1
|
Geng P, Zhao N, Zhou Y, Harris RS, Ge Y. Faecalibacterium prausnitzii regulates carbohydrate metabolic functions of the gut microbiome in C57BL/6 mice. Gut Microbes 2025; 17:2455503. [PMID: 39841201 DOI: 10.1080/19490976.2025.2455503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/08/2024] [Accepted: 01/13/2025] [Indexed: 01/23/2025] Open
Abstract
The probiotic impact of microbes on host metabolism and health depends on both host genetics and bacterial genomic variation. Faecalibacterium prausnitzii is the predominant human gut commensal emerging as a next-generation probiotic. Although this bacterium exhibits substantial intraspecies diversity, it is unclear whether genetically distinct F. prausnitzii strains might lead to functional differences in the gut microbiome. Here, we isolated and characterized a novel F. prausnitzii strain (UT1) that belongs to the most prevalent but underappreciated phylogenetic clade in the global human population. Genome analysis showed that this butyrate-producing isolate carries multiple putative mobile genetic elements, a clade-specific defense system, and a range of carbohydrate catabolic enzymes. Multiomic approaches were used to profile the impact of UT1 on the gut microbiome and associated metabolic activity of C57BL/6 mice at homeostasis. Both 16S rRNA and metagenomic sequencing demonstrated that oral administration of UT1 resulted in profound microbial compositional changes including a significant enrichment of Lactobacillus, Bifidobacterium, and Turicibacter. Functional profiling of the fecal metagenomes revealed a markedly higher abundance of carbohydrate-active enzymes (CAZymes) in UT1-gavaged mice. Accordingly, UT1-conditioned microbiota possessed the elevated capability of utilizing starch in vitro and exhibited a lower availability of microbiota-accessible carbohydrates in the gut. Further analysis uncovered a functional network wherein UT1 reduced the abundance of mucin-degrading CAZymes and microbes, which correlated with a concomitant reduction of fecal mucin glycans. Collectively, our results reveal a crucial role of UT1 in facilitating the carbohydrate metabolism of the gut microbiome and expand our understanding of the genetic and phenotypic diversity of F. prausnitzii.
Collapse
Affiliation(s)
- Peiling Geng
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Ni Zhao
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Yufan Zhou
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Reuben S Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Yong Ge
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX, USA
| |
Collapse
|
2
|
Rahman H, Anggadiredja K, Sasongko L. Mechanisms of oral ciprofloxacin-induced depressive-like behavior and the potential benefit of lactulose: A correlation analysis. Toxicol Rep 2025; 14:101920. [PMID: 39911318 PMCID: PMC11795828 DOI: 10.1016/j.toxrep.2025.101920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/06/2025] [Accepted: 01/19/2025] [Indexed: 02/07/2025] Open
Abstract
Prolonged administration of antibiotics may be associated with depression due to the potential risk of dysbiosis. Thus, the restoration of microbial balance, through administration of prebiotics, might overcome the problem. This study investigated the mechanisms of antibiotic-induced depression, which were explored through statistical correlation analysis. The potential benefit of lactulose, a prebiotic, on this behavioral disorder was further assessed. The rats were assigned to groups receiving 102.8 mg/kg ciprofloxacin daily for 1, 8, 15, or 22 days. A different group of rat was given the same regimen for 8 days accompanied with lactulose at 2056 mg/kg. Upon completion of ciprofloxacin administration, the rats were tested for depression-like behavior (forced swimming test, FST; and sucrose preference test, SPT). They were then sacrificed for biochemical assessment in the hippocampus and prefrontal cortex. The mechanism studies revealed significant correlation between SPT vs. serotonin in the hippocampus, and SPT vs. serotonin, cortisol, NF-κB in the prefrontal cortex. Meanwhile, FST was significantly correlated with serotonin in the hippocampus and the prefrontal cortex, while in the prefrontal cortex it was significantly correlated with cortisol, NF-κB, and IL-6. Based on the afore-mentioned results, it was found that lactulose improved FST by targeting serotonin in the hippocampus. This study indicate that ciprofloxacin induce depression-like behavior via modulation of several neurotransmitter system as well as proinflammatory cytokines in the hippocampus and prefrontal cortex. The results further suggest the potential of lactulose to improve this behavior.
Collapse
Affiliation(s)
- Havizur Rahman
- Department of Pharmaceutics, School of Pharmacy, Institut Teknologi Bandung, Bandung 41116, Indonesia
- Department of Pharmacy, Faculty of Medicine and Health Sciences, University of Jambi, Jambi 36361, Indonesia
| | - Kusnandar Anggadiredja
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, Institut Teknologi Bandung, Bandung 41116, Indonesia
| | - Lucy Sasongko
- Department of Pharmaceutics, School of Pharmacy, Institut Teknologi Bandung, Bandung 41116, Indonesia
| |
Collapse
|
3
|
de Souza Stork S, Mathias K, Gava F, Joaquim L, Dos Santos D, Tiscoski ADB, Bonfante S, Strickert YR, Machado RS, Martins HM, Chaves JS, Generoso J, Danielski LG, Giustina AD, Scussel R, Bitencourt R, Mack JM, de Souza Goldim MP, Machado-de-Ávila RA, Barichello T, Bobinski F, Petronilho F. Full-spectrum Cannabis sativa extract enhances gut-peripheral organ integrity after experimental ischemic stroke. Inflammopharmacology 2025:10.1007/s10787-025-01775-1. [PMID: 40389682 DOI: 10.1007/s10787-025-01775-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Accepted: 04/24/2025] [Indexed: 05/21/2025]
Abstract
OBJECTIVE This study aims to investigate the impact of full-spectrum Cannabis sativa extract (FSC) treatment on gut and peripheral organ protection after ischemic stroke. MAIN METHODS Male Wistar rats were subjected to 60-min middle cerebral artery occlusion (MCAO) or sham surgery, and received FSC (15 or 30 mg/kg) or coconut oil by gavage at different time points post-MCAO. After 72 h, neurological score, infarct volume, blood cell count, thymus, spleen and adrenal gland size and weight, serum corticosterone, intestinal permeability, oxidative stress, and inflammatory cytokines in peripheral organs were assessed. KEY FINDINGS The results show a significant improvement in neurological deficits, suggesting the therapeutic potential of FSC in post-stroke recovery. Additionally, a reduction in body mass, a decrease in blood cells related to the immune response, and atrophy of lymphoid organs, lower corticosterone levels, and reduced intestinal permeability were observed. FSC treatment also demonstrated a crucial role in protecting against oxidative stress and post-stroke lung inflammation. SIGNIFICANCE The discovery of the positive impacts of FSC in this study represents an entry point for new explorations and perspectives within this field. With latent potential, these findings have the power to shape clinical research, especially in the realm of neurodegenerative diseases and innovative therapies. Therefore, the results highlight the promising role of FSC, paving the way for more effective and transformative clinical interventions.
