1
|
Gong Z, Guo J, Liu B, Guo Y, Cheng C, Jiang Y, Liang N, Hu M, Song T, Yang L, Li H, Zhang H, Zong X, Che Q, Shi N. Mechanisms of immune response and cell death in ischemic stroke and their regulation by natural compounds. Front Immunol 2024; 14:1287857. [PMID: 38274789 PMCID: PMC10808662 DOI: 10.3389/fimmu.2023.1287857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Ischemic stroke (IS), which is the third foremost cause of disability and death worldwide, has inflammation and cell death as its main pathological features. IS can lead to neuronal cell death and release factors such as damage-related molecular patterns, stimulating the immune system to release inflammatory mediators, thereby resulting in inflammation and exacerbating brain damage. Currently, there are a limited number of treatment methods for IS, which is a fact necessitating the discovery of new treatment targets. For this review, current research on inflammation and cell death in ischemic stroke was summarized. The complex roles and pathways of the principal immune cells (microglia, astrocyte, neutrophils, T lymphocytes, and monocytes/macrophage) in the immune system after IS in inflammation are discussed. The mechanisms of immune cell interactions and the cytokines involved in these interactions are summarized. Moreover, the cell death mechanisms (pyroptosis, apoptosis, necroptosis, PANoptosis, and ferroptosis) and pathways after IS are explored. Finally, a summary is provided of the mechanism of action of natural pharmacological active ingredients in the treatment of IS. Despite significant recent progress in research on IS, there remain many challenges that need to be overcome.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Qianzi Che
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Nannan Shi
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Bui TA, Jickling GC, Winship IR. Neutrophil dynamics and inflammaging in acute ischemic stroke: A transcriptomic review. Front Aging Neurosci 2022; 14:1041333. [PMID: 36620775 PMCID: PMC9813499 DOI: 10.3389/fnagi.2022.1041333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Stroke is among the leading causes of death and disability worldwide. Restoring blood flow through recanalization is currently the only acute treatment for cerebral ischemia. Unfortunately, many patients that achieve a complete recanalization fail to regain functional independence. Recent studies indicate that activation of peripheral immune cells, particularly neutrophils, may contribute to microcirculatory failure and futile recanalization. Stroke primarily affects the elderly population, and mortality after endovascular therapies is associated with advanced age. Previous analyses of differential gene expression across injury status and age identify ischemic stroke as a complex age-related disease. It also suggests robust interactions between stroke injury, aging, and inflammation on a cellular and molecular level. Understanding such interactions is crucial in developing effective protective treatments. The global stroke burden will continue to increase with a rapidly aging human population. Unfortunately, the mechanisms of age-dependent vulnerability are poorly defined. In this review, we will discuss how neutrophil-specific gene expression patterns may contribute to poor treatment responses in stroke patients. We will also discuss age-related transcriptional changes that may contribute to poor clinical outcomes and greater susceptibility to cerebrovascular diseases.
Collapse
Affiliation(s)
- Truong An Bui
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Glen C. Jickling
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Medicine, Division of Neurology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Ian R. Winship
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
3
|
Kiss M, Lebegge E, Murgaski A, Van Damme H, Kancheva D, Brughmans J, Scheyltjens I, Talebi A, Awad RM, Elkrim Y, Bardet PMR, Arnouk SM, Goyvaerts C, Swinnen J, Nana FA, Van Ginderachter JA, Laoui D. Junctional adhesion molecule-A is dispensable for myeloid cell recruitment and diversification in the tumor microenvironment. Front Immunol 2022; 13:1003975. [PMID: 36531986 PMCID: PMC9751033 DOI: 10.3389/fimmu.2022.1003975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/15/2022] [Indexed: 12/04/2022] Open
Abstract
Junctional adhesion molecule-A (JAM-A), expressed on the surface of myeloid cells, is required for extravasation at sites of inflammation and may also modulate myeloid cell activation. Infiltration of myeloid cells is a common feature of tumors that drives disease progression, but the function of JAM-A in this phenomenon and its impact on tumor-infiltrating myeloid cells is little understood. Here we show that systemic cancer-associated inflammation in mice enhanced JAM-A expression selectively on circulating monocytes in an IL1β-dependent manner. Using myeloid-specific JAM-A-deficient mice, we found that JAM-A was dispensable for recruitment of monocytes and other myeloid cells to tumors, in contrast to its reported role in inflammation. Single-cell RNA sequencing revealed that loss of JAM-A did not influence the transcriptional reprogramming of myeloid cells in the tumor microenvironment. Overall, our results support the notion that cancer-associated inflammation can modulate the phenotype of circulating immune cells, and we demonstrate that tumors can bypass the requirement of JAM-A for myeloid cell recruitment and reprogramming.
Collapse
Affiliation(s)
- Máté Kiss
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium,Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium,Laboratory of Dendritic Cell Biology and Cancer Immunotherapy, VIB Center for Inflammation Research, Brussels, Belgium,*Correspondence: Máté Kiss, ; Damya Laoui,
| | - Els Lebegge
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium,Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Aleksandar Murgaski
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium,Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium,Laboratory of Dendritic Cell Biology and Cancer Immunotherapy, VIB Center for Inflammation Research, Brussels, Belgium
| | - Helena Van Damme
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium,Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Daliya Kancheva
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium,Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium,Laboratory of Dendritic Cell Biology and Cancer Immunotherapy, VIB Center for Inflammation Research, Brussels, Belgium
| | - Jan Brughmans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium,Laboratory of Dendritic Cell Biology and Cancer Immunotherapy, VIB Center for Inflammation Research, Brussels, Belgium
| | - Isabelle Scheyltjens
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium,Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ali Talebi
- Laboratory of Lipid Metabolism and Cancer, KU Leuven, Leuven, Belgium
| | - Robin Maximilian Awad
- Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Yvon Elkrim
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium,Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Pauline M. R. Bardet
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium,Laboratory of Dendritic Cell Biology and Cancer Immunotherapy, VIB Center for Inflammation Research, Brussels, Belgium
| | - Sana M. Arnouk
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium,Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Cleo Goyvaerts
- Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Johan Swinnen
- Laboratory of Lipid Metabolism and Cancer, KU Leuven, Leuven, Belgium
| | - Frank Aboubakar Nana
- Division of Pneumology, CHU UCL Namur (Godinne Site), UCLouvain, Yvoir, Belgium,Division of Pneumology, Cliniques Universitaires St-Luc, UCLouvain, Brussels, Belgium
| | - Jo A. Van Ginderachter
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium,Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Damya Laoui
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium,Laboratory of Dendritic Cell Biology and Cancer Immunotherapy, VIB Center for Inflammation Research, Brussels, Belgium,*Correspondence: Máté Kiss, ; Damya Laoui,
| |
Collapse
|
4
|
Piñeiro-Salvador R, Vazquez-Garza E, Cruz-Cardenas JA, Licona-Cassani C, García-Rivas G, Moreno-Vásquez J, Alcorta-García MR, Lara-Diaz VJ, Brunck MEG. A cross-sectional study evidences regulations of leukocytes in the colostrum of mothers with obesity. BMC Med 2022; 20:388. [PMID: 36316769 PMCID: PMC9624055 DOI: 10.1186/s12916-022-02575-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Breastmilk is a dynamic fluid whose initial function is to provide the most adapted nutrition to the neonate. Additional attributes have been recently ascribed to breastmilk, with the evidence of a specific microbiota and the presence of various components of the immune system, such as cytokines and leukocytes. The composition of breastmilk varies through time, according to the health status of mother and child, and altogether contributes to the future health of the infant. Obesity is a rising condition worldwide that creates a state of systemic, chronic inflammation including leukocytosis. Here, we asked whether colostrum, the milk produced within the first 48 h post-partum, would contain a distinct leukocyte composition depending on the body mass index (BMI) of the mother. METHODS We collected peripheral blood and colostrum paired samples from obese (BMI > 30) and lean (BMI < 25) mothers within 48 h post-partum and applied a panel of 6 antibodies plus a viability marker to characterize 10 major leukocyte subpopulations using flow cytometry. RESULTS The size, internal complexity, and surface expression of CD45 and CD16 of multiple leukocyte subpopulations were selectively regulated between blood and colostrum irrespective of the study groups, suggesting a generalized cell-specific phenotype alteration. In obesity, the colostrum B lymphocyte compartment was significantly reduced, and CD16+ blood monocytes had an increased CD16 expression compared to the lean group. CONCLUSIONS This is the first characterization of major leukocyte subsets in colostrum of mothers suffering from obesity and the first report of colostrum leukocyte subpopulations in Latin America. We evidence various significant alterations of most leukocyte populations between blood and colostrum and demonstrate a decreased colostrum B lymphocyte fraction in obesity. This pioneering study is a stepping stone to further investigate active immunity in human breastmilk.
Collapse
Affiliation(s)
- Raúl Piñeiro-Salvador
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Tecnologico, 64849, Monterrey, Nuevo León, Mexico
| | - Eduardo Vazquez-Garza
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000 Poniente, Col. Doctores, 64710, Monterrey, Nuevo León, Mexico
| | - José Antonio Cruz-Cardenas
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Tecnologico, 64849, Monterrey, Nuevo León, Mexico
| | - Cuauhtémoc Licona-Cassani
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Tecnologico, 64849, Monterrey, Nuevo León, Mexico
- The Institute for Obesity Research, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Tecnologico, 64849, Monterrey, Nuevo León, Mexico
| | - Gerardo García-Rivas
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000 Poniente, Col. Doctores, 64710, Monterrey, Nuevo León, Mexico
- The Institute for Obesity Research, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Tecnologico, 64849, Monterrey, Nuevo León, Mexico
| | - Jorge Moreno-Vásquez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000 Poniente, Col. Doctores, 64710, Monterrey, Nuevo León, Mexico
| | - Mario René Alcorta-García
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000 Poniente, Col. Doctores, 64710, Monterrey, Nuevo León, Mexico
- Hospital Regional Materno-Infantil, SSNL, OPD, Ciudad Guadalupe, Nuevo León, Mexico
| | - Victor Javier Lara-Diaz
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000 Poniente, Col. Doctores, 64710, Monterrey, Nuevo León, Mexico
| | - Marion E G Brunck
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Tecnologico, 64849, Monterrey, Nuevo León, Mexico.
- The Institute for Obesity Research, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Tecnologico, 64849, Monterrey, Nuevo León, Mexico.
| |
Collapse
|
5
|
Wienke J, Veldkamp SR, Struijf EM, Yousef Yengej FA, van der Wal MM, van Royen-Kerkhof A, van Wijk F. T cell interaction with activated endothelial cells primes for tissue-residency. Front Immunol 2022; 13:827786. [PMID: 36172363 PMCID: PMC9510578 DOI: 10.3389/fimmu.2022.827786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Tissue-resident memory T cells (TRM) are suspected drivers of chronic inflammation, but their induction remains unclear. Since endothelial cells (EC) are obligate interaction partners for T cells trafficking into inflamed tissues, they may play a role in TRM development. Here, we used an in vitro co-culture system of human cytokine-activated EC and FACS-sorted T cells to study the effect of EC on T(RM) cell differentiation. T cell phenotypes were assessed by flow cytometry, including proliferation measured by CellTrace Violet dilution assay. Soluble mediators were analyzed by multiplex immunoassay. Co-culture of T cells with cytokine-activated, but not resting EC induced CD69 expression without activation (CD25, Ki67) or proliferation. The dynamic of CD69 expression induced by EC was distinct from that induced by TCR triggering, with rapid induction and stable expression over 7 days. CD69 induction by activated EC was higher in memory than naive T cells, and most pronounced in CD8+ effector memory T cells. Early CD69 induction was mostly mediated by IL-15, whereas later effects were also mediated by interactions with ICAM-1 and/or VCAM-1. CD69+ T cells displayed a phenotype associated with tissue-residency, with increased CD49a, CD103, CXCR6, PD-1 and CD57 expression, and decreased CD62L and S1PR1. EC-induced CD69+ T cells were poised for high production of pro-inflammatory cytokines and showed increased expression of T-helper 1 transcription factor T-bet. Our findings demonstrate that activated EC can induce functional specialization in T cells with sustained CD69 expression, increased cytokine response and a phenotypic profile reminiscent of TRM. Interaction with activated EC during transmigration into (inflamed) tissues thus contributes to TRM-residency priming.
