1
|
Kim HJ, Suh JH, Kim MH, Choi MG, Chun EM. Broad-Spectrum Adverse Events of Special Interests Based on Immune Response Following COVID-19 Vaccination: A Large-Scale Population-Based Cohort Study. J Clin Med 2025; 14:1767. [PMID: 40095916 PMCID: PMC11900331 DOI: 10.3390/jcm14051767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 03/19/2025] Open
Abstract
Background/Objectives: Current studies on adverse events related to the COVID-19 vaccine have predominantly focused on severe, life-threatening side effects. However, numerous less severe but common adverse events (AEs) remain underreported and insufficiently investigated despite their potential impact. Methods: This population-based cohort study investigated the cumulative incidence rate (cIR) and risk of the broad-spectrum AEs of special interests (AESIs) based on immune response, including gynecological, dermatological, ophthalmological, otologic, and dental problems, following COVID-19 vaccination. Results: Among 4,203,887 individuals in Seoul, South Korea, the final analysis included 1,458,557 vaccinated subjects and 289,579 non-vaccinated subjects after the exclusion of underlying diseases. The cIR of AESIs for three months was significantly higher in vaccinated subjects than in non-vaccinated subjects, except for endometriosis. The vaccination significantly increased the risks of all the AESIs except for visual impairment. The risk of alopecia showed the highest HRs (HR [95% CI] = 2.40 [1.90-3.03]) among the AESIs following COVID-19 vaccination. Among the vaccinated subjects, heterologous vaccination was associated with the increased risk of most of the AESIs. Conclusions: Our findings suggest that clinicians should closely recognize and follow up on various COVID-19 vaccine-related AEs due to their unknown impact, even if they may not be serious at present.
Collapse
Affiliation(s)
- Hong Jin Kim
- Department of Orthopaedic Surgery, Kyung-in Regional Military Manpower Administration, Suwon 16440, Republic of Korea;
- Department of Orthopaedic Surgery, Inje University Sanggye Paik Hospital, College of Medicine, Inje University, Seoul 01757, Republic of Korea
| | - Jee Hyun Suh
- Department of Rehabilitation Medicine, College of Medicine, Ewha Womans University, Seoul 07985, Republic of Korea;
| | - Min-Ho Kim
- Informatization Department, Ewha Womans University Seoul Hospital, Seoul 07804, Republic of Korea;
| | - Myeong Geun Choi
- Department of Internal Medicine, Division of Pulmonology and Critical Care Medicine, School of Medicine, Ewha Womans University, Seoul 07985, Republic of Korea;
| | - Eun Mi Chun
- Department of Internal Medicine, Division of Pulmonology and Critical Care Medicine, School of Medicine, Ewha Womans University, Seoul 07985, Republic of Korea;
| |
Collapse
|
2
|
Kim HJ, Kim MH, Choi MG, Chun EM. Psychiatric adverse events following COVID-19 vaccination: a population-based cohort study in Seoul, South Korea. Mol Psychiatry 2024; 29:3635-3643. [PMID: 38834668 PMCID: PMC11541197 DOI: 10.1038/s41380-024-02627-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/06/2024]
Abstract
Evidence has suggested an increased risk of psychiatric manifestations following viral infections including coronavirus disease-2019 (COVID-19). However, psychiatric adverse events (AEs) after COVID-19 vaccination, which were documented in case reports and case series, remain unclear. This study is aimed to investigate the psychiatric AEs after COVID-19 vaccination from a large population-based cohort in Seoul, South Korea. We recruited 50% of the Seoul-resident population randomly selected from the Korean National Health Insurance Service (KNHIS) claims database on 1, January, 2021. The included participants (n = 2,027,353) from the Korean National Health Insurance Service claims database were divided into two groups according to COVID-19 vaccination. The cumulative incidences per 10,000 of psychiatric AEs were assessed on one week, two weeks, one month, and three months after COVID-19 vaccination. Hazard ratios (HRs) and 95% Confidence interval (CIs) of psychiatric AEs were measured for the vaccinated population. The cumulative incidence of depression, anxiety, dissociative, stress-related, and somatoform disorders, sleep disorders, and sexual disorders at three months following COVID-19 vaccination were higher in the vaccination group than no vaccination group. However, schizophrenia and bipolar disorders showed lower cumulative incidence in the vaccination group than in the non-vaccinated group. Depression (HR [95% CI] = 1.683 [1.520-1.863]), anxiety, dissociative, stress-related, and somatoform disorders (HR [95% CI] = 1.439 [1.322-1.568]), and sleep disorders (HR [95% CI] = 1.934 [1.738-2.152]) showed increased risks after COVID-19 vaccination, whereas the risks of schizophrenia (HR [95% CI] = 0.231 [0.164-0.326]) and bipolar disorder (HR [95% CI] = 0.672 [0.470-0.962]). COVID-19 vaccination increased the risks of depression, anxiety, dissociative, stress-related, and somatoform disorders, and sleep disorders while reducing the risk of schizophrenia and bipolar disorder. Therefore, special cautions are necessary for administering additional COVID-19 vaccinations to populations vulnerable to psychiatric AEs.
Collapse
Affiliation(s)
- Hong Jin Kim
- Department of Orthopedic Surgery, Inje University Sanggye Paik Hospital, College of Medicine, Inje University, Seoul, Republic of Korea
| | - Min-Ho Kim
- Informatization Department, Ewha Womans University Seoul Hospital, Seoul, Republic of Korea
| | - Myeong Geun Choi
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Eun Mi Chun
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, School of Medicine, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Ivanko I, Hanžek M, Ćelap I, Margetić S, Marijančević D, Josipović J, Gaćina P. CCL20 chemokine and other proinflammatory markers after Ad26.COV2.S vaccination. Biochem Med (Zagreb) 2024; 34:030706. [PMID: 39435167 PMCID: PMC11493461 DOI: 10.11613/bm.2024.030706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/25/2024] [Indexed: 10/23/2024] Open
Abstract
Introduction In highly stressed circumstances, such as COVID-19 pandemic, biomarkers of the vaccine-induced immunity could be especially convenient. The main aim of our study was to determine C-C motif ligand 20 (CCL20) concentration after Ad26.COV2.S vaccination in regard to more common proinflammatory molecules and its correlation with anti-SARS-CoV-2 antibody concentration. Secondly, we investigated inflammatory and immunologic profile differences between patients with and without arterial hypertension. Materials and methods The study included 84 subjects vaccinated with Ad26.COV2.S vaccine. Concentration of CCL20, interleukin (IL) 6, C-reactive protein (CRP) was investigated before, 7 and 14 days after vaccination and concentration of anti-SARS-CoV-2 IgG antibody 7 and 14 days after vaccination. All the markers were measured by well-established laboratory methods. Results There were no statistically significant changes of CCL20 and IL-6 concentration after the vaccination. The obtained results have shown statistically significant differences for CRP (P = 0.006) concentrations between 3 time points and SARS-CoV-2 IgG antibody (P < 0.001) concentrations between 2 time points. CCL20 did not correlate with IL-6, CRP or anti-SARS-CoV-2 IgG antibody concentration. Statistically significant difference for CRP (P = 0.025) concentration between 3 time points was observed in the subgroup of subjects with arterial hypertension. Conclusions Although our results did not show changes in CCL20 concentration after the vaccination, possibly due to the study timeframe, further investigations on chemokine profile post SARS-CoV-2 immunization could facilitate the recognition of specific patterns of response (supra- or sub-optimal) to the vaccine.
