1
|
Pan Q, Ding L, Hladyshau S, Yao X, Zhou J, Yan L, Dhungana Y, Shi H, Qian C, Dong X, Burdyshaw C, Veloso JP, Khatamian A, Xie Z, Risch I, Yang X, Yang J, Huang X, Fang J, Jain A, Jain A, Rusch M, Brewer M, Peng J, Yan KK, Chi H, Yu J. scMINER: a mutual information-based framework for clustering and hidden driver inference from single-cell transcriptomics data. Nat Commun 2025; 16:4305. [PMID: 40341143 PMCID: PMC12062461 DOI: 10.1038/s41467-025-59620-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 04/28/2025] [Indexed: 05/10/2025] Open
Abstract
Single-cell transcriptomics data present challenges due to their inherent stochasticity and sparsity, complicating both cell clustering and cell type-specific network inference. To address these challenges, we introduce scMINER (single-cell Mutual Information-based Network Engineering Ranger), an integrative framework for unsupervised cell clustering, transcription factor and signaling protein network inference, and identification of hidden drivers from single-cell transcriptomic data. scMINER demonstrates superior accuracy in cell clustering, outperforming five state-of-the-art algorithms and excelling in distinguishing closely related cell populations. For network inference, scMINER outperforms three established methods, as validated by ATAC-seq and CROP-seq. In particular, it surpasses SCENIC in revealing key transcription factor drivers involved in T cell exhaustion and Treg tissue specification. Moreover, scMINER enables the inference of signaling protein networks and drivers with high accuracy, which presents an advantage in multimodal single cell data analysis. In addition, we establish scMINER Portal, an interactive visualization tool to facilitate exploration of scMINER results.
Collapse
Affiliation(s)
- Qingfei Pan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Liang Ding
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Siarhei Hladyshau
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Xiangyu Yao
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jiayu Zhou
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Lei Yan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Yogesh Dhungana
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Hao Shi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Chenxi Qian
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Xinran Dong
- Center for Molecular Medicine, Children's Hospital of Fudan University, Shanghai, 201102, P.R. China
| | - Chad Burdyshaw
- Department of Information Services, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Joao Pedro Veloso
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Alireza Khatamian
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Zhen Xie
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Isabel Risch
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Xu Yang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jiyuan Yang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Xin Huang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Jason Fang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Anuj Jain
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Arihant Jain
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Michael Rusch
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Michael Brewer
- Department of Information Services, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Junmin Peng
- Department of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Koon-Kiu Yan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Hongbo Chi
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jiyang Yu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
2
|
Norrie JL, Lupo MS, Little DR, Shirinifard A, Mishra A, Zhang Q, Geiger N, Putnam D, Djekidel N, Ramirez C, Xu B, Dundee JM, Yu J, Chen X, Dyer MA. Latent epigenetic programs in Müller glia contribute to stress and disease response in the retina. Dev Cell 2025; 60:1199-1216.e7. [PMID: 39753128 PMCID: PMC12014377 DOI: 10.1016/j.devcel.2024.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 07/09/2024] [Accepted: 12/06/2024] [Indexed: 04/24/2025]
Abstract
Previous studies have demonstrated the dynamic changes in chromatin structure during retinal development correlate with changes in gene expression. However, those studies lack cellular resolution. Here, we integrate single-cell RNA sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) with bulk data to identify cell-type-specific changes in chromatin structure during human and murine development. Although promoter activity is correlated with chromatin accessibility, we discovered several hundred genes that were transcriptionally silent but had accessible chromatin at their promoters. Most of those silent/accessible gene promoters were in Müller glial cells, which function to maintain retinal homeostasis and respond to stress, injury, or disease. We refer to these as "pliancy genes" because they allow the Müller glia to rapidly change their gene expression and cellular state in response to retinal insults. The Müller glial cell pliancy program is established during development, and we demonstrate that pliancy genes are important for regulating inflammation in the murine retina in vivo.
