1
|
Pappaianni E, Borsarini B, Berchio C, Aicoboaie S, Konstantopoulou SV, Van de Van de Ville D, Micali N. Neurobiology and Cognition in Girls at High-Risk of Eating Disorders: Exploring Imaging-Derived Trait Markers. EUROPEAN EATING DISORDERS REVIEW 2025. [PMID: 40275482 DOI: 10.1002/erv.3203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/26/2025]
Abstract
BACKGROUND Eating disorders (EDs) are serious psychiatric disorders characterized by impairments in neurocognition and altered brain structure. To date the majority of studies have investigated these in acutely ill or recovered individuals. Studying children at familial high risk (FHR) for psychiatric disorders allows investigating vulnerability traits or trait markers that may be present before disorder onset. Our study is the first one to examine executive function and brain structure in girls at FHR for ED (Anorexia Nervosa, Bulimia Nervosa, and Binge Eating Disorder) compared to controls (girls not at familial high risk - HC). METHODS Forty-six (46) FHR girls (median age: 10.5 years, range: 9) and 50 HC girls (median age: 12 years, range: 8) completed a battery of neuropsychological tests assessing cognitive flexibility, inhibitory control, and working memory. Structural magnetic resonance imaging assessed grey matter volume (GMV) and cortical thickness (CT). RESULTS Girls at FHR for ED performed a higher number of errors in a cognitive flexibility task compared to HC (β = 0.15, p < 0.05). They also had increased GMV in posterior regions such as the right supramarginal gyrus, middle occipital gyrus, and lingual/fusiform gyrus compared to HC (p < 0.05 cluster-level FWE-corrected), as well as increased CT in the left transverse pole (p < 0.001) and right posterior cingulate cortex (p < 0.05). CONCLUSIONS Girls at FHR show characteristic neurocognitive performance similar to that seen in individuals with ED, as well as differences in brain structure compared to HC. Our findings, together with previous evidence, highlight impairment in cognitive flexibility as a possible trait marker of ED. Further longitudinal studies are needed to confirm differences in GMV and CT identified in this study.
Collapse
Affiliation(s)
- E Pappaianni
- Center for Eating and Feeding Disorders Research (CEDaR), Mental Health Center Ballerup, Copenhagen University Hospital-Mental Health Services CPH, Copenhagen, Denmark
| | - B Borsarini
- Network Plasticity Modulation (NetPM) Lab, Department of Clinical Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - C Berchio
- Department of Translational Biomedicine and Neuroscience, Group of Psychiatric Neuroscience, University of Bari, Bari, Italy
| | - S Aicoboaie
- Center for Eating and Feeding Disorders Research (CEDaR), Mental Health Center Ballerup, Copenhagen University Hospital-Mental Health Services CPH, Copenhagen, Denmark
- Institute of Biological Psychiatry, Mental Health Centre Sct Hans, Copenhagen University Hospital - Mental Health Services, Copenhagen, Denmark
| | - S V Konstantopoulou
- Network Plasticity Modulation (NetPM) Lab, Department of Clinical Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - D Van de Van de Ville
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
| | - N Micali
- Center for Eating and Feeding Disorders Research (CEDaR), Mental Health Center Ballerup, Copenhagen University Hospital-Mental Health Services CPH, Copenhagen, Denmark
- Institute of Biological Psychiatry, Mental Health Centre Sct Hans, Copenhagen University Hospital - Mental Health Services, Copenhagen, Denmark
- Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
2
|
Gao H, Chen S, Wang L, Shih PAB. The Impact of Age on Gray Matter Volume Reduction in Anorexia Nervosa: A Systematic Review. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.03.25322748. [PMID: 40093206 PMCID: PMC11908339 DOI: 10.1101/2025.03.03.25322748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Objective This study examines the relationship between gray matter (GM) volume reduction and age in individuals with Anorexia Nervosa (AN). Specifically, it investigates whether the magnitude and direction of GM volume differences between AN and healthy controls remain consistent across a range of age groups. Additionally, we reviewed regional GM alterations reported in the literature to characterize unique regional brain profiles observed in AN. By synthesizing neuroimaging studies and mean-age stratified analysis, this work provides insights into the possible impact aging can have on GM reduction in patients with AN. Methods Systematic review and meta-analysis were conducted using MRI-based neuroimaging studies assessing GM volume in AN patients and controls. A primary meta-analysis was run for all feasible studies combined, followed by a stratified analysis approach examining "younger mean-age" studies and "older mean-age" studies separately. Random effects models were used for the meta-analysis. Meta-regression was used to determine the influence of age on GM volume differences and was controlled for the body mass index to minimize the confounding effect recovery status has on the GM differences between groups. Regional GM alterations were reviewed and discussed. Results 44 studies, including 1391 individuals with AN and 1566 healthy controls, were included in the primary meta-analysis. No substantial heterogeneity was found across studies. Compared to their respective control groups, the younger-age studies, defined by studies with AN subject of mean age less than 18, exhibited greater significant GM volume loss (-5.39, 95% CI: -7.76 to -3.01, p<0.05) compared to older-age studies (-3.09, 95% CI: -4.16 to -2.03, p<0.05). Meta-regression subgroup results suggest that having older age in AN subjects is linked to less severe GM reduction relative controls. Our review of the regional GM literature reveals that alterations in the hippocampus, amygdala, and precuneus of the medial parietal lobe were more frequently reported than other brain regions in AN. In these regions, we also noticed that younger individuals with AN had more consistent volume reductions across studies, whereas studies with older AN showed greater variability. Conclusion Grey matter volume loss in AN is more pronounced in younger patients even after controlling for the effect of the recovery status. Having older age appears to contribute to less deficit in brain volume loss in AN, suggesting a protective mechanism underlying GM alteration in older AN patients. These findings reinforce the need for early intervention and prolonged recovery support and emphasize the need to develop lifespan-specific disorder management approaches. Future research should explore long-term GM recovery trajectories and the aging effect on GM alteration for older patients to refine strategies for neuroprotection in AN.
Collapse
Affiliation(s)
- Huaze Gao
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Shuo Chen
- School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada
| | - Lei Wang
- Psychiatry and Behavioral Health, Neuroscience Ohio State University, Columbus, OH, United States
| | - Pei-An Betty Shih
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
3
|
Chen X, Ai C, Liu Z, Wang G. Neuroimaging studies of resting-state functional magnetic resonance imaging in eating disorders. BMC Med Imaging 2024; 24:265. [PMID: 39375605 PMCID: PMC11460144 DOI: 10.1186/s12880-024-01432-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 09/18/2024] [Indexed: 10/09/2024] Open
Abstract
Eating disorders (EDs), including anorexia nervosa (AN), bulimia nervosa (BN), binge-eating disorder (BED), and pica, are psychobehavioral conditions characterized by abnormal eating behaviors and an excessive preoccupation with weight and body shape. This review examines changes in brain regions and functional connectivity in ED patients over the past decade (2013-2023) using resting-state functional magnetic resonance imaging (rs-fMRI). Key findings highlight alterations in brain networks such as the default mode network (DMN), central executive network (CEN), and emotion regulation network (ERN). In individuals with AN, there is reduced functional connectivity in areas associated with facial information processing and social cognition, alongside increased connectivity in regions linked to sensory stimulation, aesthetic judgment, and social anxiety. Conversely, BED patients show diminished connectivity in the dorsal anterior cingulate cortex within the salience network and increased connectivity in the posterior cingulate cortex and medial prefrontal cortex within the DMN. These findings suggest that rs-fMRI could serve as a valuable biomarker for assessing brain function and predicting treatment outcomes in EDs, paving the way for personalized therapeutic strategies.
Collapse
Affiliation(s)
- Xiong Chen
- Capital Medical University, Beijing Anding Hospital, Beijing Key Laboratory of Diagnosis and Treatment of Mental Disorders, National Clinical Medical Research Center for Mental Disorders, Beijing, 100088, China
- Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Chunqi Ai
- Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Zhongchun Liu
- RenMin Hospital of Wuhan University, Wuhan, 430060, China
| | - Gang Wang
- Capital Medical University, Beijing Anding Hospital, Beijing Key Laboratory of Diagnosis and Treatment of Mental Disorders, National Clinical Medical Research Center for Mental Disorders, Beijing, 100088, China.
| |
Collapse
|
4
|
Wang Y, Xie M, Zheng L, Ma J, Wang M, Zhang L. Associations between parental rearing style and amygdala and hippocampal subfield abnormalities in drug-naive females with anorexia nervosa. BMC Psychiatry 2024; 24:648. [PMID: 39358695 PMCID: PMC11445996 DOI: 10.1186/s12888-024-06120-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Altered volumes in the hippocampus and amygdala have been linked to anorexia nervosa (AN). This study aimed to investigate amygdala and hippocampal subfields volume abnormalities in AN patients, and their associations with parental rearing practices and clinical psychological characteristics. METHODS This study included twenty-nine drug-naive females with AN from West China Hospital of Sichuan University, China, and fifty-nine age- and gender-matched healthy controls (HCs) recruited through advertisement. All participants underwent T1-weighted imaging. Amygdala and hippocampal subfields volume was calculated using FreeSurfer 7.0. The Core Self-Evaluation Scale (CSES) and Rosenberg Self-Esteem Scale (RSES) were used to assess the psychological characteristics of AN patients. The Egna Minnen av Barndoms Uppfostran (EMBU) was employed to evaluate parental rearing practices. Group differences in brain volumes were analyzed with covariates like age and total intracranial volume (TIV). Partial correlation analysis explored the correlations between brain region volumes and clinical psychological characteristics. RESULTS AN patients exhibited lower RSES and CSES scores, and more adverse parental rearing style than healthy norms. After adjusting for covariates, AN patients showed decreased gray matter volume (GMV) in the left medial (Me) and cortical (Co) nucleus, as well as in the right hippocampal-amygdala transition area (HATA). GMV in the left Me was correlated with years of education among HCs but not among AN patients. GMV in the right HATA was positively correlated with paternal penalty and severity, as well as maternal overinterference. CONCLUSION This study supports structure abnormalities in amygdala and hippocampus in AN patients and suggests that parental rearing practices may be associated with hippocampal abnormalities, potentially contributing to the pathophysiology of AN. Addressing appropriate parental rearing styles may offer a positive impact on AN.
Collapse
Affiliation(s)
- Yu Wang
- Mental Health Center, West China Hospital of Sichuan University, Dianxin South Street, 28#, Wuhou District, Chengdu, Sichuan, 610041, P. R. China
| | - Min Xie
- Mental Health Center, West China Hospital of Sichuan University, Dianxin South Street, 28#, Wuhou District, Chengdu, Sichuan, 610041, P. R. China
| | - Linli Zheng
- Mental Health Center, West China Hospital of Sichuan University, Dianxin South Street, 28#, Wuhou District, Chengdu, Sichuan, 610041, P. R. China
| | - Jing Ma
- Mental Health Center, West China Hospital of Sichuan University, Dianxin South Street, 28#, Wuhou District, Chengdu, Sichuan, 610041, P. R. China
| | - Meiou Wang
- Mental Health Center, West China Hospital of Sichuan University, Dianxin South Street, 28#, Wuhou District, Chengdu, Sichuan, 610041, P. R. China
| | - Lan Zhang
- Mental Health Center, West China Hospital of Sichuan University, Dianxin South Street, 28#, Wuhou District, Chengdu, Sichuan, 610041, P. R. China.
| |
Collapse
|
5
|
Abellaneda-Pérez K, Delgado-Martínez I, Salgado P, Ginés JM, Guardiola R, Vaqué-Alcázar L, Roca-Ventura A, Molist-Puigdomènech R, Manero RM, Viles-Garcia M, Medrano-Martorell S, Bartrés-Faz D, Pascual-Leone A, Pérez-Solà V, Villalba-Martínez G. Structural connectivity modifications following deep brain stimulation of the subcallosal cingulate and nucleus accumbens in severe anorexia nervosa. Acta Neurochir (Wien) 2024; 166:364. [PMID: 39261306 DOI: 10.1007/s00701-024-06258-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/24/2024] [Indexed: 09/13/2024]
Abstract
PURPOSE Anorexia nervosa (AN) is a mental health disorder characterized by significant weight loss and associated medical and psychological comorbidities. Conventional treatments for severe AN have shown limited effectiveness, leading to the exploration of novel interventional strategies, including deep brain stimulation (DBS). However, the neural mechanisms driving DBS interventions, particularly in psychiatric conditions, remain uncertain. This study aims to address this knowledge gap by examining changes in structural connectivity in patients with severe AN before and after DBS. METHODS Sixteen participants, including eight patients with AN and eight controls, underwent baseline T1-weigthed and diffusion tensor imaging (DTI) acquisitions. Patients received DBS targeting either the subcallosal cingulate (DBS-SCC, N = 4) or the nucleus accumbens (DBS-NAcc, N = 4) based on psychiatric comorbidities and AN subtype. Post-DBS neuroimaging evaluation was conducted in four patients. Data analyses were performed to compare structural connectivity between patients and controls and to assess connectivity changes after DBS intervention. RESULTS Baseline findings revealed that structural connectivity is significantly reduced in patients with AN compared to controls, mainly regarding callosal and subcallosal white matter (WM) tracts. Furthermore, pre- vs. post-DBS analyses in AN identified a specific increase after the intervention in two WM tracts: the anterior thalamic radiation and the superior longitudinal fasciculus-parietal bundle. CONCLUSIONS This study supports that structural connectivity is highly compromised in severe AN. Moreover, this investigation preliminarily reveals that after DBS of the SCC and NAcc in severe AN, there are WM modifications. These microstructural plasticity adaptations may signify a mechanistic underpinning of DBS in this psychiatric disorder.
