1
|
Shih YRV, Tao H, Gilpin A, Lee YW, Perikamana SM, Varghese S. Specialized pro-resolving mediator Maresin 1 attenuates pain in a mouse model of osteoarthritis. Osteoarthritis Cartilage 2025; 33:341-350. [PMID: 39617202 PMCID: PMC11842212 DOI: 10.1016/j.joca.2024.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/11/2024] [Accepted: 10/22/2024] [Indexed: 12/10/2024]
Abstract
OBJECTIVE We test whether the specialized pro-resolving molecule Maresin 1 (MaR1) attenuates nociceptive behaviors in mice with osteoarthritis-like pain. DESIGN Osteoarthritis (OA)-like pain behavior was induced by intra-articular injection of monosodium iodoacetate (MIA) and treated with MaR1 (N=6) or vehicle (N=5) by intraperitoneal injection 8 weeks after injury. Mice without MIA injection were used as control (N=6). Nociceptive behaviors were examined by von Frey and dynamic weight bearing measurements. Calcitonin gene-related peptide (CGRP) expression and activated macrophages in the dorsal root ganglion (DRG) were examined by immunofluorescence staining. The inflammatory profile in circulation was assessed by cytokine array. Calcium imaging was performed to assess the in vitro functional response of DRG neurons from animals with OA-like pain behavior to MaR1 with or without RAR Related Orphan Receptor A (RORA) inverse agonist SR3335. RESULTS MaR1 attenuated knee pain behavior in treated mice (N=6) compared to non-treated mice (N=5) as shown by increased paw withdrawal threshold with a mean difference of 112.2% (95% CI [49.79, 174.6], p=0.0784) at 4 h and 150.9% (95% CI [104.2, 197.5], p=0.0001) at 4 days post-MaR1 treatment, and increased weight bearing with a mean difference of 20.08% (95% CI [2.798, 37.37], p=0.0277) at 1 day post-MaR1 treatment. CGRP expression and activated macrophages were decreased in the DRG, and inflammatory cytokine levels in the circulation were attenuated. Calcium imaging showed MaR1 reduced the functional response of DRG neurons through RORA. CONCLUSIONS Our results show that MaR1 reduces OA-like pain behavior in mice and could be a potential treatment for OA pain.
Collapse
MESH Headings
- Animals
- Docosahexaenoic Acids/pharmacology
- Docosahexaenoic Acids/therapeutic use
- Ganglia, Spinal/metabolism
- Ganglia, Spinal/drug effects
- Mice
- Disease Models, Animal
- Calcitonin Gene-Related Peptide/metabolism
- Calcitonin Gene-Related Peptide/drug effects
- Male
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/metabolism
- Osteoarthritis, Knee/drug therapy
- Osteoarthritis, Knee/metabolism
- Macrophages/metabolism
- Macrophages/drug effects
- Pain Measurement
- Osteoarthritis/drug therapy
- Behavior, Animal/drug effects
- Injections, Intra-Articular
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Yu-Ru V Shih
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Huchen Tao
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27710, USA.
| | - Anna Gilpin
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA.
| | - Yuan-Wen Lee
- Department of Anesthesiology, Taipei Medical University Hospital, Taipei 11031, Taiwan; Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | | | - Shyni Varghese
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA; Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
2
|
Karmakar V, Chain M, Majie A, Ghosh A, Sengupta P, Dutta S, Mazumder PM, Gorain B. Targeting the NLRP3 inflammasome as a novel therapeutic target for osteoarthritis. Inflammopharmacology 2025; 33:461-484. [PMID: 39806051 DOI: 10.1007/s10787-024-01629-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/07/2024] [Indexed: 01/16/2025]
Abstract
Osteoarthritis, the most common arthritic condition, is an age-related progressive disease characterized by the loss of cartilage and synovial inflammation in the knees and hips. Development of pain, stiffness, and considerably restricted mobility of the joints are responsible for the production of matrix metalloproteinases and cytokines. Although several treatments are available for the management of this disease condition, they possess limitations at different levels. Recently, efforts have focused on regulating the production of the NLRP3 inflammasome, which plays a critical role in the disease's progression due to its dysregulation. Inhibition of NLRP3 inflammasome has shown the potential to modulate the production of MMP-13, caspase-1, IL-1β, etc., which has been reflected by positive responses in different preclinical and clinical studies. Aiming inhibition of this NLRP3 inflammasome, several compounds are in different stages of research owing to bring a novel agent for the treatment of osteoarthritis. This review summarizes the mechanistic pathways linking NLRP3 activation to osteoarthritis development and discusses the progress in new therapeutics aimed at effective treatment.
