1
|
Lahouel K, Douville C, Diergaarde B, Cohen JD, Grant H, Kuo A, Ansari SK, Wang Y, O’Broin-Lennon AM, Popoli M, Ptak J, Silliman N, Dobbyn L, Nehme N, Tie J, Gibbs P, Papadopoulos N, Kinzler KW, Vogelstein B, Schoen RE, Tomasetti C. A Blood-Based Assay for Detection of Patients with Advanced Adenomas. CANCER RESEARCH COMMUNICATIONS 2025; 5:621-631. [PMID: 40099973 PMCID: PMC12001750 DOI: 10.1158/2767-9764.crc-24-0398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/15/2024] [Accepted: 03/14/2025] [Indexed: 03/20/2025]
Abstract
SIGNIFICANCE Blood-based screening for colorectal cancer could improve testing uptake and outcomes. We propose novel methods to detect AAs in plasma using cfDNA fragmentation patterns, cancer-associated proteins, and aneuploidy with high specificity. Larger studies are needed to validate clinical utility.
Collapse
Affiliation(s)
- Kamel Lahouel
- Center for Cancer Prevention and Early Detection, City of Hope, Duarte, California
- Division of Mathematics for Cancer Evolution and Early Detection, Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope, Duarte, California
- Division of Integrated Cancer Genomics, Translational Genomics Research Institute, Phoenix, Arizona
| | - Christopher Douville
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Brenda Diergaarde
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Joshua D. Cohen
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Haley Grant
- Department of Biostatistics, Johns Hopkins University School of Public Health, Baltimore, Maryland
| | - Albert Kuo
- Department of Biostatistics, Johns Hopkins University School of Public Health, Baltimore, Maryland
| | - Saad K. Ansari
- Division of Integrated Cancer Genomics, Translational Genomics Research Institute, Phoenix, Arizona
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, Maryland
| | - Yuxuan Wang
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Anne Marie O’Broin-Lennon
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Maria Popoli
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Janine Ptak
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Natalie Silliman
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lisa Dobbyn
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nadine Nehme
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jeanne Tie
- Division of Personalized Oncology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Peter Gibbs
- Division of Personalized Oncology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Nickolas Papadopoulos
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kenneth W. Kinzler
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Bert Vogelstein
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Robert E. Schoen
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Cristian Tomasetti
- Center for Cancer Prevention and Early Detection, City of Hope, Duarte, California
- Division of Mathematics for Cancer Evolution and Early Detection, Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope, Duarte, California
- Division of Integrated Cancer Genomics, Translational Genomics Research Institute, Phoenix, Arizona
- Department of Biostatistics, Johns Hopkins University School of Public Health, Baltimore, Maryland
| |
Collapse
|
2
|
Huang M, Ye A, Zhang H, Ru Y, Bai Z, Zhang Y, Gao Y, Ma Z. Siwu decoction mitigates radiation-induced immune senescence by attenuating hematopoietic damage. Chin Med 2024; 19:167. [PMID: 39639367 PMCID: PMC11622653 DOI: 10.1186/s13020-024-01036-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND To investigate the long term effects of ionizing radiation (IR) on hematopoietic stem/progenitor cells (HSPCs), immune tissues and cells, and the effects of Siwu decoction (SWD) on immune senescence mice. METHODS C57BL/6 J mice were exposed to 6.0 Gy 60Co γ irradiation. After 8-weeks of IR, SWD (5, 10, 20 g/kg/d) was administered for 30 days. The changes of HSPCs in bone marrow (BM) and T, B type lymphocyte and natural killer (NK) cells in spleen were detected by flow cytometry. The changes of peripheral blood cells were also examined. Hematoxylin-eosin staining were used to detect the pathological lesions of hippocampus, spleen and thymus tissues. Absolute mouse telomere length quantification qPCR assay kit was used to measure the telomere length of BM cells. The expression of factors associated with inflammation and aging such as p16, β-galactosidase in spleen, thymus and BM was determined. RESULTS Administration of SWD could increase the proportion of LSK (Lin-, Sca-1 + , c-Kit-), multipotent progenitor cells and multipotent progenitor cells and decrease the proportion of common myeloid progenitors and granulocyte-macrophage progenitors in BM. The proportion of B cells and NK cells in spleen and the content of white blood cells, red blood cells, hemoglobin, lymphocytes and eosinophils in peripheral blood were increased, at the same time, the proportion of neutrophils and monocytes was reduced by SWD. The pathological lesions of hippocampus, spleen and thymus were improved. The expression of p16 and β-galactosidase in spleen, thymus and BM was reduced and shortening of the telomere of BM cells was inhibited after administration. In addition, SWD could reduce the content of Janus activated kinase (JAK) 1, JAK2 and signal transducer and activator of transcription 3 (STAT3) in BM and spleen. CONCLUSIONS SWD could slow down IR-induced immune senescence by improving hematopoietic and immunologic injury. SWD might reduce the inflammation level of BM hematopoietic microenvironment by acting on JAK/STAT signaling pathway, while the immune damage of mice was improved by affecting the differentiation of HSPCs. The remission of hematopoietic and immunologic senescence was further demonstrated at the overall level.