Collapse
Affiliation(s)
- Jackie L Norrie
- Departments of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Marybeth S Lupo
- Departments of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Danielle R Little
- Departments of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Abbas Shirinifard
- Departments of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Akhilesh Mishra
- Departments of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Qiong Zhang
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Natalie Geiger
- Departments of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Daniel Putnam
- Departments of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Nadhir Djekidel
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Cody Ramirez
- Departments of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jacob M Dundee
- Departments of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jiang Yu
- Departments of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xiang Chen
- Departments of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Michael A Dyer
- Departments of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
3
|
Chen J, Chen Z, Sun T, Jiang E, Liu K, Nong Y, Yuan T, Dai CC, Yan Y, Ge J, Wu H, Yang T, Wang S, Su Z, Song T, Abdelbsset-Ismail A, Li Y, Li C, Singhal RA, Yang K, Cai L, Carll AP. Cell Function Graphics: TOGGLE delineates fate and function within individual cell types via single-cell transcriptomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.01.631041. [PMID: 40060433 PMCID: PMC11888173 DOI: 10.1101/2025.01.01.631041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Functional RNA plays a crucial role in regulating cellular processes throughout the life cycle of a cell. Identifying functional changes at each stage, from inception to development to maturation, functional execution, and eventual death or pathological transformation, often requires systematic comparisons of functional expression across cell populations. However, because cells of the same type often exhibit similar gene expression patterns regardless of function or fate, it is challenging to distinguish the stages of cellular fate or functional states within the same cell type, which also limits our understanding of cellular memory. Cells of the same type that share structural and gene expression similarities but originate from different regions and perform slightly distinct functions often retain unique epigenetic memory signatures. Although RNA serves as a key executor of fundamental cellular functions, its high expression similarity among cells of the same type limits its ability to distinguish functional heterogeneity. To overcome this challenge, we developed TOGGLE, utilizing higher-resolution analytical methods to uncover functional diversity at the cellular level. Then we based on TOGGLE developed an innovative Graph Diffusion Functional Map, which can significantly reduce noise, thereby more clearly displaying the functional grouping of RNA and enabling the capture of more subtle functional differences in high-dimensional data. Ultimately, this method effectively removes the influence of baseline functions from classification criteria and identifies key trajectories of cell fate determination.
Collapse
|
4
|
Yuan Q, Duren Z. Inferring gene regulatory networks from single-cell multiome data using atlas-scale external data. Nat Biotechnol 2025; 43:247-257. [PMID: 38609714 PMCID: PMC11825371 DOI: 10.1038/s41587-024-02182-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 02/26/2024] [Indexed: 04/14/2024]
Abstract
Existing methods for gene regulatory network (GRN) inference rely on gene expression data alone or on lower resolution bulk data. Despite the recent integration of chromatin accessibility and RNA sequencing data, learning complex mechanisms from limited independent data points still presents a daunting challenge. Here we present LINGER (Lifelong neural network for gene regulation), a machine-learning method to infer GRNs from single-cell paired gene expression and chromatin accessibility data. LINGER incorporates atlas-scale external bulk data across diverse cellular contexts and prior knowledge of transcription factor motifs as a manifold regularization. LINGER achieves a fourfold to sevenfold relative increase in accuracy over existing methods and reveals a complex regulatory landscape of genome-wide association studies, enabling enhanced interpretation of disease-associated variants and genes. Following the GRN inference from reference single-cell multiome data, LINGER enables the estimation of transcription factor activity solely from bulk or single-cell gene expression data, leveraging the abundance of available gene expression data to identify driver regulators from case-control studies.
Collapse
Affiliation(s)
- Qiuyue Yuan
- Center for Human Genetics, Department of Genetics and Biochemistry, Clemson University, Greenwood, SC, USA
| | - Zhana Duren
- Center for Human Genetics, Department of Genetics and Biochemistry, Clemson University, Greenwood, SC, USA.
| |
Collapse
|
5
|
Jiang J, Ye X, Kong Y, Guo C, Zhang M, Cao F, Zhang Y, Pei W. scLTdb: a comprehensive single-cell lineage tracing database. Nucleic Acids Res 2025; 53:D1173-D1185. [PMID: 39470724 PMCID: PMC11701529 DOI: 10.1093/nar/gkae913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/21/2024] [Accepted: 10/06/2024] [Indexed: 10/30/2024] Open
Abstract
Single-cell lineage tracing (scLT) is a powerful technique that integrates cellular barcoding with single-cell sequencing technologies. This new approach enables the simultaneous measurement of cell fate and molecular profiles at single-cell resolution, uncovering the gene regulatory program of cell fate determination. However, a comprehensive scLT database is not yet available. Here, we present the single-cell lineage tracing database (scLTdb, https://scltdb.com) containing 109 datasets that are manually curated and analyzed through a standard pipeline. The scLTdb provides interactive analysis modules for visualizing and re-analyzing scLT datasets, especially the comprehensive cell fate analysis and lineage relationship analysis. Importantly, scLTdb also allows users to identify fate-related gene signatures. In conclusion, scLTdb provides an interactive interface of scLT data exploration and analysis, and will facilitate the understanding of cell fate decision and lineage commitment in development and diseases.
