1
|
Lane AR, Roberts BR, Fahrni CJ, Faundez V. A primer on copper biology in the brain. Neurobiol Dis 2025; 212:106974. [PMID: 40414313 DOI: 10.1016/j.nbd.2025.106974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2025] [Revised: 05/14/2025] [Accepted: 05/22/2025] [Indexed: 05/27/2025] Open
Abstract
This primer aims to expose scientists who study the brain to the field of copper biology. We briefly discuss key copper homeostasis mechanisms and proteins and place these functions in the context of the brain and neurodevelopment. A small number of key copper genes are explored as representative examples of the importance of this metal to the brain. We show that these genes are expressed throughout the brain and their defects are linked to a diverse array of neurological phenotypes, which we discuss further in the context of several neurological and neurodegenerative diseases associated with dysregulation of copper. This review aims to expose interested scientists to the fundamental roles for copper in the brain, the primary proteins responsible for maintaining copper homeostasis in the brain, and the classic neurological diseases associated with this metal.
Collapse
Affiliation(s)
- Alicia R Lane
- Department of Cell Biology, Emory University, 615 Michael St, Atlanta, GA 30322, USA.
| | - Blaine R Roberts
- Department of Biochemistry, Emory University, 1510 Clifton Rd, Atlanta, GA 30322, USA; Department of Neurology, Emory University, 12 Executive Park Dr NE, Atlanta, GA 30322, USA.
| | - Christoph J Fahrni
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Victor Faundez
- Department of Cell Biology, Emory University, 615 Michael St, Atlanta, GA 30322, USA.
| |
Collapse
|
2
|
Lane AR, Scher NE, Bhattacharjee S, Zlatic SA, Roberts AM, Gokhale A, Singleton KS, Duong DM, McKenna M, Liu WL, Baiju A, Moctezuma FGR, Tran T, Patel AA, Clayton LB, Petris MJ, Wood LB, Patgiri A, Vrailas-Mortimer AD, Cox DN, Roberts BR, Werner E, Faundez V. Adaptive protein synthesis in genetic models of copper deficiency and childhood neurodegeneration. Mol Biol Cell 2025; 36:ar33. [PMID: 39878654 PMCID: PMC11974963 DOI: 10.1091/mbc.e24-11-0512] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 01/31/2025] Open
Abstract
Rare inherited diseases caused by mutations in the copper transporters SLC31A1 (CTR1) or ATP7A induce copper deficiency in the brain, causing seizures and neurodegeneration in infancy through poorly understood mechanisms. Here, we used multiple model systems to characterize the molecular mechanisms by which neuronal cells respond to copper deficiency. Targeted deletion of CTR1 in neuroblastoma cells produced copper deficiency that produced a metabolic shift favoring glycolysis over oxidative phosphorylation. Proteomic and transcriptomic analysis of CTR1 knockout (KO) cells revealed simultaneous up-regulation of mTORC1 and S6K signaling and reduced PERK signaling. Patterns of gene and protein expression and pharmacogenomics show increased activation of the mTORC1-S6K pathway as a prosurvival mechanism, ultimately resulting in increased protein synthesis. Spatial transcriptomic profiling of Atp7aflx/Y :: Vil1Cre/+ mice identified up-regulated protein synthesis machinery and mTORC1-S6K pathway genes in copper-deficient Purkinje neurons in the cerebellum. Genetic epistasis experiments in Drosophila demonstrated that copper deficiency dendritic phenotypes in class IV neurons are improved or rescued by increased S6k expression or 4E-BP1 (Thor) RNAi, while epidermis phenotypes are exacerbated by Akt, S6k, or raptor RNAi. Overall, we demonstrate that increased mTORC1-S6K pathway activation and protein synthesis is an adaptive mechanism by which neuronal cells respond to copper deficiency.