Collapse
Affiliation(s)
- Judith Wienke
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Saskia R. Veldkamp
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Eva M. Struijf
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Fjodor A. Yousef Yengej
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - M. Marlot van der Wal
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Annet van Royen-Kerkhof
- Pediatric Rheumatology and Immunology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Femke van Wijk
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
- *Correspondence: Femke van Wijk,
| |
Collapse
|
6
|
Neutrophil Functional Heterogeneity and Implications for Viral Infections and Treatments. Cells 2022; 11:cells11081322. [PMID: 35456003 PMCID: PMC9025666 DOI: 10.3390/cells11081322] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 12/15/2022] Open
Abstract
Evidence suggests that neutrophils exert specialized effector functions during infection and inflammation, and that these cells can affect the duration, severity, and outcome of the infection. These functions are related to variations in phenotypes that have implications in immunoregulation during viral infections. Although the complexity of the heterogeneity of neutrophils is still in the process of being uncovered, evidence indicates that they display phenotypes and functions that can assist in viral clearance or augment and amplify the immunopathology of viruses. Therefore, deciphering and understanding neutrophil subsets and their polarization in viral infections is of importance. In this review, the different phenotypes of neutrophils and the roles they play in viral infections are discussed. We also examine the possible ways to target neutrophil subsets during viral infections as potential anti-viral treatments.
Collapse
|
7
|
Margraf A, Lowell CA, Zarbock A. Neutrophils in acute inflammation: current concepts and translational implications. Blood 2022; 139:2130-2144. [PMID: 34624098 PMCID: PMC9728535 DOI: 10.1182/blood.2021012295] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022] Open
Abstract
Modulation of neutrophil recruitment and function is crucial for targeting inflammatory cells to sites of infection to combat invading pathogens while, at the same time, limiting host tissue injury or autoimmunity. The underlying mechanisms regulating recruitment of neutrophils, 1 of the most abundant inflammatory cells, have gained increasing interest over the years. The previously described classical recruitment cascade of leukocytes has been extended to include capturing, rolling, adhesion, crawling, and transmigration, as well as a reverse-transmigration step that is crucial for balancing immune defense and control of remote organ endothelial leakage. Current developments in the field emphasize the importance of cellular interplay, tissue environmental cues, circadian rhythmicity, detection of neutrophil phenotypes, differential chemokine sensing, and contribution of distinct signaling components to receptor activation and integrin conformations. The use of therapeutics modulating neutrophil activation responses, as well as mutations causing dysfunctional neutrophil receptors and impaired signaling cascades, have been defined in translational animal models. Human correlates of such mutations result in increased susceptibility to infections or organ damage. This review focuses on current advances in the understanding of the regulation of neutrophil recruitment and functionality and translational implications of current discoveries in the field with a focus on acute inflammation and sepsis.
Collapse
Affiliation(s)
- Andreas Margraf
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
- William Harvey Research Institute, Bart's and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Clifford A. Lowell
- Department of Laboratory Medicine, University of California, San Francisco
| | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| |
Collapse
|
8
|
Ibrahim SH. Sinusoidal endotheliopathy in nonalcoholic steatohepatitis: therapeutic implications. Am J Physiol Gastrointest Liver Physiol 2021; 321:G67-G74. [PMID: 34037463 PMCID: PMC8321796 DOI: 10.1152/ajpgi.00009.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Liver sinusoidal endothelial cells (LSECs) are distinct subtypes of endothelial cells lining a low flow vascular bed at the interface of the liver parenchyma and the circulating immune cells and soluble factors. Emerging literature implicates LSEC in the pathogenesis and progression of nonalcoholic fatty liver disease (NAFLD). During the evolution of NAFLD, LSEC dysfunction ensues. LSECs undergo morphological and functional transformation known as "capillarization," as well as a pathogenic increase in surface adhesion molecules expression, referred to in this review as "endotheliopathy." LSECs govern the composition of hepatic immune cell populations in nonalcoholic steatohepatis (NASH) by mediating leukocyte subset adhesion through specific combinations of activated adhesion molecules and secreted chemokines. Moreover, extracellular vesicles released by hepatocyte under lipotoxic stress in NASH act as a catalyst for the inflammatory response and promote immune cell chemotaxis and adhesion. In the current review, we highlight leukocyte adhesion to LSEC as an initiating event in the sterile inflammatory response in NASH. We discuss preclinical studies targeting immune cells adhesion in NASH mouse models and potential therapeutic anti-inflammatory strategies for human NASH.
Collapse
Affiliation(s)
- Samar H. Ibrahim
- 1Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, Minnesota,2Division of Pediatric Gastroenterology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
9
|
Zhao Y, Ting KK, Coleman P, Qi Y, Chen J, Vadas M, Gamble J. The Tumour Vasculature as a Target to Modulate Leucocyte Trafficking. Cancers (Basel) 2021; 13:cancers13071724. [PMID: 33917287 PMCID: PMC8038724 DOI: 10.3390/cancers13071724] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/29/2021] [Accepted: 04/03/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Tumour blood vessels, characterised by abnormal morphology and function, create an immunosuppressive tumour microenvironment via restricting the appropriate leucocyte subsets trafficking. Strategies to trigger phenotypic alteration in tumour vascular system to resemble normal vascular system, named vascular normalisation, promote effective trafficking of leucocytes into tumours through enhancing the interactions between leucocytes and endothelial cells. This review specifically demonstrates how targeting tumour blood vessels modulates the critical steps of leucocyte trafficking. Furthermore, selective regulation of leucocyte subsets trafficking in tumours can be achieved by vasculature-targeting strategies, contributing to improved immunotherapy and thereby delayed tumour progression. Abstract The effectiveness of immunotherapy against solid tumours is dependent on the appropriate leucocyte subsets trafficking and accumulating in the tumour microenvironment (TME) with recruitment occurring at the endothelium. Such recruitment involves interactions between the leucocytes and the endothelial cells (ECs) of the vessel and occurs through a series of steps including leucocyte capture, their rolling, adhesion, and intraluminal crawling, and finally leucocyte transendothelial migration across the endothelium. The tumour vasculature can curb the trafficking of leucocytes through influencing each step of the leucocyte recruitment process, ultimately producing an immunoresistant microenvironment. Modulation of the tumour vasculature by strategies such as vascular normalisation have proven to be efficient in facilitating leucocyte trafficking into tumours and enhancing immunotherapy. In this review, we discuss the underlying mechanisms of abnormal tumour vasculature and its impact on leucocyte trafficking, and potential strategies for overcoming the tumour vascular abnormalities to boost immunotherapy via increasing leucocyte recruitment.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Correspondence: (Y.Z.); (J.G.); Tel.: +86-025-85811237 (Y.Z.); +61-02-95656225 (J.G.)
| | - Ka Ka Ting
- Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney 2050, Australia; (K.K.T.); (P.C.); (Y.Q.); (M.V.)
| | - Paul Coleman
- Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney 2050, Australia; (K.K.T.); (P.C.); (Y.Q.); (M.V.)
| | - Yanfei Qi
- Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney 2050, Australia; (K.K.T.); (P.C.); (Y.Q.); (M.V.)
| | - Jinbiao Chen
- Liver Injury and Cancer Program, Centenary Institute, The University of Sydney, Sydney 2050, Australia;
| | - Mathew Vadas
- Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney 2050, Australia; (K.K.T.); (P.C.); (Y.Q.); (M.V.)
| | - Jennifer Gamble
- Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney 2050, Australia; (K.K.T.); (P.C.); (Y.Q.); (M.V.)
- Correspondence: (Y.Z.); (J.G.); Tel.: +86-025-85811237 (Y.Z.); +61-02-95656225 (J.G.)
| |
Collapse
|
10
|
Preissner KT, Fischer S, Deindl E. Extracellular RNA as a Versatile DAMP and Alarm Signal That Influences Leukocyte Recruitment in Inflammation and Infection. Front Cell Dev Biol 2020; 8:619221. [PMID: 33392206 PMCID: PMC7775424 DOI: 10.3389/fcell.2020.619221] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Upon vascular injury, tissue damage, ischemia, or microbial infection, intracellular material such as nucleic acids and histones is liberated and comes into contact with the vessel wall and circulating blood cells. Such "Danger-associated molecular patterns" (DAMPs) may thus have an enduring influence on the inflammatory defense process that involves leukocyte recruitment and wound healing reactions. While different species of extracellular RNA (exRNA), including microRNAs and long non-coding RNAs, have been implicated to influence inflammatory processes at different levels, recent in vitro and in vivo work has demonstrated a major impact of ribosomal exRNA as a prominent DAMP on various steps of leukocyte recruitment within the innate immune response. This includes the induction of vascular hyper-permeability and vasogenic edema by exRNA via the activation of the "vascular endothelial growth factor" (VEGF) receptor-2 system, as well as the recruitment of leukocytes to the inflamed endothelium, the M1-type polarization of inflammatory macrophages, or the role of exRNA as a pro-thrombotic cofactor to promote thrombosis. Beyond sterile inflammation, exRNA also augments the docking of bacteria to host cells and the subsequent microbial invasion. Moreover, upon vessel occlusion and ischemia, the shear stress-induced release of exRNA initiates arteriogenesis (i.e., formation of natural vessel bypasses) in a multistep process that resembles leukocyte recruitment. Although exRNA can be counteracted for by natural circulating RNase1, under the conditions mentioned, only the administration of exogenous, thermostable, non-toxic RNase1 provides an effective and safe therapeutic regimen for treating the damaging activities of exRNA. It remains to be investigated whether exRNA may also influence viral infections (including COVID-19), e.g., by supporting the interaction of host cells with viral particles and their subsequent invasion. In fact, as a consequence of the viral infection cycle, massive amounts of exRNA are liberated, which can provoke further tissue damage and enhance virus dissemination. Whether the application of RNase1 in this scenario may help to limit the extent of viral infections like COVID-19 and impact on leukocyte recruitment and emigration steps in immune defense in order to limit the extent of associated cardiovascular diseases remains to be studied.
Collapse
Affiliation(s)
- Klaus T. Preissner
- Department of Biochemistry, Medical School, Justus Liebig University Giessen, Giessen, Germany
- Kerckhoff-Heart-Research-Institute, Department of Cardiology, Medical School, Justus Liebig University Giessen, Giessen, Germany
| | - Silvia Fischer
- Department of Biochemistry, Medical School, Justus Liebig University Giessen, Giessen, Germany
| | - Elisabeth Deindl
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, LMU Munich, Munich, Germany
| |
Collapse
|
11
|
De Bondt M, Hellings N, Opdenakker G, Struyf S. Neutrophils: Underestimated Players in the Pathogenesis of Multiple Sclerosis (MS). Int J Mol Sci 2020; 21:E4558. [PMID: 32604901 PMCID: PMC7349048 DOI: 10.3390/ijms21124558] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 01/06/2023] Open
Abstract
Neutrophils are the most abundant circulating and first-responding innate myeloid cells and have so far been underestimated in the context of multiple sclerosis (MS). MS is the most frequent, immune-mediated, inflammatory disease of the central nervous system. MS is treatable but not curable and its cause(s) and pathogenesis remain elusive. The involvement of neutrophils in MS pathogenesis has been suggested by the use of preclinical animal disease models, as well as on the basis of patient sample analysis. In this review, we provide an overview of the possible mechanisms and functions by which neutrophils may contribute to the development and pathology of MS. Neutrophils display a broad variety of effector functions enabling disease pathogenesis, including (1) the release of inflammatory mediators and enzymes, such as interleukin-1β, myeloperoxidase and various proteinases, (2) destruction and phagocytosis of myelin (as debris), (3) release of neutrophil extracellular traps, (4) production of reactive oxygen species, (5) breakdown of the blood-brain barrier and (6) generation and presentation of autoantigens. An important question relates to the issue of whether neutrophils exhibit a predominantly proinflammatory function or are also implicated in the resolution of chronic inflammatory responses in MS.
