1
|
Akoton R, Sovegnon PM, Djihinto OY, Medjigbodo AA, Agonhossou R, Adegnika AA, Gibson G, Djouaka R, Hawkes FM, Djogbénou LS. Using non-insecticidal traps indoors can complement insecticide-treated nets to target insecticide-resistant malaria vectors. Parasit Vectors 2025; 18:166. [PMID: 40346610 PMCID: PMC12063245 DOI: 10.1186/s13071-025-06759-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 03/11/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND Insecticide-treated nets (ITNs) provide protection against malaria vectors through their insecticidal action and as a physical barrier. However, insecticide resistance in malaria vectors has diminished their efficacy, threatening future malaria control. To reinforce ITNs' effectiveness, evaluating non-insecticide-based tools in an integrated control approach is worthwhile. In the present study, a mosquito collection technique, the Host Decoy Trap (HDT), was coupled with standard ITNs as a complementary intervention, and its effectiveness against insecticide-resistant Anopheles gambiae s.l. was assessed in experimental huts. METHODS An HDT combined with either permethrin or deltamethrin-treated nets was tested against field-collected An. gambiae mosquitoes from Za-Kpota (Benin Republic) in experimental hut trials following WHO Phase II guidelines. Effectiveness was assessed in terms of mosquito mortality, blood feeding and exophily rates. Prior to hut trials, an insecticide susceptibility test was performed on field-collected An. gambiae s.l. mosquitoes to screen for pyrethroid resistance. RESULTS A significantly higher mortality rate was observed against both susceptible and field-collected An. gambiae s.l. mosquitoes when ITNs were used with HDT (ranging from 80.18 to 99.78%) compared to alone (2.44-100%). The combined use of treated nets with HDT resulted in a lower rate (ranging from 0 to 10.83%) of blood feeding compared to the treated nets alone (ranging from 0 to 16.93%). When treated nets were hung next to the HDT, they significantly limited the number of insecticide-resistant mosquitoes that exited experimental huts compared to the nets alone. CONCLUSIONS The use of HDT alongside ITNs has been demonstrated to significantly reduce the likelihood of vector-host contact by insecticide-resistant An. gambiae. A combination of HDT and treated nets reduced the number of live An. gambiae mosquitoes as well as the blood-feeding rate. Furthermore, it reduced the number of mosquitoes likely to leave the huts and enter the natural environment. Altogether, our findings highlight the potential of integrated approaches combining non-insecticidal trapping devices with ITNs when designing future integrated vector control strategies.
Collapse
Affiliation(s)
- Romaric Akoton
- Tropical Infectious Diseases Research Center (TIDRC), University of Abomey-Calavi, Cotonou, Benin.
- Fondation Pour la Recherche Scientifique (FORS), Cotonou, Bénin.