Collapse
Affiliation(s)
- Mingyue Huang
- Department of Pharmacology and Toxicology , Beijing Institute of Radiation Medicine, Beijing, China
| | - Anping Ye
- Department of Pharmacology and Toxicology , Beijing Institute of Radiation Medicine, Beijing, China
- Department of Pharmaceutical Sciences, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Haoyu Zhang
- Department of Pharmacology and Toxicology , Beijing Institute of Radiation Medicine, Beijing, China
| | - Yi Ru
- Department of Pharmacology and Toxicology , Beijing Institute of Radiation Medicine, Beijing, China
| | - Zhijie Bai
- Department of Pharmacology and Toxicology , Beijing Institute of Radiation Medicine, Beijing, China
| | - Yanyan Zhang
- China Shineway Pharmaceutical Group Limited, Shijiazhuang, Hebei, China
| | - Yue Gao
- Department of Pharmacology and Toxicology , Beijing Institute of Radiation Medicine, Beijing, China.
| | - Zengchun Ma
- Department of Pharmacology and Toxicology , Beijing Institute of Radiation Medicine, Beijing, China.
| |
Collapse
|
3
|
Huang M, Ye A, Zhang H, Chen J, Yang T, Wei X, Gao Y, Ma Z. Ferulic Acid Alleviates Radiation-Induced Immune Damage by Acting on JAK/STAT Signaling Pathway. Pharmaceuticals (Basel) 2024; 17:1175. [PMID: 39338337 PMCID: PMC11434775 DOI: 10.3390/ph17091175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
The disruption of hematopoietic and immune functions is a significant consequence of the long-term effects of radiation exposure. This study investigated the potential mechanisms by which ferulic acid (FA) acts as a radioprotective agent in mitigating radiation-induced immune damage. C57BL/6J mice were exposed to a dose of 6.0 Gy of 60Co γ irradiation. FA was administered at doses of 25, 50, and 100 mg/kg/d for 7 days before and 30 days following irradiation. We evaluated changes in peripheral blood cells, T and B lymphocytes, natural killer cells in the spleen, and hematopoietic stem/progenitor cells in the bone marrow (BM). Whole-genome transcriptome sequencing of BM was performed to explore potential mechanisms. FA administration resulted in a significant reduction in malonaldehyde levels (p < 0.0001), an increase in catalase and beta-nicotinamide adenine dinucleotide levels in serum (p < 0.05), and enhanced multipotent progenitors (p < 0.01) and common lymphoid progenitors (p < 0.05) in the BM. Additionally, there was an elevation in white blood cell levels, red blood cell levels, and hemoglobin levels in peripheral blood (p < 0.01). Transcriptome analysis indicated that FA reversed the radiation-induced expression of genes related to immunity and inflammation. Enzyme-linked immunosorbent assay experiments further demonstrated that FA reduced interleukin-6 levels in the BM and decreased JAK1, JAK2, and STAT3 protein content (p < 0.01). In conclusion, FA might mitigate hematopoietic and immune damage by modulating the JAK/STAT signaling pathway.
Collapse
Affiliation(s)
- Mingyue Huang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Anping Ye
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
- Department of Pharmaceutical Sciences, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China
| | - Haoyu Zhang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Junru Chen
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Tingyu Yang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
- Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Xue Wei
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
- Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Yue Gao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Zengchun Ma
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| |
Collapse
|
4
|
Hei Y, Du J, Deng Z, Deng Y, Guan Y, Yang J, Chen S, Zhang Z, Jiang S, Zhang Q. Therapeutic Effects of PEG-Modified Polyamide Amine Dendrimer for Cell Free DNA Adsorption in Temporomandibular Joint Osteoarthritis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:39153-39164. [PMID: 39018481 DOI: 10.1021/acsami.4c08569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Temporomandibular joint osteoarthritis (TMJ OA) is characterized by the degeneration of cartilage and subchondral bone. In this study, we observed a significant increase in cell-free DNA (cfDNA) levels during the progression of TMJ OA. Bioinformatics analysis identified TLR9 as a pivotal molecule in TMJ OA pathogenesis. The polyamidoamine (PAMAM) dendrimer characterized by a well-structured, highly branched, and reactive nature, exhibits robust binding and clearance capabilities for cfDNA. However, the abundant amino groups on the surface of PAMAM lead to its inherent toxicity. To mitigate this, PEG-5000 was conjugated to the surface of PAMAM dendrimers, enhancing safety. Our results indicate that PEG-PAMAM effectively inhibits the upregulation of the TLR9 protein in TMJ OA, significantly suppressing the activation of the p-IκBα/p-NF-κB signaling pathway and subsequently decreasing chondrocyte inflammation and apoptosis, as evidenced by both in vivo and in vitro experiments. We conclude that PEG-PAMAM is a safe and effective material for in vivo applications, offering a promising therapeutic strategy for TMJ OA by targeting cfDNA clearance.