Collapse
Affiliation(s)
- Solange de Souza Stork
- Health Sciences Unit, Laboratory of Experimental Neurology and Cerebrovascular Diseases, Postgraduate Program in Health Sciences, University of the Extreme South of Santa Catarina, Criciúma, SC, Brazil
- Laboratory of Behavioral Neuroscience (LabNeC), Postgraduate Program, Universidade do Sul de Santa Catarina, Tubarão, SC, Brazil
| | - Khiany Mathias
- Health Sciences Unit, Laboratory of Experimental Neurology and Cerebrovascular Diseases, Postgraduate Program in Health Sciences, University of the Extreme South of Santa Catarina, Criciúma, SC, Brazil
| | - Fernanda Gava
- Health Sciences Unit, Laboratory of Experimental Neurology and Cerebrovascular Diseases, Postgraduate Program in Health Sciences, University of the Extreme South of Santa Catarina, Criciúma, SC, Brazil
| | - Larissa Joaquim
- Health Sciences Unit, Laboratory of Experimental Neurology and Cerebrovascular Diseases, Postgraduate Program in Health Sciences, University of the Extreme South of Santa Catarina, Criciúma, SC, Brazil
| | - David Dos Santos
- Health Sciences Unit, Laboratory of Experimental Neurology and Cerebrovascular Diseases, Postgraduate Program in Health Sciences, University of the Extreme South of Santa Catarina, Criciúma, SC, Brazil
| | - Anita Dal Bó Tiscoski
- Laboratory of Behavioral Neuroscience (LabNeC), Postgraduate Program, Universidade do Sul de Santa Catarina, Tubarão, SC, Brazil
| | - Sandra Bonfante
- Health Sciences Unit, Laboratory of Experimental Neurology and Cerebrovascular Diseases, Postgraduate Program in Health Sciences, University of the Extreme South of Santa Catarina, Criciúma, SC, Brazil
| | - Yasmin Ribeiro Strickert
- Laboratory of Behavioral Neuroscience (LabNeC), Postgraduate Program, Universidade do Sul de Santa Catarina, Tubarão, SC, Brazil
| | - Richard Simon Machado
- Health Sciences Unit, Laboratory of Experimental Neurology and Cerebrovascular Diseases, Postgraduate Program in Health Sciences, University of the Extreme South of Santa Catarina, Criciúma, SC, Brazil
| | - Helena Mafra Martins
- Laboratory of Experimental Neuroscience (LaNEx), Postgraduate Program in Health Sciences, Universidade Do Sul de Santa Catarina, Pedra Branca, Palhoça, SC, Brazil
| | - Jéssica Schaefer Chaves
- Laboratory of Experimental Neuroscience (LaNEx), Postgraduate Program in Health Sciences, Universidade Do Sul de Santa Catarina, Pedra Branca, Palhoça, SC, Brazil
| | - Jaqueline Generoso
- Health Sciences Unit, Laboratory of Experimental Neurology and Cerebrovascular Diseases, Postgraduate Program in Health Sciences, University of the Extreme South of Santa Catarina, Criciúma, SC, Brazil
| | - Lucineia Gainski Danielski
- Department of Surgery, Burn, Trauma and Acute Care Surgery, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Amanda Della Giustina
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Rahisa Scussel
- Laboratory of Experimental Pathophysiology, Postgraduate Program in Health Sciences, Universidade Do Extremo Sul Catarinense, Criciúma, Brazil
| | - Rafael Bitencourt
- Laboratory of Behavioral Neuroscience (LabNeC), Postgraduate Program, Universidade do Sul de Santa Catarina, Tubarão, SC, Brazil
| | - Josiel Mileno Mack
- Laboratory of Experimental Neuroscience (LaNEx), Postgraduate Program in Health Sciences, Universidade Do Sul de Santa Catarina, Pedra Branca, Palhoça, SC, Brazil
| | | | - Ricardo Andrez Machado-de-Ávila
- Laboratory of Experimental Pathophysiology, Postgraduate Program in Health Sciences, Universidade Do Extremo Sul Catarinense, Criciúma, Brazil
| | - Tatiana Barichello
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, 77054, USA
| | - Franciane Bobinski
- Laboratory of Experimental Neuroscience (LaNEx), Postgraduate Program in Health Sciences, Universidade Do Sul de Santa Catarina, Pedra Branca, Palhoça, SC, Brazil
| | - Fabricia Petronilho
- Health Sciences Unit, Laboratory of Experimental Neurology and Cerebrovascular Diseases, Postgraduate Program in Health Sciences, University of the Extreme South of Santa Catarina, Criciúma, SC, Brazil.
