - Razieh Bahrami Gahrouei
- Department of Pharmacy PES College, Rajiv Gandhi University of Health Sciences, Bangalore, Karnataka, India
| | - Elham Mohebbi
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois School of Medicine, Springfield, IL, USA
| | - Khawaja Husnain Haider
- Sulaiman AlRajhi Medical School, Al Bukayriyah, AlQaseem, 52726, Kingdom of Saudi Arabia
| | - Sayan Paul
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA.
| | - Manash K Paul
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| | - Mohammad Javad Mehran
- Department of Biotechnology, SJCE Technical Campus, JSS Research Foundation, University of Mysore, Mysore, 570006, Karnataka, India.
| |
Collapse
|
2
|
Wallace KA, Gerstenberg TL, Ennis CL, Perez-Bermejo JA, Partridge JR, Bandoro C, Matern WM, Andreoletti G, Krassovsky K, Kabir S, Lalisan CD, Churi AR, Chew GM, Corbo L, Vincelette JE, Klasson TD, Silva BJ, Strukov YG, Quejarro BJ, Hill KA, Treusch S, Grogan JL, Dever DP, Porteus MH, Wienert B. A differentiated β-globin gene replacement strategy uses heterologous introns to restore physiological expression. Mol Ther 2025; 33:1407-1419. [PMID: 40022449 PMCID: PMC11997512 DOI: 10.1016/j.ymthe.2025.02.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/19/2024] [Accepted: 02/25/2025] [Indexed: 03/03/2025] Open
Abstract
β-Hemoglobinopathies are common monogenic disorders. In sickle cell disease (SCD), a single mutation in the β-globin (HBB) gene results in dysfunctional hemoglobin protein, while in β-thalassemia, over 300 mutations distributed across the gene reduce β-globin levels and cause severe anemia. Genetic engineering replacing the whole HBB gene through homology-directed repair (HDR) is an ideal strategy to restore a benign genotype and rescue HBB expression for most genotypes. However, this is technically challenging because (1) the insert must not be homologous to the endogenous gene and (2) synonymous codon-optimized, intron-less sequences may not reconstitute adequate β-globin levels. Here, we developed an HBB gene replacement strategy using CRISPR-Cas9 that successfully addresses these challenges. We determined that a DNA donor containing a diverged HBB coding sequence and heterologous introns to avoid sequence homology provides proper physiological expression. We identified a DNA donor that uses truncated γ-globin introns, results in 34% HDR, and rescues β-globin expression in in vitro models of SCD and β-thalassemia in hematopoietic stem and progenitor cells (HSPCs). Furthermore, while HDR allele frequency dropped in vivo, it was maintained at ∼15%, demonstrating editing of long-term repopulating HSPCs. In summary, our HBB gene replacement strategy offers a differentiated approach by restoring naturally regulated adult hemoglobin expression.
Collapse
Affiliation(s)
- Kirby A Wallace
- Graphite Bio, Inc., South San Francisco, CA 94080, USA; Kamau Therapeutics, Inc., South San Francisco, CA 94080, USA
| | | | - Craig L Ennis
- Graphite Bio, Inc., South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | - Shaheen Kabir
- Graphite Bio, Inc., South San Francisco, CA 94080, USA
| | | | | | - Glen M Chew
- Graphite Bio, Inc., South San Francisco, CA 94080, USA
| | - Lana Corbo
- Graphite Bio, Inc., South San Francisco, CA 94080, USA
| | | | | | - Brian J Silva
- Graphite Bio, Inc., South San Francisco, CA 94080, USA
| | | | | | - Kaisle A Hill
- Graphite Bio, Inc., South San Francisco, CA 94080, USA
| | | | - Jane L Grogan
- Graphite Bio, Inc., South San Francisco, CA 94080, USA
| | | | | | - Beeke Wienert
- Graphite Bio, Inc., South San Francisco, CA 94080, USA.
| |
Collapse
|
3
|
Brusson M, Miccio A. [A CRISPR/Cas approach to β-haemoglobinopathies]. Med Sci (Paris) 2025; 41:33-39. [PMID: 39887096 DOI: 10.1051/medsci/2024191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025] Open
Abstract
Beta-haemoglobinopathies are severe genetic anemias caused by mutations that affect adult haemoglobin production. Many therapeutic approaches aim to reactivate the expression of the fetal hemoglobin genes. To this end, the CRISPR/Cas9 system has recently been used to genetically modify patients' hematopoietic stem/progenitor cells ex vivo and reactivate fetal hemoglobin expression in their erythroid progeny. More than 70 patients with severe β-thalassemia and sickle cell disease have been treated with the Casgevy® therapy. Most have achieved a significant improvement of clinical phenotype, with high editing efficiency in hematopoietic cells associated with normal or near normal hemoglobin levels. While the long-term safety and efficacy of this powerful approach still need to be evaluated, new strategies are being developed to further improve therapeutic outcomes, reduce potential genotoxicity and lower the costs of therapy.
Collapse
Affiliation(s)
- Megane Brusson
- Institut Imagine, Inserm UMR1163, université Paris Cité, Paris, France
| | - Annarita Miccio
- Institut Imagine, Inserm UMR1163, université Paris Cité, Paris, France
| |
Collapse
|
4
|
Chandraprabha PB, Azhagiri MKK, Venkatesan V, Magis W, Prasad K, Suresh S, Pai AA, Marepally S, Srivastava A, Mohankumar KM, Martin DIK, Thangavel S. Enhanced fetal hemoglobin production via dual-beneficial mutation editing of the HBG promoter in hematopoietic stem and progenitor cells for β-hemoglobinopathies. Stem Cell Res Ther 2024; 15:504. [PMID: 39736768 DOI: 10.1186/s13287-024-04117-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/11/2024] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND Sickle cell disease (SCD) and β-thalassemia patients with elevated gamma globin (HBG1/G2) levels exhibit mild or no symptoms. To recapitulate this natural phenomenon, the most coveted gene therapy approach is to edit the regulatory sequences of HBG1/G2 to reactivate them. By editing more than one regulatory sequence in the HBG promoter, the production of fetal hemoglobin (HbF) can be significantly increased. However, achieving this goal requires precise nucleotide conversions in hematopoietic stem and progenitor cells (HSPCs) at therapeutic efficiency, which remains a challenge. METHODS We employed Cas9 RNP-ssODN-mediated homology-directed repair (HDR) gene editing to mimic two naturally occurring HBG promoter point mutations; -175T > C, associated with high HbF levels, and -158 C > T, a common polymorphism in the Indian population that induces HbF under erythropoietic stress, in HSPCs. RESULTS Asymmetric, nontarget ssODN induced high rates of complete HDR conversions, with at least 15% of HSPCs exhibiting both the -175T > C and -158 C > T mutations. Optimized conditions and treatment with the small molecule AZD-7648 increased this rate, with up to 57% of long-term engrafting human HSPCs in NBSGW mice containing at least one beneficial mutation. Functionally, in vivo erythroblasts exhibited high levels of HbF, which was sufficient to reverse the cellular phenotype of β-thalassemia. Further support through bone marrow MSC co-culture boosted complete HDR conversion rates to exceed 80%, with minimal InDels, improved cell viability, and induced fetal hemoglobin levels similar to those of Cas9 RNP-mediated indels at BCL11A enhancer and HBG promoter. CONCLUSIONS Cas9 RNP-ssODN-based nucleotide conversion at the HBG promoter offers a promising gene therapy approach to ameliorate the phenotypes of β-thalassemia and SCD. The developed approach can simplify and broaden applications that require the cointroduction of multiple nucleotide modifications in HSPCs.