Collapse
Affiliation(s)
- Alicia R. Lane
- Department of Cell Biology, Emory University, 615 Michael St, Atlanta, GA, USA, 30322
| | - Noah E. Scher
- Department of Cell Biology, Emory University, 615 Michael St, Atlanta, GA, USA, 30322
| | - Shatabdi Bhattacharjee
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303
| | - Stephanie A. Zlatic
- Department of Cell Biology, Emory University, 615 Michael St, Atlanta, GA, USA, 30322
| | - Anne M. Roberts
- Department of Biochemistry, Emory University, 1510 Clifton Rd, Atlanta, Georgia, USA, 30322
- Department of Neurology, Emory University, 12 Executive Park Dr NE, Atlanta, Georgia, USA, 30322
| | - Avanti Gokhale
- Department of Cell Biology, Emory University, 615 Michael St, Atlanta, GA, USA, 30322
| | - Kaela S. Singleton
- Department of Cell Biology, Emory University, 615 Michael St, Atlanta, GA, USA, 30322
| | - Duc M. Duong
- Department of Biochemistry, Emory University, 1510 Clifton Rd, Atlanta, Georgia, USA, 30322
| | - Mike McKenna
- NanoString Technologies, 530 Fairview Ave N, Seattle, WA 98109
| | - William L. Liu
- Department of Pharmacology and Chemical Biology, Emory University, 1510 Clifton Rd, Atlanta, Georgia, USA, 30322
| | - Alina Baiju
- Department of Pharmacology and Chemical Biology, Emory University, 1510 Clifton Rd, Atlanta, Georgia, USA, 30322
| | - Felix G. Rivera Moctezuma
- George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr, Atlanta, GA 30332
| | - Tommy Tran
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303
| | - Atit A. Patel
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303
| | - Lauren B. Clayton
- Department of Biochemistry & Biophysics and Linus Pauling Institute, 307 Linus Pauling Science Center, Oregon State University, Corvallis, OR 97331
| | - Michael J. Petris
- Departments of Biochemistry, Molecular Microbiology and Immunology, Ophthalmology, and Christopher S. Bond Life Sciences Center, 1201 Rollins Street, University of Missouri, Columbia, MO, 65211
| | - Levi B. Wood
- George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr, Atlanta, GA 30332
| | - Anupam Patgiri
- Department of Pharmacology and Chemical Biology, Emory University, 1510 Clifton Rd, Atlanta, Georgia, USA, 30322
| | - Alysia D. Vrailas-Mortimer
- Department of Biochemistry & Biophysics and Linus Pauling Institute, 307 Linus Pauling Science Center, Oregon State University, Corvallis, OR 97331
| | - Daniel N. Cox
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303
| | - Blaine R. Roberts
- Department of Biochemistry, Emory University, 1510 Clifton Rd, Atlanta, Georgia, USA, 30322
- Department of Neurology, Emory University, 12 Executive Park Dr NE, Atlanta, Georgia, USA, 30322
| | - Erica Werner
- Department of Cell Biology, Emory University, 615 Michael St, Atlanta, GA, USA, 30322
| | - Victor Faundez
- Department of Cell Biology, Emory University, 615 Michael St, Atlanta, GA, USA, 30322
| |
Collapse
|
3
|
Arora A, Mastropasqua F, Bölte S, Tammimies K. Urine metabolomic profiles of autism and autistic traits-A twin study. PLoS One 2024; 19:e0308224. [PMID: 39226293 PMCID: PMC11371219 DOI: 10.1371/journal.pone.0308224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/19/2024] [Indexed: 09/05/2024] Open
Abstract
Currently, there are no reliable biomarkers for autism diagnosis. The heterogeneity of autism and several co-occurring conditions are key challenges to establishing these. Here, we used untargeted mass spectrometry-based urine metabolomics to investigate metabolic differences for autism diagnosis and autistic traits in a well-characterized twin cohort (N = 105). We identified 208 metabolites in the urine samples of the twins. No clear, significant metabolic drivers for autism diagnosis were detected when controlling for other neurodevelopmental conditions. However, we identified nominally significant changes for several metabolites. For instance, phenylpyruvate (p = 0.019) and taurine (p = 0.032) were elevated in the autism group, while carnitine (p = 0.047) was reduced. We furthermore accounted for the shared factors, such as genetics within the twin pairs, and report additional metabolite differences. Based on the nominally significant metabolites for autism diagnosis, the arginine and proline metabolism pathway (p = 0.024) was enriched. We also investigated the association between quantitative autistic traits, as measured by the Social Responsiveness Scale 2nd Edition, and metabolite differences, identifying a greater number of nominally significant metabolites and pathways. A significant positive association between indole-3-acetate and autistic traits was observed within the twin pairs (adjusted p = 0.031). The utility of urine biomarkers in autism, therefore, remains unclear, with mixed findings from different study populations.