Collapse
Affiliation(s)
- Varnita Karmakar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Mayukh Chain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Ankit Majie
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Arya Ghosh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Pallav Sengupta
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Sulagna Dutta
- Basic Medical Sciences Department, College of Medicine, Ajman University, Ajman, United Arab Emirates
| | - Papiya Mitra Mazumder
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| |
Collapse
|
3
|
Chang YT, Huang KC, Pranata R, Chen YL, Chen SN, Cheng YH, Chen RJ. Evaluation of the protective effects of chondroitin sulfate oligosaccharide against osteoarthritis via inactivation of NLRP3 inflammasome by in vivo and in vitro studies. Int Immunopharmacol 2024; 142:113148. [PMID: 39276449 DOI: 10.1016/j.intimp.2024.113148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/12/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
Osteoarthritis (OA) is the most prevalent degenerative arthritis disease linked to aging, obesity, diet, and accumulation of octacalcium phosphate (OCP) crystals in joints. Current research has focused on inflammation and chondrocytes apoptosis as underlying OA mechanisms. Inflammatory cytokines like IL-1β activate matrix metalloproteinase-13 (MMP-13) and aggrecanase (the member of A Disintegrin and Metalloproteinase with Thrombospondin motifs family, ADAMTS), leading to cartilage matrix degradation. The NLRP3 inflammasome also contributes to OA pathogenesis by maturing IL-1β. Natural products like chondroitin sulfate oligosaccharides (oligo-CS) show promise in OA treatment by inhibiting inflammation. Our study evaluates the protective effects of oligo-CS against OA by targeting NLRP3 inflammation. Stimulating human SW1353 chondrocytes and human mononuclear macrophage THP-1 cells with OCP showed increased NLRP3 inflammation initiation, NF-κB pathway activation, and the production of inflammatory cytokines (IL-1β, IL-6) and the metabolic index (MMP-13, ADAMTS-5), leading to cartilage matrix degradation. However, oligo-CS treatment significantly reduced inflammation. In a 28-day in vivo study with C57BL/6 female mice, OCP was injected into their right knee and oligo-CS was orally administered. The OCP group exhibited significant joint space narrowing and chondrocyte loss, while the oligo-CS group maintained cartilage integrity. Oligo-CS groups also regulated gut microbiota composition to a healthier state. Taken together, our findings suggest that oligo-CS can be considered as a protective compound against OA.
Collapse
Affiliation(s)
- Yu-Ting Chang
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuo-Ching Huang
- Division of Nephrology, Department of Internal Medicine, Chi Mei Hospital, Liouying District, Tainan, Taiwan; Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Rosita Pranata
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen-Lin Chen
- Bioresource Collection and Research Center (BCRC), Food Industry Research and Development Institute, Hsinchu 300, Taiwan.
| | - Ssu-Ning Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yung-Hsuan Cheng
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Rong-Jane Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
4
|
Liao J, Gu Q, Liu Z, Wang H, Yang X, Yan R, Zhang X, Song S, Wen L, Wang Y. Edge advances in nanodrug therapies for osteoarthritis treatment. Front Pharmacol 2024; 15:1402825. [PMID: 39539625 PMCID: PMC11559267 DOI: 10.3389/fphar.2024.1402825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/25/2024] [Indexed: 11/16/2024] Open
Abstract
As global population and lifestyles change, osteoarthritis (OA) is becoming a major healthcare challenge world. OA, a chronic condition characterized by inflammatory and degeneration, often present with joint pain and can lead to irreversible disability. While there is currently no cure for OA, it is commonly managed using nonsteroidal anti-inflammatory drugs (NSAIDs), glucocorticoids, and glucosamine. Although these treatments can alleviate symptoms, it is difficult to effectively deliver and sustain therapeutic agents within joints. The emergence of nanotechnology, particularly in form of smart nanomedicine, has introduced innovative therapeutic approaches for OA treatment. Nanotherapeutic strategies offer promising advantages, including more precise targeting of affected areas, prolonged therapeutic effects, enhanced bioavailability, and reduced systemic toxicity compared to traditional treatments. While nanoparticles show potential as a viable delivery system for OA therapies based on encouraging lab-based and clinical trials results, there remails a considerable gap between current research and clinical application. This review highlights recent advances in nanotherapy for OA and explore future pathways to refine and optimize OA treatments strategies.