Collapse
Affiliation(s)
- Iva Ivanko
- Department of Haematology, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Milena Hanžek
- Department of Clinical Chemistry, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Ivana Ćelap
- Department of Clinical Chemistry, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Sandra Margetić
- Department of Clinical Chemistry, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
- School of Medicine, Catholic University of Croatia, Zagreb, Croatia
| | - Domagoj Marijančević
- Department of Clinical Chemistry, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
- School of Medicine, Catholic University of Croatia, Zagreb, Croatia
| | - Josipa Josipović
- School of Medicine, Catholic University of Croatia, Zagreb, Croatia
- Department of Nephrology, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Petar Gaćina
- Department of Haematology, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
- School of Dental Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
4
|
Kim HH, Lee HK, Hennighausen L, Furth PA, Sung H, Huh JW. Time-course analysis of antibody and cytokine response after the third SARS-CoV-2 vaccine dose. Vaccine X 2024; 20:100565. [PMID: 39399820 PMCID: PMC11470517 DOI: 10.1016/j.jvacx.2024.100565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024] Open
Abstract
The widespread administration of an additional dose of the SARS-CoV-2 vaccine has been promoted across adult populations, demonstrating a robust immune response against COVID-19. Longitudinal studies provide crucial data on the durability of immune response after the third vaccination. This study aims to explore the antibody response, neutralizing activity, and cytokine response against the SARS-CoV-2 ancestral strain (wild-type) and its variants during the timeline before and after the administration of the third vaccine dose. Anti-spike antibody titers and neutralizing antibodies blocking ACE2 binding to spike antigens were measured in 62 study participants at baseline, and on days 7, 21, and 180 post-vaccination. Cytokine levels were assessed at the same points except for day 180, with an additional measurement on day 3 post-vaccination. The analysis revealed no substantial variation in anti-spike antibody titer against the SARS-CoV-2 ancestral strain between the pre-vaccination phase and three days following the third dose. However, a significant nine-fold increase in these titers was observed by day 7, maintained until day 21. Although a decrease was observed by day 180, all participants still had detectable antibody levels. A similar trend was noted for neutralizing antibodies, with a four-fold rise by day 7 post-vaccination. At day 180, a diminution of neutralizing antibody titers was evident for both wild-type and all variants, including Omicron subvariant. A transient increase in cytokine activity, notably involving components of the Janus kinase (JAK)/signal transducers and activators of transcription (STAT) pathway, such as CXCL10 and IL-10, was observed within three days after the third dose. This study underscores a distinct amplification of humoral immune response seven days following the third SARS-CoV-2 vaccine dose and observes a decline in neutralizing antibody titers 180 days following the third dose, thus indicating the temporal humoral effectiveness of booster vaccination. A short-term cytokine surge, notably involving the JAK/STAT pathway, highlights the dynamic immune modulation post-vaccination.
Collapse
Affiliation(s)
- Hyeon Hwa Kim
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hye Kyung Lee
- Laboratory of Genetics and Physiology, National Institute of Diabetes, Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD 20892, United States
| | - Lothar Hennighausen
- Laboratory of Genetics and Physiology, National Institute of Diabetes, Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD 20892, United States
| | - Priscilla A. Furth
- Laboratory of Genetics and Physiology, National Institute of Diabetes, Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD 20892, United States
| | - Heungsup Sung
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jin Won Huh
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
5
|
Papadatou I, Geropeppa M, Piperi C, Spoulou V, Adamopoulos C, Papavassiliou AG. Deciphering Immune Responses to Immunization via Transcriptional Analysis: A Narrative Review of the Current Evidence towards Personalized Vaccination Strategies. Int J Mol Sci 2024; 25:7095. [PMID: 39000206 PMCID: PMC11240890 DOI: 10.3390/ijms25137095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
The development of vaccines has drastically reduced the mortality and morbidity of several diseases. Despite the great success of vaccines, the immunological processes involved in protective immunity are not fully understood and several issues remain to be elucidated. Recently, the advent of high-throughput technologies has enabled a more in-depth investigation of the immune system as a whole and the characterization of the interactions of numerous components of immunity. In the field of vaccinology, these tools allow for the exploration of the molecular mechanisms by which vaccines can induce protective immune responses. In this review, we aim to describe current data on transcriptional responses to vaccination, focusing on similarities and differences of vaccine-induced transcriptional responses among vaccines mostly in healthy adults, but also in high-risk populations, such as the elderly and children. Moreover, the identification of potential predictive biomarkers of vaccine immunogenicity, the effect of age on transcriptional response and future perspectives for the utilization of transcriptomics in the field of vaccinology will be discussed.
Collapse
Affiliation(s)
- Ioanna Papadatou
- Immunobiology and Vaccinology Research Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.P.); (M.G.); (V.S.)
- First Department of Pediatrics, “Aghia Sophia” Children’s Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Maria Geropeppa
- Immunobiology and Vaccinology Research Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.P.); (M.G.); (V.S.)
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.P.); (A.G.P.)
| | - Vana Spoulou
- Immunobiology and Vaccinology Research Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.P.); (M.G.); (V.S.)
- First Department of Pediatrics, “Aghia Sophia” Children’s Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christos Adamopoulos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.P.); (A.G.P.)
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.P.); (A.G.P.)
| |
Collapse
|
6
|
Kim HJ, Kim MH, Park SJ, Choi MG, Chun EM. Autoimmune adverse event following COVID-19 vaccination in Seoul, South Korea. J Allergy Clin Immunol 2024; 153:1711-1720. [PMID: 38520423 DOI: 10.1016/j.jaci.2024.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND There is growing evidence that the coronavirus disease 2019 (COVID-19) vaccination can affect the regulation of the immune system, leading to the development of autoimmune diseases. However, the autoimmune adverse events (AEs) after COVID-19 vaccination remain largely unclear. OBJECTIVE We sought to investigate the autoimmune AEs after COVID-19 vaccination from a population-based cohort in South Korea. METHODS A total of 4,203,887 participants, representing 50% of the population residing in Seoul, were recruited from the National Health Insurance Service database and then divided into 2 groups on the basis of COVID-19 vaccination. The cumulative incidence, hazard ratios (HRs), and 95% CIs of autoimmune AEs were assessed following COVID-19 vaccination. RESULTS The incidence of vitiligo has been observed to be significantly higher in the vaccination group compared with the no vaccination group. The cumulative incidence of vitiligo began to show a significant difference starting 2 weeks after vaccination, and it reached 2.2% in the vaccination group and 0.6% in the no vaccination group by 3 months after COVID-19 vaccination. Vitiligo (HR, 2.714; 95% CI, 1.777-4.146) was an increased risk among autoimmune AEs. Furthermore, the risk of vitiligo was the highest for heterologous vaccination (HR, 3.890; 95% CI, 2.303-6.573) compared with using cDNA vaccine (HR, 2.861; 95% CI, 1.838-4.453) or mRNA vaccine (HR, 2.475; 95% CI, 1.607-3.813). CONCLUSIONS Vitiligo as an autoimmune AE was noted to be substantially higher in the COVID-19-vaccinated group compared with the controls. Therefore, the occurrence of vitiligo could be considered as one of the significant AEs post-COVID-19 vaccination.
