1
|
Yang X, Zheng X, Zhu Y, Zhao X, Liu J, Xun J, Yuan S, Chen J, Pan H, Yang J, Wang J, Liang Z, Shen X, Liang Y, Lin Q, Liang H, Li M, Peng F, Lu D, Xu J, Lu H, Jiang S, Zhao P, Zhu H. Asialoglycoprotein receptor 1 promotes SARS-CoV-2 infection of human normal hepatocytes. Signal Transduct Target Ther 2024; 9:42. [PMID: 38355848 PMCID: PMC10866945 DOI: 10.1038/s41392-024-01754-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/18/2023] [Accepted: 01/23/2024] [Indexed: 02/16/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes multi-organ damage, which includes hepatic dysfunction, as observed in over 50% of COVID-19 patients. Angiotensin I converting enzyme (peptidyl-dipeptidase A) 2 (ACE2) is the primary receptor for SARS-CoV-2 entry into host cells, and studies have shown the presence of intracellular virus particles in human hepatocytes that express ACE2, but at extremely low levels. Consequently, we asked if hepatocytes might express receptors other than ACE2 capable of promoting the entry of SARS-CoV-2 into cells. To address this question, we performed a genome-wide CRISPR-Cas9 activation library screening and found that Asialoglycoprotein receptor 1 (ASGR1) promoted SARS-CoV-2 pseudovirus infection of HeLa cells. In Huh-7 cells, simultaneous knockout of ACE2 and ASGR1 prevented SARS-CoV-2 pseudovirus infection. In the immortalized THLE-2 hepatocyte cell line and primary hepatic parenchymal cells, both of which barely expressed ACE2, SARS-CoV-2 pseudovirus could successfully establish an infection. However, after treatment with ASGR1 antibody or siRNA targeting ASGR1, the infection rate significantly dropped, suggesting that SARS-CoV-2 pseudovirus infects hepatic parenchymal cells mainly through an ASGR1-dependent mechanism. We confirmed that ASGR1 could interact with Spike protein, which depends on receptor binding domain (RBD) and N-terminal domain (NTD). Finally, we also used Immunohistochemistry and electron microscopy to verify that SARS-CoV-2 could infect primary hepatic parenchymal cells. After inhibiting ASGR1 in primary hepatic parenchymal cells by siRNA, the infection efficiency of the live virus decreased significantly. Collectively, these findings indicate that ASGR1 is a candidate receptor for SARS-CoV-2 that promotes infection of hepatic parenchymal cells.
Collapse
Affiliation(s)
- Xinyi Yang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Yiwu Research Institute, Fudan University, Shanghai, China
| | - Xu Zheng
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Yuqi Zhu
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Yiwu Research Institute, Fudan University, Shanghai, China
| | - Xiaying Zhao
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Yiwu Research Institute, Fudan University, Shanghai, China
| | - Jun Liu
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Yiwu Research Institute, Fudan University, Shanghai, China
| | - Jiangna Xun
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Yiwu Research Institute, Fudan University, Shanghai, China
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Songhua Yuan
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jun Chen
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Hanyu Pan
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Yiwu Research Institute, Fudan University, Shanghai, China
| | - Jinlong Yang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Yiwu Research Institute, Fudan University, Shanghai, China
| | - Jing Wang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Yiwu Research Institute, Fudan University, Shanghai, China
| | - Zhimin Liang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Yiwu Research Institute, Fudan University, Shanghai, China
| | - Xiaoting Shen
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Yiwu Research Institute, Fudan University, Shanghai, China
| | - Yue Liang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Yiwu Research Institute, Fudan University, Shanghai, China
| | - Qinru Lin
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Yiwu Research Institute, Fudan University, Shanghai, China
| | - Huitong Liang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Yiwu Research Institute, Fudan University, Shanghai, China
| | - Min Li
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Yiwu Research Institute, Fudan University, Shanghai, China
| | - Fei Peng
- Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Daru Lu
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Yiwu Research Institute, Fudan University, Shanghai, China
| | - Jianqing Xu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hongzhou Lu
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Department of Infectious Diseases and Nursing Research Institution, National Clinical Research Center for Infectious Diseases, The Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ping Zhao
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China.
| | - Huanzhang Zhu
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Yiwu Research Institute, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Patil R, Palkar S, Mishra A, Patil R, Arankalle V. Variable neutralizing antibody responses to 10 SARS-CoV-2 variants in natural infection with wild- type (B.1) virus, Kappa (B.1.617.1), and Delta (B.1.617.2) variants and COVISHIELD vaccine immunization in India: utility of the MSD platform. Front Immunol 2023; 14:1181991. [PMID: 37342350 PMCID: PMC10277512 DOI: 10.3389/fimmu.2023.1181991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/17/2023] [Indexed: 06/22/2023] Open
Abstract
For the efficacy of COVID-19 vaccines, emergence of variants accumulating immune-escape mutations remains a major concern. We analyzed the anti-variant (n = 10) neutralization activity of sera from COVID-19 patients infected with Wuhan (B.1), Kappa, and Delta variants and COVISHIELD vaccine recipients with (prepositives) or without (prenegatives) prior antibody positivity using V- PLEX ACE2 Neutralization Kit from MSD. MSD and PRNT50 correlated well (r = 0.76-0.83, p < 0.0001). Despite the least antibody positivity in Kappa patients, anti-variant neutralizing antibody (Nab) levels in the responders were comparable with Delta patients. Vaccinees sampled at 1 month (PD2-1) and 6 months (PD2-6) post-second dose showed the highest seropositivity and Nab levels against the Wuhan strain. At PD2-1, the responder rate was variant-dependent and 100% respectively in prenegatives and prepositives. Nab levels against B.1.135.1, B.1.620, B.1.1.7+E484K (both groups), AY.2 (prenegatives), and B.1.618 (prepositives) were lower than that of Wuhan. At PD2-6, positivity decreased to 15.6%-68.8% in the prenegatives; 3.5%-10.7% of prepositives turned negative for the same four variants. As against the decline in Nab levels in 9/10 variants (prenegatives), a further reduction was seen against the same four variants in the prepositives. These variants possess immune-evasion-associated mutations in the RBD/S region. In conclusion, our data show that the Nab response of patients to multiple variants depends on the infecting variant. We confirm superiority of hybrid immunity in neutralizing multiple variants. Depending on the infecting variant pre- or postvaccination, immune response to different vaccines in different populations will vary and impact protection against emerging variants. The MSD platform provides an excellent alternative to live virus/pseudovirus neutralization tests.
Collapse
Affiliation(s)
- Rajashree Patil
- Department of Communicable Diseases, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
| | - Sonali Palkar
- Department of Pediatrics, Bharati Vidyapeeth Medical College, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
| | - Akhileshchandra Mishra
- Department of Communicable Diseases, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
| | - Rahul Patil
- Department of Communicable Diseases, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
| | - Vidya Arankalle
- Department of Communicable Diseases, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
| |
Collapse
|