Collapse
Affiliation(s)
- Junyao Jiang
- Westlake Laboratory of Life Sciences and Biomedicine, No. 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
- School of Life Sciences, Westlake University, No. 600 Dunyu Road, Hangzhou 310030, Zhejiang, China
- Westlake Institute for Advanced Study, No. 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
| | - Xing Ye
- Westlake Laboratory of Life Sciences and Biomedicine, No. 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
- School of Life Sciences, Westlake University, No. 600 Dunyu Road, Hangzhou 310030, Zhejiang, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, No. 96 Jinzhai Road, Hefei 230027, Anhui, China
| | - Yunhui Kong
- Institute of Modern Biology, Nanjing University, No. 163 Xianlin Road, Nanjing 210008, Jiangsu, China
| | - Chenyu Guo
- Westlake Laboratory of Life Sciences and Biomedicine, No. 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
- School of Life Sciences, Westlake University, No. 600 Dunyu Road, Hangzhou 310030, Zhejiang, China
- Westlake Institute for Advanced Study, No. 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
- School of Life Sciences, Fudan University, No. 2005 Songhu Road, Shanghai 200438, China
| | - Mingyuan Zhang
- Westlake Laboratory of Life Sciences and Biomedicine, No. 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
- School of Life Sciences, Westlake University, No. 600 Dunyu Road, Hangzhou 310030, Zhejiang, China
- Westlake Institute for Advanced Study, No. 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
| | - Fang Cao
- Department of Neurosurgery, The First Affiliated Hospital of Hainan Medical University, No. 31 Longhua Road, Haikou 570100, Hainan, China
| | - Yanxiao Zhang
- Westlake Laboratory of Life Sciences and Biomedicine, No. 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
- School of Life Sciences, Westlake University, No. 600 Dunyu Road, Hangzhou 310030, Zhejiang, China
- Westlake Institute for Advanced Study, No. 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
- Research Center for Industries of the Future, Westlake University, No. 600 Dunyu Road, Hangzhou 310030, Zhejiang, China
| | - Weike Pei
- Westlake Laboratory of Life Sciences and Biomedicine, No. 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
- School of Life Sciences, Westlake University, No. 600 Dunyu Road, Hangzhou 310030, Zhejiang, China
- Westlake Institute for Advanced Study, No. 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
- Research Center for Industries of the Future, Westlake University, No. 600 Dunyu Road, Hangzhou 310030, Zhejiang, China
| |
Collapse
|
6
|
Karamveer, Uzun Y. Approaches for Benchmarking Single-Cell Gene Regulatory Network Methods. Bioinform Biol Insights 2024; 18:11779322241287120. [PMID: 39502448 PMCID: PMC11536393 DOI: 10.1177/11779322241287120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/10/2024] [Indexed: 11/08/2024] Open
Abstract
Gene regulatory networks are powerful tools for modeling genetic interactions that control the expression of genes driving cell differentiation, and single-cell sequencing offers a unique opportunity to build these networks with high-resolution genomic data. There are many proposed computational methods to build these networks using single-cell data, and different approaches are used to benchmark these methods. However, a comprehensive discussion specifically focusing on benchmarking approaches is missing. In this article, we lay the GRN terminology, present an overview of common gold-standard studies and data sets, and define the performance metrics for benchmarking network construction methodologies. We also point out the advantages and limitations of different benchmarking approaches, suggest alternative ground truth data sets that can be used for benchmarking, and specify additional considerations in this context.
Collapse
Affiliation(s)
- Karamveer
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Yasin Uzun
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
- Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
7
|
Loers JU, Vermeirssen V. A single-cell multimodal view on gene regulatory network inference from transcriptomics and chromatin accessibility data. Brief Bioinform 2024; 25:bbae382. [PMID: 39207727 PMCID: PMC11359808 DOI: 10.1093/bib/bbae382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/27/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Eukaryotic gene regulation is a combinatorial, dynamic, and quantitative process that plays a vital role in development and disease and can be modeled at a systems level in gene regulatory networks (GRNs). The wealth of multi-omics data measured on the same samples and even on the same cells has lifted the field of GRN inference to the next stage. Combinations of (single-cell) transcriptomics and chromatin accessibility allow the prediction of fine-grained regulatory programs that go beyond mere correlation of transcription factor and target gene expression, with enhancer GRNs (eGRNs) modeling molecular interactions between transcription factors, regulatory elements, and target genes. In this review, we highlight the key components for successful (e)GRN inference from (sc)RNA-seq and (sc)ATAC-seq data exemplified by state-of-the-art methods as well as open challenges and future developments. Moreover, we address preprocessing strategies, metacell generation and computational omics pairing, transcription factor binding site detection, and linear and three-dimensional approaches to identify chromatin interactions as well as dynamic and causal eGRN inference. We believe that the integration of transcriptomics together with epigenomics data at a single-cell level is the new standard for mechanistic network inference, and that it can be further advanced with integrating additional omics layers and spatiotemporal data, as well as with shifting the focus towards more quantitative and causal modeling strategies.