Collapse
Affiliation(s)
- Jinfeng Liao
- Department of Dermatology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| | - Qingjia Gu
- Department of ENT, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| | - Zheng Liu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Hailian Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| | - Xian Yang
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Rongkai Yan
- Department of Radiology, Ohio state university, Columbus, OH, United States
| | - Xiaofeng Zhang
- Greenwich Hospital, Yale New Haven Health, Greenwich, CT, United States
| | - Siyuan Song
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Lebin Wen
- Department of Thyroid, Sichuan Second Hospital of TCM, Chengdu, China
| | - Yi Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
5
|
Oprișan A, Feier AM, Zuh SG, Russu OM, Pop TS. The Presentation, Clinical Diagnosis, Risk Factors, and Management of Rapidly Progressive Hip Osteoarthritis: A Narrative Literature Review. J Clin Med 2024; 13:6194. [PMID: 39458144 PMCID: PMC11509174 DOI: 10.3390/jcm13206194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Rapidly progressive hip osteoarthritis (RPOH) is a rare and severe form of osteoarthritis (OA), marked by the rapid degeneration and destruction of the femoral head, often within months. Despite its unclear etiology, several factors such as subchondral fractures and immune responses have been proposed as possible contributors. This narrative review aims to synthesize current knowledge on the pathogenesis, risk factors, clinical presentation, imaging features, and grading systems of RPOH. Predominantly affecting elderly females, RPOH presents distinctive challenges in both diagnosis and management due to its abrupt onset and severity. Known risk factors include advanced age, female gender, obesity, intra-articular corticosteroids use, and long-term hemodialysis. Clinically, RPOH is characterized by severe pain during active weight-bearing movements, despite patients presenting a normal range of motion during passive examination in the early stages. While several classification systems exist, there is no universal standard, complicating differential diagnosis and clinical approaches. This review emphasizes the necessity for early diagnostic methods utilizing specific biomarkers, rapid differential diagnosis, and targeted, personalized interventions based on individual risk factors.
Collapse
Affiliation(s)
- Andrei Oprișan
- Doctoral School, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania;
- Department of Orthopaedics and Traumatology, Clinical County Hospital of Mureș, 540139 Targu Mures, Romania; (S.-G.Z.); (O.M.R.); (T.S.P.)
| | - Andrei Marian Feier
- Department M4 Clinical Sciences, Orthopedics and Traumatology I, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Sandor-Gyorgy Zuh
- Department of Orthopaedics and Traumatology, Clinical County Hospital of Mureș, 540139 Targu Mures, Romania; (S.-G.Z.); (O.M.R.); (T.S.P.)
- Department M4 Clinical Sciences, Orthopedics and Traumatology I, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Octav Marius Russu
- Department of Orthopaedics and Traumatology, Clinical County Hospital of Mureș, 540139 Targu Mures, Romania; (S.-G.Z.); (O.M.R.); (T.S.P.)
- Department M4 Clinical Sciences, Orthopedics and Traumatology I, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Tudor Sorin Pop
- Department of Orthopaedics and Traumatology, Clinical County Hospital of Mureș, 540139 Targu Mures, Romania; (S.-G.Z.); (O.M.R.); (T.S.P.)