Collapse
Affiliation(s)
- Kilian Abellaneda-Pérez
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain
- Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Spain
- Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Ignacio Delgado-Martínez
- Human Anatomy and Embryology Unit, Department of Morphological Sciences, Faculty of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Purificación Salgado
- Institut de Neuropsiquiatria i Addiccions (INAD), Hospital del Mar, Barcelona, Spain
| | - José María Ginés
- Institut de Neuropsiquiatria i Addiccions (INAD), Hospital del Mar, Barcelona, Spain
| | - Rocío Guardiola
- Institut de Neuropsiquiatria i Addiccions (INAD), Hospital del Mar, Barcelona, Spain
| | - Lídia Vaqué-Alcázar
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau-Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alba Roca-Ventura
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain
- Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | | | | | | | | | - David Bartrés-Faz
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institut de Recerca Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Víctor Pérez-Solà
- Institut de Neuropsiquiatria i Addiccions (INAD), Hospital del Mar, Barcelona, Spain
- Grupo de Investigación en Salud Mental del Hospital del Mar Research Institute, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Gloria Villalba-Martínez
- Department of Neurosurgery, Hospital del Mar, Barcelona, Spain.
- Systems Neurologic and Neurotherapeutic Group at Research Institute Hospital del Mar, Barcelona, Spain.
- Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
6
|
Qiu H, Shi M, Zhong Z, Hu H, Sang H, Zhou M, Feng Z. Causal Relationship between Aging and Anorexia Nervosa: A White-Matter-Microstructure-Mediated Mendelian Randomization Analysis. Biomedicines 2024; 12:1874. [PMID: 39200338 PMCID: PMC11351342 DOI: 10.3390/biomedicines12081874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/31/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
This study employed a two-step Mendelian randomization analysis to explore the causal relationship between telomere length, as a marker of aging, and anorexia nervosa and to evaluate the mediating role of changes in the white matter microstructure across different brain regions. We selected genetic variants associated with 675 diffusion magnetic resonance imaging phenotypes representing changes in brain white matter. F-statistics confirmed the validity of the instruments, ensuring robust causal inference. Sensitivity analyses, including heterogeneity tests, horizontal pleiotropy tests, and leave-one-out tests, validated the results. The results show that telomere length is significantly negatively correlated with anorexia nervosa in a unidirectional manner (p = 0.017). Additionally, changes in specific white matter structures, such as the internal capsule, corona radiata, posterior thalamic radiation, left cingulate gyrus, left longitudinal fasciculus, and left forceps minor (p < 0.05), were identified as mediators. These findings enhance our understanding of the neural mechanisms, underlying the exacerbation of anorexia nervosa with aging; emphasize the role of brain functional networks in disease progression; and provide potential biological targets for future therapeutic interventions.
Collapse
Affiliation(s)
- Haoyuan Qiu
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; (H.Q.); (M.S.); (Z.Z.); (H.H.)
| | - Miao Shi
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; (H.Q.); (M.S.); (Z.Z.); (H.H.)
| | - Zicheng Zhong
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; (H.Q.); (M.S.); (Z.Z.); (H.H.)
| | - Haoran Hu
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; (H.Q.); (M.S.); (Z.Z.); (H.H.)
| | - Hunini Sang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China;
| | - Meijuan Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zhijun Feng
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
7
|
Almaghrbi H, Bawadi H. Genetic polymorphisms and their association with neurobiological and psychological factors in anorexia nervosa: a systematic review. Front Psychol 2024; 15:1386233. [PMID: 38979077 PMCID: PMC11229080 DOI: 10.3389/fpsyg.2024.1386233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/29/2024] [Indexed: 07/10/2024] Open
Abstract
Background and aims Anorexia nervosa (AN) is a complex neuropsychiatric disorder. This systematic review synthesizes evidence from diverse studies to assess and investigate the association between gene polymorphisms and psychological and neurobiological factors in patients with AN. Methods A systematic search across PubMed, PsycINFO, Scopus, and Web of Science databases, along with manual searching, was conducted. The review protocol was approved by PROSPERO (CRD42023452548). Out of 1,250 articles, 11 met the inclusion criteria. The quality of eligible articles was assessed using the Newcastle-Ottawa Scale (NOS) tool. The systematic review followed the PRISMA guidelines. Results The serotoninergic system, particularly the 5-HTTLPR polymorphism, is consistently linked to altered connectivity in the ventral attention network, impaired inhibitory control, and increased susceptibility to AN. The 5-HTTLPR polymorphism affects reward processing, motivation, reasoning, working memory, inhibition, and outcome prediction in patients with AN. The dopaminergic system, involving genes like COMT, DRD2, DRD3, and DAT1, regulates reward, motivation, and decision-making. Genetic variations in these dopaminergic genes are associated with psychological manifestations and clinical severity in patients with AN. Across populations, the Val66Met polymorphism in the BDNF gene influences personality traits, eating behaviors, and emotional responses. Genes like OXTR, TFAP2B, and KCTD15 are linked to social cognition, emotional processing, body image concerns, and personality dimensions in patients with AN. Conclusion There was an association linking multiple genes to the susceptibly and/or severity of AN. This genetic factor contributes to the complexity of AN and leads to higher diversity of its clinical presentation. Therefore, conducting more extensive research to elucidate the underlying mechanisms of anorexia nervosa pathology is imperative for advancing our understanding and potentially developing targeted therapeutic interventions for the disorder.Systematic review registration: [https://clinicaltrials.gov/], identifier [CRD42023452548].
Collapse
Affiliation(s)
- Heba Almaghrbi
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Hiba Bawadi
- Department of Human Nutrition, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
8
|
Reilly EE, Brown TA, Frank GKW. Perceptual Dysfunction in Eating Disorders. Curr Top Behav Neurosci 2024:10.1007/7854_2024_470. [PMID: 38730196 PMCID: PMC11551252 DOI: 10.1007/7854_2024_470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Eating disorders (EDs) are characterized by abnormal responses to food and weight-related stimuli and are associated with significant distress, impairment, and poor outcomes. Because many of the cardinal symptoms of EDs involve disturbances in perception of one's body or abnormal affective or cognitive reactions to food intake and how that affects one's size, there has been longstanding interest in characterizing alterations in sensory perception among differing ED diagnostic groups. Within the current review, we aimed to critically assess the existing research on exteroceptive and interoceptive perception and how sensory perception may influence ED behavior. Overall, existing research is most consistent regarding alterations in taste, visual, tactile, and gastric-specific interoceptive processing in EDs, with emerging work indicating elevated respiratory and cardiovascular sensitivity. However, this work is far from conclusive, with most studies unable to speak to the precise etiology of observed perceptual differences in these domains and disentangle these effects from affective and cognitive processes observed within EDs. Further, existing knowledge regarding perceptual disturbances in EDs is limited by heterogeneity in methodology, lack of multimodal assessment protocols, and inconsistent attention to different ED diagnoses. We propose several new avenues for improving neurobiology-informed research on sensory processing to generate actionable knowledge that can inform the development of innovative interventions for these serious disorders.
Collapse
Affiliation(s)
- Erin E Reilly
- Department of Psychiatry and Behavioral Science, University of California, San Francisco, San Francisco, CA, USA
| | - Tiffany A Brown
- Department of Psychology, Auburn University, Auburn, AL, USA
| | - Guido K W Frank
- Department of Psychiatry, University of California, San Diego, CA, USA.
| |
Collapse
|
9
|
Kokubun K, Nemoto K, Yamakawa Y. Smartphone app for lifestyle improvement improves brain health and boosts the vitality and cognitive function of healthy middle-aged adults. Brain Behav 2024; 14:e3500. [PMID: 38685801 PMCID: PMC11058401 DOI: 10.1002/brb3.3500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/20/2024] [Accepted: 04/06/2024] [Indexed: 05/02/2024] Open
Abstract
INTRODUCTION The number of smartphone apps for brain training is increasing, and the number of people who are working on brain training is also increasing. However, researchers disagree about the effectiveness of brain training. METHODS Therefore, in this study, we conducted an intervention test with the participation of 70 healthy middle-aged men and women and measured the effect of smartphone apps on lifestyle improvement using brain healthcare quotient calculated from brain imaging data. RESULTS As a result, in the intervention group, significant improvements were seen in fractional anisotropy (FA) of the whole brain, corpus callosum, internal capsule, corona radiata, posterior thalamic radiation, external capsule, and superior longitudinal fasciculus. Additionally, in the intervention group, these FA increments correlated with improvements in cognitive function as measured by the trail-making test and vigor as measured by the Profile of Mood States 2nd Edition. CONCLUSION The results of this study suggest that improving lifestyle habits through smartphone apps can improve brain health and cognitive and emotional performance of healthy middle-aged adults. This is consistent with previous research that suggests that FA integrity in the limbic-thalamo-cortical pathway influences cognitive function and emotion regulation.
Collapse
Affiliation(s)
- Keisuke Kokubun
- Open Innovation InstituteKyoto UniversityKyotoJapan
- Graduate School of ManagementKyoto UniversityKyotoJapan
| | - Kiyotaka Nemoto
- Department of Psychiatry, Institute of MedicineUniversity of TsukubaTsukubaJapan
| | - Yoshinori Yamakawa
- Open Innovation InstituteKyoto UniversityKyotoJapan
- Graduate School of ManagementKyoto UniversityKyotoJapan
- Institute of Innovative Research, Tokyo Institute of TechnologyMeguroTokyoJapan
- ImPACT Program of Council for Science, Technology and Innovation (Cabinet Office, Government of Japan)ChiyodaTokyoJapan
- Office for Academic and Industrial InnovationKobe UniversityKobeJapan
- Brain ImpactKyotoJapan
| |
Collapse
|
10
|
Arold D, Bernardoni F, Geisler D, Doose A, Uen V, Boehm I, Roessner V, King JA, Ehrlich S. Predicting long-term outcome in anorexia nervosa: a machine learning analysis of brain structure at different stages of weight recovery. Psychol Med 2023; 53:7827-7836. [PMID: 37554008 PMCID: PMC10758339 DOI: 10.1017/s0033291723001861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/31/2023] [Accepted: 06/15/2023] [Indexed: 08/10/2023]
Abstract
BACKGROUND Anorexia nervosa (AN) is characterized by sizable, widespread gray matter (GM) reductions in the acutely underweight state. However, evidence for persistent alterations after weight-restoration has been surprisingly scarce despite high relapse rates, frequent transitions to other psychiatric disorders, and generally unfavorable outcome. While most studies investigated brain regions separately (univariate analysis), psychiatric disorders can be conceptualized as brain network disorders characterized by multivariate alterations with only subtle local effects. We tested for persistent multivariate structural brain alterations in weight-restored individuals with a history of AN, investigated their putative biological substrate and relation with 1-year treatment outcome. METHODS We trained machine learning models on regional GM measures to classify healthy controls (HC) (N = 289) from individuals at three stages of AN: underweight patients starting intensive treatment (N = 165, used as baseline), patients after partial weight-restoration (N = 115), and former patients after stable and full weight-restoration (N = 89). Alterations after weight-restoration were related to treatment outcome and characterized both anatomically and functionally. RESULTS Patients could be classified from HC when underweight (ROC-AUC = 0.90) but also after partial weight-restoration (ROC-AUC = 0.64). Alterations after partial weight-restoration were more pronounced in patients with worse outcome and were not detected in long-term weight-recovered individuals, i.e. those with favorable outcome. These alterations were more pronounced in regions with greater functional connectivity, not merely explained by body mass index, and even increases in cortical thickness were observed (insula, lateral orbitofrontal, temporal pole). CONCLUSIONS Analyzing persistent multivariate brain structural alterations after weight-restoration might help to develop personalized interventions after discharge from inpatient treatment.
