1
|
Fang Y, Min S, Wu Y, Xu F, Chen H, Li Y, Lu Y, Hu J, Zhu L, Shen H. Integration of Multi-Omics and Network Pharmacology Analysis Reveals the Mechanism of Qingchang Huashi Jianpi Bushen Formula in Repairing the Epithelial Barrier of Ulcerative Colitis. J Inflamm Res 2025; 18:6167-6189. [PMID: 40386180 PMCID: PMC12083493 DOI: 10.2147/jir.s510966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 04/30/2025] [Indexed: 05/20/2025] Open
Abstract
Purpose Derivation of Qingchang Huashi formula, named Qingchang Huashi Jianpi Bushen (QCHS_JPBS) formula, has shown significant therapeutic effect on patients with ulcerative colitis (UC). In this study, the potential mechanism of QCHS_JPBS formula in repairing mucosal damage was explored from the perspective of intestinal stem cell (ISCs) differentiation, and potential targets of the QCHS_JPBS formula to improve UC were predicted using network pharmacology analysis. Methods The therapeutic efficacy of QCHS_JPBS formula was evaluated in a mouse model of 2.5% dextran sulfate sodium (DSS) induced colitis. The effect of this formula on the ISC differentiation was evaluated using tissue transmission electron microscopy, immunofluorescence, and RT-qPCR. The cecal contents were subjected to 16s RNA sequencing analysis and non-target metabolomics analysis using LC-MS/MS. The fecal microbiota transplantation method verified the essential role of gut microbiota in promoting ISC differentiation and repairing mucosal damage. Results The results indicated that QCHS_JPBS formula suppressed the inflammatory response and repaired the damaged intestinal epithelial barrier in DSS-induced colitis mice. QCHS_JPBS formula promoted ISC differentiation, particularly in the direction of goblet cells. QCHS_JPBS formula restored gut dysbiosis and regulated metabolic disorders in DSS-induced colitis mice. And then, the results of fecal microbiota transplantation indicated that QCHS_JPBS formula promoted differentiation of intestinal stem cells to repair mucosal damage through gut microbiota. Finally, a total of 79 active ingredients of QCHS_JPBS formula were identified based on LC-MS analysis and EGFR, STAT3, SRC, AKT1, and HSP90AA1 were considered as potential therapeutic UC targets of QCHS_JPBS formula based on network pharmacology analysis. Conclusion The present study demonstrated that QCHS_JPBS formula promoted the differentiation of ISCs through gut microbiota to repair the damaged intestinal epithelial barrier in UC mice.
Collapse
Affiliation(s)
- Yulai Fang
- Digestive Disease Research Institute, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Shichen Min
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Yuguang Wu
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Feng Xu
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Hongxin Chen
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Yanan Li
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Yizhou Lu
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Jingyi Hu
- Digestive Disease Research Institute, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Lei Zhu
- Digestive Disease Research Institute, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Hong Shen
- Digestive Disease Research Institute, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| |
Collapse
|
2
|
Liu H, Wang S, Wang J, Guo X, Song Y, Fu K, Gao Z, Liu D, He W, Yang LL. Energy metabolism in health and diseases. Signal Transduct Target Ther 2025; 10:69. [PMID: 39966374 PMCID: PMC11836267 DOI: 10.1038/s41392-025-02141-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/08/2024] [Accepted: 12/25/2024] [Indexed: 02/20/2025] Open
Abstract
Energy metabolism is indispensable for sustaining physiological functions in living organisms and assumes a pivotal role across physiological and pathological conditions. This review provides an extensive overview of advancements in energy metabolism research, elucidating critical pathways such as glycolysis, oxidative phosphorylation, fatty acid metabolism, and amino acid metabolism, along with their intricate regulatory mechanisms. The homeostatic balance of these processes is crucial; however, in pathological states such as neurodegenerative diseases, autoimmune disorders, and cancer, extensive metabolic reprogramming occurs, resulting in impaired glucose metabolism and mitochondrial dysfunction, which accelerate disease progression. Recent investigations into key regulatory pathways, including mechanistic target of rapamycin, sirtuins, and adenosine monophosphate-activated protein kinase, have considerably deepened our understanding of metabolic dysregulation and opened new avenues for therapeutic innovation. Emerging technologies, such as fluorescent probes, nano-biomaterials, and metabolomic analyses, promise substantial improvements in diagnostic precision. This review critically examines recent advancements and ongoing challenges in metabolism research, emphasizing its potential for precision diagnostics and personalized therapeutic interventions. Future studies should prioritize unraveling the regulatory mechanisms of energy metabolism and the dynamics of intercellular energy interactions. Integrating cutting-edge gene-editing technologies and multi-omics approaches, the development of multi-target pharmaceuticals in synergy with existing therapies such as immunotherapy and dietary interventions could enhance therapeutic efficacy. Personalized metabolic analysis is indispensable for crafting tailored treatment protocols, ultimately providing more accurate medical solutions for patients. This review aims to deepen the understanding and improve the application of energy metabolism to drive innovative diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Hui Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuo Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianhua Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Guo