| |
Collapse
|
4
|
Wang FX, Dai SY, Mu G, Yu ZH, Chen Y, Zhou J. Beyond organ isolation: The bidirectional crosstalk between cerebral and intestinal ischemia-reperfusion injury via microbiota-gut-brain axis. Biochem Biophys Res Commun 2025; 763:151804. [PMID: 40239544 DOI: 10.1016/j.bbrc.2025.151804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/30/2025] [Accepted: 04/10/2025] [Indexed: 04/18/2025]
Abstract
Ischemia-reperfusion injury (IRI) represents a pathophysiological phenomenon of profound clinical relevance that poses considerable threats to patient safety. IRI may manifest in a variety of clinical contexts including, but not limited to, sepsis, organ transplantation, shock, myocardial infarction, cerebral ischemia, and stroke. Critically, IRI exhibits complex interactions across different organs, with effects that surpass mere localized tissue damage. These impacts can amplify damage to both adjacent and remote organs through pathways such as the gut-brain axis and the gut-lung axis, facilitated by intricate signaling mechanisms. Noteworthy is the interaction between gut IRI and brain IRI, which involves sophisticated neuroendocrine, systemic, and immune mechanisms coordinated through the microbiome-gut-brain axis. This review seeks to delve into the intricate interactions between gut and brain IRI, viewed through the lens of the microbiota-gut-brain axis. It aims to assess its translational potential in clinical settings, provide a theoretical foundation for developing relevant therapeutic strategies, and pinpoint novel directions for research.
Collapse
Affiliation(s)
- Fei-Xiang Wang
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Shi-Yu Dai
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Guo Mu
- Department of Anesthesiology, Zigong Fourth People's Hospital, Zigong, Sichuan, 643000, China
| | - Zi-Hang Yu
- Department of Anesthesiology, Fushun County People's Hospital, Zigong, Sichuan, 643200, China
| | - Ye Chen
- Department of Traditional Chinese Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jun Zhou
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
5
|
Shen Y, Wang J, Li Y, Kang X, Gu L. Intestinal injury and changes of the gut microbiota after ischemic stroke. Front Cell Neurosci 2025; 19:1557746. [PMID: 40313590 PMCID: PMC12043883 DOI: 10.3389/fncel.2025.1557746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 04/04/2025] [Indexed: 05/03/2025] Open
Abstract
Stroke is the second leading cause of death and the third leading cause of disability worldwide, with ischemic stroke (IS) accounting for the vast majority of cases. This paper reviews the latest research on intestinal damage, changes in the gut microbiota, and related therapeutic strategies after IS. Following IS, the integrity of the intestinal mucosal barrier is compromised, leading to increased intestinal permeability. The gut microbiota can translocate to other organs, triggering systemic immune responses that inhibit recovery after IS. Moreover, the composition and proportion of the gut microbiota change after IS. The number of beneficial bacteria decreases, whereas the number of harmful bacteria increases. The production of beneficial metabolites, such as short-chain fatty acids (SCFAs), is reduced, and the levels of harmful metabolites, such as trimethylamine N-oxide (TMAO), increase. Antibiotics after IS not only help prevent infection but also have neuroprotective effects. Although poststroke reperfusion therapy can effectively restore cerebral blood flow, it may also cause intestinal mucosal damage and gastrointestinal dysfunction. Nutritional support after IS can alter the gut microbiota structure and promote neurological recovery. Therefore, individualized treatment for IS patients is crucial. In summary, IS affects not only the brain but the entire body system, especially the gut. Intestinal damage and dysbiosis are critical in IS occurrence, development, and prognosis. By protecting the intestinal mucosa and modulating the structure of the gut microbiota, intestinal damage and related infections can be reduced, improving patient prognosis. Future research is needed to explore therapeutic methods targeting the gut microbiota, providing more comprehensive and effective treatment strategies for IS patients.
Collapse
Affiliation(s)
- Yang Shen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jin Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yina Li
- Department of Anesthesiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xianhui Kang
- Department of Anesthesiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lijuan Gu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
6
|
Chen Y, Ouyang L, Yang X, Wu B, Meng L, Gu J, Wang Y, Li J, Zhang J, Jing X, Lu S, Liu L, Fu S. Electroacupuncture Promotes the Generation of Intestinal Treg Cells After Ischemic Stroke by Foxp3 Acetylation Regulation. Mol Neurobiol 2025; 62:3697-3711. [PMID: 39322831 DOI: 10.1007/s12035-024-04500-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 09/12/2024] [Indexed: 09/27/2024]
Abstract
Electroacupuncture (EA) has been shown to ameliorate brain injury and protect against intestinal injury after ischemic stroke. These protective effects are closely associated with the enhancement of regulatory T (Treg) cell numbers and function in the intestine, as well as the inhibition of intestinal γδ T cell production and their migration to the brain. This study aimed to elucidate the potential mechanism by which EA regulates intestinal Treg cell differentiation after stroke. Sprague-Dawley rats were divided into three groups: the sham group, the middle cerebral artery occlusion (MCAO) group, and the MCAO plus EA (MEA) group. The MCAO model was generated by occluding the middle cerebral artery. EA was applied to Baihui (GV20) acupoint once daily. Samples were collected 3 days after reperfusion. Our results showed that EA reduced the inflammatory response in the brain and intestine after ischemic stroke. EA treatment increased the percentage of Treg cells in the small intestine of rats. EA increased the levels of SCFAs, while also inhibiting histone deacetylase activity (HDAC). Additionally, acetylated Foxp3 protein in the small intestine was increased after EA treatment. These results suggest that EA at GV20 alleviates brain and intestinal inflammatory injury in stroke rats, potentially through the enhancement of SCFA-mediated Foxp3 acetylation in Treg cells.