Collapse
Affiliation(s)
- Dominic Arold
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Fabio Bernardoni
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Daniel Geisler
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Arne Doose
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Volkan Uen
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ilka Boehm
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Veit Roessner
- Eating Disorder Research and Treatment Center, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Joseph A. King
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Stefan Ehrlich
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Eating Disorder Research and Treatment Center, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
11
|
Lloyd EC, Foerde KE, Muratore AF, Aw N, Semanek D, Steinglass JE, Posner J. Large-Scale Exploration of Whole-Brain Structural Connectivity in Anorexia Nervosa: Alterations in the Connectivity of Frontal and Subcortical Networks. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:864-873. [PMID: 35714857 PMCID: PMC11060509 DOI: 10.1016/j.bpsc.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Anorexia nervosa (AN) is characterized by disturbances in cognition and behavior surrounding eating and weight. The severity of AN combined with the absence of localized brain abnormalities suggests distributed, systemic underpinnings that may be identified using diffusion-weighted magnetic resonance imaging and tractography to reconstruct white matter pathways. METHODS Diffusion-weighted magnetic resonance imaging data acquired from female patients with AN (n= 147) and female healthy control (HC) participants (n = 119), ages 12 to 40 years, were combined across 5 studies. Probabilistic tractography was completed, and full-cortex connectomes describing streamline counts between 84 brain regions were generated and harmonized. Graph theory methods were used to describe alterations in network organization in AN. The network-based statistic tested between-group differences in brain subnetwork connectivity. The metrics strength and efficiency indexed the connectivity of brain regions (network nodes) and were compared between groups using multiple linear regression. RESULTS Individuals with AN, relative to HC peers, had reduced connectivity in a network comprising subcortical regions and greater connectivity between frontal cortical regions (p < .05, familywise error corrected). Node-based analyses indicated reduced connectivity of the left hippocampus in patients relative to HC peers (p < .05, permutation corrected). Severity of illness, assessed by body mass index, was associated with subcortical connectivity (p < .05, uncorrected). CONCLUSIONS Analyses identified reduced structural connectivity of subcortical networks and regions, and stronger cortical network connectivity, among individuals with AN relative to HC peers. These findings are consistent with alterations in feeding, emotion, and executive control circuits in AN, and may direct hypothesis-driven research into mechanisms of persistent restrictive eating behavior.
Collapse
Affiliation(s)
- E Caitlin Lloyd
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York; New York State Psychiatric Institute, New York, New York.
| | - Karin E Foerde
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York; New York State Psychiatric Institute, New York, New York; Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
| | - Alexandra F Muratore
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York; New York State Psychiatric Institute, New York, New York
| | - Natalie Aw
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York; New York State Psychiatric Institute, New York, New York
| | - David Semanek
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York; New York State Psychiatric Institute, New York, New York
| | - Joanna E Steinglass
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York; New York State Psychiatric Institute, New York, New York
| | - Jonathan Posner
- Department of Psychiatry, Duke University, Durham, North Carolina
| |
Collapse
|
12
|
Guo J, Yu K, Dong SS, Yao S, Rong Y, Wu H, Zhang K, Jiang F, Chen YX, Guo Y, Yang TL. Mendelian randomization analyses support causal relationships between brain imaging-derived phenotypes and risk of psychiatric disorders. Nat Neurosci 2022; 25:1519-1527. [PMID: 36216997 DOI: 10.1038/s41593-022-01174-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 08/29/2022] [Indexed: 01/13/2023]
Abstract
Observational studies have reported the correlations between brain imaging-derived phenotypes (IDPs) and psychiatric disorders; however, whether the relationships are causal is uncertain. We conducted bidirectional two-sample Mendelian randomization (MR) analyses to explore the causalities between 587 reliable IDPs (N = 33,224 individuals) and 10 psychiatric disorders (N = 9,725 to 161,405). We identified nine IDPs for which there was evidence of a causal influence on risk of schizophrenia, anorexia nervosa and bipolar disorder. For example, 1 s.d. increase in the orientation dispersion index of the forceps major was associated with 32% lower odds of schizophrenia risk. Reverse MR indicated that only genetically predicted schizophrenia was positively associated with two IDPs, the cortical surface area and the volume of the right pars orbitalis. We established the BrainMR database ( http://www.bigc.online/BrainMR/ ) to share our results. Our findings provide potential strategies for the prediction and intervention for psychiatric disorder risk at the brain-imaging level.
Collapse
Affiliation(s)
- Jing Guo
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Ke Yu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Shan-Shan Dong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Shi Yao
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Yu Rong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Hao Wu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Kun Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Feng Jiang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Yi-Xiao Chen
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Yan Guo
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P. R. China.
| | - Tie-Lin Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P. R. China.
| |
Collapse
|
13
|
Walton E, Bernardoni F, Batury VL, Bahnsen K, Larivière S, Abbate-Daga G, Andres-Perpiña S, Bang L, Bischoff-Grethe A, Brooks SJ, Campbell IC, Cascino G, Castro-Fornieles J, Collantoni E, D'Agata F, Dahmen B, Danner UN, Favaro A, Feusner JD, Frank GKW, Friederich HC, Graner JL, Herpertz-Dahlmann B, Hess A, Horndasch S, Kaplan AS, Kaufmann LK, Kaye WH, Khalsa SS, LaBar KS, Lavagnino L, Lazaro L, Manara R, Miles AE, Milos GF, Monteleone AM, Monteleone P, Mwangi B, O'Daly O, Pariente J, Roesch J, Schmidt UH, Seitz J, Shott ME, Simon JJ, Smeets PAM, Tamnes CK, Tenconi E, Thomopoulos SI, van Elburg AA, Voineskos AN, von Polier GG, Wierenga CE, Zucker NL, Jahanshad N, King JA, Thompson PM, Berner LA, Ehrlich S. Brain Structure in Acutely Underweight and Partially Weight-Restored Individuals With Anorexia Nervosa: A Coordinated Analysis by the ENIGMA Eating Disorders Working Group. Biol Psychiatry 2022; 92:730-738. [PMID: 36031441 DOI: 10.1016/j.biopsych.2022.04.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/01/2022] [Accepted: 04/28/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND The pattern of structural brain abnormalities in anorexia nervosa (AN) is still not well understood. While several studies report substantial deficits in gray matter volume and cortical thickness in acutely underweight patients, others find no differences, or even increases in patients compared with healthy control subjects. Recent weight regain before scanning may explain some of this heterogeneity. To clarify the extent, magnitude, and dependencies of gray matter changes in AN, we conducted a prospective, coordinated meta-analysis of multicenter neuroimaging data. METHODS We analyzed T1-weighted structural magnetic resonance imaging scans assessed with standardized methods from 685 female patients with AN and 963 female healthy control subjects across 22 sites worldwide. In addition to a case-control comparison, we conducted a 3-group analysis comparing healthy control subjects with acutely underweight AN patients (n = 466) and partially weight-restored patients in treatment (n = 251). RESULTS In AN, reductions in cortical thickness, subcortical volumes, and, to a lesser extent, cortical surface area were sizable (Cohen's d up to 0.95), widespread, and colocalized with hub regions. Highlighting the effects of undernutrition, these deficits were associated with lower body mass index in the AN sample and were less pronounced in partially weight-restored patients. CONCLUSIONS The effect sizes observed for cortical thickness deficits in acute AN are the largest of any psychiatric disorder investigated in the ENIGMA (Enhancing Neuro Imaging Genetics through Meta Analysis) Consortium to date. These results confirm the importance of considering weight loss and renutrition in biomedical research on AN and underscore the importance of treatment engagement to prevent potentially long-lasting structural brain changes in this population.
Collapse
Affiliation(s)
- Esther Walton
- Department of Psychology, University of Bath, Bath, United Kingdom
| | - Fabio Bernardoni
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Victoria-Luise Batury
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Klaas Bahnsen
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Sara Larivière
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec
| | - Giovanni Abbate-Daga
- Eating Disorders Center for Treatment and Research, University of Turin, Turin, Italy
| | - Susana Andres-Perpiña
- Department of Child and Adolescent Psychiatry and Psychology, Institut Clinic de Neurociències, Hospital Clínic Universitari, Centro de Investigación Biomédica en Red de Salud Mental, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Lasse Bang
- Norwegian Institute of Public Health, Oslo; Regional Department for Eating Disorders, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Amanda Bischoff-Grethe
- Department of Psychiatry, University of California San Diego, La Jolla, California; Eating Disorders Center for Treatment and Research, University of California San Diego, La Jolla, California
| | - Samantha J Brooks
- School of Psychology, Faculty of Health Sciences, Liverpool John Moores University, Liverpool, United Kingdom; Department of Neuroscience, Uppsala University, Sweden
| | - Iain C Campbell
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Eating Disorders Unit, Department of Psychological Medicine, King's College London, London, United Kingdom
| | - Giammarco Cascino
- Section of Neurosciences, Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Salerno, Italy
| | - Josefina Castro-Fornieles
- Department of Child and Adolescent Psychiatry and Psychology, Institut Clinic de Neurociències, Hospital Clínic Universitari, Centro de Investigación Biomédica en Red de Salud Mental, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | | | | | - Brigitte Dahmen
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Unna N Danner
- Altrecht Eating Disorders Rintveld, Altrecht Mental Health Institute, Zeist, the Netherlands; Faculty of Social Sciences, Utrecht University, Utrecht, the Netherlands
| | - Angela Favaro
- Department of Neuroscience, University of Padova, Padova, Italy; Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Jamie D Feusner
- Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, California
| | - Guido K W Frank
- Department of Psychiatry, University of California San Diego, La Jolla, California; Eating Disorders Center for Treatment and Research, University of California San Diego, La Jolla, California
| | - Hans-Christoph Friederich
- Centre for Psychosocial Medicine, Department of General Internal Medicine and Psychosomatics, University Hospital Heidelberg, Heidelberg, Germany
| | - John L Graner
- Center for Cognitive Neuroscience, Duke University, Durham, North Carolina
| | - Beate Herpertz-Dahlmann
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Andreas Hess
- Institute for Pharmacology and Toxicology, University Erlangen-Nuremberg, Erlangen, Germany
| | - Stefanie Horndasch
- Department of Child and Adolescent Psychiatry, University Clinic Erlangen, Erlangen, Germany
| | - Allan S Kaplan
- Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - Lisa-Katrin Kaufmann
- Department of Consultation-Liaison Psychiatry and Psychosomatics, University Hospital Zurich, University of Zurich; Division of Neuropsychology, Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Walter H Kaye
- Department of Psychiatry, University of California San Diego, La Jolla, California; Eating Disorders Center for Treatment and Research, University of California San Diego, La Jolla, California
| | - Sahib S Khalsa
- Laureate Institute for Brain Research, University of Tulsa, Tulsa, Oklahoma; Oxley College of Health Sciences, University of Tulsa, Tulsa, Oklahoma
| | - Kevin S LaBar
- Center for Cognitive Neuroscience, Duke University, Durham, North Carolina
| | - Luca Lavagnino
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston Texas
| | - Luisa Lazaro
- Department of Child and Adolescent Psychiatry and Psychology, Institut Clinic de Neurociències, Hospital Clínic Universitari, Centro de Investigación Biomédica en Red de Salud Mental, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Renzo Manara
- Department of Neuroscience, University of Padova, Padova, Italy
| | - Amy E Miles
- Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - Gabriella F Milos
- Department of Consultation-Liaison Psychiatry and Psychosomatics, University Hospital Zurich, University of Zurich
| | | | - Palmiero Monteleone
- Section of Neurosciences, Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Salerno, Italy
| | - Benson Mwangi
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston Texas
| | - Owen O'Daly
- Centre for Neuroimaging Studies, King's College London, London, United Kingdom; Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Jose Pariente
- Magnetic Resonance Image Core Facility, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Julie Roesch
- Department of Neuroradiology, University Clinic Erlangen, Erlangen, Germany
| | - Ulrike H Schmidt
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Eating Disorders Unit, Department of Psychological Medicine, King's College London, London, United Kingdom