Collapse
Affiliation(s)
- Mirre De Bondt
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Herestraat 49—Box 1042, 3000 Leuven, Belgium;
- Neuro Immune Connections & Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium;
| | - Niels Hellings
- Neuro Immune Connections & Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium;
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Herestraat 49—Box 1044, 3000 Leuven, Belgium;
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Herestraat 49—Box 1042, 3000 Leuven, Belgium;
| |
Collapse
|
12
|
Owen-Woods C, Joulia R, Barkaway A, Rolas L, Ma B, Nottebaum AF, Arkill KP, Stein M, Girbl T, Golding M, Bates DO, Vestweber D, Voisin MB, Nourshargh S. Local microvascular leakage promotes trafficking of activated neutrophils to remote organs. J Clin Invest 2020; 130:2301-2318. [PMID: 31971917 PMCID: PMC7190919 DOI: 10.1172/jci133661] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/14/2020] [Indexed: 01/11/2023] Open
Abstract
Increased microvascular permeability to plasma proteins and neutrophil emigration are hallmarks of innate immunity and key features of numerous inflammatory disorders. Although neutrophils can promote microvascular leakage, the impact of vascular permeability on neutrophil trafficking is unknown. Here, through the application of confocal intravital microscopy, we report that vascular permeability-enhancing stimuli caused a significant frequency of neutrophil reverse transendothelial cell migration (rTEM). Furthermore, mice with a selective defect in microvascular permeability enhancement (VEC-Y685F-ki) showed reduced incidence of neutrophil rTEM. Mechanistically, elevated vascular leakage promoted movement of interstitial chemokines into the bloodstream, a response that supported abluminal-to-luminal neutrophil TEM. Through development of an in vivo cell labeling method we provide direct evidence for the systemic dissemination of rTEM neutrophils, and showed them to exhibit an activated phenotype and be capable of trafficking to the lungs where their presence was aligned with regions of vascular injury. Collectively, we demonstrate that increased microvascular leakage reverses the localization of directional cues across venular walls, thus causing neutrophils engaged in diapedesis to reenter the systemic circulation. This cascade of events offers a mechanism to explain how local tissue inflammation and vascular permeability can induce downstream pathological effects in remote organs, most notably in the lungs.
Collapse
Affiliation(s)
- Charlotte Owen-Woods
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Régis Joulia
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Anna Barkaway
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Loïc Rolas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Bin Ma
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Astrid Fee Nottebaum
- Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Kenton P. Arkill
- Division of Cancer and Stem Cells, School of Medicine, Queen’s Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Monja Stein
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Tamara Girbl
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Matthew Golding
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - David O. Bates
- Division of Cancer and Stem Cells, School of Medicine, Queen’s Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Dietmar Vestweber
- Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Mathieu-Benoit Voisin
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Sussan Nourshargh
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
13
|
Nawaz Tipu H, Raza R, Jaffar S, Khan A, Anwar MZ, Ahmad W, Raza SI. β2 Integrin Gene (ITGB2) mutation spectra in Pakistani families with leukocyte adhesion deficiency type 1 (LAD1). Immunobiology 2020; 225:151938. [PMID: 32279896 DOI: 10.1016/j.imbio.2020.151938] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 10/24/2022]
Abstract
Leukocyte adhesion deficiency I (LADI) is an autosomal recessive type of primary immunodeficiency characterized by occurrence of repeated bacterial infections, impaired pus formation and wound healing. Genetic variations in the β-2 integrin subunit encoding gene ITGB2 have been implicated in causing the disorder. In the present study, we have investigated twelve patients presenting LAD1 features. After collecting clinical and family history, flow cytometry was used to determine levels of CD18 in the patients. Clinical history revealed that umbilical cord separation occurred mostly after 19 days in the patients. Recurrent skin infections were found in seven patients. Eight patients had at least one elder sibling who died due to repeated infections. All patients had marked neutrophilia with only 0.77% of neutrophils expressing CD18. Total 12 patients suffering from LAD1 were Sanger sequenced for ITGB2 gene. Five variants, including a novel p.(Cys286Phe) and four previously reported [p.(Gly273Arg), p.(Asp128Tyr), p.(Cys62*), IVS7 + 1G > A] were identified in 8 cases, while no pathogenic variant was observed in remaining four cases. This study represents the first comprehensive clinical and genetic characterization of LAD1 in Pakistani population. This will facilitate diagnosis and genetic counselling of patients with immunodeficiency disorders in Pakistani population.
Collapse
Affiliation(s)
- Hamid Nawaz Tipu
- Immunology Department, Armed Forces Institute of Pathology, Rawalpindi, Pakistan.
| | - Rubab Raza
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Sadaf Jaffar
- Department of Biochemistry, Islamabad Medical & Dental College, Pakistan.
| | - Alamgir Khan
- Department of Physiology, Army Medical & Dental College, National University of Medical Sciences, Islamabad, Pakistan.
| | - Muhammad Zeeshan Anwar
- CMH Kharian Medical College, National University of Medical Sciences, Islamabad, Pakistan.
| | - Wasim Ahmad
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Syed Irfan Raza
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan; Department of Biochemistry CMH, Kharian Medical College, Pakistan.
| |
Collapse
|
14
|
Biomimetic cell-cell adhesion capillary electrophoresis for studying Gu-4 antagonistic interaction between cell membrane receptor and ligands. Talanta 2020; 207:120259. [DOI: 10.1016/j.talanta.2019.120259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 08/09/2019] [Accepted: 08/14/2019] [Indexed: 01/19/2023]
|
15
|
Voisin M, Nourshargh S. Neutrophil trafficking to lymphoid tissues: physiological and pathological implications. J Pathol 2019; 247:662-671. [PMID: 30584795 PMCID: PMC6492258 DOI: 10.1002/path.5227] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 12/20/2018] [Accepted: 12/23/2018] [Indexed: 12/11/2022]
Abstract
Recent advances have provided evidence for the involvement of neutrophils in both innate and adaptive immunity, robustly challenging the old dogma that neutrophils are short-lived prototypical innate immune cells solely involved in acute responses to microbes and exerting collateral tissue damage. There is now ample evidence showing that neutrophils can migrate into different compartments of the lymphoid system where they contribute to the orchestration of the activation and/or suppression of lymphocyte effector functions in homeostasis and during chronic inflammation, such as autoimmune disorders and cancer. In support of this notion, neutrophils can generate a wide range of cytokines and other mediators capable of regulating the survival, proliferation and functions of both T and B cells. In addition, neutrophils can directly engage with lymphocytes and promote antigen presentation. Furthermore, there is emerging evidence of the existence of distinct and diverse neutrophil phenotypes with immunomodulatory functions that characterise different pathological conditions, including chronic and autoimmune inflammatory conditions. The aim of this review is to discuss the mechanisms implicated in neutrophil trafficking into the lymphoid system and to provide an overview of the immuno-regulatory functions of neutrophils in health and disease in the context of adaptive immunity. Copyright © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Mathieu‐Benoit Voisin
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of LondonLondonUK
| | - Sussan Nourshargh
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of LondonLondonUK
| |
Collapse
|
16
|
Myosin 1f is specifically required for neutrophil migration in 3D environments during acute inflammation. Blood 2018; 131:1887-1898. [PMID: 29487067 DOI: 10.1182/blood-2017-10-811851] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 02/21/2018] [Indexed: 01/13/2023] Open
Abstract
Neutrophil extravasation and interstitial migration are important steps during the recruitment of neutrophils to sites of inflammation. In the present study, we addressed the functional importance of the unconventional class I myosin 1f (Myo1f) for neutrophil trafficking during acute inflammation. In contrast to leukocyte rolling and adhesion, the genetic absence of Myo1f severely compromised neutrophil extravasation into the inflamed mouse cremaster tissue when compared with Myo1f+/+ mice as studied by intravital microscopy. Similar results were obtained in experimental models of acute peritonitis and acute lung injury. In contrast to 2-dimensional migration, which occurred independently of Myo1f, Myo1f was indispensable for neutrophil migration in 3-dimensional (3D) environments, that is, transmigration and migration in collagen networks as it regulated squeezing and dynamic deformation of the neutrophil nucleus during migration through physical barriers. Thus, we provide evidence for an important role of Myo1f in neutrophil trafficking during inflammation by specifically regulating neutrophil extravasation and migration in 3D environments.
Collapse
|
17
|
Three-dimensional forces exerted by leukocytes and vascular endothelial cells dynamically facilitate diapedesis. Proc Natl Acad Sci U S A 2017; 115:133-138. [PMID: 29255056 DOI: 10.1073/pnas.1717489115] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Leukocyte transmigration across vessel walls is a critical step in the innate immune response. Upon their activation and firm adhesion to vascular endothelial cells (VECs), leukocytes preferentially extravasate across junctional gaps in the endothelial monolayer (paracellular diapedesis). It has been hypothesized that VECs facilitate paracellular diapedesis by opening their cell-cell junctions in response to the presence of an adhering leukocyte. However, it is unclear how leukocytes interact mechanically with VECs to open the VEC junctions and migrate across the endothelium. In this study, we measured the spatial and temporal evolution of the 3D traction stresses generated by the leukocytes and VECs to elucidate the sequence of mechanical events involved in paracellular diapedesis. Our measurements suggest that the contractile stresses exerted by the leukocytes and the VECs can separately perturb the junctional tensions of VECs to result in the opening of gaps before the initiation of leukocyte transmigration. Decoupling the stresses exerted by the transmigrating leukocytes and the VECs reveals that the leukocytes actively contract the VECs to open a junctional gap and then push themselves across the gap by generating strong stresses that push into the matrix. In addition, we found that diapedesis is facilitated when the tension fluctuations in the VEC monolayer were increased by proinflammatory thrombin treatment. Our findings demonstrate that diapedesis can be mechanically regulated by the transmigrating leukocytes and by proinflammatory signals that increase VEC contractility.
Collapse
|
18
|
Lee WB, Yan JJ, Kang JS, Chung S, Kim LK. Mycobacterial cord factor enhances migration of neutrophil-like HL-60 cells by prolonging AKT phosphorylation. Microbiol Immunol 2017; 61:523-530. [PMID: 28976590 DOI: 10.1111/1348-0421.12544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/27/2017] [Accepted: 10/01/2017] [Indexed: 11/30/2022]
Abstract
Trehalose 6,6'-dimycolate (TDM), or cord factor, is a crucial stimulus of immune responses during Mycobacterium tuberculosis infection. Although TDM has immuno-stimulatory properties, including adjuvant activity and the ability to induce granuloma formation, the mechanisms underlying these remain unknown. We hypothesized that TDM stimulates transendothelial migration of neutrophils, which are the first immune cells to infiltrate the tissue upon infection. In this study, it was shown that TDM enhances N-formylmethionyl-leucyl-phenylalanine (fMLP)-induced chemotaxis and transendothelial movement by prolonging AKT phosphorylation in human neutrophils. TDM induced expression of macrophage-inducible C-type lectin, a receptor for TDM, and induced secretion of pro-inflammatory cytokines and chemokines in differentiated HL-60 cells. In 2- and 3-D neutrophil migration assays, TDM-stimulated neutrophils showed increased fMLP-induced chemotaxis and transendothelial migration. Interestingly, following fMLP stimulation of TDM-activated neutrophils, AKT, a crucial kinase for neutrophil polarization and chemotaxis, showed prolonged phosphorylation at serine 473. Taken together, these data suggest that TDM modulates transendothelial migration of neutrophils upon mycobacterial infection through prolonged AKT phosphorylation. AKT may therefore be a promising therapeutic target for enhancing immune responses to mycobacterial infection.