Collapse
Affiliation(s)
- Yonglin Chen
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Ling Ouyang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xinyi Yang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Bufan Wu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lingling Meng
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jialin Gu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yaling Wang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Juan Li
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jingjing Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211112, China
| | - Xinyue Jing
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shengfeng Lu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lanying Liu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China.
| | - Shuping Fu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
7
|
Zhang Y, Dou Z, Li S, Zhang H, Zeng S, Zuo X, Xiao Y, Zhang L, Li Z, Zhu Q, Zhang W, Niu H, Duan Q, Chen X, Li Z, Zhou H, Wang Q. An ultrasonic degraded polysaccharide extracted from Pueraria lobata ameliorate ischemic brain injury in mice by regulating the gut microbiota and LPS-TLR4 pathway. ULTRASONICS SONOCHEMISTRY 2025; 112:107200. [PMID: 39675265 PMCID: PMC11713736 DOI: 10.1016/j.ultsonch.2024.107200] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/01/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
Ischemia brain injury is closely associated with the gut microbiota. Polysaccharides, as a typical prebiotic, have been extensively employed in stroke treatment. In our previous study, Pueraria lobata polysaccharide (PLP-3) with antioxidant activity was prepared via water extraction and alcohol precipitation combined with ultrasonic degradation. In this study, the effects of PLP-3 on ischemia brain injury and its regulatory effects on the gut microbiota were further investigated. The results demonstrated that PLP-3 effectively reduced the infarct area, improves neurological function, and alleviates neuronal damage of cerebral ischemia injury. Mechanistically, PLP-3 significantly reduces serum LPS levels in MCAO mice, inhibiting TLR-4 activation in brain tissue and thereby reducing IL-1β and TNF-α levels. Meanwhile, PLP-3 significantly repaired the intestinal barrier injury by increasing the expression of tight junction proteins (ZO-1 and Occludin) and increasing the number of goblet cells. Additionally, the structure and composition of gut microbiota in MCAO mice after PLP-3 intervention, were also significantly changed, especially the enrichment of Lactobacillus and the reduction of Corynebacterium and Staphylococcus. At the same time, short chain fatty acid, metabolites of gut microbiota, were also significantly increased and significantly correlated with the abundance of Lactobacillus. Moreover, LC-MS untargeted metabolomics revealed that PLP-3 significantly improves the intestinal metabolic profile after cerebral ischemia injury, upregulating the amino acid biosynthesis pathway and enriching amino acids such as glutamine and arginine, as well as neuroprotective flavonoids such as fisetin and liquiritigenin. These results suggested that PLP-3 could protect mice from cerebral ischemia-reperfusion injury by regulating gut microbiota and repairing gut barrier, inhibiting brain LPS/TLR4/MyD88 inflammatory pathway, therefore we provide a theoretical basis for PLP-3 as a functional food to prevent ischemic brain injury.
Collapse
Affiliation(s)
- Yulong Zhang
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Zuman Dou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| | - Shanshan Li
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Huaying Zhang
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Shanshui Zeng
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Xiangyu Zuo
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yu Xiao
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Lingling Zhang
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Zhixin Li
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Qingfeng Zhu
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Wenyang Zhang
- College of Light Chemical Industry and Materials Engineering, Shunde Polytechnic, Foshan 528333, China
| | - Hui Niu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Qingfei Duan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaoxia Chen
- Nutritional and Food Science Research Institute, Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Zhuang Li
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| | - Hongwei Zhou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| | - Qian Wang
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| |
Collapse
|
8
|
Yu S, Shi J, Yu G, Xu J, Dong Y, Lin Y, Xie H, Liu J, Sun J. Specific gut microbiome signatures predict the risk of acute ischemic stroke. Front Aging Neurosci 2024; 16:1451968. [PMID: 39582952 PMCID: PMC11582031 DOI: 10.3389/fnagi.2024.1451968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/21/2024] [Indexed: 11/26/2024] Open
Abstract
Introduction Numerous studies have reported alterations in the composition of gut microbiota in patients with acute ischemic stroke (AIS), with changes becoming more pronounced as the disease progresses. However, the association between the progression of transient ischemic attack (TIA) and AIS remains unclear. This study aims to elucidate the microbial differences among TIA, AIS, and healthy controls (HC) while exploring the associations between disease progression and gut microbiota. Methods Fecal samples were collected from acute TIA patients (n = 28), AIS patients (n = 235), and healthy controls (n = 75) and analyzed using 16 s rRNA gene sequencing. We determined characteristic microbiota through linear discriminant analysis effect size and used the receiver operating characteristic (ROC) curve to assess their predictive value as diagnostic biomarkers. Results Our results showed significant gut microbial differences among the TIA, AIS, and HC groups. Patients with AIS exhibited higher abundances of Lactobacillus and Streptococcus, along with lower abundances of Butyricicoccaceae and Lachnospiraceae_UCG-004. Further analysis revealed that the abundance of characteristic bacteria, such as Lactobacillus and Streptococcus, was negatively correlated with HDL levels, while Lactobacillus was positively correlated with risk factors such as homocysteine (Hcy). In contrast, the abundance of Lachnospiraceae_UCG-004 was negatively correlated with both Hcy and D-dimer levels. ROC models based on the characteristic bacteria Streptococcus and Lactobacillus effectively distinguished TIA from AIS, yielding areas under the curve of 0.699 and 0.626, respectively. Conclusion We identified distinct changes in gut bacteria associated with the progression from TIA to AIS and highlighted specific characteristic bacteria as predictive biomarkers. Overall, our findings may promote the development of microbiome-oriented diagnostic methods for the early detection of AIS.
Collapse
Affiliation(s)
- Shicheng Yu
- Department of Geriatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiayu Shi
- Department of Geriatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Gaojie Yu
- Department of Geriatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jin Xu
- Department of Geriatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiyao Dong
- Department of Geriatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yan Lin
- Department of Geriatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huijia Xie
- Department of Geriatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiaming Liu
- Department of Preventive Medicine, School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jing Sun
- Department of Geriatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
9
|
Chelluboina B, Cho T, Park JS, Mehta SL, Bathula S, Jeong S, Vemuganti R. Intermittent fasting induced cerebral ischemic tolerance altered gut microbiome and increased levels of short-chain fatty acids to a beneficial phenotype. Neurochem Int 2024; 178:105795. [PMID: 38908519 PMCID: PMC11296926 DOI: 10.1016/j.neuint.2024.105795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/03/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Preconditioning-induced cerebral ischemic tolerance is known to be a beneficial adaptation to protect the brain in an unavoidable event of stroke. We currently demonstrate that a short bout (6 weeks) of intermittent fasting (IF; 15 h fast/day) induces similar ischemic tolerance to that of a longer bout (12 weeks) in adult C57BL/6 male mice subjected to transient middle cerebral artery occlusion (MCAO). In addition, the 6 weeks IF regimen induced ischemic tolerance irrespective of age (3 months or 24 months) and sex. Mice subjected to transient MCAO following IF showed improved motor function recovery (rotarod and beam walk tests) between days 1 and 14 of reperfusion and smaller infarcts (T2-MRI) on day 1 of reperfusion compared with age/sex matched ad libitum (AL) controls. Diet influences the gut microbiome composition and stroke is known to promote gut bacterial dysbiosis. We presently show that IF promotes a beneficial phenotype of gut microbiome following transient MCAO compared with AL cohort. Furthermore, post-stroke levels of short-chain fatty acids (SCFAs), which are known to be neuroprotective, are higher in the fecal samples of the IF cohort compared with the AL cohort. Thus, our studies indicate the efficacy of IF in protecting the brain after stroke, irrespective of age and sex, probably by altering gut microbiome and SCFA production.