Collapse
Affiliation(s)
- Hong Jin Kim
- Department of Orthopedic Surgery, Inje University Sanggye Paik Hospital, College of Medicine, Inje University, Seoul, Korea
| | - Min-Ho Kim
- Informatization Department, Ewha Womans University Seoul Hospital, Ewha Womans University, Seoul, Korea
| | - Seong Jun Park
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, School of Medicine, Ewha Womans University, Seoul, Korea
| | - Myeong Geun Choi
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, School of Medicine, Ewha Womans University, Seoul, Korea
| | - Eun Mi Chun
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, School of Medicine, Ewha Womans University, Seoul, Korea.
| |
Collapse
|
7
|
Zhang Y, Fu Z, Zhang H, Lin K, Song J, Guo J, Zhang Q, Yuan G, Wang H, Fan M, Zhao Y, Sun R, Guo T, Jiang N, Qiu C, Zhang W, Ai J. Proteomic and Cellular Characterization of Omicron Breakthrough Infections and a Third Homologous or Heterologous Boosting Vaccination in a Longitudinal Cohort. Mol Cell Proteomics 2024; 23:100769. [PMID: 38641227 PMCID: PMC11154224 DOI: 10.1016/j.mcpro.2024.100769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 01/18/2024] [Accepted: 03/23/2024] [Indexed: 04/21/2024] Open
Abstract
The understanding of dynamic plasma proteome features in hybrid immunity and breakthrough infection is limited. A deeper understanding of the immune differences between heterologous and homologous immunization could assist in the future establishment of vaccination strategies. In this study, 40 participants who received a third dose of either a homologous BBIBP-CorV or a heterologous ZF2001 protein subunit vaccine following two doses of inactivated coronavirus disease 2019 vaccines and 12 patients with BA2.2 breakthrough infections were enrolled. Serum samples were collected at days 0, 28, and 180 following the boosting vaccination and breakthrough and then analyzed using neutralizing antibody tests and mass spectrometer-based proteomics. Mass cytometry of peripheral blood mononuclear cell samples was also performed in this cohort. The chemokine signaling pathway and humoral response markers (IgG2 and IgG3) associated with infection were found to be upregulated in breakthrough infections compared to vaccination-induced immunity. Elevated expression of IGKV, IGHV, IL-17 signaling, and the phagocytosis pathway, along with lower expression of FGL2, were correlated with higher antibody levels in the boosting vaccination groups. The MAPK signaling pathway and Fc gamma R-mediated phagocytosis were more enriched in the heterologous immunization groups than in the homologous immunization groups. Breakthrough infections can trigger more intensive inflammatory chemokine responses than vaccination. T-cell and innate immune activation have been shown to be closely related to enhanced antibody levels after vaccination and therefore might be potential targets for vaccine adjuvant design.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhangfan Fu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Haocheng Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ke Lin
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jieyu Song
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jingxin Guo
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiran Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guanmin Yuan
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hongyu Wang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mingxiang Fan
- Tongji Medical School, Tongji University, Shanghai, China
| | - Yuanhan Zhao
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Rui Sun
- iMarker lab, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
| | - Tiannan Guo
- iMarker lab, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
| | - Ning Jiang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chao Qiu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenhong Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; Shanghai huashen institute of microbes and infections, Shanghai, China.
| | - Jingwen Ai
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Kim JH, Yoon D, Ko HY, Jung K, Sunwoo JS, Shin WC, Byun JI, Shin JY. Risk of encephalitis and meningitis after COVID-19 vaccination in South Korea: a self-controlled case series analysis. BMC Med 2024; 22:123. [PMID: 38486297 PMCID: PMC10941581 DOI: 10.1186/s12916-024-03347-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/07/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Several neurological manifestations shortly after a receipt of coronavirus infectious disease 2019 (COVID-19) vaccine have been described in the recent case reports. Among those, we sought to evaluate the risk of encephalitis and meningitis after COVID-19 vaccination in the entire South Korean population. METHODS We conducted self-controlled case series (SCCS) analysis using the COVID-19 immunization record data from the Korea Disease Control Agency between February 2021 and March 2022, linked with the National Health Insurance Database between January 2021 and October 2022. We retrieved all medical claims of adults aged 18 years or older who received at least one dose of COVID-19 vaccines (BNT162b2, mRNA-1273, ChAdOx1-S, or Ad26.COV2.S), and included only those who had a diagnosis record for encephalitis or meningitis within the 240-day post-vaccination period. With day 0 defined as the date of vaccination, risk window was defined as days 1-28 and the control window as the remainder period excluding the risk windows within the 240-day period. We used conditional Poisson regression to estimate the incidence rate ratios (IRR) with 95% confidence intervals (CI), stratified by dose and vaccine type. RESULTS From 129,956,027 COVID-19 vaccine doses administered to 44,564,345 individuals, there were 251 and 398 cases of encephalitis and meningitis during the risk window, corresponding to 1.9 and 3.1 cases per 1 million doses, respectively. Overall, there was an increased risk of encephalitis in the first 28 days of COVID-19 vaccination (IRR 1.26; 95% CI 1.08-1.47), which was only significant after a receipt of ChAdOx1-S (1.49; 1.03-2.15). For meningitis, no increased risk was observed after any dose of COVID-19 vaccine (IRR 1.03; 95% CI 0.91-1.16). CONCLUSIONS Our findings suggest an overall increased risk of encephalitis after COVID-19 vaccination. However, the absolute risk was small and should not impede COVID-19 vaccine confidence. No significant association was found between the risk of meningitis and COVID-19 vaccination.
Collapse
Affiliation(s)
- Ju Hwan Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
- Department of Biohealth Regulatory Science, Sungkyunkwan University, Suwon, South Korea
| | - Dongwon Yoon
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
- Department of Biohealth Regulatory Science, Sungkyunkwan University, Suwon, South Korea
| | - Hwa Yeon Ko
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Kyungyeon Jung
- Department of Biohealth Regulatory Science, Sungkyunkwan University, Suwon, South Korea
| | - Jun-Sang Sunwoo
- Department of Neurology, Kangbuk Samsung Hospital, Seoul, South Korea
| | - Won Chul Shin
- Department of Neurology, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Jung-Ick Byun
- Department of Neurology, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul, South Korea.
| | - Ju-Young Shin
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea.