| | - Jochen Seitz
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Megan E Shott
- Department of Psychiatry, University of California San Diego, La Jolla, California; Eating Disorders Center for Treatment and Research, University of California San Diego, La Jolla, California
| | - Joe J Simon
- Centre for Psychosocial Medicine, Department of General Internal Medicine and Psychosomatics, University Hospital Heidelberg, Heidelberg, Germany
| | - Paul A M Smeets
- UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands; Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Christian K Tamnes
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Elena Tenconi
- Department of Neuroscience, University of Padova, Padova, Italy; Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, California
| | - Annemarie A van Elburg
- Altrecht Eating Disorders Rintveld, Altrecht Mental Health Institute, Zeist, the Netherlands; Faculty of Social Sciences, Utrecht University, Utrecht, the Netherlands
| | - Aristotle N Voineskos
- Campbell Family Mental Health Research Institute, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Georg G von Polier
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany; Institute for Neuroscience and Medicine: Brain and Behaviour, Forschungszentrum Jülich, Jülich, Germany; Department of Child and Adolescent Psychiatry, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Christina E Wierenga
- Department of Psychiatry, University of California San Diego, La Jolla, California; Eating Disorders Center for Treatment and Research, University of California San Diego, La Jolla, California
| | - Nancy L Zucker
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, California
| | - Joseph A King
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, California
| | - Laura A Berner
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Stefan Ehrlich
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany; Eating Disorders Research and Treatment Center, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
14
|
Bahnsen K, Bernardoni F, King JA, Geisler D, Weidner K, Roessner V, Patel Y, Paus T, Ehrlich S. Dynamic Structural Brain Changes in Anorexia Nervosa: A Replication Study, Mega-analysis, and Virtual Histology Approach. J Am Acad Child Adolesc Psychiatry 2022; 61:1168-1181. [PMID: 35390458 DOI: 10.1016/j.jaac.2022.03.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 02/07/2022] [Accepted: 03/28/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Several, but not all, previous studies of brain structure in anorexia nervosa (AN) have reported reductions in gray matter volume and cortical thickness (CT) in acutely underweight patients, which seem to reverse upon weight gain. The biological mechanisms underlying these dynamic alterations remain unclear. METHOD In this structural magnetic resonance imaging study, we first replicated and extended previous results in (1) a larger independent sample of 75 acutely underweight adolescent and young adult female patients with AN (acAN; n = 54 rescanned longitudinally after partial weight restoration), 34 weight-recovered individuals with a history of AN (recAN), and 139 healthy controls (HC); and 2) a greater combined sample compiled of both our previous samples and the present replication sample (120 acAN [90 rescanned longitudinally], 68 recAN, and 207 HC). Next, we applied a "virtual histology" approach to the combined data, investigating relations between interregional profiles of differences in CT and profiles of cell-specific gene expression. Finally, we used the ENIGMA toolbox to relate aforementioned CT profiles to normative structural and functional connectomics. RESULTS We confirmed sizeable and widespread reductions of CT as well as volumes (and, to a lesser extent, surface area) in acAN and rapid increases related to partial weight restoration. No differences were detected between either short- or long-term weight-recovered patients and HC. The virtual histology analysis identified associations between gene expression profiles of S1 pyramidal cells and oligodendrocytes and brain regions with more marked differences in CT, whereas the remaining regions were those with a greater expression of genes specific to CA1 pyramidal, astrocytes, microglia, and ependymal cells. Furthermore, the most affected regions were also more functionally and structurally connected. CONCLUSION The overall data pattern deviates from findings in other psychiatric disorders. Both virtual histology and connectomics analyses indicated that brain regions most affected in AN are also the most energetically demanding.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tomáš Paus
- University of Toronto, Canada; University of Montreal, Canada
| | | |
Collapse
|
15
|
Maier S, Joos A, Tebartz van Elst L, Ebert D, Endres D, Domschke K, Lahmann C, Zeeck A, Runge K, Denzel D, Reisert M, Nickel K. Reduced structural connectivity in the corpus callosum in patients with anorexia nervosa. EUROPEAN EATING DISORDERS REVIEW 2022; 30:341-352. [DOI: 10.1002/erv.2894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Simon Maier
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine University of Freiburg Freiburg Germany
| | - Andreas Joos
- Department of Psychosomatic Medicine and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine University of Freiburg Freiburg Germany
| | - Ludger Tebartz van Elst
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine University of Freiburg Freiburg Germany
| | - Dieter Ebert
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine University of Freiburg Freiburg Germany
| | - Dominique Endres
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine University of Freiburg Freiburg Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine University of Freiburg Freiburg Germany
- Center for Basics in Neuromodulation, Faculty of Medicine University of Freiburg Freiburg Germany
| | - Claas Lahmann
- Department of Psychosomatic Medicine and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine University of Freiburg Freiburg Germany
| | - Almut Zeeck
- Department of Psychosomatic Medicine and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine University of Freiburg Freiburg Germany
| | - Kimon Runge
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine University of Freiburg Freiburg Germany
| | - Dominik Denzel
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine University of Freiburg Freiburg Germany
| | - Marco Reisert
- Department of Radiology, Medical Physics, Medical Center – University of Freiburg, Faculty of Medicine University of Freiburg Freiburg Germany
| | - Kathrin Nickel
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine University of Freiburg Freiburg Germany
| |
Collapse
|
16
|
Laczkovics C, Nenning KH, Wittek T, Schmidbauer V, Schwarzenberg J, Maurer ES, Wagner G, Seidel S, Philipp J, Prayer D, Kasprian G, Karwautz A. White matter integrity is disrupted in adolescents with acute anorexia nervosa: A diffusion tensor imaging study. Psychiatry Res Neuroimaging 2022; 320:111427. [PMID: 34952446 DOI: 10.1016/j.pscychresns.2021.111427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/30/2022]
Abstract
Anorexia nervosa (AN) is a highly debilitating mental illness with multifactorial etiology. It oftentimes begins in adolescence, therefore understanding the pathophysiology in this period is important. Few studies investigated the possible impact of the acute state of illness on white matter (WM) tissue properties in the developing adolescent brain. The present study expands our understanding of the implications of AN and starvation on WM integrity. 67 acutely ill adolescent patients suffering from AN restricting type were compared with 32 healthy controls using diffusion tensor imaging assessing fractional anisotropy (FA) and mean diffusivity (MD). We found widespread alterations in the vast majority of the WM regions with significantly decreased FA and increased MD in the AN group. In this highly selective sample in the acute stage of AN, the alterations are likely to be the consequence of starvation. Still, we cannot rule out that some of the affected regions might play a key role in AN-specific psychopathology.
Collapse
Affiliation(s)
- Clarissa Laczkovics
- Eating Disorders Unit, Department of Child and Adolescent Psychiatry, Medical University of Vienna, Austria.
| | - Karl-Heinz Nenning
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Austria
| | - Tanja Wittek
- Eating Disorders Unit, Department of Child and Adolescent Psychiatry, Medical University of Vienna, Austria
| | - Victor Schmidbauer
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Austria
| | - Julia Schwarzenberg
- Eating Disorders Unit, Department of Child and Adolescent Psychiatry, Medical University of Vienna, Austria
| | - Elisabeth Sophie Maurer
- Eating Disorders Unit, Department of Child and Adolescent Psychiatry, Medical University of Vienna, Austria
| | - Gudrun Wagner
- Eating Disorders Unit, Department of Child and Adolescent Psychiatry, Medical University of Vienna, Austria
| | - Stefan Seidel
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Austria
| | - Julia Philipp
- Eating Disorders Unit, Department of Child and Adolescent Psychiatry, Medical University of Vienna, Austria
| | - Daniela Prayer
- Department of Neurology, Medical University of Vienna, Austria
| | - Gregor Kasprian
- Department of Neurology, Medical University of Vienna, Austria
| | - Andreas Karwautz
- Eating Disorders Unit, Department of Child and Adolescent Psychiatry, Medical University of Vienna, Austria
| |
Collapse
|
17
|
Geisler D, King JA, Bahnsen K, Bernardoni F, Doose A, Müller DK, Marxen M, Roessner V, van den Heuvel M, Ehrlich S. Altered White Matter Connectivity in Young Acutely Underweight Patients With Anorexia Nervosa. J Am Acad Child Adolesc Psychiatry 2022; 61:331-340. [PMID: 33989747 DOI: 10.1016/j.jaac.2021.04.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 04/07/2021] [Accepted: 04/30/2021] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Reductions of gray matter volume and cortical thickness in anorexia nervosa (AN) are well documented. However, findings regarding the integrity of white matter (WM) as studied via diffusion weighted imaging (DWI) are remarkably heterogeneous, and WM connectivity has been examined only in small samples using a limited number of regions of interest. The present study investigated whole-brain WM connectivity for the first time in a large sample of acutely underweight patients with AN. METHOD DWI data from predominantly adolescent patients with acute AN (n = 96, mean age = 16.3 years) and age-matched healthy control participants (n = 96, mean age = 17.2 years) were analyzed. WM connectivity networks were generated from fiber-tractography-derived streamlines connecting 233 cortical/subcortical regions. To identify group differences, network-based statistic was used while taking head motion, WM, and ventricular volume into account. RESULTS Patients with AN were characterized by 6 WM subnetworks with abnormal architecture, as indicated by increased fractional anisotropy located primarily in parietal-occipital regions and accompanied by reduced radial diffusivity. Group differences based on number of streamlines reached only nominal significance. CONCLUSION Our study reveals pronounced alterations in the WM connectome in young patients with AN. In contrast to known reductions in gray matter in the acutely underweight state of AN, this pattern does not necessarily indicate a deterioration of the WM network. Future studies using advanced MRI sequences will have to clarify interrelations with axonal packing or myelination, and whether the changes should be considered a consequence of undernutrition or a vulnerability for developing or maintaining AN.
Collapse
Affiliation(s)
- Daniel Geisler
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Joseph A King
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Klaas Bahnsen
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Fabio Bernardoni
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Arne Doose
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Dirk K Müller
- Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Michael Marxen
- Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Veit Roessner
- Child and Adolescent Psychiatry, University Hospital C. G. Carus, Technische Universität Dresden, Dresden, Germany
| | - Martijn van den Heuvel
- Connectome Lab, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Stefan Ehrlich
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany; Eating Disorder Treatment and Research Center, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
18
|
Collantoni E, Alberti F, Meregalli V, Meneguzzo P, Tenconi E, Favaro A. Brain networks in eating disorders: a systematic review of graph theory studies. Eat Weight Disord 2022; 27:69-83. [PMID: 33754274 PMCID: PMC8860943 DOI: 10.1007/s40519-021-01172-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/12/2021] [Indexed: 11/05/2022] Open
Abstract
PURPOSE Recent evidence from neuroimaging research has shown that eating disorders (EDs) are characterized by alterations in interconnected neural systems, whose characteristics can be usefully described by connectomics tools. The present paper aimed to review the neuroimaging literature in EDs employing connectomic tools, and, specifically, graph theory analysis. METHODS A systematic review of the literature was conducted to identify studies employing graph theory analysis on patients with eating disorders published before the 22nd of June 2020. RESULTS Twelve studies were included in the systematic review. Ten of them address anorexia nervosa (AN) (AN = 199; acute AN = 85, weight recovered AN with acute diagnosis = 24; fully recovered AN = 90). The remaining two articles address patients with bulimia nervosa (BN) (BN = 48). Global and regional unbalance in segregation and integration properties were described in both disorders. DISCUSSION The literature concerning the use of connectomics tools in EDs evidenced the presence of alterations in the topological characteristics of brain networks at a global and at a regional level. Changes in local characteristics involve areas that have been demonstrated to be crucial in the neurobiology and pathophysiology of EDs. Regional imbalances in network properties seem to reflect on global patterns. LEVEL OF EVIDENCE Level I, systematic review.