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yujing Song
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kun Fu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenjie Gao
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Danfeng Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Wei He
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Lei-Lei Yang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
3
|
Zang R, Zhou R, Li Y, Wu H, Lu L, Xu H. The probiotic Lactobacillus plantarum alleviates colitis by modulating gut microflora to activate PPARγ and inhibit MAPKs/NF-κB. Eur J Nutr 2024; 64:32. [PMID: 39607600 DOI: 10.1007/s00394-024-03520-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 10/18/2024] [Indexed: 11/29/2024]
Abstract
PURPOSE In order to address the global public health concern of colitis, this study was conducted to investigate the beneficial effect of Lactobacillus plantarum LR002 (LR) on the remission of ulcerative colitis (UC) in mice and to explore the possible underlying mechanisms. METHODS The effect of LR on UC was analyzed by using dextran sodium sulfate (DSS)-induced UC model in mice (n = 9). To assess the therapeutic effect of LR on UC in mice, the disease activity index (DAI) of mice, histopathological alterations, intestinal epithelial barrier integrity, and intestinal microflora were determined. RESULTS The results demonstrated a reduction in the DSS-induced DAI in UC mice. Additionally, it mitigated colon shortening, minimized intestinal tissue damage, and preserved intestinal tight junction proteins (Claudin-3, Occludin, and ZO-1). LR reduced the levels of proinflammatory cytokines (IL-1β, IL-6, and TNF-α) and oxidative mediators (MPO, SOD and MDA) in the colon of UC mice, which could also alleviate the imbalance of intestinal flora in UC mice, increase the abundance of Prevotellaceae, and Ligilactobacillus, and decrease the abundance of Bacteroidaceae and Eubacteriumrum. LR can also increase the levels of PPARγ in the nucleus and inhibit the MAPK/NF-ĸB signaling pathway in UC mice. Besides, the reduction of the content of short-chain fatty acid (SCFAs) in the colon of UC mice was relieved. CONCLUSION The above results forge a scientific basis for LR as natural anti-inflammatory food to improve the imbalance of inflammatory intestinal flora and promote intestinal health.
Collapse
Affiliation(s)
- Rongxin Zang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, 730100, China
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Rui Zhou
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, 730100, China
| | - Yaodong Li
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, 730100, China
| | - Huihao Wu
- Experimental Teaching Department, Northwest Minzu University, Lanzhou, 730100, China
| | - Liping Lu
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, 730100, China
| | - Hongwei Xu
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, 730100, China.
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China.
| |
Collapse
|
4
|
Chi Z, Zhang M, Fu B, Wang X, Yang H, Fang X, Li Z, Teng T, Shi B. Branched Short-Chain Fatty Acid-Rich Fermented Protein Food Improves the Growth and Intestinal Health by Regulating Gut Microbiota and Metabolites in Young Pigs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21594-21609. [PMID: 39303156 DOI: 10.1021/acs.jafc.4c04526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The diet in early life is essential for the growth and intestinal health later in life. However, beneficial effects of a diet enriched in branched short-chain fatty acids (BSCFAs) for infants are ambiguous. This study aimed to develop a novel fermented protein food, enriched with BSCFAs and assess the effects of dry and wet ferment products on young pig development, nutrient absorption, intestinal barrier function, and gut microbiota and metabolites. A total of 18 young pigs were randomly assigned to three groups. The dry corn gluten-wheat bran mixture (DFCGW) and wet corn gluten-wheat bran mixture (WFCGW) were utilized as replacements for 10% soybean meal in the basal diet. Our results exhibited that the WFCGW diet significantly increased the growth performance of young pigs, enhanced the expression of tight junction proteins, and regulated associated cytokines expression in the colonic mucosa. Simultaneously, the WFCGW diet led to elevated levels of colonic isobutyric and isovaleric acid, as well as the activation of GPR41 and GPR109A. Furthermore, more potential probiotics including Lactobacillus, Megasphaera, and Lachnospiraceae_ND3007_group were enriched in the WFCGW group and positively associated with the beneficial metabolites such as 5-hydroxyindole-3-acetic acid. Differential metabolite KEGG pathway analysis suggested that WFCGW might exert gut health benefits by modulating tryptophan metabolism. In addition, the WFCGW diet significantly increased ghrelin concentrations in serum and hypothalamus and promoted the appetite of young pigs by activating hypothalamic NPY/AGRP neurons. This study extends the knowledge of BSCFAs and provides a reference for the fermented food application in the infant diet.