Collapse
Affiliation(s)
- Jens Uwe Loers
- Lab for Computational Biology, Integromics and Gene Regulation (CBIGR), Cancer Research Institute Ghent (CRIG), Corneel Heymanslaan 10, 9000 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Zwijnaarde-Technologiepark 71, 9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Vanessa Vermeirssen
- Lab for Computational Biology, Integromics and Gene Regulation (CBIGR), Cancer Research Institute Ghent (CRIG), Corneel Heymanslaan 10, 9000 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Zwijnaarde-Technologiepark 71, 9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| |
Collapse
|
8
|
Moeckel C, Mouratidis I, Chantzi N, Uzun Y, Georgakopoulos-Soares I. Advances in computational and experimental approaches for deciphering transcriptional regulatory networks: Understanding the roles of cis-regulatory elements is essential, and recent research utilizing MPRAs, STARR-seq, CRISPR-Cas9, and machine learning has yielded valuable insights. Bioessays 2024; 46:e2300210. [PMID: 38715516 PMCID: PMC11444527 DOI: 10.1002/bies.202300210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/16/2024]
Abstract
Understanding the influence of cis-regulatory elements on gene regulation poses numerous challenges given complexities stemming from variations in transcription factor (TF) binding, chromatin accessibility, structural constraints, and cell-type differences. This review discusses the role of gene regulatory networks in enhancing understanding of transcriptional regulation and covers construction methods ranging from expression-based approaches to supervised machine learning. Additionally, key experimental methods, including MPRAs and CRISPR-Cas9-based screening, which have significantly contributed to understanding TF binding preferences and cis-regulatory element functions, are explored. Lastly, the potential of machine learning and artificial intelligence to unravel cis-regulatory logic is analyzed. These computational advances have far-reaching implications for precision medicine, therapeutic target discovery, and the study of genetic variations in health and disease.
Collapse
Affiliation(s)
- Camille Moeckel
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Ioannis Mouratidis
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Nikol Chantzi
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Yasin Uzun
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Ilias Georgakopoulos-Soares
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
9
|
Huo Q, Song R, Ma Z. Recent advances in exploring transcriptional regulatory landscape of crops. FRONTIERS IN PLANT SCIENCE 2024; 15:1421503. [PMID: 38903438 PMCID: PMC11188431 DOI: 10.3389/fpls.2024.1421503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024]
Abstract
Crop breeding entails developing and selecting plant varieties with improved agronomic traits. Modern molecular techniques, such as genome editing, enable more efficient manipulation of plant phenotype by altering the expression of particular regulatory or functional genes. Hence, it is essential to thoroughly comprehend the transcriptional regulatory mechanisms that underpin these traits. In the multi-omics era, a large amount of omics data has been generated for diverse crop species, including genomics, epigenomics, transcriptomics, proteomics, and single-cell omics. The abundant data resources and the emergence of advanced computational tools offer unprecedented opportunities for obtaining a holistic view and profound understanding of the regulatory processes linked to desirable traits. This review focuses on integrated network approaches that utilize multi-omics data to investigate gene expression regulation. Various types of regulatory networks and their inference methods are discussed, focusing on recent advancements in crop plants. The integration of multi-omics data has been proven to be crucial for the construction of high-confidence regulatory networks. With the refinement of these methodologies, they will significantly enhance crop breeding efforts and contribute to global food security.