Collapse
Affiliation(s)
- Wook-Bin Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Ji-Jing Yan
- Biomedical Research Institute, Seoul National University Hospital, Seoul 110-744, Korea
| | - Ji-Seon Kang
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.,Severance Biomedical Science Institute and BK21 PLUS Project to Medical Sciences, Severance Institute for Vascular and Metabolic Research, Gangnam Severance Hospital Yonsei University College of Medicine, Seoul 06230, Korea
| | - Seok Chung
- School of Mechanical Engineering, Korea University, Seoul 02841, Korea
| | - Lark Kyun Kim
- Severance Biomedical Science Institute and BK21 PLUS Project to Medical Sciences, Severance Institute for Vascular and Metabolic Research, Gangnam Severance Hospital Yonsei University College of Medicine, Seoul 06230, Korea
| |
Collapse
|
19
|
Al-Soudi A, Kaaij MH, Tas SW. Endothelial cells: From innocent bystanders to active participants in immune responses. Autoimmun Rev 2017; 16:951-962. [PMID: 28698091 DOI: 10.1016/j.autrev.2017.07.008] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 06/05/2017] [Indexed: 02/07/2023]
Abstract
The endothelium is crucially important for the delivery of oxygen and nutrients throughout the body under homeostatic conditions. However, it also contributes to pathology, including the initiation and perpetuation of inflammation. Understanding the function of endothelial cells (ECs) in inflammatory diseases and molecular mechanisms involved may lead to novel approaches to dampen inflammation and restore homeostasis. In this article, we discuss the various functions of ECs in inflammation with a focus on pathological angiogenesis, attraction of immune cells, antigen presentation, immunoregulatory properties and endothelial-to-mesenchymal transition (EndMT). We also review the current literature on approaches to target these processes in ECs to modulate immune responses and advance anti-inflammatory therapies.
Collapse
Affiliation(s)
- A Al-Soudi
- Amsterdam Rheumatology and Immunology Center, Department of Clinical Immunology & Rheumatology and Laboratory for Experimental Immunology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
| | - M H Kaaij
- Amsterdam Rheumatology and Immunology Center, Department of Clinical Immunology & Rheumatology and Laboratory for Experimental Immunology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
| | - S W Tas
- Amsterdam Rheumatology and Immunology Center, Department of Clinical Immunology & Rheumatology and Laboratory for Experimental Immunology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
20
|
Teimourian S, De Boer M, Roos D, Isaian A, Moghanloo E, Lashkary S, Hassani B, Mollanoori H, Babaei V, Azarnezhad A. Mutation characterization and heterodimer analysis of patients with leukocyte adhesion deficiency: Including one novel mutation. Immunol Lett 2017; 187:7-13. [PMID: 28445705 DOI: 10.1016/j.imlet.2017.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 04/12/2017] [Accepted: 04/19/2017] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND AIM Leukocyte adhesion deficiency type 1 (LAD-I) is a rare, autosomal recessive disorder of neutrophil migration, characterized by severe, recurrent bacterial infections, inadequate pus formation and impaired wound healing. The ITGB2 gene encodes the β2 integrin subunit (CD18) of the leukocyte adhesion cell molecules, and mutations in this gene cause LAD-I. The aim of the current study was to investigate the mutations in patients diagnosed with LAD-I and functional studies of the impact of two previously reported and a novel mutation on the expression of the CD18/CD11a heterodimer. MATERIALS AND METHODS Blood samples were taken from three patients who had signed the consent form. Genomic DNA was extracted and ITGB2 exons and flanking intronic regions were amplified by polymerase chain reaction. Mutation screening was performed after Sanger sequencing of PCR products. For functional studies, COS-7 cells were co-transfected with an expression vector containing cDNA encoding mutant CD18 proteins and normal CD11a. Flow cytometry analysis of CD18/CD11a expression was assessed by dimer-specific IB4 monoclonal antibody. RESULTS Two previously reported mutations and one novel mutation,p. Cys562Tyr, were found. All mutations reduced CD18/CD11 heterodimer expression. CONCLUSION Our strategy recognized the p.Cys562Tyr mutation as a pathogenic alteration that does not support CD18 heterodimer formation. Therefore, it can be put into a panel of carrier and prenatal diagnosis programs.
Collapse
Affiliation(s)
- Shahram Teimourian
- Department of Medical Genetics, Iran University of Medical Sciences IUMS, Tehran, Iran; Pediatric Infectious Diseases Research Center, Department of Infectious Diseases, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Martin De Boer
- Sanquin Research, and Karl Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Dirk Roos
- Sanquin Research, and Karl Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Anna Isaian
- Department of Pathology, Tehran University of Medical Sciences (TUMS). Tehran, Iran
| | - Ehsan Moghanloo
- Pediatric Infectious Diseases Research Center, Department of Infectious Diseases, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Sharhzad Lashkary
- Department of Medical Genetics, Iran University of Medical Sciences IUMS, Tehran, Iran
| | - Bita Hassani
- Department of Medical Genetics, Iran University of Medical Sciences IUMS, Tehran, Iran
| | - Hasan Mollanoori
- Department of Medical Genetics, Iran University of Medical Sciences IUMS, Tehran, Iran
| | - Vahid Babaei
- Department of Medical Genetics, Iran University of Medical Sciences IUMS, Tehran, Iran
| | - Asaad Azarnezhad
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Kurdistan, Iran
| |
Collapse
|
21
|
The Extracellular Matrix, Basement Membrane, and Glycocalyx. Protein Sci 2016. [DOI: 10.1201/9781315374307-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
Fu H, Ward EJ, Marelli-Berg FM. Mechanisms of T cell organotropism. Cell Mol Life Sci 2016; 73:3009-33. [PMID: 27038487 PMCID: PMC4951510 DOI: 10.1007/s00018-016-2211-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 02/06/2023]
Abstract
Protective immunity relies upon T cell differentiation and subsequent migration to target tissues. Similarly, immune homeostasis requires the localization of regulatory T cells (Tregs) to the sites where immunity takes place. While naïve T lymphocytes recirculate predominantly in secondary lymphoid tissue, primed T cells and activated Tregs must traffic to the antigen rich non-lymphoid tissue to exert effector and regulatory responses, respectively. Following priming in draining lymph nodes, T cells acquire the 'homing receptors' to facilitate their access to specific tissues and organs. An additional level of topographic specificity is provided by T cells receptor recognition of antigen displayed by the endothelium. Furthermore, co-stimulatory signals (such as those induced by CD28) have been shown not only to regulate T cell activation and differentiation, but also to orchestrate the anatomy of the ensuing T cell response. We here review the molecular mechanisms supporting trafficking of both effector and regulatory T cells to specific antigen-rich tissues.
Collapse
Affiliation(s)
- Hongmei Fu
- William Harvey Research Institute, Heart Centre, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Eleanor Jayne Ward
- William Harvey Research Institute, Heart Centre, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Federica M Marelli-Berg
- William Harvey Research Institute, Heart Centre, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
23
|
Li JL, Lim CH, Tay FW, Goh CC, Devi S, Malleret B, Lee B, Bakocevic N, Chong SZ, Evrard M, Tanizaki H, Lim HY, Russell B, Renia L, Zolezzi F, Poidinger M, Angeli V, St John AL, Harris JE, Tey HL, Tan SM, Kabashima K, Weninger W, Larbi A, Ng LG. Neutrophils Self-Regulate Immune Complex-Mediated Cutaneous Inflammation through CXCL2. J Invest Dermatol 2016; 136:416-424. [PMID: 26802238 DOI: 10.1038/jid.2015.410] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/02/2015] [Accepted: 10/05/2015] [Indexed: 01/22/2023]
Abstract
Deposition of immune complexes (ICs) in tissues triggers acute inflammatory pathology characterized by massive neutrophil influx leading to edema and hemorrhage, and is especially associated with vasculitis of the skin, but the mechanisms that regulate this type III hypersensitivity process remain poorly understood. Here, using a combination of multiphoton intravital microscopy and genomic approaches, we re-examined the cutaneous reverse passive Arthus reaction and observed that IC-activated neutrophils underwent transmigration, triggered further IC formation, and transported these ICs into the interstitium, whereas neutrophil depletion drastically reduced IC formation and ameliorated vascular leakage in vivo. Thereafter, we show that these neutrophils expressed high levels of CXCL2, which further amplified neutrophil recruitment and activation in an autocrine and/or paracrine manner. Notably, CXCL1 expression was restricted to tissue-resident cell types, but IC-activated neutrophils may also indirectly, via soluble factors, modulate macrophage CXCL1 expression. Consistent with their distinct cellular origins and localization, only neutralization of CXCL2 but not CXCL1 in the interstitium effectively reduced neutrophil recruitment. In summary, our study establishes that neutrophils are able to self-regulate their own recruitment and responses during IC-mediated inflammation through a CXCL2-driven feed forward loop.
Collapse
Affiliation(s)
- Jackson LiangYao Li
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore
| | - Chun Hwee Lim
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore
| | - Fen Wei Tay
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore
| | - Chi Ching Goh
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Sapna Devi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Benoit Malleret
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore; Department of Microbiology, Yoon Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Bernett Lee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Nadja Bakocevic
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Shu Zhen Chong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Maximilien Evrard
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Hideaki Tanizaki
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hwee Ying Lim
- Department of Microbiology, Yoon Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Bruce Russell
- Department of Microbiology, Yoon Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Laurent Renia
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Francesca Zolezzi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Michael Poidinger
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Veronique Angeli
- Department of Microbiology, Yoon Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ashley L St John
- Program in Emerging Infectious Diseases, Duke-National University of Singapore, Singapore
| | - John E Harris
- Division of Dermatology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | - Suet Mien Tan
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Wolfgang Weninger
- Centenary Institute for Cancer Medicine and Cell Biology, Newtown, New South Wales, Australia; Discipline of Dermatology, University of Sydney, Sydney, New South Wales, Australia; Department of Dermatology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Lai Guan Ng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore.
| |
Collapse
|
24
|
Huang MT, Lin BR, Liu WL, Lu CW, Chiang BL. Lymph node trafficking of regulatory T cells is prerequisite for immune suppression. J Leukoc Biol 2016; 99:561-568. [PMID: 26543091 DOI: 10.1189/jlb.1a0715-296r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/19/2015] [Indexed: 12/13/2022] Open
Abstract
Regulatory T cells have a crucial role in health and disease because of their immune regulation function. However, the anatomic sites where regulatory T cells exert optimal immune regulation are open to debate. In our current study with the use of a shear-stress flow assay, we found that regulatory T cells exhibited significantly decreased adhesion to either activated endothelial monolayer or intercellular adhesion molecule 1 or E-selectin-coated surfaces compared with activated effector T cells. The less transmigration capacity of the regulatory T cells prompted our speculation of preferential lymph node localization for the regulatory T cells that endowed these cells with immune regulation function in the most efficient manner. To test this hypothesis, the role of lymph node localization in regulatory T cell-mediated immune suppression was evaluated with a footpad inflammation model. We found that adoptively transferred regulatory T cells inhibited the development of footpad inflammation. In addition, although blockage of CCR7 or CD62L had no effect on the immune suppressive function of the regulatory T cells per se, pretreatment of the regulatory T cells with either CCR7 or CD62L blocking antibodies prevented their recruitment into draining lymph nodes and concomitantly abrogated the immune suppressive effects of adoptively transferred regulatory T cells during footpad inflammation. Our data demonstrate the crucial role of lymph node localization in regulatory T cell-mediated immune suppression and suggest a probable hierarchy in the anatomic sites for optimal immune regulation. Elucidating the relationships between the transmigration characteristics of the regulatory T cells and their immune regulation function will provide insightful information for regulatory T cell-based cell therapy.