Collapse
Affiliation(s)
- Enrico Collantoni
- Department of Neurosciences, University of Padua, Via Giustiniani, 2, 35128, Padua, Italy.
| | - Francesco Alberti
- Department of Neurosciences, University of Padua, Via Giustiniani, 2, 35128, Padua, Italy
| | - Valentina Meregalli
- Department of Neurosciences, University of Padua, Via Giustiniani, 2, 35128, Padua, Italy
| | - Paolo Meneguzzo
- Department of Neurosciences, University of Padua, Via Giustiniani, 2, 35128, Padua, Italy
| | - Elena Tenconi
- Department of Neurosciences, University of Padua, Via Giustiniani, 2, 35128, Padua, Italy.,Padua Neuroscience Center, University of Padua, Padua, Italy
| | - Angela Favaro
- Department of Neurosciences, University of Padua, Via Giustiniani, 2, 35128, Padua, Italy.,Padua Neuroscience Center, University of Padua, Padua, Italy
| |
Collapse
|
19
|
Tadayonnejad R, Majid DA, Tsolaki E, Rane R, Wang H, Moody TD, Pauli WM, Pouratian N, Bari AA, Murray SB, O'Doherty JP, Feusner JD. Mesolimbic Neurobehavioral Mechanisms of Reward Motivation in Anorexia Nervosa: A Multimodal Imaging Study. Front Psychiatry 2022; 13:806327. [PMID: 35321230 PMCID: PMC8934777 DOI: 10.3389/fpsyt.2022.806327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/10/2022] [Indexed: 01/04/2023] Open
Abstract
Diminished motivation to pursue and obtain primary and secondary rewards has been demonstrated in anorexia nervosa (AN). However, the neurobehavioral mechanisms underlying the behavioral activation component of aberrant reward motivation remains incompletely understood. This work aims to explore this underexplored facet of reward motivation in AN. We recruited female adolescents with AN, restricting type (n = 32) and a healthy control group (n = 28). All participants underwent functional magnetic resonance imaging (fMRI) while performing a monetary reward task. Diffusion MRI data was also collected to examine the reward motivation circuit's structural connectivity. Behavioral results demonstrated slower speed of reward-seeking behavior in those with AN compared with controls. Accompanying this was lower functional connectivity and reduced white matter structural integrity of the connection between the ventral tegmental area/substantia nigra pars compacta and the nucleus accumbens within the mesolimbic circuit. Further, there was evidence of neurobehavioral decoupling in AN between reward-seeking behavior and mesolimbic regional activation and functional connectivity. Aberrant activity of the bed nucleus of the stria terminalis (BNST) and its connectivity with the mesolimbic system was also evident in AN during the reward motivation period. Our findings suggest functional and structural dysconnectivity within a mesolimbic reward circuit, neurofunctional decoupling from reward-seeking behavior, and abnormal BNST function and circuit interaction with the mesolimbic system. These results show behavioral indicators of aberrant reward motivation in AN, particularly in its activational component. This is mediated neuronally by mesolimbic reward circuit functional and structural dysconnectivity as well as neurobehavioral decoupling. Based on these findings, we suggest a novel circuit-based mechanism of impaired reward processing in AN, with the potential for translation to developing more targeted and effective treatments in this difficult-to-treat psychiatric condition.
Collapse
Affiliation(s)
- Reza Tadayonnejad
- Division of Neuromodulation, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States.,Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, United States
| | - Ds-Adnan Majid
- Cognitive Neuroscience, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| | - Evangelia Tsolaki
- Department of Neursurgery, University of California, Los Angeles, Los Angeles, CA, United States
| | - Riddhi Rane
- Cognitive Neuroscience, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| | - Huan Wang
- Cognitive Neuroscience, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| | - Teena D Moody
- Cognitive Neuroscience, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| | - Wolfgang M Pauli
- Artificial Intelligence Platform, Microsoft, Redmon, WA, United States
| | - Nader Pouratian
- Department of Neursurgery, University of California, Los Angeles, Los Angeles, CA, United States.,University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Ausaf A Bari
- Department of Neursurgery, University of California, Los Angeles, Los Angeles, CA, United States
| | - Stuart B Murray
- Department of Psychiatry and the Behavioral Sciences, University of Southern California, Los Angeles, CA, United States
| | - John P O'Doherty
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, United States.,Computation & Neural Systems Program, California Institute of Technology, Pasadena, CA, United States
| | - Jamie D Feusner
- Cognitive Neuroscience, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States.,Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
20
|
Mishima R, Isobe M, Noda T, Tose K, Kawabata M, Noma S, Murai T. Structural brain changes in severe and enduring anorexia nervosa: A multimodal magnetic resonance imaging study of gray matter volume, cortical thickness, and white matter integrity. Psychiatry Res Neuroimaging 2021; 318:111393. [PMID: 34670165 DOI: 10.1016/j.pscychresns.2021.111393] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 10/20/2022]
Abstract
Whole-brain T1-weighted imaging and diffusion tensor imaging was performed in 35 adult women with anorexia nervosa (AN) and 35 healthy controls. We conducted voxel-based group comparisons for gray matter volume (GMV), cortical thickness (CT), and fractional anisotropy (FA) values, using age and total intracranial volume as nuisance covariates. We then conducted the same group comparisons for these three measures, but this time also controlled for the following global pathological measures: total GMV, mean CT across the whole brain, and mean FA across the entire white matter skeleton. Compared with the healthy controls, AN patients had lower GMV and CT in widespread cortical regions, and smaller FA values in widespread white matter regions. After controlling for global parameters, almost all of the differences between the two groups disappeared, except for higher CT in the medial orbital gyrus and parietal operculum in the AN group. Structural brain changes in AN are likely to be composed of both global and region-specific changes. The former changes are likely to have a dominant impact, while the latter changes might in part explain the disease-specific pathophysiology of AN.
Collapse
Affiliation(s)
- Ryo Mishima
- Department of Psychiatry, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawaracho, Sakyo-ku, Kyoto, Japan
| | - Masanori Isobe
- Department of Psychiatry, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawaracho, Sakyo-ku, Kyoto, Japan.
| | - Tomomi Noda
- Department of Psychiatry, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawaracho, Sakyo-ku, Kyoto, Japan
| | - Keima Tose
- Department of Psychiatry, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawaracho, Sakyo-ku, Kyoto, Japan
| | - Michiko Kawabata
- Department of Psychiatry, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawaracho, Sakyo-ku, Kyoto, Japan
| | - Shun'ichi Noma
- Department of Psychiatry, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawaracho, Sakyo-ku, Kyoto, Japan; Noma Kokoro Clinic, 5-322-1 Fukakusa-Sujikaibashi, Fushimi-ku, Kyoto, Japan
| | - Toshiya Murai
- Department of Psychiatry, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawaracho, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
21
|
Kappou K, Ntougia M, Kourtesi A, Panagouli E, Vlachopapadopoulou E, Michalacos S, Gonidakis F, Mastorakos G, Psaltopoulou T, Tsolia M, Bacopoulou F, Sergentanis TN, Tsitsika A. Neuroimaging Findings in Adolescents and Young Adults with Anorexia Nervosa: A Systematic Review. CHILDREN (BASEL, SWITZERLAND) 2021; 8:137. [PMID: 33673193 PMCID: PMC7918703 DOI: 10.3390/children8020137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Anorexia nervosa (AN) is a serious, multifactorial mental disorder affecting predominantly young females. This systematic review examines neuroimaging findings in adolescents and young adults up to 24 years old, in order to explore alterations associated with disease pathophysiology. METHODS Eligible studies on structural and functional brain neuroimaging were sought systematically in PubMed, CENTRAL and EMBASE databases up to 5 October 2020. RESULTS Thirty-three studies were included, investigating a total of 587 patients with a current diagnosis of AN and 663 healthy controls (HC). Global and regional grey matter (GM) volume reduction as well as white matter (WM) microstructure alterations were detected. The mainly affected regions were the prefrontal, parietal and temporal cortex, hippocampus, amygdala, insula, thalamus and cerebellum as well as various WM tracts such as corona radiata and superior longitudinal fasciculus (SLF). Regarding functional imaging, alterations were pointed out in large-scale brain networks, such as default mode network (DMN), executive control network (ECN) and salience network (SN). Most findings appear to reverse after weight restoration. Specific limitations of neuroimaging studies in still developing individuals are also discussed. CONCLUSIONS Structural and functional alterations are present in the early course of the disease, most of them being partially or totally reversible. Nonetheless, neuroimaging findings have been open to many biological interpretations. Thus, more studies are needed to clarify their clinical significance.
Collapse
Affiliation(s)
- Kalliopi Kappou
- MSc “Strategies of Developmental and Adolescent Health”, 2nd Department of Pediatrics, “P. & A. Kyriakou” Children’s Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (K.K.); (M.N.); (A.K.); (E.P.); (T.P.); (M.T.); (T.N.S.)
| | - Myrto Ntougia
- MSc “Strategies of Developmental and Adolescent Health”, 2nd Department of Pediatrics, “P. & A. Kyriakou” Children’s Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (K.K.); (M.N.); (A.K.); (E.P.); (T.P.); (M.T.); (T.N.S.)
| | - Aikaterini Kourtesi
- MSc “Strategies of Developmental and Adolescent Health”, 2nd Department of Pediatrics, “P. & A. Kyriakou” Children’s Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (K.K.); (M.N.); (A.K.); (E.P.); (T.P.); (M.T.); (T.N.S.)
| | - Eleni Panagouli
- MSc “Strategies of Developmental and Adolescent Health”, 2nd Department of Pediatrics, “P. & A. Kyriakou” Children’s Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (K.K.); (M.N.); (A.K.); (E.P.); (T.P.); (M.T.); (T.N.S.)
| | - Elpis Vlachopapadopoulou
- Department of Endocrinology-Growth and Development, “P. & A. Kyriakou” Children’s Hospital, 115 27 Athens, Greece; (E.V.); (S.M.)
| | - Stefanos Michalacos
- Department of Endocrinology-Growth and Development, “P. & A. Kyriakou” Children’s Hospital, 115 27 Athens, Greece; (E.V.); (S.M.)
| | - Fragiskos Gonidakis
- First Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, 115 28 Athens, Greece;
| | - Georgios Mastorakos
- Unit of Endocrinology, Diabetes Mellitus and Metabolism, Aretaieion Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 28 Athens, Greece;
| | - Theodora Psaltopoulou
- MSc “Strategies of Developmental and Adolescent Health”, 2nd Department of Pediatrics, “P. & A. Kyriakou” Children’s Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (K.K.); (M.N.); (A.K.); (E.P.); (T.P.); (M.T.); (T.N.S.)
- Department of Clinical Therapeutics, “Alexandra” Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 28 Athens, Greece
| | - Maria Tsolia
- MSc “Strategies of Developmental and Adolescent Health”, 2nd Department of Pediatrics, “P. & A. Kyriakou” Children’s Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (K.K.); (M.N.); (A.K.); (E.P.); (T.P.); (M.T.); (T.N.S.)
| | - Flora Bacopoulou
- Center for Adolescent Medicine and UNESCO Chair Adolescent Health Care, First Department of Pediatrics, “Agia Sophia” Children’s Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece;
| | - Theodoros N. Sergentanis
- MSc “Strategies of Developmental and Adolescent Health”, 2nd Department of Pediatrics, “P. & A. Kyriakou” Children’s Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (K.K.); (M.N.); (A.K.); (E.P.); (T.P.); (M.T.); (T.N.S.)