Collapse
Affiliation(s)
- Prathibha Babu Chandraprabha
- Centre for Stem Cell Research (CSCR), A Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, Tamil Nadu, 632002, India
- Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Manoj Kumar K Azhagiri
- Centre for Stem Cell Research (CSCR), A Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, Tamil Nadu, 632002, India
- Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Vigneshwaran Venkatesan
- Centre for Stem Cell Research (CSCR), A Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, Tamil Nadu, 632002, India
- Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Wendy Magis
- Children's Hospital Oakland Research Institute, UCSF Benioff Children's Hospital Oakland, Oakland, CA, 94609, USA
| | - Kirti Prasad
- Centre for Stem Cell Research (CSCR), A Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, Tamil Nadu, 632002, India
- Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sevanthy Suresh
- Centre for Stem Cell Research (CSCR), A Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, Tamil Nadu, 632002, India
- Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Aswin Anand Pai
- Department of Hematology, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | - Srujan Marepally
- Centre for Stem Cell Research (CSCR), A Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, Tamil Nadu, 632002, India
| | - Alok Srivastava
- Centre for Stem Cell Research (CSCR), A Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, Tamil Nadu, 632002, India
- Department of Hematology, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | | | - David I K Martin
- Children's Hospital Oakland Research Institute, UCSF Benioff Children's Hospital Oakland, Oakland, CA, 94609, USA
| | - Saravanabhavan Thangavel
- Centre for Stem Cell Research (CSCR), A Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, Tamil Nadu, 632002, India.
| |
Collapse
|
5
|
Ballantine J, Tisdale JF. Gene therapy for sickle cell disease: recent advances, clinical trials and future directions. Cytotherapy 2024:S1465-3249(24)00925-3. [PMID: 39729054 DOI: 10.1016/j.jcyt.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/03/2024] [Indexed: 12/28/2024]
Abstract
Sickle cell disease (SCD) is the most common inherited blood disorder worldwide, impacting millions and imposing severe healthcare challenges, particularly in resource-limited regions. Current treatments have variable efficacy and require lifelong adherence. Allogeneic Hematopoietic Stem Cell Transplantation can be curative but comes with significant side effects and limited donor availability limits its widespread applicability. Gene therapy, by addressing the root genetic causes, offers a revolutionary alternative. This article discusses the molecular mechanisms of SCD and β-thalassemia and highlights advancements in gene therapy, such as gene addition via lentiviral vectors and gene editing with CRISPR/Cas9 technology. Clinical trials have brought about significant progress but challenges remain, including leukemogenesis, delivery efficiency and cost. Future efforts must focus on enhancing efficiency, reducing costs, developing nongenotoxic conditioning regimens and methods for in vivo application.
Collapse
Affiliation(s)
- Josiah Ballantine
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA.
| | - John F Tisdale
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| |
Collapse
|
6
|
Shao C, Liu Q, Xu J, Zhang J, Zhang C, Xin Y, Ye Y, Lin B, Zhang X, Cheng L, Xu X, Xu P. Efficient and in situ correction of hemoglobin Constant Spring mutation by prime editing in human hematopoietic cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102371. [PMID: 39640014 PMCID: PMC11617223 DOI: 10.1016/j.omtn.2024.102371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 10/24/2024] [Indexed: 12/07/2024]
Abstract
Hemoglobin Constant Spring (Hb CS) is the most common non-deletional and clinically significant α-thalassemic mutation, and it is caused by an anti-termination mutation at the α2-globin gene stop codon. We developed a prime editing strategy for the creation and correction of Hb CS. We showed that prime editing could efficiently introduce Hb CS mutations in both human erythroblast cell lines (an average frequency of 32%) and primary hematopoietic stem and progenitor cells (HSPCs) from healthy donors (an average frequency of 27%). By targeting the established Hb CS homozygous erythroblasts, we achieved an average frequency of 32% in situ correction without selection. Notably, prime editing corrected the Hb CS mutation to wild type at an average frequency of 21% in HSPCs from three patients with hemoglobin H Constant Spring (HCS). Erythrocytes that differentiated from prime-edited erythroblasts or HSPCs exhibited a significant reduction in the amount of αCS-globin chains. Insertions and deletions on HBA2 locus and Cas9-dependent DNA off-target editing were detected with relatively low frequency after prime editing. Our findings showed that prime editing can successfully correct Hb CS in erythroblasts and patient HSPCs, which provides proof of principle for its therapeutic potential in HCS.