| | - Pierre Marie Sovegnon
- Tropical Infectious Diseases Research Center (TIDRC), University of Abomey-Calavi, Cotonou, Benin
| | - Oswald Y Djihinto
- Tropical Infectious Diseases Research Center (TIDRC), University of Abomey-Calavi, Cotonou, Benin
| | - Adandé A Medjigbodo
- Tropical Infectious Diseases Research Center (TIDRC), University of Abomey-Calavi, Cotonou, Benin
| | - Romuald Agonhossou
- Tropical Infectious Diseases Research Center (TIDRC), University of Abomey-Calavi, Cotonou, Benin
- Fondation Pour la Recherche Scientifique (FORS), Cotonou, Bénin
| | - Ayola Akim Adegnika
- Fondation Pour la Recherche Scientifique (FORS), Cotonou, Bénin
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- Institute for Tropical Medicine (ITM), University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Gabriella Gibson
- Department of Agriculture, Health & Environment, Natural Resources Institute (NRI), University of Greenwich at Medway, Kent, UK
| | | | - Frances M Hawkes
- Department of Agriculture, Health & Environment, Natural Resources Institute (NRI), University of Greenwich at Medway, Kent, UK
| | - Luc S Djogbénou
- Tropical Infectious Diseases Research Center (TIDRC), University of Abomey-Calavi, Cotonou, Benin
- Regional Institute of Public Health, University of Abomey-Calavi, Ouidah, Benin
| |
Collapse
|
2
|
Cecilia H, Althouse BM, Azar SR, Moehn BA, Yun R, Rossi SL, Vasilakis N, Hanley KA. Aedes albopictus is not an arbovirus aficionado when feeding on cynomolgus macaques or squirrel monkeys. iScience 2024; 27:111198. [PMID: 39555418 PMCID: PMC11563999 DOI: 10.1016/j.isci.2024.111198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/27/2024] [Accepted: 10/15/2024] [Indexed: 11/19/2024] Open
Abstract
Viruses transmitted by Aedes mosquitoes (e.g., dengue [DENV], Zika [ZIKV]) have demonstrated high potential to spill over from their ancestral, sylvatic cycles in non-human primates to establish transmission in humans. Epidemiological models require accurate knowledge of the contact structure between hosts and vectors, which is highly sensitive to any impacts of virus infection in mosquitoes or hosts on mosquito feeding behavior. Current evidence for whether these viruses affect vector behavior is mixed. Here we leveraged a study on sylvatic DENV-2 and ZIKV transmission between two species of monkey and Aedes albopictus to determine whether virus infection of either host or vector alters vector feeding behavior. Engorgement rates varied from 0% to 100%, but this was not driven by vector nor host infection, but rather by the individual host, host species, and host body temperature. This study highlights the importance of incorporating individual-level heterogeneity of vector biting in arbovirus transmission models.
Collapse
Affiliation(s)
- Hélène Cecilia
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| | - Benjamin M. Althouse
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
- Information School, University of Washington, Seattle, WA 98105, USA
| | - Sasha R. Azar
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Center for Tissue Engineering, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Brett A. Moehn
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| | - Ruimei Yun
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Shannan L. Rossi
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Microbiology and Immunology, Unviersity of Texas Medical Branch, Galveston, TX 77555, USA
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kathryn A. Hanley
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| |
Collapse
|
3
|
Carnaghi M, Mandelli F, Feugère L, Joiner J, Belmain SR, Hopkins RJ, Hawkes FM. Protocol for rearing and using mosquitoes for flight path tracking and behavioral characterization in wind tunnel bioassays. STAR Protoc 2024; 5:103180. [PMID: 38980798 PMCID: PMC11294717 DOI: 10.1016/j.xpro.2024.103180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/03/2024] [Accepted: 06/17/2024] [Indexed: 07/11/2024] Open
Abstract
Mosquito behavioral assays are an important component in vector research and control tool development. Here, we present a protocol for rearing Anopheles mosquitoes, performing host-seeking behavioral bioassays, and collecting 3D flight tracks in a large wind tunnel. We describe steps for setting up host-seeking landing assays, both as a non-choice and as a dual-choice assay, and analyzing flight tracks. This protocol can be applied in the research of several behavioral traits, including nectar seeking, resting, mating, and oviposition behavior. For complete details on the use and execution of this protocol, please refer to Carnaghi et al.1.
Collapse
Affiliation(s)
- Manuela Carnaghi
- Natural Resources Institute, University of Greenwich, Chatham, Kent ME4 4TB, UK.