Collapse
Affiliation(s)
- Abishek Arora
- Department of Women’s and Children’s Health, Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
- Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Region Stockholm, Stockholm, Sweden
| | - Francesca Mastropasqua
- Department of Women’s and Children’s Health, Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
- Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Region Stockholm, Stockholm, Sweden
| | - Sven Bölte
- Department of Women’s and Children’s Health, Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
- Child and Adolescent Psychiatry, Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Curtin Autism Research Group, Curtin School of Allied Health, Curtin University, Perth, Western Australia
| | - Kristiina Tammimies
- Department of Women’s and Children’s Health, Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
- Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Region Stockholm, Stockholm, Sweden
| |
Collapse
|
4
|
Wang W, Li Z, Yuan S, Du Z, Li J, Peng H, Ru S. A Potential Neurotoxic Mechanism: Bisphenol S-Induced Inhibition of Glucose Transporter 1 Leads to ATP Excitotoxicity in the Zebrafish Brain. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15463-15474. [PMID: 39167196 DOI: 10.1021/acs.est.4c03870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Many environmental pollutants have neurotoxic effects, but the initial molecular events involved in these effects are unclear. Here, zebrafish were exposed to the neurotoxicant bisphenol S (BPS, 1, 10, or 100 μg/L) from the embryonic stage to the larval stage to explore the ability of BPS to interfere with energy metabolism in the brain. BPS, which is similar to a glucose transporter 1 (GLUT1) inhibitor, inhibited GLUT1 function but increased mitochondrial activity in the brains of larval zebrafish. Interestingly, GLUT1 inhibitor treatment and BPS exposure did not reduce energy production in the brain; instead, they increased ATP production by inducing the preferential use of ketone bodies. Moreover, BPS promoted the protein expression of the purinergic 2X receptor but inhibited the purinergic 2Y-mediated phosphatidylinositol signaling pathway, indicating that excess ATP acts as a neurotransmitter to activate the purinergic 2X receptor under the BPS-induced restriction of GLUT1 function. BPS-induced inhibition of GLUT1 increased the number of neurons but promoted apoptosis by activating ATP-purinergic 2X receptors in the brain, causing ATP excitatory neurotoxicity. Our data reveal a potential neurotoxic mechanism induced by BPS that may represent a new adverse outcome pathway.
Collapse
Affiliation(s)
- Weiwei Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Ze Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shipeng Yuan
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zehui Du
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jiali Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Hongyuan Peng
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
5
|
Rajan A, Fame RM. Brain development and bioenergetic changes. Neurobiol Dis 2024; 199:106550. [PMID: 38849103 PMCID: PMC11495523 DOI: 10.1016/j.nbd.2024.106550] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/29/2024] [Accepted: 06/01/2024] [Indexed: 06/09/2024] Open
Abstract
Bioenergetics describe the biochemical processes responsible for energy supply in organisms. When these changes become dysregulated in brain development, multiple neurodevelopmental diseases can occur, implicating bioenergetics as key regulators of neural development. Historically, the discovery of disease processes affecting individual stages of brain development has revealed critical roles that bioenergetics play in generating the nervous system. Bioenergetic-dependent neurodevelopmental disorders include neural tube closure defects, microcephaly, intellectual disability, autism spectrum disorders, epilepsy, mTORopathies, and oncogenic processes. Developmental timing and cell-type specificity of these changes determine the long-term effects of bioenergetic disease mechanisms on brain form and function. Here, we discuss key metabolic regulators of neural progenitor specification, neuronal differentiation (neurogenesis), and gliogenesis. In general, transitions between glycolysis and oxidative phosphorylation are regulated in early brain development and in oncogenesis, and reactive oxygen species (ROS) and mitochondrial maturity play key roles later in differentiation. We also discuss how bioenergetics interface with the developmental regulation of other key neural elements, including the cerebrospinal fluid brain environment. While questions remain about the interplay between bioenergetics and brain development, this review integrates the current state of known key intersections between these processes in health and disease.