- Department M4 Clinical Sciences, Orthopedics and Traumatology I, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania
| |
Collapse
|
6
|
Lee SH, Shin MK, Sung JS. Tamarixetin Protects Chondrocytes against IL-1β-Induced Osteoarthritis Phenotype by Inhibiting NF-κB and Activating Nrf2 Signaling. Antioxidants (Basel) 2024; 13:1166. [PMID: 39456419 PMCID: PMC11505541 DOI: 10.3390/antiox13101166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by cartilage breakdown and chronic inflammation in joints. As the most prevalent form of arthritis, OA affects around 600 million people globally. Despite the increasing number of individuals with OA risk factors, such as aging and obesity, there is currently no effective cure for the disease. In this context, this study investigated the therapeutic effects of tamarixetin, a flavonoid with antioxidative and anti-inflammatory properties, against OA pathology and elucidated the underlying molecular mechanism. In interleukin-1β (IL-1β)-treated chondrocytes, tamarixetin inhibited the OA phenotypes, restoring cell viability and chondrogenic properties while reducing hypertrophic differentiation and dedifferentiation. Tamarixetin alleviated oxidative stress via the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway activation and inhibited mitogen-activated protein kinase and nuclear factor-κB (NF-κB). Furthermore, tamarixetin attenuated pyroptosis, a programmed cell death caused by excessive inflammation, by suppressing inflammasome activation. We confirmed that the chondroprotective effects of tamarixetin are mediated by the concurrent upregulation of Nrf2 signaling and downregulation of NF-κB signaling, which are key players in balancing antioxidative and inflammatory responses. Overall, our study demonstrated that tamarixetin possesses chondroprotective properties by alleviating IL-1β-induced cellular stress in chondrocytes, suggesting its therapeutic potential to relieve OA phenotype.
Collapse
Affiliation(s)
| | | | - Jung-Suk Sung
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (S.-H.L.); (M.K.S.)
| |
Collapse
|
7
|
Lin Y, Jiang S, Su J, Xie W, Rahmati M, Wu Y, Yang S, Ru Q, Li Y, Deng Z. Novel insights into the role of ubiquitination in osteoarthritis. Int Immunopharmacol 2024; 132:112026. [PMID: 38583240 DOI: 10.1016/j.intimp.2024.112026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Ubiquitination (Ub) and deubiquitination are crucial post-translational modifications (PTMs) that precisely regulate protein degradation. Under the catalysis of a cascade of E1-E2-E3 ubiquitin enzymes, ubiquitination extensively regulates protein degradation exerting direct impact on various cellular processes, while deubiquitination opposes the effect of ubiquitination and prevents proteins from degradation. Notably, such dynamic modifications have been widely investigated to be implicated in cell cycle, transcriptional regulation, apoptosis and so on. Therefore, dysregulation of ubiquitination and deubiquitination could lead to certain diseases through abnormal protein accumulation and clearance. Increasing researches have revealed that the dysregulation of catalytic regulators of ubiquitination and deubiquitination triggers imbalance of cartilage homeostasis that promotes osteoarthritis (OA) progression. Hence, it is now believed that targeting on Ub enzymes and deubiquitinating enzymes (DUBs) would provide potential therapeutic pathways. In the following sections, we will summarize the biological role of Ub enzymes and DUBs in the development and progression of OA by focusing on the updating researches, with the aim of deepening our understanding of the underlying molecular mechanism of OA pathogenesis concerning ubiquitination and deubiquitination, so as to explore novel potential therapeutic targets of OA treatment.
Collapse
Affiliation(s)
- Yuzhe Lin
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China; Xiangya School of Medicine, Central South University, Changsha, China
| | - Shide Jiang
- Department of Orthopedics, The Central Hospital of Yongzhou, Yongzhou, 425000, China
| | - Jingyue Su
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Masoud Rahmati
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khoramabad, Iran; Department of Physical Education and Sport Sciences, Faculty of Literature and Humanities, Vali-E-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Yuxiang Wu
- Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Shengwu Yang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qin Ru
- Xiangya School of Medicine, Central South University, Changsha, China; Department of Health and Physical Education, Jianghan University, Wuhan 430056, China.