| | | | - Lionel Feugère
- Natural Resources Institute, University of Greenwich, Chatham, Kent ME4 4TB, UK
| | - Jillian Joiner
- Natural Resources Institute, University of Greenwich, Chatham, Kent ME4 4TB, UK
| | - Steven R Belmain
- Natural Resources Institute, University of Greenwich, Chatham, Kent ME4 4TB, UK
| | - Richard J Hopkins
- Natural Resources Institute, University of Greenwich, Chatham, Kent ME4 4TB, UK
| | - Frances M Hawkes
- Natural Resources Institute, University of Greenwich, Chatham, Kent ME4 4TB, UK
| |
Collapse
|
4
|
Bursali F, Touray M. The complexities of blood-feeding patterns in mosquitoes and sandflies and the burden of disease: A minireview. Vet Med Sci 2024; 10:e1580. [PMID: 39171609 PMCID: PMC11339650 DOI: 10.1002/vms3.1580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Mosquitoes and sandflies exhibit a wide range of blood feeding patterns, targeting a wide range of vertebrate species, including birds, mammals, reptiles, and amphibians, for proteins vital for egg development. This broad host range increases the opportunity for them to acquire pathogens of numerous debilitating-and-fatal diseases from various animal reservoirs, playing a significant role in disease crossover between animals and humans, also known as zoonotic transmission. This review focuses on the intricate blood-feeding habits of these dipteran vectors, their sensory systems and the complex dance between host and pathogen during disease transmission. We delve into the influence of blood sources on pathogen spread by examining the insect immune response and its intricate interplay with pathogens. The remarkable sense of smell guiding them towards food sources and hosts is explored, highlighting the interplay of multiple sensory cues in their navigation. Finally, we examine the challenges in mosquito control strategies and explore innovations in this field, emphasizing the need for sustainable solutions to combat this global health threat. By understanding the biology and behaviour of these insects, we can develop more effective strategies to protect ourselves and mitigate the burden of vector-borne diseases.
Collapse
Affiliation(s)
- Fatma Bursali
- Biology Department, Faculty of ScienceAydin Adnan Menderes UniversityAydinTürkiye
| | - Mustapha Touray
- Biology Department, Faculty of ScienceAydin Adnan Menderes UniversityAydinTürkiye
| |
Collapse
|
5
|
Zhao SY, Wu PL, Fu JY, Wu YM, Liu HK, Cai LJ, Gu JB, Zhou XH, Chen XG. Gustatory receptor 11 is involved in detecting the oviposition water of Asian tiger mosquito, Aedes albopictus. Parasit Vectors 2024; 17:367. [PMID: 39210465 PMCID: PMC11363565 DOI: 10.1186/s13071-024-06452-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Aedes albopictus is a major arbovirus vector with small stagnant water containers being its oviposition sites. Mosquitoes search for these sites based on their olfactory cues (odor and moisture emanating from the water at the oviposition site), visual cues (size and color of the site), and gustatory cues (ion and nutrient concentration in that water). The gustatory mechanism through which mosquitoes search for oviposition sites remains unknown. METHODS To investigate the role of taste receptors in Ae. albopictus oviposition site selection, we developed a laboratory model. This model assessed mosquito behavior in locating and detecting oviposition sites, using a location index to quantify site preference and detection time to measure response to water presence. We compared oviposition site-searching efficiency between mosquitoes with blocked and unblocked appendages, targeting the taste organs. Transcriptome sequencing was conducted to identify differentially expressed genes between water-exposed and unexposed mosquitoes. CRISPR/Cas9 technology was then employed to generate a mutant strain with a targeted gene knockout. RESULTS There was no significant difference between the blocked and unblocked groups in the location index. In contrast, the detection time of the unblocked group differed significantly from all other groups, including those with blocked foreleg tarsus, midleg tarsus, hindleg tarsus, all tibia, and all tarsus. Transcriptome sequencing analyses of water-exposed and unexposed mosquitoes revealed that the taste-related gene gustatory receptor 11(gr11) was differentially expressed. This gene was knocked out with CRISPR/Cas9 technology to generate a pure mutant strain with 2- and 4-bp deletions, which exhibited a significantly longer detection time than the wild-type strain. CONCLUSIONS This study reveals the role of Ae. albopictus gr11 in water detection at oviposition sites, thereby providing a theoretical basis and scientific guidelines for managing the breeding sites of these mosquitoes.
