1
|
Schnabl B, Damman CJ, Carr RM. Metabolic dysfunction-associated steatotic liver disease and the gut microbiome: pathogenic insights and therapeutic innovations. J Clin Invest 2025; 135:e186423. [PMID: 40166938 PMCID: PMC11957707 DOI: 10.1172/jci186423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a major cause of liver disease worldwide, and our understanding of its pathogenesis continues to evolve. MASLD progresses from steatosis to steatohepatitis, fibrosis, and cirrhosis, and this Review explores how the gut microbiome and their metabolites contribute to MASLD pathogenesis. We explore the complexity and importance of the intestinal barrier function and how disruptions of the intestinal barrier and dysbiosis work in concert to promote the onset and progression of MASLD. The Review focuses on specific bacterial, viral, and fungal communities that impact the trajectory of MASLD and how specific metabolites (including ethanol, bile acids, short chain fatty acids, and other metabolites) contribute to disease pathogenesis. Finally, we underscore how knowledge of the interaction between gut microbes and the intestinal barrier may be leveraged for MASLD microbial-based therapeutics. Here, we include a discussion of the therapeutic potential of prebiotics, probiotics, postbiotics, and microbial-derived metabolites.
Collapse
Affiliation(s)
- Bernd Schnabl
- Department of Medicine, Division of Gastroenterology, UCSD, San Diego, California, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, California, USA
| | - Christopher J. Damman
- Department of Medicine, Division of Gastroenterology, University of Washington, Seattle, Washington, USA
| | - Rotonya M. Carr
- Department of Medicine, Division of Gastroenterology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
2
|
Wei J, Luo J, Yang F, Dai W, Huang Z, Yan Y, Luo M. Comparative genomic and metabolomic analysis reveals the potential of a newly isolated Enterococcus faecium B6 involved in lipogenic effects. Gene 2024; 927:148668. [PMID: 38852695 DOI: 10.1016/j.gene.2024.148668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/01/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Evidence has indicated that Enterococcus plays a vital role in non-alcoholic fatty liver disease (NAFLD) development. However, the microbial genetic basis and metabolic potential in the disease are yet unknown. We previously isolated a bacteria Enterococcus faecium B6 (E. faecium B6) from children with NAFLD for the first time. Here, we aim to systematically investigate the potential of strain B6 in lipogenic effects. The lipogenic effects of strain B6 were explored in vitro and in vivo. The genomic and functional characterizations were investigated by whole-genome sequencing and comparative genomic analysis. Moreover, the metabolite profiles were unraveled by an untargeted metabolomic analysis. We demonstrated that strain B6 could effectively induce lipogenic effects in the liver of mice. Strain B6 contained a circular chromosome and two circular plasmids and posed various functions. Compared to the other two probiotic strains of E. faecium, strain B6 exhibited unique functions in pathways of ABC transporters, phosphotransferase system, and amino sugar and nucleotide sugar metabolism. Moreover, strain B6 produced several metabolites, mainly enriched in the protein digestion and absorption pathway. The unique potential of strain B6 in lipogenic effects was probably associated with glycolysis, fatty acid synthesis, and glutamine and choline transport. This study pioneeringly revealed the metabolic characteristics and specific detrimental traits of strain B6. The findings provided new insights into the underlying mechanisms of E. faecium in lipogenic effects, and laid essential foundations for further understanding of E. faecium-related disease.
Collapse
Affiliation(s)
- Jia Wei
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan, China
| | - Jiayou Luo
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan, China
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, Hunan, China
| | - Wen Dai
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan, China
| | - Zhihang Huang
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan, China
| | - Yulin Yan
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan, China
| | - Miyang Luo
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan, China.