Collapse
Affiliation(s)
- Miao-Tzu Huang
- Departments of *Medical Research, Pediatrics, Graduate Institute of Clinical Medicine, School of Medicine, and Department of General Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Been-Ren Lin
- Departments of *Medical Research, Pediatrics, Graduate Institute of Clinical Medicine, School of Medicine, and Department of General Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Wei-Liang Liu
- Departments of *Medical Research, Pediatrics, Graduate Institute of Clinical Medicine, School of Medicine, and Department of General Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Chun-Wei Lu
- Departments of *Medical Research, Pediatrics, Graduate Institute of Clinical Medicine, School of Medicine, and Department of General Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Bor-Luen Chiang
- Departments of *Medical Research, Pediatrics, Graduate Institute of Clinical Medicine, School of Medicine, and Department of General Surgery, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
25
|
Carman CV, Martinelli R. T Lymphocyte-Endothelial Interactions: Emerging Understanding of Trafficking and Antigen-Specific Immunity. Front Immunol 2015; 6:603. [PMID: 26635815 PMCID: PMC4657048 DOI: 10.3389/fimmu.2015.00603] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/10/2015] [Indexed: 12/26/2022] Open
Abstract
Antigen-specific immunity requires regulated trafficking of T cells in and out of diverse tissues in order to orchestrate lymphocyte development, immune surveillance, responses, and memory. The endothelium serves as a unique barrier, as well as a sentinel, between the blood and the tissues, and as such it plays an essential locally tuned role in regulating T cell migration and information exchange. While it is well established that chemoattractants and adhesion molecules are major determinants of T cell trafficking, emerging studies have now enumerated a large number of molecular players as well as a range of discrete cellular remodeling activities (e.g., transmigratory cups and invadosome-like protrusions) that participate in directed migration and pathfinding by T cells. In addition to providing trafficking cues, intimate cell-cell interaction between lymphocytes and endothelial cells provide instruction to T cells that influence their activation and differentiation states. Perhaps the most intriguing and underappreciated of these "sentinel" roles is the ability of the endothelium to act as a non-hematopoietic "semiprofessional" antigen-presenting cell. Close contacts between circulating T cells and antigen-presenting endothelium may play unique non-redundant roles in shaping adaptive immune responses within the periphery. A better understanding of the mechanisms directing T cell trafficking and the antigen-presenting role of the endothelium may not only increase our knowledge of the adaptive immune response but also empower the utility of emerging immunomodulatory therapeutics.
Collapse
Affiliation(s)
- Christopher V Carman
- Center for Vascular Biology Research, Department of Medicine and Emergency Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| | - Roberta Martinelli
- Center for Vascular Biology Research, Department of Medicine and Emergency Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| |
Collapse
|
26
|
Jeon YJ, Kim J, Cho JH, Chung HM, Chae JI. Comparative Analysis of Human Mesenchymal Stem Cells Derived From Bone Marrow, Placenta, and Adipose Tissue as Sources of Cell Therapy. J Cell Biochem 2015; 117:1112-25. [PMID: 26448537 DOI: 10.1002/jcb.25395] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/06/2015] [Indexed: 12/21/2022]
Abstract
Various source-derived mesenchymal stem cells (MSCs) with multipotent capabilities were considered for cell therapeutics of incurable diseases. The applicability of MSCs depends on the cellular source and on their different in vivo functions, despite having similar phenotypic and cytological characteristics. We characterized MSCs from different sources, including human bone marrow (BM), placenta (PL), and adipose tissue (AT), in terms of the phenotype, surface antigen expression, differentiation ability, proteome reference map, and blood flow recovery in a hindlimb ischemic disease model. The MSCs exhibit different differentiation potentials depending on the cellular source despite having similar phenotypic and surface antigen expression. We identified approximately 90 differentially regulated proteins. Most up- or down-regulated proteins show cytoskeletal or oxidative stress, peroxiredoxin, and apoptosis roles according to their functional involvement. In addition, the PL-MSCs retained a higher therapeutic efficacy than the BM- and AT-MSCs in the hindlimb ischemic disease model. In summary, we examined differentially expressed key regulatory factors for MSCs that were obtained from several cellular sources and demonstrated their differentially expressed proteome profiles. Our results indicate that primitive PL-MSCs have biological advantages relative to those from other sources, making PL-MSCs a useful model for clinical applications of cell therapy.
Collapse
Affiliation(s)
- Young-Joo Jeon
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 plus, Chonbuk National University, Jeonju, 561-756, Republic of Korea
| | - Jumi Kim
- Samsung Advanced Institute of Technology, Well Aging Research Center, Suwon, Republic of Korea
| | - Jin Hyoung Cho
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 plus, Chonbuk National University, Jeonju, 561-756, Republic of Korea
| | - Hyung-Min Chung
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Jung-Il Chae
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 plus, Chonbuk National University, Jeonju, 561-756, Republic of Korea
| |
Collapse
|
27
|
Stuqui B, de Paula-Silva M, Carlos CP, Ullah A, Arni RK, Gil CD, Oliani SM. Ac2-26 Mimetic Peptide of Annexin A1 Inhibits Local and Systemic Inflammatory Processes Induced by Bothrops moojeni Venom and the Lys-49 Phospholipase A2 in a Rat Model. PLoS One 2015; 10:e0130803. [PMID: 26147724 PMCID: PMC4492549 DOI: 10.1371/journal.pone.0130803] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 05/25/2015] [Indexed: 11/19/2022] Open
Abstract
Annexin A1 (AnxA1) is an endogenous glucocorticoid regulated protein that modulates anti-inflammatory process and its therapeutic potential has recently been recognized in a range of systemic inflammatory disorders. The effect of the N-terminal peptide Ac2-26 of AnxA1 on the toxic activities of Bothrops moojeni crude venom (CV) and its myotoxin II (MjTX-II) were evaluated using a peritonitis rat model. Peritonitis was induced by the intraperitoneal injection of either CV or MjTX-II, a Lys-49 phospholipase A2. Fifteen minutes after the injection, the rats were treated with either Ac2-26 or PBS. Four hours later, the CV and MjTX-II-induced peritonitis were characterized by neutrophilia (in the peritoneal exudate, blood and mesentery) and increased number of mesenteric degranulated mast cells and macrophages. At 24 hours post-injection, the local inflammatory response was attenuated in the CV-induced peritonitis while the MjTX-II group exhibited neutrophilia (peritoneal exudates and blood). Ac2-26 treatment prevented the influx of neutrophils in MjTX-II-induced peritonitis and diminished the proportion of mesenteric degranulated mast cells and macrophages in CV-induced peritonitis. Additionally, CV and MjTX-II promoted increased levels of IL-1β and IL-6 in the peritoneal exudates which were significantly reduced after Ac2-26 treatment. At 4 and 24 hours, the endogenous expression of AnxA1 was upregulated in the mesenteric neutrophils (CV and MjTX-II groups) and mast cells (CV group). In the kidneys, CV and MjTX-II administrations were associated with an increased number of macrophages and morphological alterations in the juxtamedullary nephrons in proximal and distal tubules. Ac2-26 promoted significant recovery of the juxtamedullary structures, decreased the number of macrophages and diminished the AnxA1 in epithelial cells from distal tubules and renal capsules. Our results show that Ac2-26 treatment significantly attenuates local and systemic inflammatory processes and indicate this peptide as a potential target for the development of new therapeutic strategies for the snakebite envenomation treatment.
Collapse
Affiliation(s)
- Bruna Stuqui
- Laboratory of Immunomorphology, Department of Biology, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Marina de Paula-Silva
- Laboratory of Immunomorphology, Department of Biology, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Carla Patrícia Carlos
- Laboratory of Immunomorphology, Department of Biology, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Anwar Ullah
- Multiuser Center for Biomolecular Innovation, Department of Physics, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Raghuvir Krishnaswamy Arni
- Multiuser Center for Biomolecular Innovation, Department of Physics, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Cristiane Damas Gil
- Department of Morphology and Genetics, São Paulo Federal University (UNIFESP), São Paulo, Brazil
| | - Sonia Maria Oliani
- Laboratory of Immunomorphology, Department of Biology, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
28
|
Mancilla-Herrera I, Alvarado-Moreno JA, Cérbulo-Vázquez A, Prieto-Chávez JL, Ferat-Osorio E, López-Macías C, Estrada-Parra S, Isibasi A, Arriaga-Pizano L. Activated endothelial cells limit inflammatory response, but increase chemoattractant potential and bacterial clearance by human monocytes. Cell Biol Int 2015; 39:721-32. [PMID: 25598193 DOI: 10.1002/cbin.10440] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 01/10/2015] [Indexed: 12/13/2022]
Abstract
Inflammation is the normal immune response of vascularized tissues to damage and bacterial products, for which leukocyte transendothelial migration (TEM) is critical. The effects of cell-to-cell contact seen in both leukocyte and endothelial cells include cytoskeleton rearrangement, and dynamic expression of adhesion molecules and metalloproteinases. TEM induces expression of anti-apoptotic molecules, costimulatory molecules associated with antigen presentation, and pattern recognition receptors (PRR), such as TLR-4, in monocytes. However, little is known about how TLR-4 increment operates in monocytes during an inflammatory response. To understand it better, we used an in vitro model in which monocytes crossed a layer of IL-1β stimulated Human Umbilical Vein Endothelial Cells (HUVEC). After TEM, monocytes were tested for the secretion of inflammatory cytokines and chemokines, their phenotype (CD14, CD16, TLR-4 expression), and TLR-4 canonical [Nuclear Factor kappa B, (NF-κB) pathway] and non-canonical [p38, extracellular signal-regulated kinases (ERK) 1/2 pathway] signal transduction induced by lipopolysaccharide (LPS). Phagocytosis and bacterial clearance were also measured. There was diminished secretion of LPS-induced inflammatory cytokines (IL-1β, IL-6, and TNF-α) and higher secretion of chemokines (CXCL8/IL-8 and CCL2/MCP-1) in supernatant of TEM monocytes. These changes were accompanied by increases in TLR-4, CD14 (surfaces expression), p38, and ERK1/2 phosphorylated cytoplasmic forms, without affecting NF-κB activation. It also increased bacterial clearance after TEM by an O2 -independent mechanism. The data suggest that interaction between endothelial cells and monocytes fine-tunes the inflammatory response and promotes bacterial elimination.
Collapse
Affiliation(s)
- Ismael Mancilla-Herrera
- Graduate Program on Immunology, ENCB-IPN, Mexico City, Mexico.,Medical Research Unit on Immunochemistry, Specialties Hospital of the National Medical Centre "Siglo XXI" Mexican Social Security Institute (IMSS), Mexico City, Mexico
| | - José Antonio Alvarado-Moreno
- Medical Research Unit in Thrombosis, Hemostasis and Atherogenesis, Regional General Hospital Dr. Carlos MacGregor Sánchez Navarro, IMSS, Mexico City, Mexico
| | | | - Jessica L Prieto-Chávez
- Medical Research Unit on Immunochemistry, Specialties Hospital of the National Medical Centre "Siglo XXI" Mexican Social Security Institute (IMSS), Mexico City, Mexico.,Graduate Program on Chemical and Biological Sciences, ENCB-IPN, Mexico City, Mexico
| | - Eduardo Ferat-Osorio
- Gastrointestinal Surgery Service, Specialties Hospital of the National Medical Centre "Siglo XXI", IMSS, Mexico City, Mexico
| | - Constantino López-Macías
- Medical Research Unit on Immunochemistry, Specialties Hospital of the National Medical Centre "Siglo XXI" Mexican Social Security Institute (IMSS), Mexico City, Mexico
| | - Sergio Estrada-Parra
- Molecular Immunology Laboratory, Immunology Department, ENCB-IPN, Mexico City, Mexico
| | - Armando Isibasi
- Medical Research Unit on Immunochemistry, Specialties Hospital of the National Medical Centre "Siglo XXI" Mexican Social Security Institute (IMSS), Mexico City, Mexico
| | - Lourdes Arriaga-Pizano
- Medical Research Unit on Immunochemistry, Specialties Hospital of the National Medical Centre "Siglo XXI" Mexican Social Security Institute (IMSS), Mexico City, Mexico
| |
Collapse
|
29
|
Molteni R, Bianchi E, Patete P, Fabbri M, Baroni G, Dubini G, Pardi R. A novel device to concurrently assess leukocyte extravasation and interstitial migration within a defined 3D environment. LAB ON A CHIP 2015; 15:195-207. [PMID: 25337693 DOI: 10.1039/c4lc00741g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Leukocyte extravasation and interstitial migration are key events during inflammation. Traditional in vitro techniques address only specific steps of cell recruitment to tissues and fail to recapitulate the whole process in an appropriate three-dimensional (3D) microenvironment. Herein, we describe a device that enables us to qualitatively and quantitatively assess in 4D the interdependent steps underlying leukocyte trafficking in a close-to-physiology in vitro context. Real-time tracking of cells, from initial adhesion to the endothelium and subsequent diapedesis to interstitial migration towards the source of the chemoattractant within the 3D collagen matrix, is enabled by the use of optically transparent porous membranes laid over the matrix. Unique features of the device, such as the use of non-planar surfaces and the contribution of physiological flow to the establishment of a persistent chemoattractant gradient, were assessed by numerical simulations and validated by proof-of-concept, simultaneous testing of differentially treated primary mouse neutrophils. This microfluidic platform offers new and versatile tools to thoroughly investigate the stepwise process of circulating cell recruitment to target tissues in vitro and to test novel therapeutics targeting various steps of the process.