- Department of Biohealth Regulatory Science, Sungkyunkwan University, Suwon, South Korea.
- Department of Clinical Research Design & Evaluation, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, South Korea.
| |
Collapse
|
9
|
Tranter E, Frentsch M, Hütter-Krönke ML, Vuong GL, Busch D, Loyal L, Henze L, Rosnev S, Blau IW, Thiel A, Beule D, Bullinger L, Obermayer B, Na IK. Comparable CD8 + T-cell responses to SARS-CoV-2 vaccination in single-cell transcriptomics of recently allogeneic transplanted patients and healthy individuals. J Med Virol 2024; 96:e29539. [PMID: 38516755 DOI: 10.1002/jmv.29539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/23/2024]
Abstract
Despite extensive research on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination responses in healthy individuals, there is comparatively little known beyond antibody titers and T-cell responses in the vulnerable cohort of patients after allogeneic hematopoietic stem cell transplantation (ASCT). In this study, we assessed the serological response and performed longitudinal multimodal analyses including T-cell functionality and single-cell RNA sequencing combined with T cell receptor (TCR)/B cell receptor (BCR) profiling in the context of BNT162b2 vaccination in ASCT patients. In addition, these data were compared to publicly available data sets of healthy vaccinees. Protective antibody titers were achieved in 40% of patients. We identified a distorted B- and T-cell distribution, a reduced TCR diversity, and increased levels of exhaustion marker expression as possible causes for the poorer vaccine response rates in ASCT patients. Immunoglobulin heavy chain gene rearrangement after vaccination proved to be highly variable in ASCT patients. Changes in TCRα and TCRβ gene rearrangement after vaccination differed from patterns observed in healthy vaccinees. Crucially, ASCT patients elicited comparable proportions of SARS-CoV-2 vaccine-induced (VI) CD8+ T-cells, characterized by a distinct gene expression pattern that is associated with SARS-CoV-2 specificity in healthy individuals. Our study underlines the impaired immune system and thus the lower vaccine response rates in ASCT patients. However, since protective vaccine responses and VI CD8+ T-cells can be induced in part of ASCT patients, our data advocate early posttransplant vaccination due to the high risk of infection in this vulnerable group.
Collapse
Affiliation(s)
- Eva Tranter
- Medizinische Klinik m. S. Hämatologie, Onkologie und Tumorimmunologie, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Marco Frentsch
- Medizinische Klinik m. S. Hämatologie, Onkologie und Tumorimmunologie, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Marie Luise Hütter-Krönke
- Medizinische Klinik m. S. Hämatologie, Onkologie und Tumorimmunologie, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Giang Lam Vuong
- Medizinische Klinik m. S. Hämatologie, Onkologie und Tumorimmunologie, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - David Busch
- Medizinische Klinik m. S. Hämatologie, Onkologie und Tumorimmunologie, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lucie Loyal
- Si-M/"Der Simulierte Mensch", A Science Framework of Technische Universität Berlin and Charité-Universitätsmedizin Berlin, Berlin, Germany
- BIH Center of Immunomics-Regenerative Immunology and Aging, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Larissa Henze
- Si-M/"Der Simulierte Mensch", A Science Framework of Technische Universität Berlin and Charité-Universitätsmedizin Berlin, Berlin, Germany
- BIH Center of Immunomics-Regenerative Immunology and Aging, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Stanislav Rosnev
- Medizinische Klinik m. S. Hämatologie, Onkologie und Tumorimmunologie, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Igor-Wolfgang Blau
- Medizinische Klinik m. S. Hämatologie, Onkologie und Tumorimmunologie, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Thiel
- Si-M/"Der Simulierte Mensch", A Science Framework of Technische Universität Berlin and Charité-Universitätsmedizin Berlin, Berlin, Germany
- BIH Center of Immunomics-Regenerative Immunology and Aging, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Dieter Beule
- Core Unit Bioinformatics, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lars Bullinger
- Medizinische Klinik m. S. Hämatologie, Onkologie und Tumorimmunologie, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany
- ECRC Experimental and Clinical Research Center, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Benedikt Obermayer
- Core Unit Bioinformatics, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Il-Kang Na
- Medizinische Klinik m. S. Hämatologie, Onkologie und Tumorimmunologie, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité Universitätsmedizin Berlin, Berlin, Germany
- Si-M/"Der Simulierte Mensch", A Science Framework of Technische Universität Berlin and Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany
- ECRC Experimental and Clinical Research Center, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
10
|
Trombetta CM, Marchi S, Leonardi M, Coppola C, Benincasa L, Marotta MG, Buonvino N, Maes P, Stufano A, Pontrelli D, Vasinioti VI, Manenti A, Camero M, Montomoli E, Decaro N, Lovreglio P. Evaluation of immune response to SARS-CoV-2 Omicron sublineages six months after different vaccination regimens in Italy. Acta Trop 2023; 248:107042. [PMID: 37863379 DOI: 10.1016/j.actatropica.2023.107042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
The Omicron variant is the most divergent, displaying more mutations than previous SARS-CoV-2 variants, particularly in the gene that encodes the spike protein. This study aimed to assess the persistence of neutralizing antibodies towards the SARS-CoV-2 Omicron sublineages (BA.2, BA.5, BQ.1, XBB and XBB1.5) six months after the third dose in different vaccination regimens. Subjects who received 3 doses of mRNA vaccine retained their neutralization activity against BA.2 and BA.5, even though 56.3% and 66.7% showed a ≥ 2-fold reduction in the neutralizing antibody titre, respectively. Subjects who had received the adenovirus-based vaccine plus a booster dose of mRNA vaccine retained their neutralization activity especially against BA.2. With regard to BQ.1, XBB and XBB.1.5, the majority of the subjects showed a ≥ 2-fold reduction in neutralizing antibody titre, with the greatest evasion being observed in the case of XBB. Overall, our results provide further evidence that triple homologous/heterologous vaccination and hybrid immunity result in detectable neutralizing antibodies against the ancestral virus; however, emerging Omicron sublineages, such as XBB and XBB.1.5, show a great evasive capacity, which compromises the effectiveness of current COVID-19 vaccines.