Collapse
Affiliation(s)
- Congwen Shao
- Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Department of Medical Genetics, School of Basic Medical Sciences, Guangdong Engineering and Technology Research Center for Molecular Diagnostics of Human Genetic Diseases, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Qing Liu
- Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Department of Medical Genetics, School of Basic Medical Sciences, Guangdong Engineering and Technology Research Center for Molecular Diagnostics of Human Genetic Diseases, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jinchao Xu
- Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jianxiang Zhang
- Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123, China
| | - Chengpeng Zhang
- Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123, China
| | - Ye Xin
- Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yuhua Ye
- Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Department of Medical Genetics, School of Basic Medical Sciences, Guangdong Engineering and Technology Research Center for Molecular Diagnostics of Human Genetic Diseases, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Bin Lin
- Guangzhou Jiexu Gene Technology Co. Ltd., Guangzhou, Guangdong 510535, China
| | - Xinhua Zhang
- Department of Hematology, 923rd Hospital of the People’s Liberation Army, Nanning, Guangxi 530021, China
| | - Li Cheng
- Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiangmin Xu
- Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Department of Medical Genetics, School of Basic Medical Sciences, Guangdong Engineering and Technology Research Center for Molecular Diagnostics of Human Genetic Diseases, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Peng Xu
- Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
7
|
Moiani A, Letort G, Lizot S, Chalumeau A, Foray C, Felix T, Le Clerre D, Temburni-Blake S, Hong P, Leduc S, Pinard N, Marechal A, Seclen E, Boyne A, Mayer L, Hong R, Pulicani S, Galetto R, Gouble A, Cavazzana M, Juillerat A, Miccio A, Duclert A, Duchateau P, Valton J. Non-viral DNA delivery and TALEN editing correct the sickle cell mutation in hematopoietic stem cells. Nat Commun 2024; 15:4965. [PMID: 38862518 PMCID: PMC11166989 DOI: 10.1038/s41467-024-49353-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 06/03/2024] [Indexed: 06/13/2024] Open
Abstract
Sickle cell disease is a devastating blood disorder that originates from a single point mutation in the HBB gene coding for hemoglobin. Here, we develop a GMP-compatible TALEN-mediated gene editing process enabling efficient HBB correction via a DNA repair template while minimizing risks associated with HBB inactivation. Comparing viral versus non-viral DNA repair template delivery in hematopoietic stem and progenitor cells in vitro, both strategies achieve comparable HBB correction and result in over 50% expression of normal adult hemoglobin in red blood cells without inducing β-thalassemic phenotype. In an immunodeficient female mouse model, transplanted cells edited with the non-viral strategy exhibit higher engraftment and gene correction levels compared to those edited with the viral strategy. Transcriptomic analysis reveals that non-viral DNA repair template delivery mitigates P53-mediated toxicity and preserves high levels of long-term hematopoietic stem cells. This work paves the way for TALEN-based autologous gene therapy for sickle cell disease.
Collapse
Affiliation(s)
| | - Gil Letort
- Cellectis S.A., 8 Rue de la Croix Jarry, Paris, France
| | - Sabrina Lizot
- Cellectis S.A., 8 Rue de la Croix Jarry, Paris, France
| | - Anne Chalumeau
- Université Paris Cité, Imagine Institute, Laboratory of Chromatin and Gene Regulation During Development, INSERM UMR 1163, Paris, France
| | - Chloe Foray
- Cellectis S.A., 8 Rue de la Croix Jarry, Paris, France
| | - Tristan Felix
- Université Paris Cité, Imagine Institute, Laboratory of Chromatin and Gene Regulation During Development, INSERM UMR 1163, Paris, France
| | | | | | - Patrick Hong
- Cellectis Inc., 430 East 29th Street, New York, NY, USA
| | - Sophie Leduc
- Cellectis S.A., 8 Rue de la Croix Jarry, Paris, France
| | - Noemie Pinard
- Cellectis S.A., 8 Rue de la Croix Jarry, Paris, France
| | - Alan Marechal
- Cellectis S.A., 8 Rue de la Croix Jarry, Paris, France
| | | | - Alex Boyne
- Cellectis Inc., 430 East 29th Street, New York, NY, USA
| | - Louisa Mayer
- Cellectis Inc., 430 East 29th Street, New York, NY, USA
| | - Robert Hong
- Cellectis Inc., 430 East 29th Street, New York, NY, USA
| | | | - Roman Galetto
- Cellectis S.A., 8 Rue de la Croix Jarry, Paris, France
| | - Agnès Gouble
- Cellectis S.A., 8 Rue de la Croix Jarry, Paris, France
| | - Marina Cavazzana
- Biotherapy Clinical Investigation Center, Necker Children's Hospital, Assistance Publique Hopitaux de Paris, Paris, France
- Human Lymphohematopoiesis Laboratory, Imagine Institute, INSERM UMR1163, Paris Cité University, Paris, France
- Biotherapy Department, Necker Children's Hospital, Assistance Publique Hopitaux de Paris, Paris, France
| | | | - Annarita Miccio
- Université Paris Cité, Imagine Institute, Laboratory of Chromatin and Gene Regulation During Development, INSERM UMR 1163, Paris, France
| | | | | | - Julien Valton
- Cellectis S.A., 8 Rue de la Croix Jarry, Paris, France.
| |
Collapse
|
8
|
Mudde ACA, Kuo CY, Kohn DB, Booth C. What a Clinician Needs to Know About Genome Editing: Status and Opportunities for Inborn Errors of Immunity. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:1139-1149. [PMID: 38246560 DOI: 10.1016/j.jaip.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/08/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024]
Abstract
During the past 20 years, gene editing has emerged as a novel form of gene therapy. Since the publication of the first potentially therapeutic gene editing platform for genetic disorders, increasingly sophisticated editing technologies have been developed. As with viral vector-mediated gene addition, inborn errors of immunity are excellent candidate diseases for a corrective autologous hematopoietic stem cell gene editing strategy. Research on gene editing for inborn errors of immunity is still entirely preclinical, with no trials yet underway. However, with editing techniques maturing, scientists are investigating this novel form of gene therapy in context of an increasing number of inborn errors of immunity. Here, we present an overview of these studies and the recent progress moving these technologies closer to clinical benefit.
Collapse
Affiliation(s)
- Anne C A Mudde
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Caroline Y Kuo
- Department of Pediatrics, UCLA David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, Calif
| | - Donald B Kohn
- Department of Pediatrics, UCLA David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, Calif; Department of Microbiology, Immunology & Molecular Genetics, UCLA David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, Calif
| | - Claire Booth
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom; Department of Paediatric Immunology and Gene Therapy, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom.
| |
Collapse
|
9
|
Herring-Nicholas A, Dimig H, Roesing MR, Josephs EA. Selection of extended CRISPR RNAs with enhanced targeting and specificity. Commun Biol 2024; 7:86. [PMID: 38212640 PMCID: PMC10784525 DOI: 10.1038/s42003-024-05776-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024] Open
Abstract
As CRISPR effectors like Cas9 increasingly enter clinical trials for therapeutic gene editing, a future for personalized medicine will require efficient methods to protect individuals from the potential of off-target mutations that may also occur at specific sequences in their genomes that are similar to the therapeutic target. A Cas9 enzyme's ability to recognize their targets (and off-targets) are determined by the sequence of their RNA-cofactors (their guide RNAs or gRNAs). Here, we present a method to screen hundreds of thousands of gRNA variants with short, randomized 5' nucleotide extensions near its DNA-targeting segment-a modification that can increase gene editing specificity by orders of magnitude-to identify extended gRNAs (x-gRNAs) that effectively block any activity at those off-target sites while still maintaining strong activity at their intended targets. X-gRNAs that have been selected for specific target / off-target pairs can significantly out-perform other methods that reduce Cas9 off-target activity overall, like using Cas9 variants engineered for higher specificity in general, and we demonstrate their effectiveness in clinically-relevant gRNAs. Our streamlined approach to efficiently identify highly specific and active x-gRNAs provides a way to move beyond a one-size-fits-all model of high-fidelity CRISPR for safer and more effective personalized gene therapies.