Collapse
Affiliation(s)
- Arjun Rajan
- Developmental Biology Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Ryann M Fame
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
6
|
Hervoso JL, Amoah K, Dodson J, Choudhury M, Bhattacharya A, Quinones-Valdez G, Pasaniuc B, Xiao X. Splicing-specific transcriptome-wide association uncovers genetic mechanisms for schizophrenia. Am J Hum Genet 2024; 111:1573-1587. [PMID: 38925119 PMCID: PMC11339621 DOI: 10.1016/j.ajhg.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Recent studies have highlighted the essential role of RNA splicing, a key mechanism of alternative RNA processing, in establishing connections between genetic variations and disease. Genetic loci influencing RNA splicing variations show considerable influence on complex traits, possibly surpassing those affecting total gene expression. Dysregulated RNA splicing has emerged as a major potential contributor to neurological and psychiatric disorders, likely due to the exceptionally high prevalence of alternatively spliced genes in the human brain. Nevertheless, establishing direct associations between genetically altered splicing and complex traits has remained an enduring challenge. We introduce Spliced-Transcriptome-Wide Associations (SpliTWAS) to integrate alternative splicing information with genome-wide association studies to pinpoint genes linked to traits through exon splicing events. We applied SpliTWAS to two schizophrenia (SCZ) RNA-sequencing datasets, BrainGVEX and CommonMind, revealing 137 and 88 trait-associated exons (in 84 and 67 genes), respectively. Enriched biological functions in the associated gene sets converged on neuronal function and development, immune cell activation, and cellular transport, which are highly relevant to SCZ. SpliTWAS variants impacted RNA-binding protein binding sites, revealing potential disruption of RNA-protein interactions affecting splicing. We extended the probabilistic fine-mapping method FOCUS to the exon level, identifying 36 genes and 48 exons as putatively causal for SCZ. We highlight VPS45 and APOPT1, where splicing of specific exons was associated with disease risk, eluding detection by conventional gene expression analysis. Collectively, this study supports the substantial role of alternative splicing in shaping the genetic basis of SCZ, providing a valuable approach for future investigations in this area.
Collapse
Affiliation(s)
- Jonatan L Hervoso
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kofi Amoah
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jack Dodson
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mudra Choudhury
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Arjun Bhattacharya
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Giovanni Quinones-Valdez
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Bogdan Pasaniuc
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Xinshu Xiao
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
7
|
Lane AR, Wynne ME, Faundez V. Human-specific translational control of neuronal mitochondria and excitability. Neuron 2023; 111:3901-3903. [PMID: 38128477 DOI: 10.1016/j.neuron.2023.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 12/23/2023]
Abstract
How are human-specific brain bioenergetics and excitability connected? In this Neuron issue, Shen et al.1 reveal a human-specific interaction between RACK1 mRNA and FMRP. Reducing RACK1 mimics FMRP-dependent excitability and mitochondrial phenotypes, which can be reversed with mitochondrial-protective drugs. These findings suggest that FMRP-mediated translation adapts mitochondria to excitability energy demands.
Collapse
Affiliation(s)
- Alicia R Lane
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | - Meghan E Wynne
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | - Victor Faundez
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
8
|
Xiong Z, Wang H, Qu Y, Peng S, He Y, Yang Q, Xu X, Lv D, Liu Y, Xie C, Zhang X. The mitochondria in schizophrenia with 22q11.2 deletion syndrome: From pathogenesis to therapeutic promise of targeted natural drugs. Prog Neuropsychopharmacol Biol Psychiatry 2023; 127:110831. [PMID: 37451595 DOI: 10.1016/j.pnpbp.2023.110831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/30/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Schizophrenia is a complex multi-factor neurological disorder that caused an array of severe indelible consequences to the individuals and society. Additionally, anti-schizophrenic drugs are unsuitable for treating negative symptoms and have more significant side effects and drug resistance. For better treatment and prevention, we consider exploring the pathogenesis of schizophrenia from other perspectives. A growing body of evidence of 22q11.2 deletion syndrome (22q11DS) suggested that the occurrence and progression of schizophrenia are related to mitochondrial dysfunction. So combing through the literature of 22q11DS published from 2000 to 2023, this paper reviews the mechanism of schizophrenia based on mitochondrial dysfunction, and it focuses on the natural drugs targeting mitochondria to enhance mitochondrial function, which are potential to improve the current treatment of schizophrenia.