| |
Collapse
|
3
|
Kasprzak-Drozd K, Niziński P, Kasprzak P, Kondracka A, Oniszczuk T, Rusinek A, Oniszczuk A. Does Resveratrol Improve Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD)? Int J Mol Sci 2024; 25:3746. [PMID: 38612556 PMCID: PMC11012111 DOI: 10.3390/ijms25073746] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is influenced by a variety of factors, including environmental and genetic factors. The most significant outcome is the alteration of free fatty acid and triglyceride metabolism. Lipotoxicity, impaired autophagy, chronic inflammation, and oxidative stress, as well as coexisting insulin resistance, obesity, and changes in the composition of gut microbiota, are also considered crucial factors in the pathogenesis of MASLD. Resveratrol is a polyphenolic compound that belongs to the stilbene subgroup. This review summarises the available information on the therapeutic effects of resveratrol against MASLD. Resveratrol has demonstrated promising antisteatotic, antioxidant, and anti-inflammatory activities in liver cells in in vitro and animal studies. Resveratrol has been associated with inhibiting the NF-κB pathway, activating the SIRT-1 and AMPK pathways, normalizing the intestinal microbiome, and alleviating intestinal inflammation. However, clinical studies have yielded inconclusive results regarding the efficacy of resveratrol in alleviating hepatic steatosis or reducing any of the parameters found in MASLD in human patients. The lack of homogeneity between studies, low bioavailability of resveratrol, and population variability when compared to animal models could be the reasons for this.
Collapse
Affiliation(s)
- Kamila Kasprzak-Drozd
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (K.K.-D.); (A.R.)
| | - Przemysław Niziński
- Department of Pharmacology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland;
| | - Paulina Kasprzak
- Department of Conservative Dentistry with Endodontics, Medical University of Lublin, Chodźki 6, 20-093 Lublin, Poland;
| | - Adrianna Kondracka
- Department of Obstetrics and Pathology of Pregnancy, Medical University of Lublin, Staszica 16, 20-081 Lublin, Poland;
| | - Tomasz Oniszczuk
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka 31, 20-612 Lublin, Poland;
| | - Agata Rusinek
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (K.K.-D.); (A.R.)
| | - Anna Oniszczuk
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (K.K.-D.); (A.R.)
| |
Collapse
|
4
|
Wei J, Luo J, Yang F, Feng X, Zeng M, Dai W, Pan X, Yang Y, Li Y, Duan Y, Xiao X, Ye P, Yao Z, Liu Y, Huang Z, Zhang J, Zhong Y, Xu N, Luo M. Cultivated Enterococcus faecium B6 from children with obesity promotes nonalcoholic fatty liver disease by the bioactive metabolite tyramine. Gut Microbes 2024; 16:2351620. [PMID: 38738766 PMCID: PMC11093035 DOI: 10.1080/19490976.2024.2351620] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/01/2024] [Indexed: 05/14/2024] Open
Abstract
Gut microbiota plays an essential role in nonalcoholic fatty liver disease (NAFLD). However, the contribution of individual bacterial strains and their metabolites to childhood NAFLD pathogenesis remains poorly understood. Herein, the critical bacteria in children with obesity accompanied by NAFLD were identified by microbiome analysis. Bacteria abundant in the NAFLD group were systematically assessed for their lipogenic effects. The underlying mechanisms and microbial-derived metabolites in NAFLD pathogenesis were investigated using multi-omics and LC-MS/MS analysis. The roles of the crucial metabolite in NAFLD were validated in vitro and in vivo as well as in an additional cohort. The results showed that Enterococcus spp. was enriched in children with obesity and NAFLD. The patient-derived Enterococcus faecium B6 (E. faecium B6) significantly contributed to NAFLD symptoms in mice. E. faecium B6 produced a crucial bioactive metabolite, tyramine, which probably activated PPAR-γ, leading to lipid accumulation, inflammation, and fibrosis in the liver. Moreover, these findings were successfully validated in an additional cohort. This pioneering study elucidated the important functions of cultivated E. faecium B6 and its bioactive metabolite (tyramine) in exacerbating NAFLD. These findings advance the comprehensive understanding of NAFLD pathogenesis and provide new insights for the development of microbe/metabolite-based therapeutic strategies.
Collapse
Affiliation(s)
- Jia Wei
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Jiayou Luo
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, Hunan, China
| | - Xiangling Feng
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Ming Zeng
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Wen Dai
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Xiongfeng Pan
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Yue Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, Hunan, China
| | - Yamei Li
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, Hunan, China
| | - Yamei Duan
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Xiang Xiao
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Ping Ye
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Zhenzhen Yao
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Yixu Liu
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Zhihang Huang
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Jiajia Zhang
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Yan Zhong
- Institute of Children Health, Hunan Children’s Hospital, Changsha, Hunan, China
| | - Ningan Xu
- Institute of Children Health, Hunan Children’s Hospital, Changsha, Hunan, China
| | - Miyang Luo
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| |
Collapse
|