Collapse
Affiliation(s)
- Bharath Chelluboina
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Tony Cho
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Jin-Soo Park
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Suresh L Mehta
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Soomin Jeong
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA; Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA; Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA; William S. Middleton Veterans Administration Hospital, Madison, WI, USA.
| |
Collapse
|
10
|
Anbazhagan AN, Ge Y, Priyamvada S, Kumar A, Jayawardena D, Palani ARV, Husain N, Kulkarni N, Kapoor S, Kaur P, Majumder A, Lin YD, Maletta L, Gill RK, Alrefai WA, Saksena S, Zadeh K, Hong S, Mohamadzadeh M, Dudeja PK. A Direct Link Implicating Loss of SLC26A6 to Gut Microbial Dysbiosis, Compromised Barrier Integrity, and Inflammation. Gastroenterology 2024; 167:704-717.e3. [PMID: 38735402 DOI: 10.1053/j.gastro.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/27/2024] [Accepted: 05/02/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND & AIMS Putative anion transporter-1 (PAT1, SLC26A6) plays a key role in intestinal oxalate and bicarbonate secretion. PAT1 knockout (PKO) mice exhibit hyperoxaluria and nephrolithiasis. Notably, diseases such as inflammatory bowel disease are also associated with higher risk of hyperoxaluria and nephrolithiasis. However, the potential role of PAT1 deficiency in gut-barrier integrity and susceptibility to colitis is currently elusive. METHODS Age-matched PKO and wild-type littermates were administered 3.5% dextran sulfate sodium in drinking water for 6 days. Ileum and colon of control and treated mice were harvested. Messenger RNA and protein expression of tight junction proteins were determined by reverse transcription polymerase chain reaction and western blotting. Severity of inflammation was assessed by measuring diarrheal phenotype, cytokine expression, and hematoxylin and eosin staining. Gut microbiome and associated metabolome were analyzed by 16S ribosomal RNA sequencing and mass spectrometry, respectively. RESULTS PKO mice exhibited significantly higher loss of body weight, gut permeability, colonic inflammation, and diarrhea in response to dextran sulfate sodium treatment. In addition, PKO mice showed microbial dysbiosis and significantly reduced levels of butyrate and butyrate-producing microbes compared with controls. Co-housing wild-type and PKO mice for 4 weeks resulted in PKO-like signatures on the expression of tight junction proteins in the colons of wild-type mice. CONCLUSIONS Our data demonstrate that loss of PAT1 disrupts gut microbiome and related metabolites, decreases gut-barrier integrity, and increases host susceptibility to intestinal inflammation. These findings, thus, highlight a novel role of the oxalate transporter PAT1 in promoting gut-barrier integrity, and its deficiency appears to contribute to the pathogenesis of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Arivarasu N Anbazhagan
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Yong Ge
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health, San Antonio, Texas
| | - Shubha Priyamvada
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Anoop Kumar
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Dulari Jayawardena
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Arvind Raj Vishnu Palani
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Nazim Husain
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Neelkanth Kulkarni
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Shaunik Kapoor
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Prabhdeep Kaur
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Apurba Majumder
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Yang-Ding Lin
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health, San Antonio, Texas
| | - Leeany Maletta
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health, San Antonio, Texas
| | - Ravinder K Gill
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Waddah A Alrefai
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Seema Saksena
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Kimia Zadeh
- Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Sungmo Hong
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health, San Antonio, Texas
| | - Mansour Mohamadzadeh
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health, San Antonio, Texas; South Texas Veterans Health Care System, San Antonio, Texas
| | - Pradeep K Dudeja
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois.
| |
Collapse
|
11
|
Rahman Z, Bhale NA, Dikundwar AG, Dandekar MP. Multistrain Probiotics with Fructooligosaccharides Improve Middle Cerebral Artery Occlusion-Driven Neurological Deficits by Revamping Microbiota-Gut-Brain Axis. Probiotics Antimicrob Proteins 2024; 16:1251-1269. [PMID: 37365420 DOI: 10.1007/s12602-023-10109-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2023] [Indexed: 06/28/2023]
Abstract
Recent burgeoning literature unveils the importance of gut microbiota in the neuropathology of post-stroke brain injury and recovery. Indeed, ingestion of prebiotics/probiotics imparts positive effects on post-stroke brain injury, neuroinflammation, gut dysbiosis, and intestinal integrity. However, information on the disease-specific preference of selective prebiotics/probiotics/synbiotics and their underlying mechanism is yet elusive. Herein, we examined the effect of a new synbiotic formulation containing multistrain probiotics (Lactobacillus reuteri UBLRu-87, Lactobacillus plantarum UBLP-40, Lactobacillus rhamnosus UBLR-58, Lactobacillus salivarius UBLS-22, and Bifidobacterium breve UBBr-01), and prebiotic fructooligosaccharides using a middle cerebral artery occlusion (MCAO) model of cerebral ischemia in female and male rats. Three weeks pre-MCAO administration of synbiotic rescinded the MCAO-induced sensorimotor and motor deficits on day 3 post-stroke in rotarod, foot-fault, adhesive removal, and paw whisker test. We also observed a decrease in infarct volume and neuronal death in the ipsilateral hemisphere of synbiotic-treated MCAO rats. The synbiotic treatment also reversed the elevated levels/mRNA expression of the glial fibrillary acidic protein (GFAP), NeuN, IL-1β, TNF-α, IL-6, matrix metalloproteinase-9, and caspase-3 and decreased levels of occludin and zonula occludens-1 in MCAO rats. 16S rRNA gene-sequencing data of intestinal contents indicated an increase in genus/species of Prevotella (Prevotella copri), Lactobacillus (Lactobacillus reuteri), Roseburia, Allobaculum, and Faecalibacterium prausnitzii, and decreased abundance of Helicobacter, Desulfovibrio, and Akkermansia (Akkermansia muciniphila) in synbiotic-treated rats compared to the MCAO surgery group. These findings confer the potential benefits of our novel synbiotic preparation for MCAO-induced neurological dysfunctions by reshaping the gut-brain-axis mediators in rats.