Collapse
Affiliation(s)
- Zongxiang Xiong
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Heting Wang
- Department of Traditional Chinese Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yutian Qu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sihan Peng
- Hospital of Chengdu University of Traditional Chinese Medicine, TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, China
| | - Yuchi He
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qingyan Yang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyue Xu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - De Lv
- Hospital of Chengdu University of Traditional Chinese Medicine, TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, China
| | - Ya Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, China
| | - Chunguang Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, China
| | - Xiyu Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, China.
| |
Collapse
|
9
|
Zlatic SA, Werner E, Surapaneni V, Lee CE, Gokhale A, Singleton K, Duong D, Crocker A, Gentile K, Middleton F, Dalloul JM, Liu WLY, Patgiri A, Tarquinio D, Carpenter R, Faundez V. Systemic proteome phenotypes reveal defective metabolic flexibility in Mecp2 mutants. Hum Mol Genet 2023; 33:12-32. [PMID: 37712894 PMCID: PMC10729867 DOI: 10.1093/hmg/ddad154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023] Open
Abstract
Genes mutated in monogenic neurodevelopmental disorders are broadly expressed. This observation supports the concept that monogenic neurodevelopmental disorders are systemic diseases that profoundly impact neurodevelopment. We tested the systemic disease model focusing on Rett syndrome, which is caused by mutations in MECP2. Transcriptomes and proteomes of organs and brain regions from Mecp2-null mice as well as diverse MECP2-null male and female human cells were assessed. Widespread changes in the steady-state transcriptome and proteome were identified in brain regions and organs of presymptomatic Mecp2-null male mice as well as mutant human cell lines. The extent of these transcriptome and proteome modifications was similar in cortex, liver, kidney, and skeletal muscle and more pronounced than in the hippocampus and striatum. In particular, Mecp2- and MECP2-sensitive proteomes were enriched in synaptic and metabolic annotated gene products, the latter encompassing lipid metabolism and mitochondrial pathways. MECP2 mutations altered pyruvate-dependent mitochondrial respiration while maintaining the capacity to use glutamine as a mitochondrial carbon source. We conclude that mutations in Mecp2/MECP2 perturb lipid and mitochondrial metabolism systemically limiting cellular flexibility to utilize mitochondrial fuels.
Collapse
Affiliation(s)
- Stephanie A Zlatic
- Department of Cell Biology, Emory University, 615 Michael Steet, Atlanta, GA 30322, United States
| | - Erica Werner
- Department of Cell Biology, Emory University, 615 Michael Steet, Atlanta, GA 30322, United States
| | - Veda Surapaneni
- Department of Cell Biology, Emory University, 615 Michael Steet, Atlanta, GA 30322, United States
| | - Chelsea E Lee
- Department of Cell Biology, Emory University, 615 Michael Steet, Atlanta, GA 30322, United States
| | - Avanti Gokhale
- Department of Cell Biology, Emory University, 615 Michael Steet, Atlanta, GA 30322, United States
| | - Kaela Singleton
- Department of Cell Biology, Emory University, 615 Michael Steet, Atlanta, GA 30322, United States
| | - Duc Duong
- Department of Biochemistry, Emory University, 1510 Clifton Rd NE, Atlanta, GA 30322, United States
| | - Amanda Crocker
- Program in Neuroscience, Middlebury College, Bicentennial Way, Middlebury, VT 05753, United States
| | - Karen Gentile
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, 505 Irving Avenue, Syracuse, NY 13210, United States
| | - Frank Middleton
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, 505 Irving Avenue, Syracuse, NY 13210, United States
| | - Joseph Martin Dalloul
- Pharmacology and Chemical Biology, Emory University, 1510 Clifton Rd NE, Atlanta, GA 30322, United States
| | - William Li-Yun Liu
- Pharmacology and Chemical Biology, Emory University, 1510 Clifton Rd NE, Atlanta, GA 30322, United States