Collapse
Affiliation(s)
- Claudia Maria Trombetta
- Department of Molecular and Developmental Medicine, University of Siena, via Aldo Moro 2, Siena 53100, Italy.
| | - Serena Marchi
- Department of Molecular and Developmental Medicine, University of Siena, via Aldo Moro 2, Siena 53100, Italy
| | | | - Chiara Coppola
- Department of Molecular and Developmental Medicine, University of Siena, via Aldo Moro 2, Siena 53100, Italy
| | | | - Maria Giovanna Marotta
- Department of Molecular and Developmental Medicine, University of Siena, via Aldo Moro 2, Siena 53100, Italy
| | | | - Piet Maes
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute, KU Leuven, Leuven, Belgium
| | | | | | | | | | | | - Emanuele Montomoli
- Department of Molecular and Developmental Medicine, University of Siena, via Aldo Moro 2, Siena 53100, Italy; VisMederi Research Srl, Siena, Italy; VisMederi Srl, Siena, Italy
| | | | | |
Collapse
|
11
|
Kim WJ, Roberts CC, Song JY, Yoon JG, Seong H, Hyun HJ, Lee H, Gil A, Oh Y, Park JE, Lee JE, Jeon B, Kane D, Spruill S, Kudchodkar SB, Muthumani K, Park YK, Kwon I, Maslow JN. Immune response enhancement with GLS-5310 DNA primary vaccine against SARS-CoV-2 followed by administration of an mRNA vaccine heterologous boost. Vaccine 2023:S0264-410X(23)00683-7. [PMID: 37296017 DOI: 10.1016/j.vaccine.2023.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/15/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
Heterologous boost regimens are being increasingly considered against SARS-CoV-2. We report results for the 32 of 45 participants in the Phase 1 CoV2-001 clinical trial (Kim et al., Int J Iinfect Dis 2023, 128:112-120) who elected to receive an EUA-approved SARS-CoV-2 mRNA vaccine 6 to 8 months following a two-dose primary vaccination with the GLS-5310 bi-cistronic DNA vaccine given intradermally and followed by application of suction using the GeneDerm device. Receipt of EUA-approved mRNA vaccines after GLS-5310 vaccination was well-tolerated, with no reported adverse events. Immune responses were enhanced such that binding antibody titers, neutralizing antibody titers, and T-cell responses increased 1,187-fold, 110-fold, and 2.9-fold, respectively. This paper is the first description of the immune responses following heterologous vaccination with a DNA primary series and mRNA boost.
Collapse
Affiliation(s)
- Woo Joo Kim
- Division of Infectious Diseases, Guro Hospital, Vaccine Innovation Center, Korea University, College of Medicine, Seoul, Republic of Korea
| | | | - Joon Young Song
- Division of Infectious Diseases, Guro Hospital, Vaccine Innovation Center, Korea University, College of Medicine, Seoul, Republic of Korea
| | - Jin Gu Yoon
- Division of Infectious Diseases, Guro Hospital, Vaccine Innovation Center, Korea University, College of Medicine, Seoul, Republic of Korea
| | - Hye Seong
- Division of Infectious Diseases, Guro Hospital, Vaccine Innovation Center, Korea University, College of Medicine, Seoul, Republic of Korea
| | - Hak-Jun Hyun
- Division of Infectious Diseases, Guro Hospital, Vaccine Innovation Center, Korea University, College of Medicine, Seoul, Republic of Korea
| | - Hyojin Lee
- GeneOne Life Science, Inc., Seoul, Republic of Korea
| | - Areum Gil
- GeneOne Life Science, Inc., Seoul, Republic of Korea
| | - Yeeun Oh
- GeneOne Life Science, Inc., Seoul, Republic of Korea
| | - Ji-Eun Park
- GeneOne Life Science, Inc., Seoul, Republic of Korea
| | - Ji-Eun Lee
- GeneOne Life Science, Inc., Seoul, Republic of Korea
| | - Bohyun Jeon
- GeneOne Life Science, Inc., Seoul, Republic of Korea
| | - Deborah Kane
- GeneOne Life Science, Inc., Seoul, Republic of Korea
| | - Susan Spruill
- Applied Statistics and Consulting, Spruce Pine, NC, USA
| | | | - Kar Muthumani
- GeneOne Life Science, Inc., Seoul, Republic of Korea
| | - Young K Park
- GeneOne Life Science, Inc., Seoul, Republic of Korea
| | - Ijoo Kwon
- GeneOne Life Science, Inc., Seoul, Republic of Korea
| | - Joel N Maslow
- GeneOne Life Science, Inc., Seoul, Republic of Korea; Department of Medicine, Morristown Medical Center, Morristown, NJ, USA.
| |
Collapse
|
12
|
Guibert N, Trepat K, Pozzetto B, Josset L, Fassier JB, Allatif O, Saker K, Brengel-Pesce K, Walzer T, Vanhems P, Trouillet-Assant S. A third vaccine dose equalises the levels of effectiveness and immunogenicity of heterologous or homologous COVID-19 vaccine regimens, Lyon, France, December 2021 to March 2022. Euro Surveill 2023; 28:2200746. [PMID: 37052679 PMCID: PMC10103547 DOI: 10.2807/1560-7917.es.2023.28.15.2200746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/17/2023] [Indexed: 04/14/2023] Open
Abstract
BackgroundTo cope with the persistence of the COVID-19 epidemic and the decrease in antibody levels following vaccination, a third dose of vaccine has been recommended in the general population. However, several vaccine regimens had been used initially for the primary vaccination course, and the heterologous Vaxzevria/Comirnaty regimen had shown better efficacy and immunogenicity than the homologous Comirnaty/Comirnaty regimen.AimWe wanted to determine if this benefit was retained after a third dose of an mRNA vaccine.MethodsWe combined an observational epidemiological study of SARS-CoV-2 infections among vaccinated healthcare workers at the University Hospital of Lyon, France, with a prospective cohort study to analyse immunological parameters before and after the third mRNA vaccine dose.ResultsFollowing the second vaccine dose, heterologous vaccination regimens were more protective against infection than homologous regimens (adjusted hazard ratio (HR) = 1.88; 95% confidence interval (CI): 1.18-3.00; p = 0.008), but this was no longer the case after the third dose (adjusted HR = 0.86; 95% CI: 0.72-1.02; p = 0.082). Receptor-binding domain-specific IgG levels and serum neutralisation capacity against different SARS-CoV-2 variants were higher after the third dose than after the second dose in the homologous regimen group, but not in the heterologous group.ConclusionThe advantage conferred by heterologous vaccination was lost after the third dose in terms of both protection and immunogenicity. Immunological measurements 1 month after vaccination suggest that heterologous vaccination induces maximal immunity after the second dose, whereas the third dose is required to reach the same level in individuals with a homologous regimen.