Collapse
Affiliation(s)
- Ashley Herring-Nicholas
- Department of Nanoscience, The University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Hillary Dimig
- Department of Nanoscience, The University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Miranda R Roesing
- Department of Nanoscience, The University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Eric A Josephs
- Department of Nanoscience, The University of North Carolina at Greensboro, Greensboro, NC, USA.
| |
Collapse
|
10
|
Becker HJ, Yamazaki S. Understanding genetic heterogeneity in gene-edited hematopoietic stem cell products. Exp Hematol 2024; 129:104133. [PMID: 38036097 DOI: 10.1016/j.exphem.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/10/2023] [Indexed: 12/02/2023]
Abstract
CRISPR/Cas gene editing has transformed genetic research and is poised to drive the next generation of gene therapies targeting hematopoietic stem cells (HSCs). However, the installation of the "desired" edit is most often only achieved in a minor subset of alleles. The array of cellular pathways triggered by gene editing tools produces a broad spectrum of "undesired" editing outcomes, including short insertions and deletions (indels) and chromosome rearrangements, leading to considerable genetic heterogeneity in gene-edited HSC populations. This heterogeneity may undermine the effect of the genetic intervention since only a subset of cells will carry the intended modification. Also, undesired mutations represent a potential safety concern as gene editing advances toward broader clinical use. Here, we will review the different sources of "undesired" edits and will discuss strategies for their mitigation and control.
Collapse
Affiliation(s)
- Hans Jiro Becker
- Laboratory for Stem Cell Therapy, Faculty of Medicine, Tsukuba University, Tsukuba, Japan; Division of Cell Regulation, Center of Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| | - Satoshi Yamazaki
- Laboratory for Stem Cell Therapy, Faculty of Medicine, Tsukuba University, Tsukuba, Japan; Division of Cell Regulation, Center of Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
11
|
Sahu S, Poplawska M, Lim SH, Dutta D. CRISPR-based precision medicine for hematologic disorders: Advancements, challenges, and prospects. Life Sci 2023; 333:122165. [PMID: 37832631 DOI: 10.1016/j.lfs.2023.122165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023]
Abstract
The development of programmable nucleases to introduce defined alterations in genomic sequences has been a powerful tool for precision medicine. While several nucleases such as zinc-finger nucleases (ZFN), transcriptor activator-like effector nucleases (TALEN), and meganucleases have been explored, the advent of CRISPR/Cas9 technology has revolutionized the field of genome engineering. In addition to disease modeling, the CRISPR/Cas9 technology has contributed to safer and more effective treatment strategies for hematologic diseases and personalized T-cell-based therapies. Here we discuss the applications of the CRISPR technology in the treatment of hematologic diseases, their efficacy, and ongoing clinical trials. We examine the obstacles to their successful use and the approaches investigated to overcome these challenges. Finally, we provide our perspectives to improve this genome editing tool for targeted therapies.
Collapse
Affiliation(s)
- Sounak Sahu
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, 1050 Boyles Street, Building 560, Room 32-04, Frederick, MD 21702, USA.
| | - Maria Poplawska
- Department of Medicine (Division of Hematology and Oncology), State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Seah H Lim
- Department of Medicine (Division of Hematology and Oncology), State University of New York Upstate Medical University, 750 E Adams, Syracuse, NY 13210, USA
| | - Dibyendu Dutta
- Department of Medicine (Division of Hematology and Oncology), State University of New York Upstate Medical University, 750 E Adams, Syracuse, NY 13210, USA.
| |
Collapse
|
12
|
Boccacci Y, Dumont N, Doyon Y, Laganière J. Accessory-cell-free differentiation of hematopoietic stem and progenitor cells into mature red blood cells. Cytotherapy 2023; 25:1242-1248. [PMID: 37598334 DOI: 10.1016/j.jcyt.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/14/2023] [Accepted: 07/25/2023] [Indexed: 08/21/2023]
Abstract
BACKGROUND AIMS The culture and ex vivo engineering of red blood cells (RBCs) can help characterize genetic variants, model diseases, and may eventually spur the development of applications in transfusion medicine. In the last decade, improvements to the in vitro production of RBCs have enabled efficient erythroid progenitor proliferation and high enucleation levels from several sources of hematopoietic stem and progenitor cells (HSPCs). Despite these advances, there remains a need for refining the terminal step of in vitro human erythropoiesis, i.e., the terminal maturation of reticulocytes into erythrocytes, so that it can occur without feeder or accessory cells and animal-derived components. METHODS Here, we describe the near-complete erythroid differentiation of cultured RBCs (cRBCs) from adult HSPCs in accessory-cell-free and xeno-free conditions. RESULTS The approach improves post-enucleation cell integrity and cell survival, and it enables subsequent storage of cRBCs for up to 42 days in classical additive solution conditions without any specialized equipment. CONCLUSIONS We foresee that these improvements will facilitate the characterization of RBCs derived from gene-edited HSPCs.