Collapse
Affiliation(s)
| | | | - Zeyang Ma
- State Key Laboratory of Maize Bio-breeding, Frontiers Science Center for Molecular Design Breeding, Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
Jiang J, Li J, Huang S, Jiang F, Liang Y, Xu X, Wang J. CACIMAR: cross-species analysis of cell identities, markers, regulations, and interactions using single-cell RNA sequencing data. Brief Bioinform 2024; 25:bbae283. [PMID: 38856169 PMCID: PMC11163379 DOI: 10.1093/bib/bbae283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/10/2024] [Accepted: 05/30/2024] [Indexed: 06/11/2024] Open
Abstract
Transcriptomic analysis across species is increasingly used to reveal conserved gene regulations which implicate crucial regulators. Cross-species analysis of single-cell RNA sequencing (scRNA-seq) data provides new opportunities to identify the cellular and molecular conservations, especially for cell types and cell type-specific gene regulations. However, few methods have been developed to analyze cross-species scRNA-seq data to uncover both molecular and cellular conservations. Here, we built a tool called CACIMAR, which can perform cross-species analysis of cell identities, markers, regulations, and interactions using scRNA-seq profiles. Based on the weighted sum models of the conserved features, we developed different conservation scores to measure the conservation of cell types, regulatory networks, and intercellular interactions. Using publicly available scRNA-seq data on retinal regeneration in mice, zebrafish, and chick, we demonstrated four main functions of CACIMAR. First, CACIMAR allows to identify conserved cell types even in evolutionarily distant species. Second, the tool facilitates the identification of evolutionarily conserved or species-specific marker genes. Third, CACIMAR enables the identification of conserved intracellular regulations, including cell type-specific regulatory subnetworks and regulators. Lastly, CACIMAR provides a unique feature for identifying conserved intercellular interactions. Overall, CACIMAR facilitates the identification of evolutionarily conserved cell types, marker genes, intracellular regulations, and intercellular interactions, providing insights into the cellular and molecular mechanisms of species evolution.
Collapse
Affiliation(s)
- Junyao Jiang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Road, Huangpu District, Guangzhou 510530, China
- School of Life Sciences, Westlake University, No. 600 Dunyu Road, Xihu District, Hangzhou, 310030, China
| | - Jinlian Li
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Road, Huangpu District, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 1 Yanqihu East Road, Huairou District, Beijing 101408, China
| | - Sunan Huang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Road, Huangpu District, Guangzhou 510530, China
| | - Fan Jiang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Road, Huangpu District, Guangzhou 510530, China
| | - Yanran Liang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Road, Huangpu District, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 1 Yanqihu East Road, Huairou District, Beijing 101408, China
| | - Xueli Xu
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Road, Huangpu District, Guangzhou 510530, China
| | - Jie Wang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Road, Huangpu District, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 1 Yanqihu East Road, Huairou District, Beijing 101408, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, No. 190 Kaiyuan Road, Huangpu District, Guangzhou 510530, China
| |
Collapse
|
11
|
Manosalva Pérez N, Ferrari C, Engelhorn J, Depuydt T, Nelissen H, Hartwig T, Vandepoele K. MINI-AC: inference of plant gene regulatory networks using bulk or single-cell accessible chromatin profiles. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:280-301. [PMID: 37788349 DOI: 10.1111/tpj.16483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/13/2023] [Accepted: 09/16/2023] [Indexed: 10/05/2023]
Abstract
Gene regulatory networks (GRNs) represent the interactions between transcription factors (TF) and their target genes. Plant GRNs control transcriptional programs involved in growth, development, and stress responses, ultimately affecting diverse agricultural traits. While recent developments in accessible chromatin (AC) profiling technologies make it possible to identify context-specific regulatory DNA, learning the underlying GRNs remains a major challenge. We developed MINI-AC (Motif-Informed Network Inference based on Accessible Chromatin), a method that combines AC data from bulk or single-cell experiments with TF binding site (TFBS) information to learn GRNs in plants. We benchmarked MINI-AC using bulk AC datasets from different Arabidopsis thaliana tissues and showed that it outperforms other methods to identify correct TFBS. In maize, a crop with a complex genome and abundant distal AC regions, MINI-AC successfully inferred leaf GRNs with experimentally confirmed, both proximal and distal, TF-target gene interactions. Furthermore, we showed that both AC regions and footprints are valid alternatives to infer AC-based GRNs with MINI-AC. Finally, we combined MINI-AC predictions from bulk and single-cell AC datasets to identify general and cell-type specific maize leaf regulators. Focusing on C4 metabolism, we identified diverse regulatory interactions in specialized cell types for this photosynthetic pathway. MINI-AC represents a powerful tool for inferring accurate AC-derived GRNs in plants and identifying known and novel candidate regulators, improving our understanding of gene regulation in plants.