Collapse
Affiliation(s)
- Nicolas Guibert
- Occupational Health and Medicine Department, Hospices Civils de Lyon, Université Claude Bernard Lyon1, Université Gustave Eiffel-IFSTTAR, UMRESTTE, UMR T_9405, Lyon University, Lyon, France
| | - Kylian Trepat
- CIRI - Centre International de Recherche en Infectiologie, Université de Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Jean Monnet de Saint-Etienne, Lyon, France
- Joint Research Unit Civils Hospices of Lyon-bioMérieux, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
| | - Bruno Pozzetto
- CIRI - Centre International de Recherche en Infectiologie, Université de Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Jean Monnet de Saint-Etienne, Lyon, France
- Laboratoire des Agents infectieux et d'Hygiène, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Laurence Josset
- CIRI - Centre International de Recherche en Infectiologie, Université de Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Jean Monnet de Saint-Etienne, Lyon, France
- Virology Laboratory, Institute of Infectious Agents, Laboratory Associated with the National Reference Centre for Respiratory Viruses, Hospices Civils de Lyon, Lyon, France
- GenEPII sequencing platform, Institute of Infectious Agents, Hospices Civils de Lyon, Lyon, France
| | - Jean-Baptiste Fassier
- Occupational Health and Medicine Department, Hospices Civils de Lyon, Université Claude Bernard Lyon1, Université Gustave Eiffel-IFSTTAR, UMRESTTE, UMR T_9405, Lyon University, Lyon, France
| | - Omran Allatif
- CIRI - Centre International de Recherche en Infectiologie, Université de Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Jean Monnet de Saint-Etienne, Lyon, France
| | - Kahina Saker
- Joint Research Unit Civils Hospices of Lyon-bioMérieux, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
| | - Karen Brengel-Pesce
- Joint Research Unit Civils Hospices of Lyon-bioMérieux, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
| | - Thierry Walzer
- CIRI - Centre International de Recherche en Infectiologie, Université de Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Jean Monnet de Saint-Etienne, Lyon, France
- These authors contributed equally and share last authorship
| | - Philippe Vanhems
- CIRI - Centre International de Recherche en Infectiologie, Université de Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Jean Monnet de Saint-Etienne, Lyon, France
- Service D'Hygiène, Épidémiologie, Infectiovigilance et Prévention, Hôpital Édouard Herriot, Hospices Civils de Lyon, Lyon, France
- These authors contributed equally and share last authorship
| | - Sophie Trouillet-Assant
- CIRI - Centre International de Recherche en Infectiologie, Université de Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Jean Monnet de Saint-Etienne, Lyon, France
- Joint Research Unit Civils Hospices of Lyon-bioMérieux, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
- These authors contributed equally and share last authorship
| |
Collapse
|
13
|
Li J, Ren J, Liao H, Guo W, Feng K, Huang T, Cai YD. Identification of dynamic gene expression profiles during sequential vaccination with ChAdOx1/BNT162b2 using machine learning methods. Front Microbiol 2023; 14:1138674. [PMID: 37007526 PMCID: PMC10063797 DOI: 10.3389/fmicb.2023.1138674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/01/2023] [Indexed: 03/19/2023] Open
Abstract
To date, COVID-19 remains a serious global public health problem. Vaccination against SARS-CoV-2 has been adopted by many countries as an effective coping strategy. The strength of the body’s immune response in the face of viral infection correlates with the number of vaccinations and the duration of vaccination. In this study, we aimed to identify specific genes that may trigger and control the immune response to COVID-19 under different vaccination scenarios. A machine learning-based approach was designed to analyze the blood transcriptomes of 161 individuals who were classified into six groups according to the dose and timing of inoculations, including I-D0, I-D2-4, I-D7 (day 0, days 2–4, and day 7 after the first dose of ChAdOx1, respectively) and II-D0, II-D1-4, II-D7-10 (day 0, days 1–4, and days 7–10 after the second dose of BNT162b2, respectively). Each sample was represented by the expression levels of 26,364 genes. The first dose was ChAdOx1, whereas the second dose was mainly BNT162b2 (Only four individuals received a second dose of ChAdOx1). The groups were deemed as labels and genes were considered as features. Several machine learning algorithms were employed to analyze such classification problem. In detail, five feature ranking algorithms (Lasso, LightGBM, MCFS, mRMR, and PFI) were first applied to evaluate the importance of each gene feature, resulting in five feature lists. Then, the lists were put into incremental feature selection method with four classification algorithms to extract essential genes, classification rules and build optimal classifiers. The essential genes, namely, NRF2, RPRD1B, NEU3, SMC5, and TPX2, have been previously associated with immune response. This study also summarized expression rules that describe different vaccination scenarios to help determine the molecular mechanism of vaccine-induced antiviral immunity.
Collapse
Affiliation(s)
- Jing Li
- School of Computer Science, Baicheng Normal University, Baicheng, Jilin, China
| | - JingXin Ren
- School of Life Sciences, Shanghai University, Shanghai, China
| | | | - Wei Guo
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
| | - KaiYan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou, China
| | - Tao Huang
- CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Science, Shanghai, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Tao Huang, ; Yu-Dong Cai,
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
- *Correspondence: Tao Huang, ; Yu-Dong Cai,
| |
Collapse
|
14
|
Li J, Huang F, Ma Q, Guo W, Feng K, Huang T, Cai YD. Identification of genes related to immune enhancement caused by heterologous ChAdOx1-BNT162b2 vaccines in lymphocytes at single-cell resolution with machine learning methods. Front Immunol 2023; 14:1131051. [PMID: 36936955 PMCID: PMC10017451 DOI: 10.3389/fimmu.2023.1131051] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
The widely used ChAdOx1 nCoV-19 (ChAd) vector and BNT162b2 (BNT) mRNA vaccines have been shown to induce robust immune responses. Recent studies demonstrated that the immune responses of people who received one dose of ChAdOx1 and one dose of BNT were better than those of people who received vaccines with two homologous ChAdOx1 or two BNT doses. However, how heterologous vaccines function has not been extensively investigated. In this study, single-cell RNA sequencing data from three classes of samples: volunteers vaccinated with heterologous ChAdOx1-BNT and volunteers vaccinated with homologous ChAd-ChAd and BNT-BNT vaccinations after 7 days were divided into three types of immune cells (3654 B, 8212 CD4+ T, and 5608 CD8+ T cells). To identify differences in gene expression in various cell types induced by vaccines administered through different vaccination strategies, multiple advanced feature selection methods (max-relevance and min-redundancy, Monte Carlo feature selection, least absolute shrinkage and selection operator, light gradient boosting machine, and permutation feature importance) and classification algorithms (decision tree and random forest) were integrated into a computational framework. Feature selection methods were in charge of analyzing the importance of gene features, yielding multiple gene lists. These lists were fed into incremental feature selection, incorporating decision tree and random forest, to extract essential genes, classification rules and build efficient classifiers. Highly ranked genes include PLCG2, whose differential expression is important to the B cell immune pathway and is positively correlated with immune cells, such as CD8+ T cells, and B2M, which is associated with thymic T cell differentiation. This study gave an important contribution to the mechanistic explanation of results showing the stronger immune response of a heterologous ChAdOx1-BNT vaccination schedule than two doses of either BNT or ChAdOx1, offering a theoretical foundation for vaccine modification.