- Department of Clinical Therapeutics, “Alexandra” Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 28 Athens, Greece
| | - Artemis Tsitsika
- MSc “Strategies of Developmental and Adolescent Health”, 2nd Department of Pediatrics, “P. & A. Kyriakou” Children’s Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (K.K.); (M.N.); (A.K.); (E.P.); (T.P.); (M.T.); (T.N.S.)
| |
Collapse
|
22
|
Myrvang AD, Vangberg TR, Stedal K, Rø Ø, Endestad T, Rosenvinge JH, Aslaksen PM. Cerebral cortical thickness and surface area in adolescent anorexia nervosa: Separate and joint analyses with a permutation-based nonparametric method. Int J Eat Disord 2020; 54:561-568. [PMID: 33350512 DOI: 10.1002/eat.23448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/12/2020] [Accepted: 12/07/2020] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Reduction in cerebral volume is often found in underweight patients with anorexia nervosa (AN), but few studies have investigated other morphological measures. Cortical thickness (CTh) and surface area (CSA), often used to produce the measure of cortical volume, are developmentally distinct measures that may be differentially affected in AN, particularly in the developing brain. In the present study, we investigated CTh and CSA both separately and jointly to gain further insight into structural alterations in adolescent AN patients. METHOD Thirty female AN inpatients 12-18 years of age, and 27 age-matched healthy controls (HC) underwent structural magnetic resonance imaging. Group differences in CTh and CSA were investigated separately and jointly with a permutation-based nonparametric combination method (NPC) which may be more sensitive in detecting group differences compared to traditional volumetric methods. RESULTS Results showed significant reduction in in both CTh and CSA in several cortical regions in AN compared to HC and the reduction was related to BMI. Different results for the two morphological measures were found in a small number of cortical regions. The joint NPC analyses showed significant group differences across most of the cortical mantle. DISCUSSION Results from this study give novel insight to areal reduction in adolescent AN patients and indicate that both CTh and CSA reduction is related to BMI. The study is the first to use the NPC method to reveal large structural alterations covering most of the brain in adolescent AN.
Collapse
Affiliation(s)
- Anna D Myrvang
- Department of psychology, Faculty of Health Sciences, UiT The Artic University of Norway, Tromsø, Norway
| | - Torgil R Vangberg
- Department of Clinical Medicine, University Hospital of North Norway, Tromsø, Norway
- PET Center, University Hospital of North Norway, Tromsø, Norway
| | - Kristin Stedal
- Regional Department for Eating Disorders, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Øyvind Rø
- Regional Department for Eating Disorders, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Tor Endestad
- Department of Psychology, Faculty of Social Sciences, University of Oslo, Oslo, Norway
| | - Jan H Rosenvinge
- Department of psychology, Faculty of Health Sciences, UiT The Artic University of Norway, Tromsø, Norway
| | - Per M Aslaksen
- Department of psychology, Faculty of Health Sciences, UiT The Artic University of Norway, Tromsø, Norway
- Regional Center for Eating Disorders, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
23
|
Keeler J, Patsalos O, Thuret S, Ehrlich S, Tchanturia K, Himmerich H, Treasure J. Hippocampal volume, function, and related molecular activity in anorexia nervosa: A scoping review. Expert Rev Clin Pharmacol 2020; 13:1367-1387. [PMID: 33176113 DOI: 10.1080/17512433.2020.1850256] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/06/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Anorexia nervosa (AN) is a serious and persistent eating disorder, characterized by severe dietary restriction and weight loss, with a third of patients developing a severe-enduring form. The factors contributing to this progression are poorly understood, although there is evidence for impairments in neural structures such as the hippocampus, an area particularly affected by malnutrition and chronic stress. AREAS COVERED This study aimed to map the evidence for alterations in hippocampal volume, function, and related molecular activity in anorexia nervosa. PubMed, PsycINFO, and Web of Science were searched for studies related to hippocampal function and integrity using a range of methodologies, such as neuropsychological paradigms, structural and functional magnetic resonance imaging, and analysis of blood components. EXPERT OPINION Thirty-nine studies were included in this review. The majority were neuroimaging studies, which found hippocampus-specific volumetric and functional impairments. Neuropsychological studies showed evidence for a specific memory and learning impairments. There was some evidence for molecular abnormalities (e.g. cortisol), although these were few studies. Taken together, our review suggests that the hippocampus might be a particular region of interest when considering neurobiological approaches to understanding AN. These findings warrant further investigation and may lead to novel treatment approaches.
Collapse
Affiliation(s)
- Johanna Keeler
- Department of Psychological Medicine, King's College London, Institute of Psychiatry, Psychology & Neuroscience ,UK
| | - Olivia Patsalos
- Department of Psychological Medicine, King's College London, Institute of Psychiatry, Psychology & Neuroscience ,UK
| | - Sandrine Thuret
- Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology and Neuroscience , UK
| | - Stefan Ehrlich
- Faculty of Medicine, Technische Universitat Dresden, Division of Psychological and Social Medicine and Developmental Neurosciences , Germany
| | - Kate Tchanturia
- Department of Psychological Medicine, King's College London, Institute of Psychiatry, Psychology & Neuroscience ,UK
| | - Hubertus Himmerich
- Department of Psychological Medicine, King's College London, Institute of Psychiatry, Psychology & Neuroscience ,UK
| | - Janet Treasure
- Department of Psychological Medicine, King's College London, Institute of Psychiatry, Psychology & Neuroscience ,UK
| |
Collapse
|
24
|
Breithaupt L, Chunga-Iturry N, Lyall AE, Cetin-Karayumak S, Becker KR, Thomas JJ, Slattery M, Makris N, Plessow F, Pasternak O, Holsen LM, Kubicki M, Misra M, Lawson EA, Eddy KT. Developmental stage-dependent relationships between ghrelin levels and hippocampal white matter connections in low-weight anorexia nervosa and atypical anorexia nervosa. Psychoneuroendocrinology 2020; 119:104722. [PMID: 32512249 PMCID: PMC8629489 DOI: 10.1016/j.psyneuen.2020.104722] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/29/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Disruptions in homeostatic and hedonic food motivation are proposed to underlie anorexia nervosa (AN) and atypical AN, restrictive eating disorders which commonly onset in puberty. Ghrelin, a neuroprotective hormone that drives hedonic eating is increased in AN and is expressed in the hippocampus. White matter (WM) undergoes significant change during puberty in regions involved in food motivation, particularly WM tracts connected with the hippocampus. The association between ghrelin and WM region of interest (ROI) with hippocampal connections in restrictive eating disorders, particularly in adolescence during key neurodevelopmental growth, is unknown. METHODS We evaluated fasting plasma ghrelin and WM microstructure (measured by free-water corrected fractional anisotropy (FA-t)) in WM ROIs with hippocampal connections - the fornix and the hippocampal portion of the cingulum - in 56 adolescent females (age range: 11.9 - 22.1 y; mean: 19.0 y) with low-weight eating disorders including AN and atypical AN (N = 36) and healthy controls (N = 20). RESULTS FA-t in the fornix or hippocampal portion of the fornix did not differ between groups. Ghrelin was higher in AN/atypical AN vs. HC and was positively correlated with puberty stage in the AN/atypical AN group, but not the HC group. The correlation between ghrelin and FA-t in the fornix was significantly different in females with AN/atypical AN compared to controls. In AN/atypical AN, pubertal stage moderated the relation between fasting plasma ghrelin and FA-t in the fornix: higher fasting ghrelin was associated with lower FA-t in the fornix in late-post-puberty, but was not associated with FA-t in the early to mid stages of puberty. CONCLUSIONS In post-pubertal females with low-weight AN/atypical AN, higher levels of ghrelin are associated with lower FA-t in the fornix. This relationship is not evident in the early to mid stages of puberty in AN/atypical AN or in HC, and may reflect a lack of possible neuroprotective effects of ghrelin in late-post puberty only. Understanding the effects of ghrelin on WM microstructure longitudinally and following recovery from AN/Atypical AN and how this differs across pubertal stages will be an important next step. These findings could ultimately inform treatment staging and aid in diagnosis and detection of AN/atypical AN.
Collapse
Affiliation(s)
- Lauren Breithaupt
- Eating Disorders Clinical and Research Program, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Natalia Chunga-Iturry
- Harvard Medical School, Boston, MA, USA; Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, USA
| | - Amanda E Lyall
- Harvard Medical School, Boston, MA, USA; Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, USA
| | - Suheyla Cetin-Karayumak
- Harvard Medical School, Boston, MA, USA; Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, USA
| | - Kendra R Becker
- Eating Disorders Clinical and Research Program, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Jennifer J Thomas
- Eating Disorders Clinical and Research Program, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Meghan Slattery
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Nikos Makris
- Harvard Medical School, Boston, MA, USA; Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, USA; Department of Neurology, Massachusetts General Hospital, Charlestown, MA, United States of America; Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Franziska Plessow
- Harvard Medical School, Boston, MA, USA; Neuroendocrine Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Ofer Pasternak
- Harvard Medical School, Boston, MA, USA; Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, USA; Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Laura M Holsen
- Harvard Medical School, Boston, MA, USA; Division of Women's Health, Brigham and Women's Hospital, Boston, MA, USA
| | - Marek Kubicki
- Harvard Medical School, Boston, MA, USA; Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, USA; Department of Neurology, Massachusetts General Hospital, Charlestown, MA, United States of America; Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Madhusmita Misra
- Harvard Medical School, Boston, MA, USA; Neuroendocrine Unit, Massachusetts General Hospital, Boston, MA, USA; Division of Pediatric Endocrinology, Massachusetts General Hospital, Boston, MA, USA
| | - Elizabeth A Lawson
- Harvard Medical School, Boston, MA, USA; Neuroendocrine Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Kamryn T Eddy
- Eating Disorders Clinical and Research Program, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
25
|
Alfano V, Mele G, Cotugno A, Longarzo M. Multimodal neuroimaging in anorexia nervosa. J Neurosci Res 2020; 98:2178-2207. [PMID: 32770570 DOI: 10.1002/jnr.24674] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/26/2020] [Accepted: 05/25/2020] [Indexed: 12/13/2022]
Abstract
Anorexia nervosa (AN) is a severe and complex psychiatric disorder characterized by intense fear about weight gain and finalized to food-related control behaviors. Growing interest has been demonstrated about neurobiological processes subtend to AN physiopathology. The present review aimed to collect neurostructural and neurofunctional available data from 2010 to 2019. Results have been organized according to the neuroimaging technique employed, also including a specific section on electroencephalographic results, mostly neglected in previous reviews. Diffuse cerebral vulnerability has been demonstrated and the contribution of several structures has been identified. Insula, cingulate cortex, parietal and frontal areas are primarily involved both by structural and functional perspectives. Moreover, consistent alterations in white matter integrity and brain electrical activity have been reported. Neuroimaging findings give a substantial contribution to AN pathophysiological description, also in order to understand altered but reversible processes in the passage from acute illness phase to disorder's remission, useful also for defining therapy.
Collapse
|
26
|
Benear SL, Ngo CT, Olson IR. Dissecting the Fornix in Basic Memory Processes and Neuropsychiatric Disease: A Review. Brain Connect 2020; 10:331-354. [PMID: 32567331 DOI: 10.1089/brain.2020.0749] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: The fornix is the primary axonal tract of the hippocampus, connecting it to modulatory subcortical structures. This review reveals that fornix damage causes cognitive deficits that closely mirror those resulting from hippocampal lesions. Methods: We reviewed the literature on the fornix, spanning non-human animal lesion research, clinical case studies of human patients with fornix damage, as well as diffusion-weighted imaging (DWI) work that evaluates fornix microstructure in vivo. Results: The fornix is essential for memory formation because it serves as the conduit for theta rhythms and acetylcholine, as well as providing mnemonic representations to deep brain structures that guide motivated behavior, such as when and where to eat. In rodents and non-human primates, fornix lesions lead to deficits in conditioning, reversal learning, and navigation. In humans, damage to the fornix manifests as anterograde amnesia. DWI research reveals that the fornix plays a key role in mild cognitive impairment and Alzheimer's Disease, and can potentially predict conversion from the former to the latter. Emerging DWI findings link perturbations in this structure to schizophrenia, mood disorders, and eating disorders. Cutting-edge research has investigated how deep brain stimulation of the fornix can potentially attenuate memory loss, control epileptic seizures, and even improve mood. Conclusions: The fornix is essential to a fully functioning memory system and is implicated in nearly all neurological functions that rely on the hippocampus. Future research needs to use optimized DWI methods to study the fornix in vivo, which we discuss, given the difficult nature of fornix reconstruction. Impact Statement The fornix is a white matter tract that connects the hippocampus to several subcortical brain regions and is pivotal for episodic memory functioning. Functionally, the fornix transmits essential neurotransmitters, as well as theta rhythms, to the hippocampus. In addition, it is the conduit by which memories guide decisions. The fornix is biomedically important because lesions to this tract result in irreversible anterograde amnesia. Research using in vivo imaging methods has linked fornix pathology to cognitive aging, mild cognitive impairment, psychosis, epilepsy, and, importantly, Alzheimer's Disease.