Collapse
Affiliation(s)
- Yelena Boccacci
- Medical Affairs and Innovation, Héma-Qubec, Québec, Quebec, Canada; Centre Hospitalier Universitaire de Québec Research Center, Université Laval, Québec, Quebec, Canada
| | - Nellie Dumont
- Medical Affairs and Innovation, Héma-Qubec, Québec, Quebec, Canada
| | - Yannick Doyon
- Centre Hospitalier Universitaire de Québec Research Center, Université Laval, Québec, Quebec, Canada
| | - Josée Laganière
- Medical Affairs and Innovation, Héma-Qubec, Québec, Quebec, Canada.
| |
Collapse
|
13
|
Kohn DB, Chen YY, Spencer MJ. Successes and challenges in clinical gene therapy. Gene Ther 2023; 30:738-746. [PMID: 37935854 PMCID: PMC10678346 DOI: 10.1038/s41434-023-00390-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/20/2023] [Accepted: 02/07/2023] [Indexed: 11/09/2023]
Abstract
Despite the ups and downs in the field over three decades, the science of gene therapy has continued to advance and provide enduring treatments for increasing number of diseases. There are active clinical trials approaching a variety of inherited and acquired disorders of different organ systems. Approaches include ex vivo modification of hematologic stem cells (HSC), T lymphocytes and other immune cells, as well as in vivo delivery of genes or gene editing reagents to the relevant target cells by either local or systemic administration. In this article, we highlight success and ongoing challenges in three areas of high activity in gene therapy: inherited blood cell diseases by targeting hematopoietic stem cells, malignant disorders using immune effector cells genetically modified with chimeric antigen receptors, and ophthalmologic, neurologic, and coagulation disorders using in vivo administration of adeno-associated virus (AAV) vectors. In recent years, there have been true cures for many of these diseases, with sustained clinical benefit that exceed those from other medical approaches. Each of these treatments faces ongoing challenges, namely their high one-time costs and the complexity of manufacturing the therapeutic agents, which are biological viruses and cell products, at pharmacologic standards of quality and consistency. New models of reimbursement are needed to make these innovative treatments widely available to patients in need.
Collapse
Affiliation(s)
- Donald B Kohn
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- The Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Yvonne Y Chen
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Chemical and Biomolecular Engineering, Henry Samueli School of Engineering, University of California, Los Angeles, Los Angeles, CA, USA
- Parker Institute for Cancer Immunotherapy Center at UCLA, University of California, Los Angeles, Los Angeles, CA, USA
| | - Melissa J Spencer
- The Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
14
|
Murugesan R, Karuppusamy KV, Marepally S, Thangavel S. Current approaches and potential challenges in the delivery of gene editing cargos into hematopoietic stem and progenitor cells. Front Genome Ed 2023; 5:1148693. [PMID: 37780116 PMCID: PMC10540692 DOI: 10.3389/fgeed.2023.1148693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 08/17/2023] [Indexed: 10/03/2023] Open
Abstract
Advancements in gene delivery and editing have expanded the applications of autologous hematopoietic stem and progenitor cells (HSPCs) for the treatment of monogenic and acquired diseases. The gene editing toolbox is growing, and the ability to achieve gene editing with mRNA or protein delivered intracellularly by vehicles, such as electroporation and nanoparticles, has highlighted the potential of gene editing in HSPCs. Ongoing phase I/II clinical trials with gene-edited HSPCs for β-hemoglobinopathies provide hope for treating monogenic diseases. The development of safe and efficient gene editing reagents and their delivery into hard-to-transfect HSPCs have been critical drivers in the rapid translation of HSPC gene editing into clinical studies. This review article summarizes the available payloads and delivery vehicles for gene editing HSPCs and their potential impact on therapeutic applications.
Collapse
Affiliation(s)
- Ramya Murugesan
- Centre for Stem Cell Research (CSCR), A Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, Tamil Nadu, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Karthik V. Karuppusamy
- Centre for Stem Cell Research (CSCR), A Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, Tamil Nadu, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Srujan Marepally
- Centre for Stem Cell Research (CSCR), A Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, Tamil Nadu, India
| | - Saravanabhavan Thangavel
- Centre for Stem Cell Research (CSCR), A Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, Tamil Nadu, India
| |
Collapse
|
15
|
Hardouin G, Magrin E, Corsia A, Cavazzana M, Miccio A, Semeraro M. Sickle Cell Disease: From Genetics to Curative Approaches. Annu Rev Genomics Hum Genet 2023; 24:255-275. [PMID: 37624668 DOI: 10.1146/annurev-genom-120122-081037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Sickle cell disease (SCD) is a monogenic blood disease caused by a point mutation in the gene coding for β-globin. The abnormal hemoglobin [sickle hemoglobin (HbS)] polymerizes under low-oxygen conditions and causes red blood cells to sickle. The clinical presentation varies from very severe (with acute pain, chronic pain, and early mortality) to normal (few complications and a normal life span). The variability of SCD might be due (in part) to various genetic modulators. First, we review the main genetic factors, polymorphisms, and modifier genes that influence the expression of globin or otherwise modulate the severity of SCD. Considering SCD as a complex, multifactorial disorder is important for the development of appropriate pharmacological and genetic treatments. Second, we review the characteristics, advantages, and disadvantages of the latest advances in gene therapy for SCD, from lentiviral-vector-based approaches to gene-editing strategies.
Collapse
Affiliation(s)
- Giulia Hardouin
- Laboratory of Chromatin and Gene Regulation During Development, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France; ,
- Centre d'Investigation Clinique Spécialisé en Biothérapie, Département de Biothérapie, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; ,
- Human Lymphohematopoiesis Laboratory, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France;
| | - Elisa Magrin
- Centre d'Investigation Clinique Spécialisé en Biothérapie, Département de Biothérapie, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; ,
| | - Alice Corsia
- Human Lymphohematopoiesis Laboratory, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France;
| | - Marina Cavazzana
- Centre d'Investigation Clinique Spécialisé en Biothérapie, Département de Biothérapie, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; ,
- Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France
- Université Paris Cité, Paris, France
| | - Annarita Miccio
- Laboratory of Chromatin and Gene Regulation During Development, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France; ,
| | - Michaela Semeraro
- Université Paris Cité, Paris, France
- Centre d'Investigation Clinique and Unité de Recherche Clinique, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France;
| |
Collapse
|
16
|
Everette KA, Newby GA, Levine RM, Mayberry K, Jang Y, Mayuranathan T, Nimmagadda N, Dempsey E, Li Y, Bhoopalan SV, Liu X, Davis JR, Nelson AT, Chen PJ, Sousa AA, Cheng Y, Tisdale JF, Weiss MJ, Yen JS, Liu DR. Ex vivo prime editing of patient haematopoietic stem cells rescues sickle-cell disease phenotypes after engraftment in mice. Nat Biomed Eng 2023; 7:616-628. [PMID: 37069266 PMCID: PMC10195679 DOI: 10.1038/s41551-023-01026-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/22/2023] [Indexed: 04/19/2023]
Abstract
Sickle-cell disease (SCD) is caused by an A·T-to-T·A transversion mutation in the β-globin gene (HBB). Here we show that prime editing can correct the SCD allele (HBBS) to wild type (HBBA) at frequencies of 15%-41% in haematopoietic stem and progenitor cells (HSPCs) from patients with SCD. Seventeen weeks after transplantation into immunodeficient mice, prime-edited SCD HSPCs maintained HBBA levels and displayed engraftment frequencies, haematopoietic differentiation and lineage maturation similar to those of unedited HSPCs from healthy donors. An average of 42% of human erythroblasts and reticulocytes isolated 17 weeks after transplantation of prime-edited HSPCs from four SCD patient donors expressed HBBA, exceeding the levels predicted for therapeutic benefit. HSPC-derived erythrocytes carried less sickle haemoglobin, contained HBBA-derived adult haemoglobin at 28%-43% of normal levels and resisted hypoxia-induced sickling. Minimal off-target editing was detected at over 100 sites nominated experimentally via unbiased genome-wide analysis. Our findings support the feasibility of a one-time prime editing SCD treatment that corrects HBBS to HBBA, does not require any viral or non-viral DNA template and minimizes undesired consequences of DNA double-strand breaks.