Collapse
Affiliation(s)
- Raffaella Molteni
- Division of Immunology, Transplantation and Infectious Diseases, Leukocyte Biology Unit, San Raffaele Scientific Institute, Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
30
|
Sawicki CM, McKim DB, Wohleb ES, Jarrett BL, Reader BF, Norden DM, Godbout JP, Sheridan JF. Social defeat promotes a reactive endothelium in a brain region-dependent manner with increased expression of key adhesion molecules, selectins and chemokines associated with the recruitment of myeloid cells to the brain. Neuroscience 2014; 302:151-64. [PMID: 25445193 DOI: 10.1016/j.neuroscience.2014.10.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/29/2014] [Accepted: 10/01/2014] [Indexed: 01/02/2023]
Abstract
Repeated social defeat (RSD) in mice causes myeloid cell trafficking to the brain that contributes to the development of prolonged anxiety-like behavior. Myeloid cell recruitment following RSD occurs in regions where neuronal and microglia activation is observed. Thus, we hypothesized that crosstalk between neurons, microglia, and endothelial cells contributes to brain myeloid cell trafficking via chemokine signaling and vascular adhesion molecules. Here we show that social defeat caused an exposure- and brain region-dependent increase in several key adhesion molecules and chemokines involved in the recruitment of myeloid cells. For example, RSD induced distinct patterns of adhesion molecule expression that may explain brain region-dependent myeloid cell trafficking. VCAM-1 and ICAM-1 mRNA expression were increased in an exposure-dependent manner. Furthermore, RSD-induced VCAM-1 and ICAM-1 protein expression were localized to the vasculature of brain regions implicated in fear and anxiety responses, which spatially corresponded to previously reported patterns of myeloid cell trafficking. Next, mRNA expression of additional adhesion molecules (E- and P-selectin, PECAM-1) and chemokines (CXCL1, CXCL2, CXCL12, CCL2) were determined in the brain. Social defeat induced an exposure-dependent increase in mRNA levels of E-selectin, CXCL1, and CXCL2 that increased with additional days of social defeat. While CXCL12 was unaffected by RSD, CCL2 expression was increased by six days of social defeat. Last, comparison between enriched CD11b(+) cells (microglia/macrophages) and enriched GLAST-1(+)/CD11b(-) cells (astrocytes) revealed RSD increased mRNA expression of IL-1β, CCL2, and CXCL2 in microglia/macrophages but not in astrocytes. Collectively, these data indicate that key mediators of leukocyte recruitment were increased in the brain vasculature following RSD in an exposure- and brain region-dependent manner.
Collapse
Affiliation(s)
- C M Sawicki
- Divsion of Biosciences, The Ohio State University, 305 West 12th Avenue, Columbus, OH 43210, USA
| | - D B McKim
- Divsion of Biosciences, The Ohio State University, 305 West 12th Avenue, Columbus, OH 43210, USA; Department of Neuroscience, The Ohio State University, 333 West 10th Avenue, Columbus, OH 43210, USA
| | - E S Wohleb
- Divsion of Biosciences, The Ohio State University, 305 West 12th Avenue, Columbus, OH 43210, USA; Department of Neuroscience, The Ohio State University, 333 West 10th Avenue, Columbus, OH 43210, USA
| | - B L Jarrett
- Divsion of Biosciences, The Ohio State University, 305 West 12th Avenue, Columbus, OH 43210, USA; Department of Neuroscience, The Ohio State University, 333 West 10th Avenue, Columbus, OH 43210, USA
| | - B F Reader
- Divsion of Biosciences, The Ohio State University, 305 West 12th Avenue, Columbus, OH 43210, USA
| | - D M Norden
- Department of Neuroscience, The Ohio State University, 333 West 10th Avenue, Columbus, OH 43210, USA
| | - J P Godbout
- Department of Neuroscience, The Ohio State University, 333 West 10th Avenue, Columbus, OH 43210, USA; Institute for Behavioral Medicine Research, The Ohio State University, 460 Medical Center Drive, Columbus, OH 43210, USA; Center for Brain and Spinal Cord Repair, The Ohio State University, 460 West 12th Avenue, Columbus, OH 43210, USA.
| | - J F Sheridan
- Divsion of Biosciences, The Ohio State University, 305 West 12th Avenue, Columbus, OH 43210, USA; Institute for Behavioral Medicine Research, The Ohio State University, 460 Medical Center Drive, Columbus, OH 43210, USA; Center for Brain and Spinal Cord Repair, The Ohio State University, 460 West 12th Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
31
|
El Omar R, Beroud J, Stoltz JF, Menu P, Velot E, Decot V. Umbilical cord mesenchymal stem cells: the new gold standard for mesenchymal stem cell-based therapies? TISSUE ENGINEERING PART B-REVIEWS 2014; 20:523-44. [PMID: 24552279 DOI: 10.1089/ten.teb.2013.0664] [Citation(s) in RCA: 223] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Due to their self-renewal capacity, multilineage differentiation potential, paracrine effects, and immunosuppressive properties, mesenchymal stromal cells (MSCs) are an attractive and promising tool for regenerative medicine. MSCs can be isolated from various tissues but despite their common immunophenotypic characteristics and functional properties, source-dependent differences in MSCs properties have recently emerged and lead to different clinical applications. Considered for a long time as a medical waste, umbilical cord appears these days as a promising source of MSCs. Several reports have shown that umbilical cord-derived MSCs are more primitive, proliferative, and immunosuppressive than their adult counterparts. In this review, we aim at synthesizing the differences between umbilical cord MSCs and MSCs from other sources (bone marrow, adipose tissue, periodontal ligament, dental pulp,…) with regard to their proliferation capacity, proteic and transcriptomic profiles, and their secretome involved in their regenerative, homing, and immunomodulatory capacities. Although umbilical cord MSCs are until now not particularly used as an MSC source in clinical practice, accumulating evidence shows that they may have a therapeutic advantage to treat several diseases, especially autoimmune and neurodegenerative diseases.
Collapse
Affiliation(s)
- Reine El Omar
- 1 CNRS UMR UL 7365 , Bâtiment Biopôle, Faculté de médecine, Vandœuvre-lès-Nancy, France
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
Leukocyte migration through interstitial tissues is essential for mounting a successful immune response. Interstitial motility is governed by a vast array of cell-intrinsic and cell-extrinsic factors that together ensure the proper positioning of immune cells in the context of specific microenvironments. Recent advances in imaging modalities, in particular intravital confocal and multi-photon microscopy, have helped to expand our understanding of the cellular and molecular mechanisms that underlie leukocyte navigation in the extravascular space. In this Review, we discuss the key factors that regulate leukocyte motility within three-dimensional environments, with a focus on neutrophils and T cells in non-lymphoid organs.
Collapse
|
33
|
Stock C, Ludwig FT, Hanley PJ, Schwab A. Roles of ion transport in control of cell motility. Compr Physiol 2013; 3:59-119. [PMID: 23720281 DOI: 10.1002/cphy.c110056] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell motility is an essential feature of life. It is essential for reproduction, propagation, embryonic development, and healing processes such as wound closure and a successful immune defense. If out of control, cell motility can become life-threatening as, for example, in metastasis or autoimmune diseases. Regardless of whether ciliary/flagellar or amoeboid movement, controlled motility always requires a concerted action of ion channels and transporters, cytoskeletal elements, and signaling cascades. Ion transport across the plasma membrane contributes to cell motility by affecting the membrane potential and voltage-sensitive ion channels, by inducing local volume changes with the help of aquaporins and by modulating cytosolic Ca(2+) and H(+) concentrations. Voltage-sensitive ion channels serve as voltage detectors in electric fields thus enabling galvanotaxis; local swelling facilitates the outgrowth of protrusions at the leading edge while local shrinkage accompanies the retraction of the cell rear; the cytosolic Ca(2+) concentration exerts its main effect on cytoskeletal dynamics via motor proteins such as myosin or dynein; and both, the intracellular and the extracellular H(+) concentration modulate cell migration and adhesion by tuning the activity of enzymes and signaling molecules in the cytosol as well as the activation state of adhesion molecules at the cell surface. In addition to the actual process of ion transport, both, channels and transporters contribute to cell migration by being part of focal adhesion complexes and/or physically interacting with components of the cytoskeleton. The present article provides an overview of how the numerous ion-transport mechanisms contribute to the various modes of cell motility.
Collapse
Affiliation(s)
- Christian Stock
- Institute of Physiology II, University of Münster, Münster, Germany.
| | | | | | | |
Collapse
|
34
|
Marelli-Berg FM, Clement M, Mauro C, Caligiuri G. An immunologist's guide to CD31 function in T-cells. J Cell Sci 2013; 126:2343-52. [PMID: 23761922 DOI: 10.1242/jcs.124099] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Although it is expressed by all leukocytes, including T-, B-lymphocytes and dendritic cells, the immunoglobulin-like receptor CD31 is generally regarded by immunologists as a marker of endothelial cell lineage that lacks an established functional role in adaptive immunity. This perception has recently been challenged by studies that reveal a key role for this molecule in the regulation of T-cell homeostasis, effector function and trafficking. The complexity of the biological functions of CD31 results from the integration of its adhesive and signaling functions in both the immune and vascular systems. Signaling by means of CD31 is induced by homophilic engagement during the interactions of immune cells and is mediated by phosphatase recruitment or activation through immunoreceptor tyrosine inhibitory motifs (ITIMs) that are located in its cytoplasmic tail. Loss of CD31 function is associated with excessive immunoreactivity and susceptibility to cytotoxic killing. Here, we discuss recent findings that have brought to light a non-redundant, complex role for this molecule in the regulation of T-cell-mediated immune responses, with large impact on our understanding of immunity in health and disease.
Collapse
Affiliation(s)
- Federica M Marelli-Berg
- William Harvey Research Institute, Barts' and The London School of Medicine, Queen Mary, University of London, Charterhouse Square, London EC1M 6BQ, UK.
| | | | | | | |
Collapse
|
35
|
Ghavampour S, Lange C, Bottino C, Gerke V. Transcriptional profiling of human monocytes identifies the inhibitory receptor CD300a as regulator of transendothelial migration. PLoS One 2013; 8:e73981. [PMID: 24058511 PMCID: PMC3776808 DOI: 10.1371/journal.pone.0073981] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 07/31/2013] [Indexed: 01/13/2023] Open
Abstract
Local inflammatory responses are characterized by the recruitment of circulating leukocytes from the blood to sites of inflammation, a process requiring the directed migration of leukocytes across the vessel wall and hence a penetration of the endothelial lining. To identify underlying signalling events and novel factors involved in these processes we screened for genes differentially expressed in human monocytes following their adhesion to and passage through an endothelial monolayer. Functional annotation clustering of the genes identified revealed an overrepresentation of those associated with inflammation/immune response, in particular early monocyte to macrophage differentiation. Among the gene products so far not implicated in monocyte transendothelial migration was the inhibitory immune receptor CD300a. CD300a mRNA and protein levels were upregulated following transmigration and engagement of the receptor by anti-CD300a antibodies markedly reduced monocyte transendothelial migration. In contrast, siRNA mediated downregulation of CD300a in human monocytes increased their rate of migration. CD300a colocalized and cosedimented with actin filaments and, when activated, caused F-actin cytoskeleton alterations. Thus, monocyte transendothelial migration is accompanied by an elevation of CD300a which serves an inhibitory function possibly required for termination of the actual transmigration.
