1
|
Tipado Z, Kuypers KPC, Sorger B, Ramaekers JG. Visual hallucinations originating in the retinofugal pathway under clinical and psychedelic conditions. Eur Neuropsychopharmacol 2024; 85:10-20. [PMID: 38648694 DOI: 10.1016/j.euroneuro.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 04/25/2024]
Abstract
Psychedelics like LSD (Lysergic acid diethylamide) and psilocybin are known to modulate perceptual modalities due to the activation of mostly serotonin receptors in specific cortical (e.g., visual cortex) and subcortical (e.g., thalamus) regions of the brain. In the visual domain, these psychedelic modulations often result in peculiar disturbances of viewed objects and light and sometimes even in hallucinations of non-existent environments, objects, and creatures. Although the underlying processes are poorly understood, research conducted over the past twenty years on the subjective experience of psychedelics details theories that attempt to explain these perceptual alterations due to a disruption of communication between cortical and subcortical regions. However, rare medical conditions in the visual system like Charles Bonnet syndrome that cause perceptual distortions may shed new light on the additional importance of the retinofugal pathway in psychedelic subjective experiences. Interneurons in the retina called amacrine cells could be the first site of visual psychedelic modulation and aid in disrupting the hierarchical structure of how humans perceive visual information. This paper presents an understanding of how the retinofugal pathway communicates and modulates visual information in psychedelic and clinical conditions. Therefore, we elucidate a new theory of psychedelic modulation in the retinofugal pathway.
Collapse
Affiliation(s)
- Zeus Tipado
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands; Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands.
| | - Kim P C Kuypers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands
| | - Bettina Sorger
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands
| | - Johannes G Ramaekers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands
| |
Collapse
|
2
|
Pandurangan K, Jayakumar J, Savoia S, Nanda R, Lata S, Kumar EH, S S, Vasudevan S, Srinivasan C, Joseph J, Sivaprakasam M, Verma R. Systematic development of immunohistochemistry protocol for large cryosections-specific to non-perfused fetal brain. J Neurosci Methods 2024; 405:110085. [PMID: 38387804 DOI: 10.1016/j.jneumeth.2024.110085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/01/2024] [Accepted: 02/18/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND Immunohistochemistry (IHC) is an important technique in understanding the expression of neurochemical molecules in the developing human brain. Despite its routine application in the research and clinical setup, the IHC protocol specific for soft fragile fetal brains that are fixed using the non-perfusion method is still limited in studying the whole brain. NEW METHOD This study shows that the IHC protocols, using a chromogenic detection system, used in animals and adult humans are not optimal in the fetal brains. We have optimized key steps from Antigen retrieval (AR) to chromogen visualization for formalin-fixed whole-brain cryosections (20 µm) mounted on glass slides. RESULTS We show the results from six validated, commonly used antibodies to study the fetal brain. We achieved optimal antigen retrieval with 0.1 M Boric Acid, pH 9.0 at 70°C for 20 minutes. We also present the optimal incubation duration and temperature for protein blocking and the primary antibody that results in specific antigen labeling with minimal tissue damage. COMPARISON WITH EXISTING METHODS The IHC protocol commonly used for adult human and animal brains results in significant tissue damage in the fetal brains with little or suboptimal antigen expression. Our new method with important modifications including the temperature, duration, and choice of the alkaline buffer for AR addresses these pitfalls and provides high-quality results. CONCLUSION The optimized IHC protocol for the developing human brain (13-22 GW) provides a high-quality, repeatable, and reliable method for studying chemoarchitecture in neurotypical and pathological conditions across different gestational ages.
Collapse
Affiliation(s)
- Karthika Pandurangan
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India.
| | - Jaikishan Jayakumar
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India; Center for Computational Brain Research, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India.
| | | | - Reetuparna Nanda
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India.
| | - S Lata
- Mediscan Systems, Chennai, Tamil Nadu, India.
| | | | - Suresh S
- Mediscan Systems, Chennai, Tamil Nadu, India.
| | - Sudha Vasudevan
- Department of Obstetrics & Gynaecology, Saveetha Medical College, Thandalam, Chennai, Tamil Nadu, India.
| | - Chitra Srinivasan
- Department of Pathology, Saveetha Medical College, Thandalam, Chennai, Tamil Nadu, India.
| | - Jayaraj Joseph
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India; Healthcare Technology Innovation Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India; Department of Electrical Engineering, Indian Institute of Technology, Madras, Chennai, Tamil Nadu, India.
| | - Mohanasankar Sivaprakasam
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India; Healthcare Technology Innovation Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India; Department of Electrical Engineering, Indian Institute of Technology, Madras, Chennai, Tamil Nadu, India.
| | - Richa Verma
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India.
| |
Collapse
|
3
|
Ding SL. Lamination, Borders, and Thalamic Projections of the Primary Visual Cortex in Human, Non-Human Primate, and Rodent Brains. Brain Sci 2024; 14:372. [PMID: 38672021 PMCID: PMC11048015 DOI: 10.3390/brainsci14040372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
The primary visual cortex (V1) is one of the most studied regions of the brain and is characterized by its specialized and laminated layer 4 in human and non-human primates. However, studies aiming to harmonize the definition of the cortical layers and borders of V1 across rodents and primates are very limited. This article attempts to identify and harmonize the molecular markers and connectional patterns that can consistently link corresponding cortical layers of V1 and borders across mammalian species and ages. V1 in primates has at least two additional and unique layers (L3b2 and L3c) and two sublayers of layer 4 (L4a and L4b) compared to rodent V1. In all species examined, layers 4 and 3b of V1 receive strong inputs from the (dorsal) lateral geniculate nucleus, and V1 is mostly surrounded by the secondary visual cortex except for one location where V1 directly abuts area prostriata. The borders of primate V1 can also be clearly identified at mid-gestational ages using gene markers. In rodents, a novel posteromedial extension of V1 is identified, which expresses V1 marker genes and receives strong inputs from the lateral geniculate nucleus. This V1 extension was labeled as the posterior retrosplenial cortex and medial secondary visual cortex in the literature and brain atlases. Layer 6 of the rodent and primate V1 originates corticothalamic projections to the lateral geniculate, lateral dorsal, and reticular thalamic nuclei and the lateroposterior-pulvinar complex with topographic organization. Finally, the direct geniculo-extrastriate (particularly the strong geniculo-prostriata) projections are probably major contributors to blindsight after V1 lesions. Taken together, compared to rodents, primates, and humans, V1 has at least two unique middle layers, while other layers are comparable across species and display conserved molecular markers and similar connections with the visual thalamus with only subtle differences.
Collapse
Affiliation(s)
- Song-Lin Ding
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| |
Collapse
|