Collapse
Affiliation(s)
- Yuzhuo Hei
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510140, China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Jingyi Du
- Department of Anesthesiology, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, People's Republic of China
| | - Zhizhao Deng
- Department of Anesthesiology, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, People's Republic of China
| | - Yifan Deng
- Department of Anesthesiology, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, People's Republic of China
| | - Yu Guan
- Department of Anesthesiology, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, People's Republic of China
| | - Jing Yang
- Department of Anesthesiology, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, People's Republic of China
| | - Sufang Chen
- Department of Anesthesiology, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, People's Republic of China
| | - Ziyi Zhang
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510140, China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Siqing Jiang
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510140, China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Qingbin Zhang
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510140, China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| |
Collapse
|
5
|
Abstract
This review delves into the rapidly evolving landscape of liquid biopsy technologies based on cell-free DNA (cfDNA) and cell-free RNA (cfRNA) and their increasingly prominent role in precision medicine. With the advent of high-throughput DNA sequencing, the use of cfDNA and cfRNA has revolutionized noninvasive clinical testing. Here, we explore the physical characteristics of cfDNA and cfRNA, present an overview of the essential engineering tools used by the field, and highlight clinical applications, including noninvasive prenatal testing, cancer testing, organ transplantation surveillance, and infectious disease testing. Finally, we discuss emerging technologies and the broadening scope of liquid biopsies to new areas of diagnostic medicine.
Collapse
Affiliation(s)
- Conor Loy
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA;
| | - Lauren Ahmann
- Department of Pathology, Stanford University, Stanford, California, USA;
| | - Iwijn De Vlaminck
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA;
| | - Wei Gu
- Department of Pathology, Stanford University, Stanford, California, USA;
| |
Collapse
|
6
|
Wang J, Gao W, Yu H, Xu Y, Bai C, Cong Q, Zhu Y. Research Progress on the Role of Epigenetic Methylation Modification in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2024; 11:1143-1156. [PMID: 38911291 PMCID: PMC11192199 DOI: 10.2147/jhc.s458734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/30/2024] [Indexed: 06/25/2024] Open
Abstract
Hepatocellular carcinoma (HCC) stands as the prevailing form of primary liver cancer, characterized by a poor prognosis and high mortality rate. A pivotal factor in HCC tumorigenesis is epigenetics, specifically the regulation of gene expression through methylation. This process relies significantly on the action of proteins that modify methylation, including methyltransferases, their associated binding proteins, and demethylases. These proteins are crucial regulators, orchestrating the methylation process by regulating enzymes and their corresponding binding proteins. This orchestration facilitates the reading, binding, detection, and catalysis of gene methylation sites. Methylation ences the development, prolisignificantly influferation, invasion, and prognosis of HCC. Furthermore, methylation modification and its regulatory mechanisms activate distinct biological characteristics in HCC cancer stem cells, such as inducing cancer-like differentiation of stem cells. They also influence the tumor microenvironment (TME) in HCC, modulate immune responses, affect chemotherapy resistance in HCC patients, and contribute to HCC progression through signaling pathway feedback. Given the essential role of methylation in genetic information, it holds promise as a potential tool for the early detection of HCC and as a target to improve drug resistance and promote apoptosis in HCC cells.