Collapse
Affiliation(s)
- Kelcee A Everette
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Gregory A Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Rachel M Levine
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Kalin Mayberry
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Yoonjeong Jang
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Nikitha Nimmagadda
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Erin Dempsey
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Yichao Li
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Xiong Liu
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute/National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jessie R Davis
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Andrew T Nelson
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Peter J Chen
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Alexander A Sousa
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Yong Cheng
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - John F Tisdale
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute/National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mitchell J Weiss
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Jonathan S Yen
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN, USA.
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
17
|
Abstract
Thalassemia syndromes are common monogenic disorders and represent a significant health issue worldwide. In this review, the authors elaborate on fundamental genetic knowledge about thalassemias, including the structure and location of globin genes, the production of hemoglobin during development, the molecular lesions causing α-, β-, and other thalassemia syndromes, the genotype-phenotype correlation, and the genetic modifiers of these conditions. In addition, they briefly discuss the molecular techniques applied for diagnosis and innovative cell and gene therapy strategies to cure these conditions.
Collapse
Affiliation(s)
- Nicolò Tesio
- Department of Clinical and Biological Sciences, San Luigi Gonzaga University Hospital, University of Torino, Regione Gonzole, 10, 10043 Orbassano, Turin, Italy. https://twitter.com/nicolotesio
| | - Daniel E Bauer
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Pediatrics, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
18
|
Ugalde L, Fañanas S, Torres R, Quintana-Bustamante O, Río P. CRISPR/Cas9-mediated gene editing. A promising strategy in hematological disorders. Cytotherapy 2023; 25:277-285. [PMID: 36610813 DOI: 10.1016/j.jcyt.2022.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 11/09/2022] [Accepted: 11/30/2022] [Indexed: 01/07/2023]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system has revolutionized the gene editing field, making it possible to interrupt, insert or replace a sequence of interest with high precision in the human genome. Its easy design and wide applicability open up a variety of therapeutic alternatives for the treatment of genetic diseases. Indeed, very promising approaches for the correction of hematological disorders have been developed in the recent years, based on the self-renewal and multipotent differentiation properties of hematopoietic stem and progenitor cells, which make this cell subset the ideal target for gene therapy purposes. This technology has been applied in different congenital blood disorders, such as primary immunodeficiencies, X-linked severe combined immunodeficiency, X-linked chronic granulomatous disease or Wiskott-Aldrich syndrome, and inherited bone marrow failure syndromes, such as Fanconi anemia, congenital amegakaryocytic thrombocytopenia or severe congenital neutropenia. Furthermore, CRISPR/Cas9-based gene editing has been implemented successfully as a novel therapy for cancer immunotherapy, by the development of promising strategies such as the use of oncolytic viruses or adoptive cellular therapy to the chimeric antigen receptor-T-cell therapy. Therefore, considering the variety of genes and mutations affected, we can take advantage of the different DNA repair mechanisms by CRISPR/Cas9 in different manners, from homology-directed repair to non-homologous-end-joining to the latest emerging technologies such as base and prime editing. Although the delivery systems into hematopoietic stem and progenitor cells are still the bottleneck of this technology, some of the advances in genome editing shown in this review have already reached a clinical stage and show very promising preliminary results.
Collapse
Affiliation(s)
- Laura Ugalde
- Biomedical Innovation Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain; Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Sara Fañanas
- Biomedical Innovation Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain; Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Raúl Torres
- Biomedical Innovation Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain; Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain; Molecular Cytogenetics Group, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Oscar Quintana-Bustamante
- Biomedical Innovation Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain; Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Paula Río
- Biomedical Innovation Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain; Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain.
| |
Collapse
|
19
|
Carroll D. RNA in Therapeutics: CRISPR in the Clinic. Mol Cells 2023; 46:4-9. [PMID: 36482771 PMCID: PMC9880604 DOI: 10.14348/molcells.2022.0163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 12/14/2022] Open
Abstract
The advent of the CRISPR-Cas genome editing platform has greatly enhanced the capabilities of researchers in many areas of biology. Its use has also been turned to the development of therapies for genetic diseases and to the enhancement of cell therapies. This review describes some recent advances in these areas.
Collapse
Affiliation(s)
- Dana Carroll
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| |
Collapse
|
20
|
Tao J, Bauer DE, Chiarle R. Assessing and advancing the safety of CRISPR-Cas tools: from DNA to RNA editing. Nat Commun 2023; 14:212. [PMID: 36639728 PMCID: PMC9838544 DOI: 10.1038/s41467-023-35886-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/06/2023] [Indexed: 01/14/2023] Open
Abstract
CRISPR-Cas gene editing has revolutionized experimental molecular biology over the past decade and holds great promise for the treatment of human genetic diseases. Here we review the development of CRISPR-Cas9/Cas12/Cas13 nucleases, DNA base editors, prime editors, and RNA base editors, focusing on the assessment and improvement of their editing precision and safety, pushing the limit of editing specificity and efficiency. We summarize the capabilities and limitations of each CRISPR tool from DNA editing to RNA editing, and highlight the opportunities for future improvements and applications in basic research, as well as the therapeutic and clinical considerations for their use in patients.