Collapse
Affiliation(s)
- Nicolás Manosalva Pérez
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Camilla Ferrari
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Julia Engelhorn
- Molecular Physiology Department, Heinrich-Heine University, 40225, Düsseldorf, Germany
- Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Thomas Depuydt
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Thomas Hartwig
- Molecular Physiology Department, Heinrich-Heine University, 40225, Düsseldorf, Germany
- Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, 9052, Ghent, Belgium
| |
Collapse
|
12
|
Cheng J, Cheng M, Lusis AJ, Yang X. Gene Regulatory Networks in Coronary Artery Disease. Curr Atheroscler Rep 2023; 25:1013-1023. [PMID: 38008808 PMCID: PMC11466510 DOI: 10.1007/s11883-023-01170-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2023] [Indexed: 11/28/2023]
Abstract
PURPOSE OF REVIEW Coronary artery disease is a complex disorder and the leading cause of mortality worldwide. As technologies for the generation of high-throughput multiomics data have advanced, gene regulatory network modeling has become an increasingly powerful tool in understanding coronary artery disease. This review summarizes recent and novel gene regulatory network tools for bulk tissue and single cell data, existing databases for network construction, and applications of gene regulatory networks in coronary artery disease. RECENT FINDINGS New gene regulatory network tools can integrate multiomics data to elucidate complex disease mechanisms at unprecedented cellular and spatial resolutions. At the same time, updates to coronary artery disease expression data in existing databases have enabled researchers to build gene regulatory networks to study novel disease mechanisms. Gene regulatory networks have proven extremely useful in understanding CAD heritability beyond what is explained by GWAS loci and in identifying mechanisms and key driver genes underlying disease onset and progression. Gene regulatory networks can holistically and comprehensively address the complex nature of coronary artery disease. In this review, we discuss key algorithmic approaches to construct gene regulatory networks and highlight state-of-the-art methods that model specific modes of gene regulation. We also explore recent applications of these tools in coronary artery disease patient data repositories to understand disease heritability and shared and distinct disease mechanisms and key driver genes across tissues, between sexes, and between species.
Collapse
Affiliation(s)
- Jenny Cheng
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA, 90095, USA
- Molecular, Cellular and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA, 90095, USA
| | - Michael Cheng
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA, 90095, USA
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA, 90095, USA
| | - Aldons J Lusis
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, 650 Charles E Young Drive South, Los Angeles, CA, 90095, USA.
- Departments of Human Genetics & Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, 650 Charles E. Young Drive South, Los Angeles, CA, 90095, USA.
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA, 90095, USA.
- Molecular, Cellular and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA, 90095, USA.
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA, 90095, USA.
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA, 90095, USA.
| |
Collapse
|
13
|
Badia-I-Mompel P, Wessels L, Müller-Dott S, Trimbour R, Ramirez Flores RO, Argelaguet R, Saez-Rodriguez J. Gene regulatory network inference in the era of single-cell multi-omics. Nat Rev Genet 2023; 24:739-754. [PMID: 37365273 DOI: 10.1038/s41576-023-00618-5] [Citation(s) in RCA: 116] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2023] [Indexed: 06/28/2023]
Abstract
The interplay between chromatin, transcription factors and genes generates complex regulatory circuits that can be represented as gene regulatory networks (GRNs). The study of GRNs is useful to understand how cellular identity is established, maintained and disrupted in disease. GRNs can be inferred from experimental data - historically, bulk omics data - and/or from the literature. The advent of single-cell multi-omics technologies has led to the development of novel computational methods that leverage genomic, transcriptomic and chromatin accessibility information to infer GRNs at an unprecedented resolution. Here, we review the key principles of inferring GRNs that encompass transcription factor-gene interactions from transcriptomics and chromatin accessibility data. We focus on the comparison and classification of methods that use single-cell multimodal data. We highlight challenges in GRN inference, in particular with respect to benchmarking, and potential further developments using additional data modalities.
Collapse
Affiliation(s)
- Pau Badia-I-Mompel
- Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
| | - Lorna Wessels
- Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience, Medical Faculty, MannHeim Heidelberg University, Mannheim, Germany
| | - Sophia Müller-Dott
- Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
| | - Rémi Trimbour
- Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Machine Learning for Integrative Genomics Group, Paris, France
| | - Ricardo O Ramirez Flores
- Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
| | | | - Julio Saez-Rodriguez
- Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany.