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Zhenhan Deng
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
8
|
Lee YC, Chang YT, Cheng YH, Pranata R, Hsu HH, Chen YL, Chen RJ. Pterostilbene Protects against Osteoarthritis through NLRP3 Inflammasome Inactivation and Improves Gut Microbiota as Evidenced by In Vivo and In Vitro Studies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72. [PMID: 38624135 PMCID: PMC11046483 DOI: 10.1021/acs.jafc.3c09749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/17/2024]
Abstract
Osteoarthritis (OA) is a persistent inflammatory disease, and long-term clinical treatment often leads to side effects. In this study, we evaluated pterostilbene (PT), a natural anti-inflammatory substance, for its protective effects and safety during prolonged use on OA. Results showed that PT alleviated the loss of chondrocytes and widened the narrow joint space in an octacalcium phosphate (OCP)-induced OA mouse model (n = 3). In vitro experiments demonstrate that PT reduced NLRP3 inflammation activation (relative protein expression: C: 1 ± 0.09, lipopolysaccharide (LPS): 1.14 ± 0.07, PT: 0.91 ± 0.07, LPS + PT: 0.68 ± 0.04) and the release of inflammatory cytokines through NF-κB signaling inactivation (relative protein expression: C: 1 ± 0.03, LPS: 3.49 ± 0.02, PT: 0.66 ± 0.08, LPS + PT: 2.78 ± 0.05), ultimately preventing cartilage catabolism. Interestingly, PT also altered gut microbiota by reducing inflammation-associated flora and increasing the abundance of healthy bacteria in OA groups. Collectively, these results suggest that the PT can be considered as a protective strategy for OA.
Collapse
Affiliation(s)
- Yen-Chien Lee
- Department
of Oncology, Tainan Hospital, Tainan 70043, Taiwan
- Department
of Internal Medicine, National Cheng Kung
University Hospital, College of Medicine, Tainan 70043, Taiwan
- Department
of Nursing, National Tainan Junior College
of Nursing, Tainan 70043, Taiwan
| | - Yu-Ting Chang
- Department
of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Yung-Hsuan Cheng
- Department
of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Rosita Pranata
- Department
of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Heng-Hsuan Hsu
- Department
of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Yen-Lin Chen
- Bioresource
Collection and Research Center (BCRC), Food
Industry Research and Development Institute, Hsinchu 300, Taiwan
| | - Rong-Jane Chen
- Department
of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
9
|
Yi YS. Roles of the Caspase-11 Non-Canonical Inflammasome in Rheumatic Diseases. Int J Mol Sci 2024; 25:2091. [PMID: 38396768 PMCID: PMC10888639 DOI: 10.3390/ijms25042091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Inflammasomes are intracellular multiprotein complexes that activate inflammatory signaling pathways. Inflammasomes comprise two major classes: canonical inflammasomes, which were discovered first and are activated in response to a variety of pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs), and non-canonical inflammasomes, which were discovered recently and are only activated in response to intracellular lipopolysaccharide (LPS). Although a larger number of studies have successfully demonstrated that canonical inflammasomes, particularly the NLRP3 inflammasome, play roles in various rheumatic diseases, including rheumatoid arthritis (RA), infectious arthritis (IR), gouty arthritis (GA), osteoarthritis (OA), systemic lupus erythematosus (SLE), psoriatic arthritis (PA), ankylosing spondylitis (AS), and Sjögren's syndrome (SjS), the regulatory roles of non-canonical inflammasomes, such as mouse caspase-11 and human caspase-4 non-canonical inflammasomes, in these diseases are still largely unknown. Interestingly, an increasing number of studies have reported possible roles for non-canonical inflammasomes in the pathogenesis of various mouse models of rheumatic disease. This review comprehensively summarizes and discusses recent emerging studies demonstrating the regulatory roles of non-canonical inflammasomes, particularly focusing on the caspase-11 non-canonical inflammasome, in the pathogenesis and progression of various types of rheumatic diseases and provides new insights into strategies for developing potential therapeutics to prevent and treat rheumatic diseases as well as associated diseases by targeting non-canonical inflammasomes.