Collapse
Affiliation(s)
- Jianli Tao
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| | - Daniel E Bauer
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Roberto Chiarle
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, 10126, Italy.
| |
Collapse
|
21
|
Shakirova A, Karpov T, Komarova Y, Lepik K. In search of an ideal template for therapeutic genome editing: A review of current developments for structure optimization. Front Genome Ed 2023; 5:1068637. [PMID: 36911237 PMCID: PMC9992834 DOI: 10.3389/fgeed.2023.1068637] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/08/2023] [Indexed: 02/24/2023] Open
Abstract
Gene therapy is a fast developing field of medicine with hundreds of ongoing early-stage clinical trials and numerous preclinical studies. Genome editing (GE) now is an increasingly important technology for achieving stable therapeutic effect in gene correction, with hematopoietic cells representing a key target cell population for developing novel treatments for a number of hereditary diseases, infections and cancer. By introducing a double strand break (DSB) in the defined locus of genomic DNA, GE tools allow to knockout the desired gene or to knock-in the therapeutic gene if provided with an appropriate repair template. Currently, the efficiency of methods for GE-mediated knock-in is limited. Significant efforts were focused on improving the parameters and interaction of GE nuclease proteins. However, emerging data suggests that optimal characteristics of repair templates may play an important role in the knock-in mechanisms. While viral vectors with notable example of AAVs as a donor template carrier remain the mainstay in many preclinical trials, non-viral templates, including plasmid and linear dsDNA, long ssDNA templates, single and double-stranded ODNs, represent a promising alternative. Furthermore, tuning of editing conditions for the chosen template as well as its structure, length, sequence optimization, homology arm (HA) modifications may have paramount importance for achieving highly efficient knock-in with favorable safety profile. This review outlines the current developments in optimization of templates for the GE mediated therapeutic gene correction.
Collapse
Affiliation(s)
- Alena Shakirova
- RM Gorbacheva Research Institute of Pediatric Oncology, Hematology and Transplantation, Pavlov University, Saint Petersburg, Russia
| | - Timofey Karpov
- RM Gorbacheva Research Institute of Pediatric Oncology, Hematology and Transplantation, Pavlov University, Saint Petersburg, Russia.,Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Yaroslava Komarova
- RM Gorbacheva Research Institute of Pediatric Oncology, Hematology and Transplantation, Pavlov University, Saint Petersburg, Russia
| | - Kirill Lepik
- RM Gorbacheva Research Institute of Pediatric Oncology, Hematology and Transplantation, Pavlov University, Saint Petersburg, Russia
| |
Collapse
|
22
|
Drakopoulou E, Georgomanoli M, Lederer CW, Panetsos F, Kleanthous M, Voskaridou E, Valakos D, Papanikolaou E, Anagnou NP. The Optimized γ-Globin Lentiviral Vector GGHI-mB-3D Leads to Nearly Therapeutic HbF Levels In Vitro in CD34 + Cells from Sickle Cell Disease Patients. Viruses 2022; 14:v14122716. [PMID: 36560719 PMCID: PMC9783242 DOI: 10.3390/v14122716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/13/2022] [Accepted: 11/30/2022] [Indexed: 12/11/2022] Open
Abstract
We have previously demonstrated that both the original γ-globin lentiviral vector (LV) GGHI and the optimized GGHI-mB-3D LV, carrying the novel regulatory elements of the 3D HPFH-1 enhancer and the 3' β-globin UTR, can significantly increase HbF production in thalassemic CD34+ cells and ameliorate the disease phenotype in vitro. In the present study, we investigated whether the GGHI-mB-3D vector can also exhibit an equally therapeutic effect, following the transduction of sickle cell disease (SCD) CD34+ cells at MOI 100, leading to HbF increase coupled with HbS decrease, and thus, to phenotype improvement in vitro. We show that GGHI-mB-3D LV can lead to high and potentially therapeutic HbF levels, reaching a mean 2-fold increase to a mean value of VCN/cell of 1.0 and a mean transduction efficiency of 55%. Furthermore, this increase was accompanied by a significant 1.6-fold HbS decrease, a beneficial therapeutic feature for SCD. In summary, our data demonstrate the efficacy of the optimized γ-globin lentiviral vector to improve the SCD phenotype in vitro, and highlights its potential use in future clinical SCD trials.
Collapse
Affiliation(s)
- Ekati Drakopoulou
- Laboratory of Cell and Gene Therapy, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Maria Georgomanoli
- Laboratory of Cell and Gene Therapy, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Carsten W. Lederer
- The Molecular Genetics Thalassemia Department, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
| | | | - Marina Kleanthous
- The Molecular Genetics Thalassemia Department, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
| | - Ersi Voskaridou
- Thalassemia and Sickle Cell Disease Centre, Laiko General Hospital, 11527 Athens, Greece
| | - Dimitrios Valakos
- Laboratory of Molecular Biology, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece
| | - Eleni Papanikolaou
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Nicholas P. Anagnou
- Laboratory of Cell and Gene Therapy, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Correspondence:
| |
Collapse
|
23
|
Eckrich MJ, Frangoul H. Gene Editing for Sickle Cell Disease and Transfusion Dependent Thalassemias- A cure within reach. Semin Hematol 2022; 60:3-9. [PMID: 37080708 DOI: 10.1053/j.seminhematol.2022.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/19/2022] [Indexed: 01/02/2023]
Abstract
Sickle cell disease (SCD) is associated with significant morbidity and shortened life expectancy. Similarly, patients with transfusion dependent beta thalassemia (TdT) require life-long transfusion therapy, chelation therapy and significant organ dysfunction. Allogeneic transplantation from a matched family donor provided the only curative option for patients with SCD and TdT. Unfortunately, less than 20% of patients have a fully matched related donor and results using unrelated donor transplant were associated with high rate of complications. Ex vivo gene therapy through globin gene addition has been investigated extensively and recent encouraging preliminary data resulted in regulatory approval in patients with TdT. Recent improvements in our understanding of the molecular pathways controlling erythropoiesis and globin switching from fetal hemoglobin to adult hemoglobin offer a new and exciting therapeutic options. Rapid and substantial advances in genome editing tools using CRISPR/Cas9, have raised the possibility of genetic editing and correction in patient derived hematopoietic stem and progenitor cells. We will review results of gene editing approach that can induce fetal hemoglobin production in patients with SCD and TdT.