| |
Collapse
|
14
|
Liang J, Wei J, Cao J, Qian J, Gao R, Li X, Wang D, Gu Y, Dong L, Yu J, Zhao B, Wang X. In-organoid single-cell CRISPR screening reveals determinants of hepatocyte differentiation and maturation. Genome Biol 2023; 24:251. [PMID: 37907970 PMCID: PMC10617096 DOI: 10.1186/s13059-023-03084-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/06/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND Harnessing hepatocytes for basic research and regenerative medicine demands a complete understanding of the genetic determinants underlying hepatocyte differentiation and maturation. Single-cell CRISPR screens in organoids could link genetic perturbations with parallel transcriptomic readout in single cells, providing a powerful method to delineate roles of cell fate regulators. However, a big challenge for identifying key regulators during data analysis is the low expression levels of transcription factors (TFs), which are difficult to accurately estimate due to noise and dropouts in single-cell sequencing. Also, it is often the changes in TF activities in the transcriptional cascade rather than the expression levels of TFs that are relevant to the cell fate transition. RESULTS Here, we develop Organoid-based Single-cell CRISPR screening Analyzed with Regulons (OSCAR), a framework using regulon activities as readouts to dissect gene knockout effects in organoids. In adult-stem-cell-derived liver organoids, we map transcriptomes in 80,576 cells upon 246 perturbations associated with transcriptional regulation of hepatocyte formation. Using OSCAR, we identify known and novel positive and negative regulators, among which Fos and Ubr5 are the top-ranked ones. Further single-gene loss-of-function assays demonstrate that Fos depletion in mouse and human liver organoids promote hepatocyte differentiation by specific upregulation of liver metabolic genes and pathways, and conditional knockout of Ubr5 in mouse liver delays hepatocyte maturation. CONCLUSIONS Altogether, we provide a framework to explore lineage specifiers in a rapid and systematic manner, and identify hepatocyte determinators with potential clinical applications.
Collapse
Affiliation(s)
- Junbo Liang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, 100005, China
| | - Jinsong Wei
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jun Cao
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, 100005, China
- Institute of Clinical Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Translational Medicine Center, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Jun Qian
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, 100005, China
| | - Ran Gao
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, 100005, China
| | - Xiaoyu Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Dingding Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, 100005, China
| | - Yani Gu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, 100005, China
| | - Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovative Center, Nanjing University, Nanjing, 210023, China
| | - Jia Yu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, 100005, China
| | - Bing Zhao
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
- Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
- Institute of Organoid Technology, Kunming Medical University, Kunming, 650500, China.
| | - Xiaoyue Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, 100005, China.
- Institute of Clinical Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Translational Medicine Center, Peking Union Medical College Hospital, Beijing, 100730, China.
| |
Collapse
|
15
|
Kim D, Tran A, Kim HJ, Lin Y, Yang JYH, Yang P. Gene regulatory network reconstruction: harnessing the power of single-cell multi-omic data. NPJ Syst Biol Appl 2023; 9:51. [PMID: 37857632 PMCID: PMC10587078 DOI: 10.1038/s41540-023-00312-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023] Open
Abstract
Inferring gene regulatory networks (GRNs) is a fundamental challenge in biology that aims to unravel the complex relationships between genes and their regulators. Deciphering these networks plays a critical role in understanding the underlying regulatory crosstalk that drives many cellular processes and diseases. Recent advances in sequencing technology have led to the development of state-of-the-art GRN inference methods that exploit matched single-cell multi-omic data. By employing diverse mathematical and statistical methodologies, these methods aim to reconstruct more comprehensive and precise gene regulatory networks. In this review, we give a brief overview on the statistical and methodological foundations commonly used in GRN inference methods. We then compare and contrast the latest state-of-the-art GRN inference methods for single-cell matched multi-omics data, and discuss their assumptions, limitations and opportunities. Finally, we discuss the challenges and future directions that hold promise for further advancements in this rapidly developing field.
Collapse
Affiliation(s)
- Daniel Kim
- School of Mathematics and Statistics, University of Sydney, Camperdown, NSW, Australia
- Computational Systems Biology Unit, Children's Medical Research Institute, University of Sydney, Camperdown, NSW, Australia
- Sydney Precision Data Science Centre, University of Sydney, Camperdown, NSW, Australia
| | - Andy Tran
- School of Mathematics and Statistics, University of Sydney, Camperdown, NSW, Australia
- Sydney Precision Data Science Centre, University of Sydney, Camperdown, NSW, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia
| | - Hani Jieun Kim
- Computational Systems Biology Unit, Children's Medical Research Institute, University of Sydney, Camperdown, NSW, Australia
- Sydney Precision Data Science Centre, University of Sydney, Camperdown, NSW, Australia
| | - Yingxin Lin
- School of Mathematics and Statistics, University of Sydney, Camperdown, NSW, Australia
- Sydney Precision Data Science Centre, University of Sydney, Camperdown, NSW, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia
| | - Jean Yee Hwa Yang
- School of Mathematics and Statistics, University of Sydney, Camperdown, NSW, Australia.