Collapse
Affiliation(s)
- Susan L Benear
- Department of Psychology, Temple University, Philadelphia, Pennsylvania, USA
| | - Chi T Ngo
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Ingrid R Olson
- Department of Psychology, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
27
|
Steinglass JE, Glasofer DR, Dalack M, Attia E. Between wellness, relapse, and remission: Stages of illness in anorexia nervosa. Int J Eat Disord 2020; 53:1088-1096. [PMID: 32031292 PMCID: PMC7384605 DOI: 10.1002/eat.23237] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/20/2020] [Accepted: 01/20/2020] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Psychiatric illnesses, like medical illnesses, can sometimes be considered as progressing through stages. Understanding these stages can lead to a better understanding of pathophysiology, and clarification of prognosis and treatment needs. Opinions from experts in the field of anorexia nervosa (AN) were sought to create a model of stages of illness. METHOD The Delphi approach was used to achieve consensus from a panel of 31 individuals from a range of disciplines with expertise in AN. Over three iterative rounds, participants rated agreement with statements about an overall staging framework and definitions of specific stages. RESULTS Agreement was reached about a longitudinal progression including Subsyndromal, Full Syndrome, Persistent Illness, and Partial and Full Remission. The panel achieved consensus in defining Subsyndromal AN as characterized by body image disturbance and mild to moderate restrictive eating. Overall, there was consensus that restrictive eating is central to the behavioral features of all stages of AN, and agreement that its absence is essential to any stage of health. There was little consensus about biological markers, other than body mass index, and no consensus about quality of life indices associated with different stages. DISCUSSION This panel discussion yielded an expert-informed staging model for AN. This model now needs to be tested for its validity. The lack of consensus in several areas highlighted other research questions to address in order to develop an empirically valid and scientifically useful model of the progression of AN.
Collapse
Affiliation(s)
- Joanna E. Steinglass
- Department of Psychiatry, Columbia University Irving Medical Center & New York State Psychiatric Institute, New York, New York
| | - Deborah R. Glasofer
- Department of Psychiatry, Columbia University Irving Medical Center & New York State Psychiatric Institute, New York, New York
| | - Maya Dalack
- Department of Psychiatry, Columbia University Irving Medical Center & New York State Psychiatric Institute, New York, New York
| | - Evelyn Attia
- Department of Psychiatry, Columbia University Irving Medical Center & New York State Psychiatric Institute, New York, New York,Weill Cornell Medical Center, Presbyterian Hospital, White Plains, New York
| |
Collapse
|
28
|
Insular Cell Integrity Markers Linked to Weight Concern in Anorexia Nervosa-An MR-Spectroscopy Study. J Clin Med 2020; 9:jcm9051292. [PMID: 32365843 PMCID: PMC7288299 DOI: 10.3390/jcm9051292] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/29/2022] Open
Abstract
Objective: An insular involvement in the pathogenesis of anorexia nervosa (AN) has been suggested in many structural and functional neuroimaging studies. This magnetic resonance spectroscopy (MRS) study is the first to investigate metabolic signals in the anterior insular cortex in patients with AN and recovered individuals (REC). Method: The MR spectra of 32 adult women with AN, 21 REC subjects and 33 healthy controls (HC) were quantified for absolute N-acetylaspartate (NAA), glutamate + glutamine (Glx), total choline, myo-inositol, creatine concentrations (mM/L). After adjusting the metabolite concentrations for age and partial gray/white matter volume, group differences were tested using one-way multivariate analyses of variance (MANOVA). Post-hoc analyses of variance were applied to identify those metabolites that showed significant group effects. Correlations were tested for associations with psychometric measures (eating disorder examination), duration of illness, and body mass index. Results: The MANOVA exhibited a significant group effect. The NAA signal was reduced in the AN group compared to the HC group. The REC and the HC groups did not differ in metabolite concentrations. In the AN group, lower NAA and Glx signals were related to increased weight concern. Discussion: We interpret the decreased NAA availability in the anterior insula as a signal of impaired neuronal integrity or density. The association of weight concern, which is a core feature of AN, with decreased NAA and Glx indicates that disturbances of glutamatergic neurotransmission might be related to core psychopathology in AN. The absence of significant metabolic differences between the REC and HC subjects suggests that metabolic alterations in AN represent a state rather than a trait phenomenon.
Collapse
|
29
|
Curzio O, Calderoni S, Maestro S, Rossi G, De Pasquale CF, Belmonti V, Apicella F, Muratori F, Retico A. Lower gray matter volumes of frontal lobes and insula in adolescents with anorexia nervosa restricting type: Findings from a Brain Morphometry Study. Eur Psychiatry 2020; 63:e27. [PMID: 32172703 PMCID: PMC7315882 DOI: 10.1192/j.eurpsy.2020.19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Brain atrophy in anorexia nervosa (AN) is one of the most marked structural brain changes observed in mental disorders. In this study, we propose a whole brain analysis approach to characterize global and regional cerebral volumes in adolescents with restricting-type anorexia nervosa (AN-r). METHODS A total of 48 adolescent females (age range 13-18 years) were enrolled in the study (24 right-handed AN-r in the early stages of the illness and treated in the same clinical setting and 24 age-matched healthy controls [HC]). High-resolution T1-weighted magnetic resonance images were acquired. Cerebral volumes, including the total amounts of gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) were obtained with the Statistical Parametric Mapping software (SPM8); specific cortical regional volumes were computed by applying an atlas-based cortical parcellation to the SPM8 GM segments. Analysis of variance (ANOVA) was performed to identify any significant between-group differences in global and regional brain volumes. RESULTS The analyses revealed reduced total GM volumes (p = 0.02) and increased CSF (p = 0.05) in AN-r, compared with HC. No significant between-group difference was found in WM volumes. At the regional level, significantly lower GM volumes in both frontal lobes (p = 0.006) and in the left insula (p = 0.016) were detected. No significant relationships were found between cerebral volumes and duration of illness, psychiatric comorbidities, psychopharmacological treatment, prepubertal phase, or presence of amenorrhea. CONCLUSIONS The topographic distribution of GM reduction in a homogenous group of AN-r involves regions responsible for the emotional and cognitive deficits associated with the illness. These findings are discussed in relation to the roles of the insular cortex and the frontal lobes.
Collapse
Affiliation(s)
- O Curzio
- Institute of Clinical Physiology of the National Research Council (IFC-CNR), Department of Biomedical Sciences, Pisa, Italy
| | - S Calderoni
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,Department of Developmental Neuroscience - IRCCS Fondazione Stella Maris, Pisa, Italy
| | - S Maestro
- Department of Developmental Neuroscience - IRCCS Fondazione Stella Maris, Pisa, Italy
| | - G Rossi
- Institute of Clinical Physiology of the National Research Council (IFC-CNR), Department of Biomedical Sciences, Pisa, Italy.,G. Monasterio Foundation, Tuscany Region (FTGM), Pisa, Italy
| | - C F De Pasquale
- Department of Developmental Neuroscience - IRCCS Fondazione Stella Maris, Pisa, Italy
| | - V Belmonti
- Department of Developmental Neuroscience - IRCCS Fondazione Stella Maris, Pisa, Italy
| | - F Apicella
- Department of Developmental Neuroscience - IRCCS Fondazione Stella Maris, Pisa, Italy
| | - F Muratori
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,Department of Developmental Neuroscience - IRCCS Fondazione Stella Maris, Pisa, Italy
| | - A Retico
- Pisa Division, INFN - National Institute for Nuclear Physics, Pisa, Italy
| |
Collapse
|
30
|
Zhang S, Wang W, Su X, Li L, Yang X, Su J, Tan Q, Zhao Y, Sun H, Kemp GJ, Gong Q, Yue Q. White Matter Abnormalities in Anorexia Nervosa: Psychoradiologic Evidence From Meta-Analysis of Diffusion Tensor Imaging Studies Using Tract Based Spatial Statistics. Front Neurosci 2020; 14:159. [PMID: 32194371 PMCID: PMC7063983 DOI: 10.3389/fnins.2020.00159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 02/11/2020] [Indexed: 02/05/2023] Open
Abstract
Background: Anorexia nervosa (AN) is a debilitating illness whose neural basis remains unclear. Studies using tract-based spatial statistics (TBSS) with diffusion tensor imaging (DTI) have demonstrated differences in white matter (WM) microarchitecture in AN, but the findings are inconclusive and controversial. Objectives: To identify the most consistent WM abnormalities among previous TBSS studies of differences in WM microarchitecture in AN. Methods: By systematically searching online databases, a total of 11 datasets were identified, including 245 patients with AN and 246 healthy controls (HC). We used Seed-based d Mapping to analyze fractional anisotropy (FA) differences between AN patients and HC, and performed meta-regression analysis to explore the effects of clinical characteristics on WM abnormalities in AN. Results: The pooled results of all AN patients showed robustly lower FA in the corpus callosum (CC) and the cingulum compared to HC. These two regions preserved significance in the sensitivity analysis as well as in all subgroup analyses. Fiber tracking showed that the WM tracts primarily involved were the body of the CC and the cingulum bundle. Meta-regression analysis revealed that the body mass index and mean age were not linearly correlated with the lower FA. Conclusions: The most consistent WM microstructural differences in AN were in the interhemispheric connections and limbic association fibers. These common “targets” advance our understanding of the complex neural mechanisms underlying the puzzling symptoms of AN, and may help in developing early treatment approaches.
Collapse
Affiliation(s)
- Simin Zhang
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Weina Wang
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Xiaorui Su
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Lei Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Xibiao Yang
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Jingkai Su
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Qiaoyue Tan
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Youjin Zhao
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Huaiqiang Sun
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Graham J Kemp
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Qiang Yue
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
31
|
Dufresne L, Bussières EL, Bédard A, Gingras N, Blanchette-Sarrasin A, Bégin PhD C. Personality traits in adolescents with eating disorder: A meta-analytic review. Int J Eat Disord 2020; 53:157-173. [PMID: 31633223 DOI: 10.1002/eat.23183] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 09/12/2019] [Accepted: 09/17/2019] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Given the growing interest in personality traits among the young population with eating disorders (EDs) and the recognition that a better understanding of personality can facilitate clinical management, this meta-analytic study reviewed evidence concerning the relationship between personality traits and the presence of an ED during adolescence. METHOD We conducted a systematic literature search to identify studies that examined personality traits among adolescents with an ED (anorexia nervosa, bulimia nervosa, binge-eating disorder, eating disorder not otherwise specified) and that compared these traits with a normative group without an ED. The personality traits investigated in the selected studies were organized according to the personality trait domains presented in the Diagnostic and Statistical Manual of Mental Disorders (fifth ed.). Effect sizes of the mean differences were calculated for each domain. We performed meta-regressions to assess the moderating effect of ED subtype and age on the combined effect sizes. RESULTS Twenty-six studies met our inclusion criteria, containing a total of 63 effect sizes. Adolescents with EDs differed from the non-ED group according to traits related to negative affectivity (g = 0.78), detachment (g = 0.69), and conscientiousness (g = -0.53). The presence of an anorexia nervosa diagnosis moderated the relationship between an ED and personality traits; this diagnosis was more strongly associated with conscientious traits compared to other EDs. DISCUSSION Our findings provide evidence that personality traits are related to EDs in adolescents. Thus, considering personality traits could lead to a better understanding of etiological and maintenance factors for EDs.