Collapse
Affiliation(s)
- Young-Su Yi
- Department of Life Sciences, Kyonggi University, Suwon 16227, Republic of Korea
| |
Collapse
|
10
|
Thompson CL, Hopkins T, Bevan C, Screen HRC, Wright KT, Knight MM. Human vascularised synovium-on-a-chip: a mechanically stimulated, microfluidic model to investigate synovial inflammation and monocyte recruitment. Biomed Mater 2023; 18:065013. [PMID: 37703884 DOI: 10.1088/1748-605x/acf976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/13/2023] [Indexed: 09/15/2023]
Abstract
Healthy synovium is critical for joint homeostasis. Synovial inflammation (synovitis) is implicated in the onset, progression and symptomatic presentation of arthritic joint diseases such as rheumatoid arthritis and osteoarthritis. Thus, the synovium is a promising target for the development of novel, disease-modifying therapeutics. However, target exploration is hampered by a lack of good pre-clinical models that accurately replicate human physiology and that are developed in a way that allows for widespread uptake. The current study presents a multi-channel, microfluidic, organ-on-a-chip (OOAC) model, comprising a 3D configuration of the human synovium and its associated vasculature, with biomechanical and inflammatory stimulation, built upon a commercially available OOAC platform. Healthy human fibroblast-like synoviocytes (hFLS) were co-cultured with human umbilical vein endothelial cells (HUVECs) with appropriate matrix proteins, separated by a flexible, porous membrane. The model was developed within the Emulate organ-chip platform enabling the application of physiological biomechanical stimulation in the form of fluid shear and cyclic tensile strain. The hFLS exhibited characteristic morphology, cytoskeletal architecture and matrix protein deposition. Synovial inflammation was initiated through the addition of interleukin-1β(IL-1β) into the synovium channel resulting in the increased secretion of inflammatory and catabolic mediators, interleukin-6 (IL-6), prostaglandin E2 (PGE2), matrix metalloproteinase 1 (MMP-1), as well as the synovial fluid constituent protein, hyaluronan. Enhanced expression of the inflammatory marker, intercellular adhesion molecule-1 (ICAM-1), was observed in HUVECs in the vascular channel, accompanied by increased attachment of circulating monocytes. This vascularised human synovium-on-a-chip model recapitulates a number of the functional characteristics of both healthy and inflamed human synovium. Thus, this model offers the first human synovium organ-chip suitable for widespread adoption to understand synovial joint disease mechanisms, permit the identification of novel therapeutic targets and support pre-clinical testing of therapies.
Collapse
Affiliation(s)
- Clare L Thompson
- Centre for Predictive In Vitro Models, Queen Mary University of London, London, United Kingdom
- Centre for Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Timothy Hopkins
- Centre for Predictive In Vitro Models, Queen Mary University of London, London, United Kingdom
- Centre for Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
- School of Pharmacy and Bioengineering, Keele University, Staffordshire, United Kingdom
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Shropshire, United Kingdom
| | - Catrin Bevan
- Centre for Predictive In Vitro Models, Queen Mary University of London, London, United Kingdom
- Centre for Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Hazel R C Screen
- Centre for Predictive In Vitro Models, Queen Mary University of London, London, United Kingdom
- Centre for Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Karina T Wright
- School of Pharmacy and Bioengineering, Keele University, Staffordshire, United Kingdom
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Shropshire, United Kingdom
| | - Martin M Knight
- Centre for Predictive In Vitro Models, Queen Mary University of London, London, United Kingdom
- Centre for Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
11
|
Riggs KC, Sankar U. Inflammatory mechanisms in post-traumatic osteoarthritis: a role for CaMKK2. IMMUNOMETABOLISM (COBHAM, SURREY) 2023; 5:e00031. [PMID: 37849987 PMCID: PMC10578519 DOI: 10.1097/in9.0000000000000031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 08/23/2023] [Indexed: 10/19/2023]
Abstract
Post-traumatic osteoarthritis (PTOA) is a multifactorial disease of the cartilage, synovium, and subchondral bone resulting from direct joint trauma and altered joint mechanics after traumatic injury. There are no current disease-modifying therapies for PTOA, and early surgical interventions focused on stabilizing the joint do not halt disease progression. Chronic pain and functional disability negatively affect the quality of life and take an economic toll on affected patients. While multiple mechanisms are at play in disease progression, joint inflammation is a key contributor. Impact-induced mitochondrial dysfunction and cell death or altered joint mechanics after trauma culminate in inflammatory cytokine release from synoviocytes and chondrocytes, cartilage catabolism, suppression of cartilage anabolism, synovitis, and subchondral bone disease, highlighting the complexity of the disease. Current understanding of the cellular and molecular mechanisms underlying the disease pathology has allowed for the investigation of a variety of therapeutic strategies that target unique apoptotic and/or inflammatory processes in the joint. This review provides a concise overview of the inflammatory and apoptotic mechanisms underlying PTOA pathogenesis and identifies potential therapeutic targets to mitigate disease progression. We highlight Ca2+/calmodulin-dependent protein kinase kinase 2 (CaMKK2), a serine/threonine protein kinase that was recently identified to play a role in murine and human osteoarthritis pathogenesis by coordinating chondrocyte inflammatory responses and apoptosis. Given its additional effects in regulating macrophage inflammatory signaling and bone remodeling, CaMKK2 emerges as a promising disease-modifying therapeutic target against PTOA.