Collapse
Affiliation(s)
- Sharang Ghavampour
- Center for Molecular Biology of Inflammation, Institute of Medical Biochemistry, Muenster, Germany
| | - Carsten Lange
- Center for Molecular Biology of Inflammation, Institute of Medical Biochemistry, Muenster, Germany
| | - Cristina Bottino
- Dipartimento di Medicina Sperimentale, Sezione di Patologia Generale, Laboratorio di Immunologia Clinica e Sperimentale, Instituto Giannina Gaslini, Genova, Italy
| | - Volker Gerke
- Center for Molecular Biology of Inflammation, Institute of Medical Biochemistry, Muenster, Germany
- * E-mail:
| |
Collapse
|
36
|
Matrix metalloproteinases modulate ameboid-like migration of neutrophils through inflamed interstitial tissue. Blood 2013; 122:770-80. [PMID: 23757732 DOI: 10.1182/blood-2012-12-472944] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In vitro studies suggest that leukocytes locomote in an ameboid fashion independently of pericellular proteolysis. Whether this motility pattern applies for leukocyte migration in inflamed tissue is still unknown. In vivo microscopy on the inflamed mouse cremaster muscle revealed that blockade of serine proteases or of matrix metalloproteinases (MMPs) significantly reduces intravascular accumulation and transmigration of neutrophils. Using a novel in vivo chemotaxis assay, perivenular microinjection of inflammatory mediators induced directional interstitial migration of neutrophils. Blockade of actin polymerization, but not of actomyosin contraction abolished neutrophil interstitial locomotion. Multiphoton laser scanning in vivo microscopy showed that the density of the interstitial collagen network increases in inflamed tissue, thereby providing physical guidance to infiltrating neutrophils. Although neutrophils locomote through the interstitium without pericellular collagen degradation, inhibition of MMPs, but not of serine proteases, diminished their polarization and interstitial locomotion. In this context, blockade of MMPs was found to modulate expression of adhesion/signaling molecules on neutrophils. Collectively, our data indicate that serine proteases are critical for neutrophil extravasation, whereas these enzymes are dispensable for neutrophil extravascular locomotion. By contrast, neutrophil interstitial migration strictly relies on actin polymerization and does not require the pericellular degradation of collagen fibers but is modulated by MMPs.
Collapse
|
37
|
Beyrau M, Bodkin JV, Nourshargh S. Neutrophil heterogeneity in health and disease: a revitalized avenue in inflammation and immunity. Open Biol 2013; 2:120134. [PMID: 23226600 PMCID: PMC3513838 DOI: 10.1098/rsob.120134] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 11/01/2012] [Indexed: 02/07/2023] Open
Abstract
Leucocytes form the principal cellular components of immunity and inflammation, existing as multiple subsets defined by distinct phenotypic and functional profiles. To date, this has most notably been documented for lymphocytes and monocytes. In contrast, as neutrophils are traditionally considered, to be short-lived, terminally differentiated cells that do not re-circulate, the potential existence of distinct neutrophil subsets with functional and phenotypic heterogeneity has not been widely considered or explored. A growing body of evidence is now challenging this scenario, and there is significant evidence for the existence of different neutrophil subsets under both physiological and pathological conditions. This review will summarize the key findings that have triggered a renewed interest in neutrophil phenotypic changes, both in terms of functional implications and consequences within disease models. Special emphasis will be placed on the potential pro- and anti-inflammatory roles of neutrophil subsets, as indicated by the recent works in models of ischaemia–reperfusion injury, trauma, cancer and sepsis.
Collapse
Affiliation(s)
- Martina Beyrau
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | | | | |
Collapse
|
38
|
Transendothelial migration enables subsequent transmigration of neutrophils through underlying pericytes. PLoS One 2013; 8:e60025. [PMID: 23555870 PMCID: PMC3608600 DOI: 10.1371/journal.pone.0060025] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 02/21/2013] [Indexed: 01/13/2023] Open
Abstract
During acute inflammation, neutrophil recruitment into extravascular tissue requires neutrophil tethering and rolling on cytokine-activated endothelial cells (ECs), tight adhesion, crawling towards EC junctions and transendothelial migration (TEM). Following TEM, neutrophils must still traverse the subendothelial basement membrane and network of pericytes (PCs). Until recently, the contribution of the PC layer to neutrophil recruitment was largely ignored. Here we analyze human neutrophil interactions with interleukin (IL)-1β-activated human EC monolayers, PC monolayers and EC/PC bilayers in vitro. Compared to EC, PC support much lower levels of neutrophil binding (54.6% vs. 7.1%, respectively) and transmigration (63.7 vs. 8.8%, respectively) despite comparable levels of IL-8 (CXCL8) synthesis and display. Remarkably, EC/PC bilayers support intermediate levels of transmigration (37.7%). Neutrophil adhesion to both cell types is Mac-1-dependent and while ICAM-1 transduction of PCs increases neutrophil adhesion to (41.4%), it does not increase transmigration through PC monolayers. TEM, which increases neutrophil Mac-1 surface expression, concomitantly increases the ability of neutrophils to traverse PCs (19.2%). These data indicate that contributions from both PCs and ECs must be considered in evaluation of microvasculature function in acute inflammation.
Collapse
|
39
|
Wang G, Zhang S, Wang F, Li G, Zhang L, Luan X. Expression and biological function of programmed death ligands in human placenta mesenchymal stem cells. Cell Biol Int 2013; 37:137-48. [DOI: 10.1002/cbin.10024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 11/26/2012] [Indexed: 01/14/2023]
Affiliation(s)
- Guoyan Wang
- Department of Immunology; Binzhou Medical University; Shandong Province, Yantai 264003 P.R. China
| | - Siying Zhang
- Department of Immunology; Binzhou Medical University; Shandong Province, Yantai 264003 P.R. China
| | - Feifei Wang
- Department of Immunology; Binzhou Medical University; Shandong Province, Yantai 264003 P.R. China
| | - Guangyun Li
- Qianfoshan Hospital; Shandong Province, Jinan 250014 P.R. China
| | - Lixia Zhang
- Department of Immunology; Binzhou Medical University; Shandong Province, Yantai 264003 P.R. China
| | - Xiying Luan
- Department of Immunology; Binzhou Medical University; Shandong Province, Yantai 264003 P.R. China
| |
Collapse
|
40
|
Ma L, Cheung KCP, Kishore M, Nourshargh S, Mauro C, Marelli-Berg FM. CD31 exhibits multiple roles in regulating T lymphocyte trafficking in vivo. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 189:4104-11. [PMID: 22966083 PMCID: PMC3496211 DOI: 10.4049/jimmunol.1201739] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 08/13/2012] [Indexed: 12/20/2022]
Abstract
The role of CD31, an Ig-like molecule expressed by leukocytes and endothelial cells (ECs), in the regulation of T lymphocyte trafficking remains contentious. Using CD31-deficient mice, we show that CD31 regulates both constitutive and inflammation-induced T cell migration in vivo. Specifically, T cell:EC interactions mediated by CD31 molecules are required for efficient localization of naive T lymphocytes to secondary lymphoid tissue and constitutive recirculation of primed T cells to nonlymphoid tissues. In inflammatory conditions, T cell:EC CD31-mediated interactions facilitate T cell recruitment to Ag-rich sites. However, endothelial CD31 also provides a gate-keeping mechanism to limit the rate of Ag-driven T cell extravasation. This event contributes to the formation of Ag-specific effector T cell infiltrates and is induced by recognition of Ag on the endothelium. In this context, CD31 engagement is required for restoring endothelial continuity, which is temporarily lost upon MHC molecule ligation by migrating cognate T cells. We propose that integrated adhesive and signaling functions of CD31 molecules exert a complex regulation of T cell trafficking, a process that is differentially adapted depending on cell-specific expression, the presence of inflammatory conditions and the molecular mechanism facilitating T cell extravasation.
Collapse
Affiliation(s)
- Liang Ma
- Division of Medicine, Department of Immunology, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, United Kingdom; and
| | - Kenneth C. P. Cheung
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Madhav Kishore
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Sussan Nourshargh
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Claudio Mauro
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Federica M. Marelli-Berg
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| |
Collapse
|
41
|
Developmental heterogeneity in DNA packaging patterns influences T-cell activation and transmigration. PLoS One 2012; 7:e43718. [PMID: 22957031 PMCID: PMC3434176 DOI: 10.1371/journal.pone.0043718] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 07/26/2012] [Indexed: 11/24/2022] Open
Abstract
Cellular differentiation programs are accompanied by large-scale changes in nuclear organization and gene expression. In this context, accompanying transitions in chromatin assembly that facilitates changes in gene expression and cell behavior in a developmental system are poorly understood. Here, we address this gap and map structural changes in chromatin organization during murine T-cell development, to describe an unusual heterogeneity in chromatin organization and associated functional correlates in T-cell lineage. Confocal imaging of DNA assembly in cells isolated from bone marrow, thymus and spleen reveal the emergence of heterogeneous patterns in DNA organization in mature T-cells following their exit from the thymus. The central DNA pattern dominated in immature precursor cells in the thymus whereas both central and peripheral DNA patterns were observed in naïve and memory cells in circulation. Naïve T-cells with central DNA patterns exhibited higher mechanical pliability in response to compressive loads in vitro and transmigration assays in vivo, and demonstrated accelerated expression of activation-induced marker CD69. T-cell activation was characterized by marked redistribution of DNA assembly to a central DNA pattern and increased nuclear size. Notably, heterogeneity in DNA patterns recovered in cells induced into quiescence in culture, suggesting an internal regulatory mechanism for chromatin reorganization. Taken together, our results uncover an important component of plasticity in nuclear organization, reflected in chromatin assembly, during T-cell development, differentiation and transmigration.
Collapse
|
42
|
Allen C, Thornton P, Denes A, McColl BW, Pierozynski A, Monestier M, Pinteaux E, Rothwell NJ, Allan SM. Neutrophil cerebrovascular transmigration triggers rapid neurotoxicity through release of proteases associated with decondensed DNA. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 189:381-92. [PMID: 22661091 PMCID: PMC3381844 DOI: 10.4049/jimmunol.1200409] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cerebrovascular inflammation contributes to diverse CNS disorders through mechanisms that are incompletely understood. The recruitment of neutrophils to the brain can contribute to neurotoxicity, particularly during acute brain injuries, such as cerebral ischemia, trauma, and seizures. However, the regulatory and effector mechanisms that underlie neutrophil-mediated neurotoxicity are poorly understood. In this study, we show that mouse neutrophils are not inherently toxic to neurons but that transendothelial migration across IL-1-stimulated brain endothelium triggers neutrophils to acquire a neurotoxic phenotype that causes the rapid death of cultured neurons. Neurotoxicity was induced by the addition of transmigrated neutrophils or conditioned medium, taken from transmigrated neutrophils, to neurons and was partially mediated by excitotoxic mechanisms and soluble proteins. Transmigrated neutrophils also released decondensed DNA associated with proteases, which are known as neutrophil extracellular traps. The blockade of histone-DNA complexes attenuated transmigrated neutrophil-induced neuronal death, whereas the inhibition of key neutrophil proteases in the presence of transmigrated neutrophils rescued neuronal viability. We also show that neutrophil recruitment in the brain is IL-1 dependent, and release of proteases and decondensed DNA from recruited neutrophils in the brain occurs in several in vivo experimental models of neuroinflammation. These data reveal new regulatory and effector mechanisms of neutrophil-mediated neurotoxicity (i.e., the release of proteases and decondensed DNA triggered by phenotypic transformation during cerebrovascular transmigration). Such mechanisms have important implications for neuroinflammatory disorders, notably in the development of antileukocyte therapies.