Collapse
Affiliation(s)
- Ziaur Rahman
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Nagesh A Bhale
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Amol G Dikundwar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Manoj P Dandekar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India.
| |
Collapse
|
12
|
Nuszkiewicz J, Kukulska-Pawluczuk B, Piec K, Jarek DJ, Motolko K, Szewczyk-Golec K, Woźniak A. Intersecting Pathways: The Role of Metabolic Dysregulation, Gastrointestinal Microbiome, and Inflammation in Acute Ischemic Stroke Pathogenesis and Outcomes. J Clin Med 2024; 13:4258. [PMID: 39064298 PMCID: PMC11278353 DOI: 10.3390/jcm13144258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/13/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024] Open
Abstract
Acute ischemic stroke (AIS) remains a major cause of mortality and long-term disability worldwide, driven by complex and multifaceted etiological factors. Metabolic dysregulation, gastrointestinal microbiome alterations, and systemic inflammation are emerging as significant contributors to AIS pathogenesis. This review addresses the critical need to understand how these factors interact to influence AIS risk and outcomes. We aim to elucidate the roles of dysregulated adipokines in obesity, the impact of gut microbiota disruptions, and the neuroinflammatory cascade initiated by lipopolysaccharides (LPS) in AIS. Dysregulated adipokines in obesity exacerbate inflammatory responses, increasing AIS risk and severity. Disruptions in the gut microbiota and subsequent LPS-induced neuroinflammation further link systemic inflammation to AIS. Advances in neuroimaging and biomarker development have improved diagnostic precision. Here, we highlight the need for a multifaceted approach to AIS management, integrating metabolic, microbiota, and inflammatory insights. Potential therapeutic strategies targeting these pathways could significantly improve AIS prevention and treatment. Future research should focus on further elucidating these pathways and developing targeted interventions to mitigate the impacts of metabolic dysregulation, microbiome imbalances, and inflammation on AIS.
Collapse
Affiliation(s)
- Jarosław Nuszkiewicz
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland;
| | - Beata Kukulska-Pawluczuk
- Department of Neurology, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 9 M. Skłodowskiej—Curie St., 85-094 Bydgoszcz, Poland; (B.K.-P.); (K.P.)
| | - Katarzyna Piec
- Department of Neurology, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 9 M. Skłodowskiej—Curie St., 85-094 Bydgoszcz, Poland; (B.K.-P.); (K.P.)
| | - Dorian Julian Jarek
- Student Research Club of Medical Biology and Biochemistry, Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland;
| | - Karina Motolko
- Student Research Club of Neurology, Department of Neurology, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 9 M. Skłodowskiej—Curie St., 85-094 Bydgoszcz, Poland;
| | - Karolina Szewczyk-Golec
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland;
| | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland;
| |
Collapse
|
13
|
Rahman Z, Padhy HP, Dandekar MP. Cell-Free Supernatant of Lactobacillus rhamnosus and Bifidobacterium breve Ameliorates Ischemic Stroke-Generated Neurological Deficits in Rats. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10256-w. [PMID: 38656733 DOI: 10.1007/s12602-024-10256-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2024] [Indexed: 04/26/2024]
Abstract
The beneficial effects of probiotics, postbiotics, and paraprobiotics have already been registered in managing ischemic stroke-generated neuroinflammation and gut dysbiosis. Herein, we examined the impact of cell-free supernatant (CFS) obtained from probiotics (Lactobacillus rhamnosus UBLR-58 and Bifidobacterium breve UBBr-01) in a rat transient middle cerebral artery occlusion (MCAO) model of focal cerebral injury. Pre-MCAO supplementation of probiotics (2 × 109 CFU/mL) for 21 days or CFS (1 mL/rat) for 7 days protect the MCAO-induced somatosensory and motor impairments recorded at 24 h and 72 h after reperfusion in foot-fault, rotarod, adhesive removal, and vibrissae-evoked forelimb placing tests. We also noted the reduced infarct area and neuronal degradation in the right hemisphere of probiotics- and CFS-recipient MCAO-operated animals. Moreover, MCAO-induced altered concentrations of glial-fibrillary acidic protein, NeuN, zonula occludens-1 (ZO-1), TLR4, IL-1β, IL-6, and TNF-α, as well as matrix metalloproteinase-9 (MMP9) were reversed in the treatment groups. Probiotics and CFS treatment ameliorated the elevated levels of IL-6, IL-1β, and MMP9 in the blood plasma of rats. The disrupted microbial phyla, Firmicutes-to-Bacteroides ratio, villi/crypt ratio, and decreased mucin-producing goblet cells, ZO-1, and occludin in the colon of MCAO-operated rats were recovered following probiotics and CFS treatment. NMR characterization of CFS and rat blood plasma revealed the presence of several important bacterial metabolites. These findings suggest that the CFS obtained from Lactobacillus rhamnosus UBLR-58 and Bifidobacterium breve UBBr-01 has the propensity to improve MCAO-generated neurological dysfunctions in rats by dampening neuroinflammation and modulating the gut-brain axis modulators.