Collapse
Affiliation(s)
- Jing Li
- School of Computer Science, Baicheng Normal University, Baicheng, Jilin, China
| | - FeiMing Huang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - QingLan Ma
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Wei Guo
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
| | - KaiYan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou, China
| | - Tao Huang
- CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Science, Shanghai, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
15
|
Henze L, Braun J, Meyer-Arndt L, Jürchott K, Schlotz M, Michel J, Grossegesse M, Mangold M, Dingeldey M, Kruse B, Holenya P, Mages N, Reimer U, Eckey M, Schnatbaum K, Wenschuh H, Timmermann B, Klein F, Nitsche A, Giesecke-Thiel C, Loyal L, Thiel A. Primary ChAdOx1 vaccination does not reactivate pre-existing, cross-reactive immunity. Front Immunol 2023; 14:1056525. [PMID: 36798117 PMCID: PMC9927399 DOI: 10.3389/fimmu.2023.1056525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/10/2023] [Indexed: 02/04/2023] Open
Abstract
Currently available COVID-19 vaccines include inactivated virus, live attenuated virus, mRNA-based, viral vectored and adjuvanted protein-subunit-based vaccines. All of them contain the spike glycoprotein as the main immunogen and result in reduced disease severity upon SARS-CoV-2 infection. While we and others have shown that mRNA-based vaccination reactivates pre-existing, cross-reactive immunity, the effect of vector vaccines in this regard is unknown. Here, we studied cellular and humoral responses in heterologous adenovirus-vector-based ChAdOx1 nCOV-19 (AZ; Vaxzeria, AstraZeneca) and mRNA-based BNT162b2 (BNT; Comirnaty, BioNTech/Pfizer) vaccination and compared it to a homologous BNT vaccination regimen. AZ primary vaccination did not lead to measurable reactivation of cross-reactive cellular and humoral immunity compared to BNT primary vaccination. Moreover, humoral immunity induced by primary vaccination with AZ displayed differences in linear spike peptide epitope coverage and a lack of anti-S2 IgG antibodies. Contrary to primary AZ vaccination, secondary vaccination with BNT reactivated pre-existing, cross-reactive immunity, comparable to homologous primary and secondary mRNA vaccination. While induced anti-S1 IgG antibody titers were higher after heterologous vaccination, induced CD4+ T cell responses were highest in homologous vaccinated. However, the overall TCR repertoire breadth was comparable between heterologous AZ-BNT-vaccinated and homologous BNT-BNT-vaccinated individuals, matching TCR repertoire breadths after SARS-CoV-2 infection, too. The reasons why AZ and BNT primary vaccination elicits different immune response patterns to essentially the same antigen, and the associated benefits and risks, need further investigation to inform vaccine and vaccination schedule development.
Collapse
Affiliation(s)
- Larissa Henze
- Si-M/"Der Simulierte Mensch" a science framework of Technische Universität Berlin and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Regenerative Immunology and Aging, BIH Immunomics, Berlin Institute of Health, Berlin, Germany
| | - Julian Braun
- Si-M/"Der Simulierte Mensch" a science framework of Technische Universität Berlin and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Regenerative Immunology and Aging, BIH Immunomics, Berlin Institute of Health, Berlin, Germany
| | - Lil Meyer-Arndt
- Si-M/"Der Simulierte Mensch" a science framework of Technische Universität Berlin and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Regenerative Immunology and Aging, BIH Immunomics, Berlin Institute of Health, Berlin, Germany.,NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurology with Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Karsten Jürchott
- Si-M/"Der Simulierte Mensch" a science framework of Technische Universität Berlin and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Regenerative Immunology and Aging, BIH Immunomics, Berlin Institute of Health, Berlin, Germany
| | - Maike Schlotz
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Janine Michel
- Highly Pathogenic Viruses, Centre for Biological Threats and Special Pathogens, WHO Reference Laboratory for SARS-CoV-2 and WHO Collaborating Centre for Emerging Infections and Biological Threats, Robert Koch Institute, Berlin, Germany
| | - Marica Grossegesse
- Highly Pathogenic Viruses, Centre for Biological Threats and Special Pathogens, WHO Reference Laboratory for SARS-CoV-2 and WHO Collaborating Centre for Emerging Infections and Biological Threats, Robert Koch Institute, Berlin, Germany
| | - Maike Mangold
- Si-M/"Der Simulierte Mensch" a science framework of Technische Universität Berlin and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Regenerative Immunology and Aging, BIH Immunomics, Berlin Institute of Health, Berlin, Germany
| | - Manuela Dingeldey
- Si-M/"Der Simulierte Mensch" a science framework of Technische Universität Berlin and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Regenerative Immunology and Aging, BIH Immunomics, Berlin Institute of Health, Berlin, Germany
| | - Beate Kruse
- Si-M/"Der Simulierte Mensch" a science framework of Technische Universität Berlin and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Regenerative Immunology and Aging, BIH Immunomics, Berlin Institute of Health, Berlin, Germany
| | | | - Norbert Mages
- Si-M/"Der Simulierte Mensch" a science framework of Technische Universität Berlin and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Regenerative Immunology and Aging, BIH Immunomics, Berlin Institute of Health, Berlin, Germany.,Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Ulf Reimer
- JPT Peptide Technologies GmbH, Berlin, Germany
| | - Maren Eckey
- JPT Peptide Technologies GmbH, Berlin, Germany
| | | | | | | | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), Partner site Bonn-Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Andreas Nitsche
- Highly Pathogenic Viruses, Centre for Biological Threats and Special Pathogens, WHO Reference Laboratory for SARS-CoV-2 and WHO Collaborating Centre for Emerging Infections and Biological Threats, Robert Koch Institute, Berlin, Germany
| | | | - Lucie Loyal
- Si-M/"Der Simulierte Mensch" a science framework of Technische Universität Berlin and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Regenerative Immunology and Aging, BIH Immunomics, Berlin Institute of Health, Berlin, Germany
| | - Andreas Thiel
- Si-M/"Der Simulierte Mensch" a science framework of Technische Universität Berlin and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Regenerative Immunology and Aging, BIH Immunomics, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
16
|
SARS-CoV-2 mRNA Dual Immunization Induces Innate Transcriptional Signatures, Establishes T-Cell Memory and Coordinates the Recall Response. Vaccines (Basel) 2023; 11:vaccines11010103. [PMID: 36679948 PMCID: PMC9861479 DOI: 10.3390/vaccines11010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND mRNA vaccines have played a crucial role in controlling the SARS-CoV-2 global pandemic. However, the immunological mechanisms involved in the induction, magnitude and longevity of mRNA-vaccine-induced protective immunity are still unclear. METHODS In our study, we used whole-RNA sequencing along with detailed immunophenotyping of antigen-specific T cells and humoral RBD-specific response to dual immunization with the Pfizer-BioNTech mRNA vaccine (BNT162b2) and correlated them with response to an additional dose, administered 10 months later, in order to comprehensively profile the immune response of healthy volunteers to BNT162b2. RESULTS Primary dual immunization induced upregulation of the Type I interferon pathway and generated spike protein (S)-specific IFN-γ+ and TNF-α+ CD4 T cells, S-specific memory CD4 T cells, and RBD-specific antibodies against SARS-CoV-2. S-specific CD4 T cells induced by the primary series correlated with the RBD-specific antibody titers to a third dose. CONCLUSIONS This study demonstrates the induction of both innate and adaptive immunity in response to the BNT162b2 mRNA vaccine in a coordinated manner and identifies the central role of primarily induced CD4+ T cells as a predictive biomarker of the magnitude of anamnestic immune response.