Collapse
Affiliation(s)
- Jing Wang
- Infectious Department, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Wenyue Gao
- Infectious Department, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Hongbo Yu
- Infectious Department, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Yuting Xu
- Infectious Department, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Changchuan Bai
- Internal Department of Chinese Medicine, Dalian Hospital of Traditional Chinese Medicine, Dalian, Liaoning, 116013, People’s Republic of China
| | - Qingwei Cong
- Infectious Department, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Ying Zhu
- Infectious Department, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| |
Collapse
|
7
|
Ghoshal A, Verma A, Bhaskar A, Dwivedi VP. The uncharted territory of host-pathogen interaction in tuberculosis. Front Immunol 2024; 15:1339467. [PMID: 38312835 PMCID: PMC10834760 DOI: 10.3389/fimmu.2024.1339467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/03/2024] [Indexed: 02/06/2024] Open
Abstract
Mycobacterium tuberculosis (M.tb) effectively manipulates the host processes to establish the deadly respiratory disease, Tuberculosis (TB). M.tb has developed key mechanisms to disrupt the host cell health to combat immune responses and replicate efficaciously. M.tb antigens such as ESAT-6, 19kDa lipoprotein, Hip1, and Hsp70 destroy the integrity of cell organelles (Mitochondria, Endoplasmic Reticulum, Nucleus, Phagosomes) or delay innate/adaptive cell responses. This is followed by the induction of cellular stress responses in the host. Such cells can either undergo various cell death processes such as apoptosis or necrosis, or mount effective immune responses to clear the invading pathogen. Further, to combat the infection progression, the host secretes extracellular vesicles such as exosomes to initiate immune signaling. The exosomes can contain M.tb as well as host cell-derived peptides that can act as a double-edged sword in the immune signaling event. The host-symbiont microbiota produces various metabolites that are beneficial for maintaining healthy tissue microenvironment. In juxtaposition to the above-mentioned mechanisms, M.tb dysregulates the gut and respiratory microbiome to support its replication and dissemination process. The above-mentioned interconnected host cellular processes of Immunometabolism, Cellular stress, Host Microbiome, and Extracellular vesicles are less explored in the realm of exploration of novel Host-directed therapies for TB. Therefore, this review highlights the intertwined host cellular processes to control M.tb survival and showcases the important factors that can be targeted for designing efficacious therapy.
Collapse
Affiliation(s)
| | | | | | - Ved Prakash Dwivedi
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
8
|
Avni B, Neiman D, Shaked E, Gal-Rosenberg O, Grisariu S, Kuzli M, Avni I, Fracchia A, Stepensky P, Zuckerman T, Lev-Sagie A, Fox-Fisher I, Piyanzin S, Moss J, Salpeter SJ, Glaser B, Shemer R, Dor Y. Chronic graft-versus-host disease detected by tissue-specific cell-free DNA methylation biomarkers. J Clin Invest 2024; 134:e163541. [PMID: 37971879 PMCID: PMC10786696 DOI: 10.1172/jci163541] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/14/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Accurate detection of graft-versus-host disease (GVHD) is a major challenge in the management of patients undergoing hematopoietic stem cell transplantation (HCT). Here, we demonstrated the use of circulating cell-free DNA (cfDNA) for detection of tissue turnover and chronic GVHD (cGVHD) in specific organs. METHODS We established a cocktail of tissue-specific DNA methylation markers and used it to determine the concentration of cfDNA molecules derived from the liver, skin, lungs, colon, and specific immune cells in 101 patients undergoing HCT. RESULTS Patients with active cGVHD showed elevated concentrations of cfDNA, as well as tissue-specific methylation markers that agreed with clinical scores. Strikingly, transplanted patients with no clinical symptoms had abnormally high levels of tissue-specific markers, suggesting hidden tissue turnover even in the absence of evident clinical pathology. An integrative model taking into account total cfDNA concentration, monocyte/macrophage cfDNA levels and alanine transaminase was able to correctly identify GVHD with a specificity of 86% and precision of 89% (AUC of 0.8). CONCLUSION cfDNA markers can be used for the detection of cGVHD, opening a window into underlying tissue dynamics in patients that receive allogeneic stem cell transplants. FUNDING This work was supported by grants from the Ernest and Bonnie Beutler Research Program of Excellence in Genomic Medicine, The Israel Science Foundation, the Waldholtz/Pakula family, the Robert M. and Marilyn Sternberg Family Charitable Foundation and the Helmsley Charitable Trust (to YD).