Collapse
Affiliation(s)
- Ziaur Rahman
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, PIN 500037, Telangana, India
| | - Hara Prasad Padhy
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Manoj P Dandekar
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, PIN 500037, Telangana, India.
| |
Collapse
|
14
|
Ge Y, Yang C, Zadeh M, Sprague SM, Lin YD, Jain HS, Determann BF, Roth WH, Palavicini JP, Larochelle J, Candelario-Jalil E, Mohamadzadeh M. Functional regulation of microglia by vitamin B12 alleviates ischemic stroke-induced neuroinflammation in mice. iScience 2024; 27:109480. [PMID: 38715940 PMCID: PMC11075062 DOI: 10.1016/j.isci.2024.109480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/14/2023] [Accepted: 03/08/2024] [Indexed: 05/12/2024] Open
Abstract
Ischemic stroke is the second leading cause of death and disability worldwide, and efforts to prevent stroke, mitigate secondary neurological damage, and promote neurological recovery remain paramount. Recent findings highlight the critical importance of microbiome-related metabolites, including vitamin B12 (VB12), in alleviating toxic stroke-associated neuroinflammation. Here, we showed that VB12 tonically programmed genes supporting microglial cell division and activation and critically controlled cellular fatty acid metabolism in homeostasis. Intriguingly, VB12 promoted mitochondrial transcriptional and metabolic activities and significantly restricted stroke-associated gene alterations in microglia. Furthermore, VB12 differentially altered the functions of microglial subsets during the acute phase of ischemic stroke, resulting in reduced brain damage and improved neurological function. Pharmacological depletion of microglia before ischemic stroke abolished VB12-mediated neurological improvement. Thus, our preclinical studies highlight the relevance of VB12 in the functional programming of microglia to alleviate neuroinflammation, minimize ischemic injury, and improve host neurological recovery after ischemic stroke.
Collapse
Affiliation(s)
- Yong Ge
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health, San Antonio, TX, USA
| | - Changjun Yang
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Mojgan Zadeh
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health, San Antonio, TX, USA
| | - Shane M. Sprague
- Department of Neurosurgery, University of Texas Health, San Antonio, TX, USA
| | - Yang-Ding Lin
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health, San Antonio, TX, USA
| | - Heetanshi Sanjay Jain
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health, San Antonio, TX, USA
| | | | - William H. Roth
- Department of Neurology, University of Chicago Medical Center, Chicago, IL, USA
| | - Juan Pablo Palavicini
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health, San Antonio, TX, USA
| | - Jonathan Larochelle
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Eduardo Candelario-Jalil
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Mansour Mohamadzadeh
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health, San Antonio, TX, USA
| |
Collapse
|
15
|
Liu X, Ma Z, Wang Y, Jia H, Wang Z, Zhang L. Heat stress exposure cause alterations in intestinal microbiota, transcriptome, and metabolome of broilers. Front Microbiol 2023; 14:1244004. [PMID: 37795292 PMCID: PMC10547010 DOI: 10.3389/fmicb.2023.1244004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/18/2023] [Indexed: 10/06/2023] Open
Abstract
Introduction Heat stress can affect the production of poultry through complex interactions between genes, metabolites and microorganisms. At present, it is unclear how heat stress affects genetic, metabolic and microbial changes in poultry, as well as the complex interactions between them. Methods Thus, at 28 days of age a total of 200 Arbor Acres broilers with similar body weights were randomly divided into the control (CON) and heat stress treatment (HS). There were 5 replicates in CON and HS, respectively, 20 per replication. From the 28-42 days, the HS was kept at 31 ± 1°C (9:00-17:00, 8 h) and other time was maintained at 21 ± 1°C as in the CON. At the 42nd day experiment, we calculated the growth performance (n = 8) of broilers and collected 3 and 6 cecal tissues for transcriptomic and metabolomic investigation and 4 cecal contents for metagenomic investigation of each treatment. Results and discussion The results indicate that heat stress significantly reduced the average daily gain and body weight of broilers (value of p < 0.05). Transcriptome KEGG enrichment showed that the differential genes were mainly enriched in the NF-kB signaling pathway. Metabolomics results showed that KEGG enrichment showed that the differential metabolites were mainly enriched in the mTOR signaling pathway. 16S rDNA amplicon sequencing results indicated that heat stress increased the relative abundance of Proteobacteria decreased the relative abundance of Firmicutes. Multi-omics analysis showed that the co-participating pathway of differential genes, metabolites and microorganisms KEGG enrichment was purine metabolism. Pearson correlation analysis found that ornithine was positively correlated with SULT1C3, GSTT1L and g_Lactobacillus, and negatively correlated with CALB1. PE was negatively correlated with CALB1 and CHAC1, and positively with g_Alistipes. In conclusion, heat stress can generate large amounts of reactive oxygen and increase the types of harmful bacteria, reduce intestinal nutrient absorption and antioxidant capacity, and thereby damage intestinal health and immune function, and reduce growth performance indicators. This biological process is manifested in the complex regulation, providing a foundational theoretical basis for solving the problem of heat stress.