Collapse
Affiliation(s)
- Keegan C. Riggs
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Uma Sankar
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
12
|
Zmerly H, El Ghoch M, Itani L, Kreidieh D, Yumuk V, Pellegrini M. Personalized Nutritional Strategies to Reduce Knee Osteoarthritis Severity and Ameliorate Sarcopenic Obesity Indices: A Practical Guide in an Orthopedic Setting. Nutrients 2023; 15:3085. [PMID: 37513503 PMCID: PMC10385346 DOI: 10.3390/nu15143085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Knee osteoarthritis (KOA) is one of the most common joint diseases, especially in individuals with obesity. Another condition within this population, and which presents frequently, is sarcopenic obesity (SO), defined as an increase in body fat and a decrease in muscle mass and strength. The current paper aims to describe recent nutritional strategies which can generally improve KOA clinical severity and, at the same time, ameliorate SO indices. Searches were carried out in the PubMed and Science Direct databases and data were summarized using a narrative approach. Certain key findings have been revealed. Firstly, the screening and identification of SO in patients with KOA is important, and to this end, simple physical performance tests and anthropometric measures are available in the literature. Secondly, adherence to a Mediterranean diet and the achievement of significant body weight loss by means of low-calorie diets (LCDs) remain the cornerstone nutritional treatment in this population. Thirdly, supplementation with certain micronutrients such as vitamin D, essential and non-essential amino acids, as well as whey protein, also appear to be beneficial. In conclusion, in the current review, we presented a detailed flowchart of three different nutritional tracks that can be adopted to improve both KOA and SO based on joint disease clinical severity.
Collapse
Affiliation(s)
- Hassan Zmerly
- Orthopedics and Traumatology Unit, Villa Erbosa Hospital, 40129 Bologna, Italy;
- Ludes Campus, 6912 Lugano, Switzerland
| | - Marwan El Ghoch
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Beirut Arab University, Riad El Solh, Beirut P.O. Box 11-5020, Lebanon; (L.I.); (D.K.)
- Faculty of Medicine, UniCamillus—Saint Camillus International University of Health and Medical Sciences, Via di Sant’Alessandro, 8, 00131 Rome, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi, 287, 41125 Modena, Italy;
| | - Leila Itani
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Beirut Arab University, Riad El Solh, Beirut P.O. Box 11-5020, Lebanon; (L.I.); (D.K.)
| | - Dima Kreidieh
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Beirut Arab University, Riad El Solh, Beirut P.O. Box 11-5020, Lebanon; (L.I.); (D.K.)
| | - Volkan Yumuk
- Division of Endocrinology, Metabolism and Diabetes, Istanbul University Cerrahpaşa Medical Faculty, Istanbul 34452, Türkiye;
| | - Massimo Pellegrini
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi, 287, 41125 Modena, Italy;
| |
Collapse
|
13
|
Paolucci T, Pino V, Elsallabi O, Gallorini M, Pozzato G, Pozzato A, Lanuti P, Reis VM, Pesce M, Pantalone A, Buda R, Patruno A. Quantum Molecular Resonance Inhibits NLRP3 Inflammasome/Nitrosative Stress and Promotes M1 to M2 Macrophage Polarization: Potential Therapeutic Effect in Osteoarthritis Model In Vitro. Antioxidants (Basel) 2023; 12:1358. [PMID: 37507898 PMCID: PMC10376596 DOI: 10.3390/antiox12071358] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
This study aimed to investigate the anti-inflammatory effects of Quantum Molecular Resonance (QMR) technology in an in vitro model of osteoarthritis-related inflammation. The study used THP-1-derived macrophages stimulated with lipopolysaccharide and hyaluronic acid fragments to induce the expression of inflammatory cytokines and nitrosative stress. QMR treatment inhibited COX-2 and iNOS protein expression and activity and reduced NF-κB activity. Furthermore, QMR treatment led to a significant reduction in peroxynitrite levels, reactive nitrogen species that can form during inflammatory conditions, and restored tyrosine nitration values to those similar to sham-exposed control cells. We also investigated the effect of QMR treatment on inflammasome activation and macrophage polarization in THP-1-derived macrophages. Results showed that QMR treatment significantly decreased NLRP3 and activated caspase-1 protein expression levels and downregulated IL-18 and IL-1β protein expression and secretion. Finally, our findings indicate that QMR treatment induces a switch in macrophage polarization from the M1 phenotype to the M2 phenotype.