Collapse
Affiliation(s)
- Batia Avni
- Bone Marrow Transplantation and Cancer Immunotherapy Department, Hadassah University Medical Center and Faculty of Medicine, the Hebrew University, Jerusalem, Israel
| | - Daniel Neiman
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, the Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Elior Shaked
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, the Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Ofer Gal-Rosenberg
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, the Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Sigal Grisariu
- Bone Marrow Transplantation and Cancer Immunotherapy Department, Hadassah University Medical Center and Faculty of Medicine, the Hebrew University, Jerusalem, Israel
| | - Mona Kuzli
- Bone Marrow Transplantation and Cancer Immunotherapy Department, Hadassah University Medical Center and Faculty of Medicine, the Hebrew University, Jerusalem, Israel
| | - Ilai Avni
- Faculty of Data and Decision Sciences, Institute of Technology — Technion, Haifa, Israel
| | - Andrea Fracchia
- Bone Marrow Transplantation and Cancer Immunotherapy Department, Hadassah University Medical Center and Faculty of Medicine, the Hebrew University, Jerusalem, Israel
| | - Polina Stepensky
- Bone Marrow Transplantation and Cancer Immunotherapy Department, Hadassah University Medical Center and Faculty of Medicine, the Hebrew University, Jerusalem, Israel
| | - Tsila Zuckerman
- Hematology Institute and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel
| | - Ahinoam Lev-Sagie
- Department of Obstetrics and Gynecology, Hadassah University Medical Center and Faculty of Medicine, the Hebrew University, Jerusalem, Israel
| | - Ilana Fox-Fisher
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, the Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Sheina Piyanzin
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, the Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Joshua Moss
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, the Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Seth J. Salpeter
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, the Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Benjamin Glaser
- Endocrinology and Metabolism Service, Hadassah University Medical Center and Faculty of Medicine, the Hebrew University, Jerusalem, Israel
| | - Ruth Shemer
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, the Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Yuval Dor
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, the Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
9
|
Salvioli S, Basile MS, Bencivenga L, Carrino S, Conte M, Damanti S, De Lorenzo R, Fiorenzato E, Gialluisi A, Ingannato A, Antonini A, Baldini N, Capri M, Cenci S, Iacoviello L, Nacmias B, Olivieri F, Rengo G, Querini PR, Lattanzio F. Biomarkers of aging in frailty and age-associated disorders: State of the art and future perspective. Ageing Res Rev 2023; 91:102044. [PMID: 37647997 DOI: 10.1016/j.arr.2023.102044] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023]
Abstract
According to the Geroscience concept that organismal aging and age-associated diseases share the same basic molecular mechanisms, the identification of biomarkers of age that can efficiently classify people as biologically older (or younger) than their chronological (i.e. calendar) age is becoming of paramount importance. These people will be in fact at higher (or lower) risk for many different age-associated diseases, including cardiovascular diseases, neurodegeneration, cancer, etc. In turn, patients suffering from these diseases are biologically older than healthy age-matched individuals. Many biomarkers that correlate with age have been described so far. The aim of the present review is to discuss the usefulness of some of these biomarkers (especially soluble, circulating ones) in order to identify frail patients, possibly before the appearance of clinical symptoms, as well as patients at risk for age-associated diseases. An overview of selected biomarkers will be discussed in this regard, in particular we will focus on biomarkers related to metabolic stress response, inflammation, and cell death (in particular in neurodegeneration), all phenomena connected to inflammaging (chronic, low-grade, age-associated inflammation). In the second part of the review, next-generation markers such as extracellular vesicles and their cargos, epigenetic markers and gut microbiota composition, will be discussed. Since recent progresses in omics techniques have allowed an exponential increase in the production of laboratory data also in the field of biomarkers of age, making it difficult to extract biological meaning from the huge mass of available data, Artificial Intelligence (AI) approaches will be discussed as an increasingly important strategy for extracting knowledge from raw data and providing practitioners with actionable information to treat patients.
Collapse
Affiliation(s)
- Stefano Salvioli
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | | | - Leonardo Bencivenga
- Department of Translational Medical Sciences, University of Naples Federico II, Napoli, Italy
| | - Sara Carrino
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy
| | - Maria Conte
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy
| | - Sarah Damanti
- IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, Milano, Italy
| | - Rebecca De Lorenzo
- IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, Milano, Italy
| | - Eleonora Fiorenzato
- Parkinson's Disease and Movement Disorders Unit, Center for Rare Neurological Diseases (ERN-RND), Department of Neurosciences, University of Padova, Padova, Italy
| | - Alessandro Gialluisi
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy; EPIMED Research Center, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Assunta Ingannato
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy; IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Angelo Antonini
- Parkinson's Disease and Movement Disorders Unit, Center for Rare Neurological Diseases (ERN-RND), Department of Neurosciences, University of Padova, Padova, Italy; Center for Neurodegenerative Disease Research (CESNE), Department of Neurosciences, University of Padova, Padova, Italy
| | - Nicola Baldini
- IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Miriam Capri
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy
| | - Simone Cenci
- IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, Milano, Italy
| | - Licia Iacoviello
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy; EPIMED Research Center, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Benedetta Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy; IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Ancona, Italy; Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, University of Naples Federico II, Napoli, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Scientific Institute of Telese Terme, Telese Terme, Italy
| | | | | |
Collapse
|