Collapse
Affiliation(s)
- Si Yu Zhao
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Pei Lin Wu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jun Yu Fu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yi Ming Wu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Hong Kai Liu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Li Jun Cai
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jin Bao Gu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiao Hong Zhou
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiao-Guang Chen
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China.
| |
Collapse
|
6
|
Blanken SL, Prudhomme O'Meara W, Hol FJH, Bousema T, Markwalter CF. À la carte: how mosquitoes choose their blood meals. Trends Parasitol 2024; 40:591-603. [PMID: 38853076 PMCID: PMC11223952 DOI: 10.1016/j.pt.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 06/11/2024]
Abstract
Mosquitoes are important vectors for human diseases, transmitting pathogens that cause a range of parasitic and viral infections. Mosquito blood-feeding is heterogeneous, meaning that some human hosts are at higher risk of receiving bites than others, and this heterogeneity is multifactorial. Mosquitoes integrate specific cues to locate their hosts, and mosquito attraction differs considerably between individual human hosts. Heterogeneous mosquito biting results from variations in both host attractiveness and availability and can impact transmission of vector-borne diseases. However, the extent and drivers of this heterogeneity and its importance for pathogen transmission remain incompletely understood. Here, we review methods and recent data describing human characteristics that affect host-seeking behavior and host preferences of mosquito disease vectors, and the implications for vector-borne disease transmission.
Collapse
Affiliation(s)
- Sara Lynn Blanken
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Wendy Prudhomme O'Meara
- Duke Global Health Institute, Duke University, Durham, NC, USA; Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA
| | - Felix J H Hol
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, The Netherlands; Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | | |
Collapse
|
7
|
Cecilia H, Althouse BM, Azar SR, Moehn BA, Yun R, Rossi SL, Vasilakis N, Hanley KA. Aedes albopictus is not an arbovirus aficionado - Impacts of sylvatic flavivirus infection in vectors and hosts on mosquito engorgement on non-human primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.19.580944. [PMID: 38559148 PMCID: PMC10979881 DOI: 10.1101/2024.02.19.580944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The contact structure between vertebrate hosts and arthropod vectors plays a key role in the spread of arthropod-borne viruses (arboviruses); thus, it is important to determine whether arbovirus infection of either host or vector alters vector feeding behavior. Here we leveraged a study of the replication dynamics of two arboviruses isolated from their ancestral cycles in paleotropical forests, sylvatic dengue-2 (DENV-2) and Zika (ZIKV), in one non-human primate (NHP) species from the paleotropics (cynomolgus macaques, Macaca fascicularis) and one from the neotropics (squirrel monkeys, Saimiri boliviensis) to test the effect of both vector and host infection with each virus on completion of blood feeding (engorgement) of the mosquito Aedes albopictus. Although mosquitoes were starved and given no choice of hosts, engorgement rates varied dramatically, from 0% to 100%. While neither vector nor host infection systematically affected engorgement, NHP species and body temperature at the time of feeding did. We also interrogated the effect of repeated mosquito bites on cytokine expression and found that epidermal growth factor (EGF) and macrophage migration inhibitory factor (MIF) concentrations were dynamically associated with exposure to mosquito bites. This study highlights the importance of incorporating individual-level heterogeneity of vector biting in arbovirus transmission models.
Collapse
Affiliation(s)
- Hélène Cecilia
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003 USA
| | - Benjamin M. Althouse
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003 USA
- Information School, University of Washington, Seattle, WA, 98105
| | - Sasha R. Azar
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Center for Tissue Engineering, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX 77030 USA
| | - Brett A. Moehn
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003 USA
| | - Ruimei Yun
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555 USA
| | - Shannan L. Rossi
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Department of Microbiology and Immunology, Unviersity of Texas Medical Branch, Galveston, TX 77555 USA
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, 77555 USA
| | - Kathryn A. Hanley
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003 USA
| |
Collapse
|