Collapse
|
24
|
Wienert B, Cromer MK. CRISPR nuclease off-target activity and mitigation strategies. Front Genome Ed 2022; 4:1050507. [PMID: 36439866 PMCID: PMC9685173 DOI: 10.3389/fgeed.2022.1050507] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
Abstract
The discovery of CRISPR has allowed site-specific genomic modification to become a reality and this technology is now being applied in a number of human clinical trials. While this technology has demonstrated impressive efficacy in the clinic to date, there remains the potential for unintended on- and off-target effects of CRISPR nuclease activity. A variety of in silico-based prediction tools and empirically derived experimental methods have been developed to identify the most common unintended effect-small insertions and deletions at genomic sites with homology to the guide RNA. However, large-scale aberrations have recently been reported such as translocations, inversions, deletions, and even chromothripsis. These are more difficult to detect using current workflows indicating a major unmet need in the field. In this review we summarize potential sequencing-based solutions that may be able to detect these large-scale effects even at low frequencies of occurrence. In addition, many of the current clinical trials using CRISPR involve ex vivo isolation of a patient's own stem cells, modification, and re-transplantation. However, there is growing interest in direct, in vivo delivery of genome editing tools. While this strategy has the potential to address disease in cell types that are not amenable to ex vivo manipulation, in vivo editing has only one desired outcome-on-target editing in the cell type of interest. CRISPR activity in unintended cell types (both on- and off-target) is therefore a major safety as well as ethical concern in tissues that could enable germline transmission. In this review, we have summarized the strengths and weaknesses of current editing and delivery tools and potential improvements to off-target and off-tissue CRISPR activity detection. We have also outlined potential mitigation strategies that will ensure that the safety of CRISPR keeps pace with efficacy, a necessary requirement if this technology is to realize its full translational potential.
Collapse
Affiliation(s)
- Beeke Wienert
- Graphite Bio, Inc., South San Francisco, CA, United States
| | - M. Kyle Cromer
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, United States
- Eli and Edythe Broad Center for Regeneration Medicine, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
25
|
Foley RA, Sims RA, Duggan EC, Olmedo JK, Ma R, Jonas SJ. Delivering the CRISPR/Cas9 system for engineering gene therapies: Recent cargo and delivery approaches for clinical translation. Front Bioeng Biotechnol 2022; 10:973326. [PMID: 36225598 PMCID: PMC9549251 DOI: 10.3389/fbioe.2022.973326] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022] Open
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats associated protein 9 (CRISPR/Cas9) has transformed our ability to edit the human genome selectively. This technology has quickly become the most standardized and reproducible gene editing tool available. Catalyzing rapid advances in biomedical research and genetic engineering, the CRISPR/Cas9 system offers great potential to provide diagnostic and therapeutic options for the prevention and treatment of currently incurable single-gene and more complex human diseases. However, significant barriers to the clinical application of CRISPR/Cas9 remain. While in vitro, ex vivo, and in vivo gene editing has been demonstrated extensively in a laboratory setting, the translation to clinical studies is currently limited by shortfalls in the precision, scalability, and efficiency of delivering CRISPR/Cas9-associated reagents to their intended therapeutic targets. To overcome these challenges, recent advancements manipulate both the delivery cargo and vehicles used to transport CRISPR/Cas9 reagents. With the choice of cargo informing the delivery vehicle, both must be optimized for precision and efficiency. This review aims to summarize current bioengineering approaches to applying CRISPR/Cas9 gene editing tools towards the development of emerging cellular therapeutics, focusing on its two main engineerable components: the delivery vehicle and the gene editing cargo it carries. The contemporary barriers to biomedical applications are discussed within the context of key considerations to be made in the optimization of CRISPR/Cas9 for widespread clinical translation.
Collapse
Affiliation(s)
- Ruth A. Foley
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
- Department of Bioengineering, University of California, Los Angeles, CA, United States
| | - Ruby A. Sims
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
- California NanoSystems Institute, University of California, Los Angeles, CA, United States
| | - Emily C. Duggan
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| | - Jessica K. Olmedo
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| | - Rachel Ma
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| | - Steven J. Jonas
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
- California NanoSystems Institute, University of California, Los Angeles, CA, United States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, United States
| |
Collapse
|
26
|
Rahimmanesh I, Boshtam M, Kouhpayeh S, Khanahmad H, Dabiri A, Ahangarzadeh S, Esmaeili Y, Bidram E, Vaseghi G, Haghjooy Javanmard S, Shariati L, Zarrabi A, Varma RS. Gene Editing-Based Technologies for Beta-hemoglobinopathies Treatment. BIOLOGY 2022; 11:biology11060862. [PMID: 35741383 PMCID: PMC9219845 DOI: 10.3390/biology11060862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/19/2022] [Accepted: 05/31/2022] [Indexed: 06/12/2023]
Abstract
Beta (β)-thalassemia is a group of human inherited abnormalities caused by various molecular defects, which involves a decrease or cessation in the balanced synthesis of the β-globin chains in hemoglobin structure. Traditional treatment for β-thalassemia major is allogeneic bone marrow transplantation (BMT) from a completely matched donor. The limited number of human leukocyte antigen (HLA)-matched donors, long-term use of immunosuppressive regimen and higher risk of immunological complications have limited the application of this therapeutic approach. Furthermore, despite improvements in transfusion practices and chelation treatment, many lingering challenges have encouraged researchers to develop newer therapeutic strategies such as nanomedicine and gene editing. One of the most powerful arms of genetic manipulation is gene editing tools, including transcription activator-like effector nucleases, zinc-finger nucleases, and clustered regularly interspaced short palindromic repeat-Cas-associated nucleases. These tools have concentrated on γ- or β-globin addition, regulating the transcription factors involved in expression of endogenous γ-globin such as KLF1, silencing of γ-globin inhibitors including BCL11A, SOX6, and LRF/ZBTB7A, and gene repair strategies. In this review article, we present a systematic overview of the appliances of gene editing tools for β-thalassemia treatment and paving the way for patients' therapy.
Collapse
Affiliation(s)
- Ilnaz Rahimmanesh
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Maryam Boshtam
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 81583-88994, Iran
| | - Shirin Kouhpayeh
- Erythron Genetics and Pathobiology Laboratory, Department of Immunology, Isfahan 76351-81647, Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Arezou Dabiri
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Shahrzad Ahangarzadeh
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Yasaman Esmaeili
- Biosensor Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Elham Bidram
- Biosensor Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Golnaz Vaseghi
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 81583-88994, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Laleh Shariati
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
- Cancer Prevention Research, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Turkey
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|