Collapse
Affiliation(s)
- Charlotte Allen
- Faculty of Life Sciences, A.V. Hill Building, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | | | - Adam Denes
- Faculty of Life Sciences, A.V. Hill Building, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
,To whom correspondence should be addressed: Faculty of Life Sciences, A.V. Hill Building, University of Manchester, Oxford Road, Manchester, M13 9PT, UK,
| | | | - Adam Pierozynski
- Faculty of Life Sciences, A.V. Hill Building, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Marc Monestier
- Department of Microbiology and Immunity, School of Medicine, Temple University, PA 19140
| | - Emmanuel Pinteaux
- Faculty of Life Sciences, A.V. Hill Building, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Nancy J. Rothwell
- Faculty of Life Sciences, A.V. Hill Building, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Stuart M. Allan
- Faculty of Life Sciences, A.V. Hill Building, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| |
Collapse
|
43
|
Abstract
BACKGROUND The process of extravasation of leucocytes from the vasculature into an infected, inflamed or injured tissue, designated the leucocyte adhesion cascade, is a major process in innate and adaptive immunity. In every immune process, both agonists and inhibitors, that is, positive and negative regulators, exist. MATERIALS AND METHODS It was only recently that endogenous inhibitors of the leucocyte adhesion cascade were identified, whereas many selectin, integrin and immunoglobulin superfamily adhesion receptors as well as chemokines and chemokine receptors promoting leucocyte recruitment have been described over the last three decades. Endogenous negative regulators include for instance pentraxin-3 (PTX-3) that blocks selectin-dependent leucocyte rolling, or the endothelium-derived developmental endothelial locus-1 (Del-1) that antagonizes beta2-integrin-mediated firm adhesion of leucocytes to the endothelium. CONCLUSIONS As leucocyte infiltration is a major therapeutic target in inflammatory and autoimmune disease, it becomes obvious that such endogenous anti-adhesive and anti-inflammatory agents may represent an attractive novel therapeutic platform for inflammatory and immune disorders. This review focuses on these novel endogenous inhibitors of leucocyte recruitment.
Collapse
Affiliation(s)
- Triantafyllos Chavakis
- Division of Vascular Inflammation, Diabetes and Kidney, Department of Medicine and Institute of Physiology, University Dresden, Dresden, Germany.
| |
Collapse
|
44
|
Parsons SA, Sharma R, Roccamatisi DL, Zhang H, Petri B, Kubes P, Colarusso P, Patel KD. Endothelial paxillin and focal adhesion kinase (FAK) play a critical role in neutrophil transmigration. Eur J Immunol 2012; 42:436-46. [PMID: 22095445 DOI: 10.1002/eji.201041303] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
During an inflammatory response, endothelial cells undergo morphological changes to allow for the passage of neutrophils from the blood vessel to the site of injury or infection. Although endothelial cell junctions and the cytoskeleton undergo reorganization during inflammation, little is known about another class of cellular structures, the focal adhesions. In this study, we examined several focal adhesion proteins during an inflammatory response. We found that there was selective loss of paxillin and focal adhesion kinase (FAK) from focal adhesions in proximity to transmigrating neutrophils; in contrast the levels of the focal adhesion proteins β1-integrin and vinculin were unaffected. Paxillin was lost from focal adhesions during neutrophil transmigration both under static and flow conditions. Down-regulating endothelial paxillin with siRNA blocked neutrophil transmigration while having no effect on rolling or adhesion. As paxillin dynamics are regulated partly by FAK, the role of FAK in neutrophil transmigration was examined using two complementary methods. siRNA was used to down-regulate total FAK protein while dominant-negative, kinase-deficient FAK was expressed to block FAK signaling. Disruption of the FAK protein or FAK signaling decreased neutrophil transmigration. Collectively, these findings reveal a novel role for endothelial focal adhesion proteins paxillin and FAK in regulating neutrophil transmigration.
Collapse
Affiliation(s)
- Sean A Parsons
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | | | | | | | | | | | | | | |
Collapse
|
45
|
McGettrick HM, Butler LM, Buckley CD, Ed Rainger G, Nash GB. Tissue stroma as a regulator of leukocyte recruitment in inflammation. J Leukoc Biol 2012; 91:385-400. [DOI: 10.1189/jlb.0911458] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
46
|
Participation of blood vessel cells in human adaptive immune responses. Trends Immunol 2011; 33:49-57. [PMID: 22030237 DOI: 10.1016/j.it.2011.09.006] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 09/12/2011] [Accepted: 09/13/2011] [Indexed: 12/29/2022]
Abstract
Circulating T cells contact blood vessels either when they extravasate across the walls of microvessels into inflamed tissues or when they enter into the walls of larger vessels in inflammatory diseases such as atherosclerosis. The blood vessel wall is largely composed of three cell types: endothelial cells lining the entire vascular tree; pericytes supporting the endothelium of microvessels; and smooth muscle cells forming the bulk of large vessel walls. Each of these cell types interacts with and alters the behavior of infiltrating T cells in different ways, making these cells active participants in the processes of immune-mediated inflammation. In this review, we compare and contrast what is known about the nature of these interactions in humans.
Collapse
|
47
|
Nees S, Juchem G, Eberhorn N, Thallmair M, Förch S, Knott M, Senftl A, Fischlein T, Reichart B, Weiss DR. Wall structures of myocardial precapillary arterioles and postcapillary venules reexamined and reconstructed in vitro for studies on barrier functions. Am J Physiol Heart Circ Physiol 2011; 302:H51-68. [PMID: 21984546 DOI: 10.1152/ajpheart.00358.2011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The barrier functions of myocardial precapillary arteriolar and postcapillary venular walls (PCA or PCV, respectively) are of considerable scientific and clinical interest (regulation of blood flow and recruitment of immune defense). Using enzyme histochemistry combined with confocal microscopy, we reexamined the cell architecture of human PCA and PVC and reconstructed appropriate in vitro models for studies of their barrier functions. Contrary to current opinion, the PCA endothelial tube is encompassed not by smooth muscle cells but rather by a concentric layer of pericytes cocooned in a thick, microparticle-containing extracellular matrix (ECM) that contributes substantially to the tightness of the arteriolar wall. This core tube extends upstream into the larger arterioles, there additionally enwrapped by smooth muscle. PCV consist of an inner layer of large, contractile endothelial cells encompassed by a fragile, wide-meshed pericyte network with a weakly developed ECM. Pure pericyte and endothelial cell preparations were isolated from PCA and PCV and grown in sandwich cultures. These in vitro models of the PCA and PCV walls exhibited typical histological and functional features. In both plasma-like (PLM) and serum-containing (SCM) media, the PCA model (including ECM) maintained its low hydraulic conductivity (L(P) = 3.24 ± 0.52·10(-8)cm·s(-1)·cmH(2)O(-1)) and a high selectivity index for transmural passage of albumin (SI(Alb) = 0.95 ± 0.02). In contrast, L(P) and SI(Alb) in the PCV model (almost no ECM) were 2.55 ± 0.32·10(-7)cm·s(-1)·cmH(2)O(-1) and 0.88 ± 0.03, respectively, in PLM, and 1.39 ± 0.10·10(-6)cm·s(-1)·cmH(2)O(-1) and 0.49 ± 0.04 in SCM. With the use of these models, systematic, detailed studies on the regulation of microvascular barrier properties now appear to be feasible.
Collapse
Affiliation(s)
- Stephan Nees
- Department of Physiology, University of Munich, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Wang PM, Kachel DL, Cesta MF, Martin WJ. Direct leukocyte migration across pulmonary arterioles and venules into the perivascular interstitium of murine lungs during bleomycin injury and repair. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:2560-72. [PMID: 21641381 DOI: 10.1016/j.ajpath.2011.02.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 01/25/2011] [Accepted: 02/08/2011] [Indexed: 01/13/2023]
Abstract
During acute lung injury and repair, leukocytes are thought to enter the lung primarily across alveolar capillaries and postcapillary venules. We hypothesized that leukocytes also migrate across pulmonary arterioles and venules, which serve as alternative sites for leukocyte influx into the lung during acute lung injury and repair. Lung sections from C57BL/6J mice up to 14 days after intratracheal bleomycin (3.33 U/kg) or saline instillation were assessed by light, fluorescence, confocal, and transmission electron microscopy for evidence of inflammatory cell sequestration and transmigration at these sites. After bleomycin treatment, large numbers of leukocytes (including neutrophils, eosinophils, and monocytes) were present in the vascular lumina and in perivascular interstitia of pulmonary arterioles and venules, as well as within the vascular walls. Leukocytes were observed within well-defined pathways in arteriolar walls and much less structured pathways in venular walls, apparently in the process of transmigration. Intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) were expressed at sites of leukocyte interaction with the luminal surface, especially in arterioles. Leukocytes appeared to exit from the vessels near collagen fibers into the perivascular interstitium. Results indicate that leukocytes can directly migrate across arteriolar and venular walls into the perivascular interstitium, which may represent an important but under-recognized pathway for leukocyte influx into the lung during injury and repair.
Collapse
Affiliation(s)
- Ping M Wang
- Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | | | | | | |
Collapse
|
49
|
Sadik CD, Kim ND, Luster AD. Neutrophils cascading their way to inflammation. Trends Immunol 2011; 32:452-60. [PMID: 21839682 DOI: 10.1016/j.it.2011.06.008] [Citation(s) in RCA: 425] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Revised: 06/06/2011] [Accepted: 06/23/2011] [Indexed: 12/24/2022]
Abstract
Neutrophils are pivotal effector cells of innate immunity. Their recruitment into peripheral tissues is indispensable for host defense. Given their destructive potential, neutrophil entry into tissue must be tightly regulated in vivo to avoid damage to the host. An array of chemically diverse chemoattractants is active on neutrophils and participates in recruitment. Neutrophil chemoattractants were thought redundant in the control of neutrophil recruitment into peripheral tissue, based on their often indistinguishable effects on neutrophils in vitro and their frequently overlapping patterns of expression at inflammatory sites in vivo. Recent data, however, suggest that neutrophil chemoattractants have unique functions in the recruitment of neutrophils into inflammatory sites in vivo, dictated by their distinct patterns of temporal and spatial expression.
Collapse
Affiliation(s)
- Christian D Sadik
- Division of Rheumatology, Allergy, and Immunology, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | |
Collapse
|
50
|
Chen CXJ, Soto I, Guo YL, Liu Y. Control of secondary granule release in neutrophils by Ral GTPase. J Biol Chem 2011; 286:11724-33. [PMID: 21282111 DOI: 10.1074/jbc.m110.154203] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Neutrophil (polymorphonuclear leukocyte; PMN) inflammatory functions, including cell adhesion, diapedesis, and phagocytosis, are dependent on the mobilization and release of various intracellular granules/vesicles. In this study, we found that treating PMN with damnacanthal, a Ras family GTPase inhibitor, resulted in a specific release of secondary granules but not primary or tertiary granules and caused dysregulation of PMN chemotactic transmigration and cell surface protein interactions. Analysis of the activities of Ras members identified Ral GTPase as a key regulator during PMN activation and degranulation. In particular, Ral was active in freshly isolated PMN, whereas chemoattractant stimulation induced a quick deactivation of Ral that correlated with PMN degranulation. Overexpression of a constitutively active Ral (Ral23V) in PMN inhibited chemoattractant-induced secondary granule release. By subcellular fractionation, we found that Ral, which was associated with the plasma membrane under the resting condition, was redistributed to secondary granules after chemoattractant stimulation. Blockage of cell endocytosis appeared to inhibit Ral translocation intracellularly. In conclusion, these results demonstrate that Ral is a critical regulator in PMN that specifically controls secondary granule release during PMN response to chemoattractant stimulation.
Collapse
Affiliation(s)
- Celia X-J Chen
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, USA
| | | | | | | |
Collapse
|