- Sydney Precision Data Science Centre, University of Sydney, Camperdown, NSW, Australia.
- Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia.
| | - Pengyi Yang
- School of Mathematics and Statistics, University of Sydney, Camperdown, NSW, Australia.
- Computational Systems Biology Unit, Children's Medical Research Institute, University of Sydney, Camperdown, NSW, Australia.
- Sydney Precision Data Science Centre, University of Sydney, Camperdown, NSW, Australia.
- Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
16
|
Takeuchi F, Liang YQ, Shimizu-Furusawa H, Isono M, Ang MY, Mori K, Mori T, Kakazu E, Yoshio S, Kato N. Gene-regulation modules in nonalcoholic fatty liver disease revealed by single-nucleus ATAC-seq. Life Sci Alliance 2023; 6:e202301988. [PMID: 37491046 PMCID: PMC10368228 DOI: 10.26508/lsa.202301988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/27/2023] Open
Abstract
We investigated the progression of nonalcoholic fatty liver disease from fatty liver to steatohepatitis using single-nucleus and bulk ATAC-seq on the livers of rats fed a high-fat diet (HFD). Rats fed HFD for 4 wk developed fatty liver, and those fed HFD for 8 wk further progressed to steatohepatitis. We observed an increase in the proportion of inflammatory macrophages, consistent with the pathological progression. Utilizing machine learning, we divided global gene regulation into modules, wherein transcription factors within a module could regulate genes within the same module, reaffirming known regulatory relationships between transcription factors and biological processes. We identified core genes-central to co-expression and protein-protein interaction-for the biological processes discovered. Notably, a large part of the core genes overlapped with genes previously implicated in nonalcoholic fatty liver disease. Single-nucleus ATAC-seq, combined with data-driven statistical analysis, offers insight into in vivo global gene regulation as a combination of modules and assists in identifying core genes of relevant biological processes.
Collapse
Affiliation(s)
- Fumihiko Takeuchi
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Medical Genomics Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Systems Genomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Yi-Qiang Liang
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hana Shimizu-Furusawa
- Department of Hygiene and Public Health, School of Medicine, Teikyo University, Tokyo, Japan
| | - Masato Isono
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Mia Yang Ang
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Clinical Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kotaro Mori
- Medical Genomics Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Taizo Mori
- Department of Liver Diseases, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Eiji Kakazu
- Department of Liver Diseases, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Sachiyo Yoshio
- Department of Liver Diseases, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Norihiro Kato
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Medical Genomics Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Clinical Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
17
|
de la O S, Yao X, Chang S, Liu Z, Sneddon JB. Single-cell chromatin accessibility of developing murine pancreas identifies cell state-specific gene regulatory programs. Mol Metab 2023; 73:101735. [PMID: 37178817 PMCID: PMC10230264 DOI: 10.1016/j.molmet.2023.101735] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 04/20/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Numerous studies have characterized the existence of cell subtypes, along with their corresponding transcriptional profiles, within the developing mouse pancreas. The upstream mechanisms that initiate and maintain gene expression programs across cell states, however, remain largely unknown. Here, we generate single-nucleus ATAC-Sequencing data of developing murine pancreas and perform an integrated, multi-omic analysis of both chromatin accessibility and RNA expression to describe the chromatin landscape of the developing pancreas at both E14.5 and E17.5 at single-cell resolution. We identify candidate transcription factors regulating cell fate and construct gene regulatory networks of active transcription factor binding to regulatory regions of downstream target genes. This work serves as a valuable resource for the field of pancreatic biology in general and contributes to our understanding of lineage plasticity among endocrine cell types. In addition, these data identify which epigenetic states should be represented in the differentiation of stem cells to the pancreatic beta cell fate to best recapitulate in vitro the gene regulatory networks that are critical for progression along the beta cell lineage in vivo.
Collapse
Affiliation(s)
- Sean de la O
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, 94143, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA, 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA, 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Xinkai Yao
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, 94143, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA, 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA, 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Sean Chang
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, 94143, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA, 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA, 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Zhe Liu
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, 94143, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA, 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA, 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Julie B Sneddon
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, 94143, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA, 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA, 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|