Collapse
|
17
|
Arankalle V, Kulkarni-Munje A, Kulkarni R, Palkar S, Patil R, Oswal J, Lalwani S, Mishra AC. Immunogenicity of two COVID-19 vaccines used in India: An observational cohort study in health care workers from a tertiary care hospital. Front Immunol 2022; 13:928501. [PMID: 36211366 PMCID: PMC9540493 DOI: 10.3389/fimmu.2022.928501] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
COVID-19 pandemic witnessed rapid development and use of several vaccines. In India, a country-wide immunization was initiated in January 2021. COVISHIELD, the chimpanzee adenoviral-vectored vaccine with full-length SARS-COV-2 spike insert and COVAXIN, the whole virus-inactivated vaccines were used. To assess and compare immune response of health-care-workers to COVISHIELD (n=187) and COVAXIN (n=21), blood samples were collected pre-vaccination, 1month post-1/post-2 doses and 6months post-dose-2 and tested for IgG-anti-SARS-CoV-2 (ELISA) and neutralizing (Nab,PRNT50) antibodies. Spike-protein-specific T cells were quantitated by IFN-γ-ELISPOT. In pre-vaccination-antibody-negative COVISHIELD recipients (pre-negatives, n=120), %Nab seroconversion (median, IQR Nab titers) increased from 55.1% (16, 2.5-36.3) post-dose-1 to 95.6% (64.5, 4.5-154.2, p<0.001) post-dose-2 that were independent of age/gender/BMI. Nab response was higher among pre-positives with hybrid immunity at all-time points (p<0.01-0.0001) and independent of age/gender/BMI/Comorbidities. Post-dose-2-seroconversion (50%, p<0.001) and Nab titers (6.75, 2.5-24.8, p<0.001) in COVAXIN-recipients were lower than COVISHIELD. COVAXIN elicited a superior IFN-γ-T cell response as measured by ELISPOT (100%; 1226, 811-1532 spot forming units, SFU/million PBMCs v/s 57.8%; 21.7,1.6-169.2; p<0.001). At 6months, 28.3% (15/53) COVISHIELD and 3/3COVAXIN recipients were Nab-negative. T cell response remained unchanged. During immunization, COVID-19 cases were detected among COVISHIELD (n=4) and COVAXIN (n=2) recipients. At 6months, 9cases were recorded in COVISHIELD-recipients. This first-time, systematic, real-world assessment and long-term follow up revealed generation of higher neutralizing antibody titers by COVISHIELD and stronger T-cell response by COVAXIN. Diminished Nab titers at 6months emphasize early booster. Immunogenicity/efficacy of vaccines will change with the progression of the pandemic needing careful evaluations in the field-settings.
Collapse
Affiliation(s)
- Vidya Arankalle
- Department of Communicable Diseases, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
- *Correspondence: Vidya Arankalle, ;
| | - Archana Kulkarni-Munje
- Department of Communicable Diseases, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
| | - Ruta Kulkarni
- Department of Communicable Diseases, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
| | - Sonali Palkar
- Department of Pediatrics, Bharati Vidyapeeth Medical College, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
| | - Rahul Patil
- Department of Communicable Diseases, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
| | - Jitendra Oswal
- Department of Pediatrics, Bharati Vidyapeeth Medical College, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
| | - Sanjay Lalwani
- Department of Pediatrics, Bharati Vidyapeeth Medical College, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
- Bharati Vidyapeeth Medical College, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
| | - Akhilesh Chandra Mishra
- Department of Communicable Diseases, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
| |
Collapse
|
18
|
Lee HK, Hoechstetter MA, Buchner M, Pham TT, Huh JW, Müller K, Zange S, von Buttlar H, Girl P, Wölfel R, Brandmeier L, Pfeuffer L, Furth PA, Wendtner CM, Hennighausen L. Comprehensive analysis of immune responses in CLL patients after heterologous COVID-19 vaccination. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.09.21.22280205. [PMID: 36172132 PMCID: PMC9516861 DOI: 10.1101/2022.09.21.22280205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Patients with chronic lymphocytic leukemia (CLL) treated with B-cell pathway inhibitors and anti-CD20 antibodies exhibit low humoral response rate (RR) following SARS-CoV-2 vaccination. To investigate the relationship between the initial transcriptional response to vaccination with ensuing B and T cell immune responses, we performed a comprehensive immune transcriptome analysis flanked by antibody and T cell assays in peripheral blood prospectively collected from 15 CLL/SLL patients vaccinated with heterologous BNT162b2/ChAdOx1 with follow up at a single institution. The two-dose antibody RR was 40% increasing to 53% after booster. Patients on BTKi, venetoclax ± anti-CD20 antibody within 12 months of vaccination responded less well than those under BTKi alone. The two-dose T cell RR was 80% increasing to 93% after booster. Transcriptome studies revealed that seven patients showed interferon-mediated signaling activation within 2 days and one at 7 days after vaccination. Increasing counts of COVID-19 specific IGHV genes correlated with B-cell reconstitution and improved humoral RR. T cell responses in CLL patients appeared after vaccination regardless of treatment status. A higher humoral RR was associated with BTKi treatment and B-cell reconstitution. Boosting was particularly effective when intrinsic immune status was improved by CLL-treatment.
Collapse
Affiliation(s)
- Hye Kyung Lee
- National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Manuela A. Hoechstetter
- Munich Clinic Schwabing, Academic Teaching Hospital, Ludwig-Maximilian University (LMU), Munich, Germany
| | - Maike Buchner
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany.,TranslaTUM - Central Institute for Translational Cancer Research, Technische Universität München, 81675 Munich, Germany
| | - Trang Thu Pham
- Munich Clinic Schwabing, Academic Teaching Hospital, Ludwig-Maximilian University (LMU), Munich, Germany
| | - Jin Won Huh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Katharina Müller
- Bundeswehr Institute of Microbiology, Munich, Germany,German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Sabine Zange
- Bundeswehr Institute of Microbiology, Munich, Germany,German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Heiner von Buttlar
- Bundeswehr Institute of Microbiology, Munich, Germany,German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Philipp Girl
- Bundeswehr Institute of Microbiology, Munich, Germany,German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Roman Wölfel
- Bundeswehr Institute of Microbiology, Munich, Germany,German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Lisa Brandmeier
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany
| | - Lisa Pfeuffer
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany
| | - Priscilla A. Furth
- Departments of Oncology & Medicine, Georgetown University, Washington, DC, USA
| | - Clemens-Martin Wendtner
- Munich Clinic Schwabing, Academic Teaching Hospital, Ludwig-Maximilian University (LMU), Munich, Germany
| | - Lothar Hennighausen
- National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|