| | - Anupam Patgiri
- Pharmacology and Chemical Biology, Emory University, 1510 Clifton Rd NE, Atlanta, GA 30322, United States
| | - Daniel Tarquinio
- Center for Rare Neurological Diseases, 5600 Oakbrook Pkwy, Norcross, GA 30093, United States
| | - Randall Carpenter
- Rett Syndrome Research Trust, 67 Under Cliff Rd, Trumbull, CT 06611, United States
| | - Victor Faundez
- Department of Cell Biology, Emory University, 615 Michael Steet, Atlanta, GA 30322, United States
| |
Collapse
|
10
|
Holland SM, Gallo G. Actin cytoskeletal dynamics do not impose an energy drain on growth cone bioenergetics. J Cell Sci 2023; 136:jcs261356. [PMID: 37534394 PMCID: PMC10445737 DOI: 10.1242/jcs.261356] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/26/2023] [Indexed: 08/04/2023] Open
Abstract
The regulation of the intracellular level of ATP is a fundamental aspect of bioenergetics. Actin cytoskeletal dynamics have been reported to be an energetic drain in developing neurons and platelets. We addressed the role of actin dynamics in primary embryonic chicken neurons using luciferase assays, and by measurement of the ATP/ADP ratio using the ratiometric reporter PercevalHR and the ATP level using the ratiometric reporter mRuby-iATPSnFR. None of the methods revealed an effect of suppressing actin dynamics on the decline in the neuronal ATP level or the ATP/ADP ratio following shutdown of ATP production. Similarly, we find that treatments that elevate or suppress actin dynamics do not alter the ATP/ADP ratio in growth cones, the subcellular domain with the highest actin dynamics in developing neurons. Collectively, the data indicate that actin cytoskeletal dynamics are not a significant energy drain in developing neurons and that the ATP/ADP ratio is maintained when energy utilization varies. Discrepancies between prior work and the current data are discussed with emphasis on methodology and interpretation of the data.
Collapse
Affiliation(s)
- Sabrina M. Holland
- Lewis Katz School of Medicine at Temple University, Department of Neural Sciences, Shriners Pediatric Research Center, 3500 North Broad St, Philadelphia, PA 19140, USA
| | - Gianluca Gallo
- Lewis Katz School of Medicine at Temple University, Department of Neural Sciences, Shriners Pediatric Research Center, 3500 North Broad St, Philadelphia, PA 19140, USA
| |
Collapse
|
11
|
Valenti D, Vacca RA. Brain Mitochondrial Bioenergetics in Genetic Neurodevelopmental Disorders: Focus on Down, Rett and Fragile X Syndromes. Int J Mol Sci 2023; 24:12488. [PMID: 37569863 PMCID: PMC10419900 DOI: 10.3390/ijms241512488] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Mitochondria, far beyond their prominent role as cellular powerhouses, are complex cellular organelles active as central metabolic hubs that are capable of integrating and controlling several signaling pathways essential for neurological processes, including neurogenesis and neuroplasticity. On the other hand, mitochondria are themselves regulated from a series of signaling proteins to achieve the best efficiency in producing energy, in establishing a network and in performing their own de novo synthesis or clearance. Dysfunctions in signaling processes that control mitochondrial biogenesis, dynamics and bioenergetics are increasingly associated with impairment in brain development and involved in a wide variety of neurodevelopmental disorders. Here, we review recent evidence proving the emerging role of mitochondria as master regulators of brain bioenergetics, highlighting their control skills in brain neurodevelopment and cognition. We analyze, from a mechanistic point of view, mitochondrial bioenergetic dysfunction as causally interrelated to the origins of typical genetic intellectual disability-related neurodevelopmental disorders, such as Down, Rett and Fragile X syndromes. Finally, we discuss whether mitochondria can become therapeutic targets to improve brain development and function from a holistic perspective.
Collapse
Affiliation(s)
- Daniela Valenti
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Via G. Amendola 122/O, 70126 Bari, Italy
| | - Rosa Anna Vacca
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Via G. Amendola 122/O, 70126 Bari, Italy
| |
Collapse
|