Collapse
Affiliation(s)
- Zihan Chi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Mengqi Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Botao Fu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoxu Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Hao Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xiuyu Fang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Zhongyu Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Teng Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Baoming Shi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
5
|
Davis KL, Claudio-Etienne E, Frischmeyer-Guerrerio PA. Atopic dermatitis and food allergy: More than sensitization. Mucosal Immunol 2024; 17:1128-1140. [PMID: 38906220 PMCID: PMC11471387 DOI: 10.1016/j.mucimm.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/01/2024] [Accepted: 06/13/2024] [Indexed: 06/23/2024]
Abstract
The increased risk of food allergy in infants with atopic dermatitis (AD) has long been recognized; an epidemiologic phenomenon termed "the atopic march." Current literature supports the hypothesis that food antigen exposure through the disrupted skin barrier in AD leads to food antigen-specific immunoglobulin E production and food sensitization. However, there is growing evidence that inflammation in the skin drives intestinal remodeling via circulating inflammatory signals, microbiome alterations, metabolites, and the nervous system. We explore how this skin-gut axis helps to explain the link between AD and food allergy beyond sensitization.
Collapse
Affiliation(s)
- Katelin L Davis
- Food Allergy Research Section, Laboratory of Allergic Diseases, The National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA; Comparative Biomedical Scientist Training Program, The Molecular Pathology Unit, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, The National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Comparative Pathobiology Department, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Estefania Claudio-Etienne
- Food Allergy Research Section, Laboratory of Allergic Diseases, The National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Pamela A Frischmeyer-Guerrerio
- Food Allergy Research Section, Laboratory of Allergic Diseases, The National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
6
|
Nie Y, Song C, Huang H, Mao S, Ding K, Tang H. Chromatin modifiers in human disease: from functional roles to regulatory mechanisms. MOLECULAR BIOMEDICINE 2024; 5:12. [PMID: 38584203 PMCID: PMC10999406 DOI: 10.1186/s43556-024-00175-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/21/2024] [Indexed: 04/09/2024] Open
Abstract
The field of transcriptional regulation has revealed the vital role of chromatin modifiers in human diseases from the beginning of functional exploration to the process of participating in many types of disease regulatory mechanisms. Chromatin modifiers are a class of enzymes that can catalyze the chemical conversion of pyrimidine residues or amino acid residues, including histone modifiers, DNA methyltransferases, and chromatin remodeling complexes. Chromatin modifiers assist in the formation of transcriptional regulatory circuits between transcription factors, enhancers, and promoters by regulating chromatin accessibility and the ability of transcription factors to acquire DNA. This is achieved by recruiting associated proteins and RNA polymerases. They modify the physical contact between cis-regulatory factor elements, transcription factors, and chromatin DNA to influence transcriptional regulatory processes. Then, abnormal chromatin perturbations can impair the homeostasis of organs, tissues, and cells, leading to diseases. The review offers a comprehensive elucidation on the function and regulatory mechanism of chromatin modifiers, thereby highlighting their indispensability in the development of diseases. Furthermore, this underscores the potential of chromatin modifiers as biomarkers, which may enable early disease diagnosis. With the aid of this paper, a deeper understanding of the role of chromatin modifiers in the pathogenesis of diseases can be gained, which could help in devising effective diagnostic and therapeutic interventions.
Collapse
Affiliation(s)
- Yali Nie
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Clinical Research Center for Myocardial Injury in Hunan Province, Hengyang, Hunan, 421001, China
| | - Chao Song
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Hong Huang
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Clinical Research Center for Myocardial Injury in Hunan Province, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Shuqing Mao
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Clinical Research Center for Myocardial Injury in Hunan Province, Hengyang, Hunan, 421001, China
| | - Kai Ding
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Clinical Research Center for Myocardial Injury in Hunan Province, Hengyang, Hunan, 421001, China
| | - Huifang Tang
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China.
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
- Clinical Research Center for Myocardial Injury in Hunan Province, Hengyang, Hunan, 421001, China.
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|