Collapse
Affiliation(s)
| | | | | | | | - Zheng Wang
- Shanxi Key Lab. for the Modernization of TCVM, College of Life and Science, Shanxi Agricultural University, Taigu, China
| | - Lihuan Zhang
- Shanxi Key Lab. for the Modernization of TCVM, College of Life and Science, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
16
|
Bucci V, Ward DV, Bhattarai S, Rojas-Correa M, Purkayastha A, Holler D, Qu MD, Mitchell WG, Yang J, Fountain S, Zeamer A, Forconi CS, Fujimori G, Odwar B, Cawley C, Moormann AM, Wessolossky M, Maldonado-Contreras A. The intestinal microbiota predicts COVID-19 severity and fatality regardless of hospital feeding method. mSystems 2023; 8:e0031023. [PMID: 37548476 PMCID: PMC10469851 DOI: 10.1128/msystems.00310-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/26/2023] [Indexed: 08/08/2023] Open
Abstract
SARS-CoV-2-positive patients exhibit gut and oral microbiome dysbiosis, which is associated with various aspects of COVID-19 disease (1-4). Here, we aim to identify gut and oral microbiome markers that predict COVID-19 severity in hospitalized patients, specifically severely ill patients compared to moderately ill ones. Moreover, we investigate whether hospital feeding (solid versus enteral), an important cofounder, influences the microbial composition of hospitalized COVID-19 patients. We used random forest classification machine learning models with interpretable secondary analyses. The gut, but not the oral microbiota, was a robust predictor of both COVID-19-related fatality and severity of hospitalized patients, with a higher predictive value than most clinical variables. In addition, perturbations of the gut microbiota due to enteral feeding did not associate with species that were predictive of COVID-19 severity. IMPORTANCE SARS-CoV-2 infection leads to wide-ranging, systemic symptoms with sometimes unpredictable morbidity and mortality. It is increasingly clear that the human microbiome plays an important role in how individuals respond to viral infections. Our study adds to important literature about the associations of gut microbiota and severe COVID-19 illness during the early phase of the pandemic before the availability of vaccines. Increased understanding of the interplay between microbiota and SARS-CoV-2 may lead to innovations in diagnostics, therapies, and clinical predictions.
Collapse
Affiliation(s)
- Vanni Bucci
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Program of Microbiome Dynamics, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Center for Microbiome Research, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Doyle V. Ward
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Program of Microbiome Dynamics, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Center for Microbiome Research, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Shakti Bhattarai
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Program of Microbiome Dynamics, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Center for Microbiome Research, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Mayra Rojas-Correa
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Program of Microbiome Dynamics, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Center for Microbiome Research, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Ayan Purkayastha
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Devon Holler
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Program of Microbiome Dynamics, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Center for Microbiome Research, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Ming Da Qu
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - William G. Mitchell
- Department of Internal Medicine/Pediatrics, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Jason Yang
- Department of Medicine - Internal Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Samuel Fountain
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Abigail Zeamer
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Program of Microbiome Dynamics, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Center for Microbiome Research, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Catherine S. Forconi
- Department of Medicine - Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Gavin Fujimori
- Department of Medicine - Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Boaz Odwar
- Department of Medicine - Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Caitlin Cawley
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Program of Microbiome Dynamics, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Center for Microbiome Research, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Ann M. Moormann
- Department of Medicine - Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Mireya Wessolossky
- Department of Medicine - Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Ana Maldonado-Contreras
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Program of Microbiome Dynamics, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Center for Microbiome Research, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
17
|
Ge Y, Zadeh M, Mohamadzadeh M. Dissociation and flow cytometric isolation of murine intestinal epithelial cells for multi-omic profiling. STAR Protoc 2023; 4:101936. [PMID: 36520632 PMCID: PMC9758486 DOI: 10.1016/j.xpro.2022.101936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/15/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
Intestinal epithelium is composed of several cell types, which can be dissociated but difficult to maintain high cell viability due to anoikis. Herein, we describe a step-by-step protocol for the isolation of highly viable intestinal epithelial cells using ethylenediaminetetraacetate acid and TrypLE Express, which can subsequently be employed for multi-omic analyses, including single-cell RNA sequencing. For complete details on the use and execution of this protocol, please refer to Ge et al. (2022).1.
Collapse
Affiliation(s)
- Yong Ge
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health, San Antonio, TX, USA; Division of Gastroenterology & Nutrition, Department of Medicine, University of Texas Health, San Antonio, TX, USA
| | - Mojgan Zadeh
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health, San Antonio, TX, USA; Division of Gastroenterology & Nutrition, Department of Medicine, University of Texas Health, San Antonio, TX, USA
| | - Mansour Mohamadzadeh
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health, San Antonio, TX, USA; Division of Gastroenterology & Nutrition, Department of Medicine, University of Texas Health, San Antonio, TX, USA.
| |
Collapse
|
18
|
Jiang Y, Dai Y, Liu Z, Liao Y, Sun S, Kong X, Hu J, Tang Y. The role of IL-23/IL-17 axis in ischemic stroke from the perspective of gut-brain axis. Neuropharmacology 2023; 231:109505. [PMID: 36924925 DOI: 10.1016/j.neuropharm.2023.109505] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/08/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023]
Abstract
Bidirectional communication between central nervous system (CNS) and intestine is mediated by nerve, endocrine, immune and other pathways in gut-brain axis. Many diseases of CNS disturb the homeostasis of intestine and gut microbiota. Similarly, the dysbiosis of intestinal and gut microbiota also promotes the progression and deterioration of CNS diseases. IL-23/IL-17 axis is an important inflammatory axis which is widely involved in CNS diseases such as experimental autoimmune encephalomyelitis (EAE), multiple sclerosis (MS), and ischemic stroke (IS). Attributing to the long anatomically distances between ischemic brain and gut, previous studies on IL-23/IL-17 axis in IS are rarely focused on intestinal tissues. However, recent studies have found that IL-17+T cells in CNS mainly originate from intestine. The activation and migration of IL-17+T cells to CNS is likely to be affected by the altered intestinal homeostasis. These studies promoted the attention of IL-23/IL-17 axis and gut-brain axis. IS is difficult to treat because of its extremely complex pathological mechanism. This review mainly discusses the relationship between IL-23/IL-17 axis and IS from the perspective of gut-brain axis. By analyzing the immune pathways in gut-brain axis, the activation of IL-23/IL-17 axis, the roles of IL-23/IL-17 axis in gut, CNS and other systems after stoke, this review is expected to provide new enlightenments for the treatment strategies of IS.
Collapse
Affiliation(s)
- Yang Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yajie Dai
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Zhenquan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yan Liao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Shuyong Sun
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xianghe Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jingjing Hu
- Department of Pathology, University of California San Diego, CA92307, USA.
| | - Yibo Tang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|