Collapse
Affiliation(s)
- Teresa Paolucci
- Department of Oral, Medical and Biotechnological Sciences, Physical Medicine and Rehabilitation, University G. D'Annunzio, 66100 Chieti, Italy
| | - Vanessa Pino
- Department of Medicine and Aging Sciences, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| | - Osama Elsallabi
- Department of Medicine and Aging Sciences, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
- Institute on the Biology of Aging and Metabolism and Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Marialucia Gallorini
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| | | | | | - Paola Lanuti
- Department of Medicine and Aging Sciences, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| | - Victor Machado Reis
- Research Centre in Sport Sciences, Health Sciences and Human Development, 5001-801 Vila Real, Portugal
| | - Mirko Pesce
- Department of Medicine and Aging Sciences, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| | - Andrea Pantalone
- Department of Medicine and Aging Sciences, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| | - Roberto Buda
- Department of Medicine and Aging Sciences, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| | - Antonia Patruno
- Department of Medicine and Aging Sciences, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
14
|
Dilley JE, Bello MA, Roman N, McKinley T, Sankar U. Post-traumatic osteoarthritis: A review of pathogenic mechanisms and novel targets for mitigation. Bone Rep 2023. [DOI: 10.1016/j.bonr.2023.101658] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
15
|
Li J, Wang G, Xv X, Li Z, Shen Y, Zhang C, Zhang X. Identification of immune-associated genes in diagnosing osteoarthritis with metabolic syndrome by integrated bioinformatics analysis and machine learning. Front Immunol 2023; 14:1134412. [PMID: 37138862 PMCID: PMC10150333 DOI: 10.3389/fimmu.2023.1134412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
Background In the pathogenesis of osteoarthritis (OA) and metabolic syndrome (MetS), the immune system plays a particularly important role. The purpose of this study was to find key diagnostic candidate genes in OA patients who also had metabolic syndrome. Methods We searched the Gene Expression Omnibus (GEO) database for three OA and one MetS dataset. Limma, weighted gene co-expression network analysis (WGCNA), and machine learning algorithms were used to identify and analyze the immune genes associated with OA and MetS. They were evaluated using nomograms and receiver operating characteristic (ROC) curves, and finally, immune cells dysregulated in OA were investigated using immune infiltration analysis. Results After Limma analysis, the integrated OA dataset yielded 2263 DEGs, and the MetS dataset yielded the most relevant module containing 691 genes after WGCNA, with a total of 82 intersections between the two. The immune-related genes were mostly enriched in the enrichment analysis, and the immune infiltration analysis revealed an imbalance in multiple immune cells. Further machine learning screening yielded eight core genes that were evaluated by nomogram and diagnostic value and found to have a high diagnostic value (area under the curve from 0.82 to 0.96). Conclusion Eight immune-related core genes were identified (FZD7, IRAK3, KDELR3, PHC2, RHOB, RNF170, SOX13, and ZKSCAN4), and a nomogram for the diagnosis of OA and MetS was established. This research could lead to the identification of potential peripheral blood diagnostic candidate genes for MetS patients who also suffer from OA.
Collapse
Affiliation(s)
- Junchen Li
- The Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Genghong Wang
- The Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xilin Xv
- The Third Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
- Teaching and Research Section of Orthopedics and Traumatology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhigang Li
- The Second Department of Orthopedics and Traumatology, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yiwei Shen
- The Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Cheng Zhang
- The Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaofeng Zhang
- Teaching and Research Section of Orthopedics and Traumatology, Heilongjiang University of Chinese Medicine, Harbin, China
- The Bone Injury Teaching Laboratory, Heilongjiang University of Chinese Medicine, Harbin, China
- *Correspondence: Xiaofeng Zhang,
| |
Collapse
|