Collapse
Affiliation(s)
- Laurie Dufresne
- School of Psychology, Laval University, Québec, Québec, Canada
| | - Eve-Line Bussières
- Department of Psychology, University of Quebec at Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Alexandra Bédard
- Faculty of Agricultural and Food Sciences, Institute of Nutrition and Functional Food, Laval University, Québec, Québec, Canada
| | - Nathalie Gingras
- Department of Psychiatry, Laval University, Québec, Québec, Canada
| | | | | |
Collapse
|
32
|
Abstract
BACKGROUND Eating disorders are a significant cause of morbidity and mortality. The etiology and maintenance of eating-disorder symptoms are not well understood. Evidence suggests that there may be gustatory alterations in patients with eating disorders. OBJECTIVE This article systematically reviews research assessing gustatory differences in patients with anorexia nervosa (AN), bulimia nervosa (BN), and binge eating disorder (BED). METHOD A systematic review was performed, following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, examining taste and eating disorders. We reviewed electronic databases and identified 1,490 peer-reviewed English-language studies. Of these, 49 met inclusion criteria. RESULTS Studies employed psychophysical measures (n = 27), self-reported questionnaires (n = 5), and neuroimaging techniques (i.e., electroencephalography, functional magnetic resonance imaging; n = 17). Psychophysical studies showed that individuals with BN, in general, had greater preference for sweetness than healthy controls, and those with AN had a greater aversion for fat than controls. In neuroimaging studies, findings suggested that predictable administration of sweet-taste stimuli was associated with reduced activation in taste-reward regions of the brain among individuals with AN (e.g., insula, ventral, and dorsal striatum) but increased activation in BN and BED. DISCUSSION To our knowledge, this systematic review is the first to synthesize literature on taste differences in AN, BN, and BED. The inconsistency and variability in methods used across studies increased difficulties in comparing studies and disease processes. Further studies with well-defined population parameters are warranted to better understand how taste varies in patients with eating disorders.
Collapse
Affiliation(s)
- Ariana M. Chao
- Department of Biobehavioral Health Sciences, The University of Pennsylvania School of Nursing, Philadelphia, PA, USA
- Center for Weight and Eating Disorders, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Abhrarup Roy
- Sensory Science & Metabolism Unit, Biobehavioral Branch, Division of Intramural Research, Department of Health and Human Services, National Institutes of Health, Bethesda, MD, USA
| | - Alexis T. Franks
- Sensory Science & Metabolism Unit, Biobehavioral Branch, Division of Intramural Research, Department of Health and Human Services, National Institutes of Health, Bethesda, MD, USA
| | - Paule V. Joseph
- Sensory Science & Metabolism Unit, Biobehavioral Branch, Division of Intramural Research, Department of Health and Human Services, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
33
|
Kot E, Kucharska K, Monteleone AM, Monteleone P. Structural and functional brain correlates of altered taste processing in anorexia nervosa: A systematic review. EUROPEAN EATING DISORDERS REVIEW 2019; 28:122-140. [DOI: 10.1002/erv.2713] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/30/2019] [Accepted: 11/05/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Emilia Kot
- Faculty of PsychologyUniversity of Warsaw Warsaw Poland
| | | | | | - Palmiero Monteleone
- Department of PsychiatryUniversity of Campania “Luigi Vanvitelli” Naples Italy
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, Section of NeurosciencesUniversity of Salerno Salerno Italy
| |
Collapse
|
34
|
Meneguzzo P, Collantoni E, Solmi M, Tenconi E, Favaro A. Anorexia nervosa and diffusion weighted imaging: An open methodological question raised by a systematic review and a fractional anisotropy anatomical likelihood estimation meta-analysis. Int J Eat Disord 2019; 52:1237-1250. [PMID: 31518016 DOI: 10.1002/eat.23160] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Anorexia nervosa (AN) is characterized by white matter abnormalities in neuroimaging studies. Fractional anisotropy (FA) is a diffusion tensor imaging (DTI) index that is considered an instrument for the evaluation of white matter alterations. However, the literature has recently pointed out the role of the partial volume effect (PVE) as a confounding factor for the identification of juxtaposed tissues. Our goal was to review the DTI literature in AN and evaluate possible confounding factors linked to the reported results. METHOD A systematic review of the literature was conducted to identify Diffusion Tensor Imaging studies of individuals with AN and, subsequently, an anatomical likelihood estimation (ALE) meta-analysis was performed on studies published before March 18, 2019. RESULTS Twenty-four studies (AN = 517, controls = 542) were included in the qualitative systematic review of the literature. Ten published studies underwent the ALE-analysis (AN = 210, controls = 229), plus data from an unpublished cohort (AN = 38, controls = 38). Two clusters of decreased FA were identified, namely in the left corona radiata, and in the left thalamus. Only one article took the PVE correction analysis into account. CONCLUSIONS The alterations identified must be considered within the limits of a possible methodological bias regarding PVE and free water and re-analysis of the data may be recommended. The preliminary data showed that the alteration of white matter pathways between the limbic structures and brain cortex may be linked to the processing of somatosensory information that could play a key role in the psychopathology of the disorder.
Collapse
Affiliation(s)
- Paolo Meneguzzo
- Department of Neurosciences, University of Padova, Padova, Italy
| | | | - Marco Solmi
- Department of Neurosciences, University of Padova, Padova, Italy.,Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Elena Tenconi
- Department of Neurosciences, University of Padova, Padova, Italy.,Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Angela Favaro
- Department of Neurosciences, University of Padova, Padova, Italy.,Padova Neuroscience Center, University of Padova, Padova, Italy
| |
Collapse
|
35
|
Abstract
Eating disorders are severe psychiatric illnesses with a typical age of onset in adolescence. Brain research in youth and young adults may help us identify specific neurobiology that contributes to onset and maintenance of those disorders. This article provides a state-of-the-art review of our current understanding of the neurobiology of anorexia nervosa and bulimia nervosa. This includes brain structure and function studies to understand food restriction, binge-eating or purging behaviors, cognitive and emotional factors, as well as interoception. Binge-eating disorder and avoidant restrictive food intake disorder are also discussed, but the literature is still very small.
Collapse
|
36
|
Gaudio S, Carducci F, Piervincenzi C, Olivo G, Schiöth HB. Altered thalamo–cortical and occipital–parietal– temporal–frontal white matter connections in patients with anorexia and bulimia nervosa: a systematic review of diffusion tensor imaging studies. J Psychiatry Neurosci 2019; 44:324-339. [PMID: 30994310 PMCID: PMC6710091 DOI: 10.1503/jpn.180121] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Anorexia nervosa and bulimia nervosa are complex mental disorders, and their etiology is still not fully understood. This paper reviews the literature on diffusion tensor imaging studies in patients with anorexia nervosa and bulimia nervosa to explore the usefulness of white matter microstructural analysis in understanding the pathophysiology of eating disorders. METHODS We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines to identify diffusion tensor imaging studies that compared patients with an eating disorder to control groups. We searched relevant databases for studies published from database inception to August 2018, using combinations of select keywords. We categorized white matter tracts according to their 3 main classes: projection (i.e., thalamo–cortical), association (i.e., occipital–parietal–temporal–frontal) and commissural (e.g., corpus callosum). RESULTS We included 19 papers that investigated a total of 427 participants with current or previous eating disorders and 444 controls. Overall, the studies used different diffusion tensor imaging approaches and showed widespread white matter abnormalities in patients with eating disorders. Despite differences among the studies, patients with anorexia nervosa showed mainly white matter microstructural abnormalities of thalamo–cortical tracts (i.e., corona radiata, thalamic radiations) and occipital–parietal–temporal–frontal tracts (i.e., left superior longitudinal and inferior fronto-occipital fasciculi). It was less clear whether white matter alterations persist after recovery from anorexia nervosa. Available data on bulimia nervosa were partially similar to those for anorexia nervosa. LIMITATIONS Study sample composition and diffusion tensor imaging analysis techniques were heterogeneous. The number of studies on bulimia nervosa was too limited to be conclusive. CONCLUSION White matter microstructure appears to be affected in anorexia nervosa, and these alterations may play a role in the pathophysiology of this eating disorder. Although we found white matter alterations in bulimia nervosa that were similar to those in anorexia nervosa, white matter changes in bulimia nervosa remain poorly investigated, and these findings were less conclusive. Further studies with longitudinal designs and multi-approach analyses are needed to better understand the role of white matter changes in eating disorders.
Collapse
Affiliation(s)
- Santino Gaudio
- From the Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden (Gaudio, Olivo, Schiöth); the Centre for Integrated Research, Area of Diagnostic Imaging, Universita Campus Bio-Medico di Roma, Rome, Italy (Gaudio); the Department of Physiology and Pharmacology, Neuroimaging Laboratory, Sapienza University, Rome, Italy (Carducci, Piervincenzi); and the Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia (Schiöth)
| | - Filippo Carducci
- From the Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden (Gaudio, Olivo, Schiöth); the Centre for Integrated Research, Area of Diagnostic Imaging, Universita Campus Bio-Medico di Roma, Rome, Italy (Gaudio); the Department of Physiology and Pharmacology, Neuroimaging Laboratory, Sapienza University, Rome, Italy (Carducci, Piervincenzi); and the Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia (Schiöth)
| | - Claudia Piervincenzi
- From the Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden (Gaudio, Olivo, Schiöth); the Centre for Integrated Research, Area of Diagnostic Imaging, Universita Campus Bio-Medico di Roma, Rome, Italy (Gaudio); the Department of Physiology and Pharmacology, Neuroimaging Laboratory, Sapienza University, Rome, Italy (Carducci, Piervincenzi); and the Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia (Schiöth)
| | - Gaia Olivo
- From the Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden (Gaudio, Olivo, Schiöth); the Centre for Integrated Research, Area of Diagnostic Imaging, Universita Campus Bio-Medico di Roma, Rome, Italy (Gaudio); the Department of Physiology and Pharmacology, Neuroimaging Laboratory, Sapienza University, Rome, Italy (Carducci, Piervincenzi); and the Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia (Schiöth)
| | - Helgi B. Schiöth
- From the Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden (Gaudio, Olivo, Schiöth); the Centre for Integrated Research, Area of Diagnostic Imaging, Universita Campus Bio-Medico di Roma, Rome, Italy (Gaudio); the Department of Physiology and Pharmacology, Neuroimaging Laboratory, Sapienza University, Rome, Italy (Carducci, Piervincenzi); and the Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia (Schiöth)
| |
Collapse
|
37
|
Nickel K, Tebartz van Elst L, Holovics L, Feige B, Glauche V, Fortenbacher T, Endres D, Zeeck A, Tüscher O, Joos A, Maier S. White Matter Abnormalities in the Corpus Callosum in Acute and Recovered Anorexia Nervosa Patients-A Diffusion Tensor Imaging Study. Front Psychiatry 2019; 10:490. [PMID: 31338044 PMCID: PMC6628864 DOI: 10.3389/fpsyt.2019.00490] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 06/21/2019] [Indexed: 12/26/2022] Open
Abstract
Objective: Severe malnutrition in patients with anorexia nervosa (AN) as well as possible trait-related aberrations lead to pronounced structural brain changes whose reversibility after recovery is currently unclear. Previous diffusion tensor imaging (DTI) studies investigating white matter (WM) microstructure alterations in AN are inconsistent. Methods: In this so far largest DTI study in adults, we investigated 33 AN patients, 20 recovered (REC), and 33 healthy women. DTI data were processed using the "DTI and Fiber tools," and the Computational Anatomy Toolbox. WM integrity, both in terms of fractional anisotropy (FA) and mean diffusivity (MD), was assessed. Results: We found a significant FA decrease in the corpus callosum (body) and an MD decrease in the posterior thalamic radiation in the AN group. The REC group displayed FA decrease in the corpus callosum in comparison to HC, whereas there were no MD differences between the REC and HC groups. Conclusion: Despite prolonged restoration of weight in the REC group, no significant regeneration of WM integrity in terms of FA could be observed. Transient changes in MD likely represent a reversible consequence of the acute state of starvation or result from dehydration. Reduction of FA either may be due to WM damage resulting from malnutrition or may be considered a pre-morbid marker.
Collapse
Affiliation(s)
- Kathrin Nickel
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ludger Tebartz van Elst
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lukas Holovics
- Department of Psychosomatic Medicine and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bernd Feige
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Volkmar Glauche
- Department of Neurology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tina Fortenbacher
- Department of Psychosomatic Medicine and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dominique Endres
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Almut Zeeck
- Department of Psychosomatic Medicine and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Oliver Tüscher
- Department of Psychiatry and Psychotherapy, University of Mainz, Mainz, Germany
| | - Andreas Joos
- Department of Psychosomatic Medicine and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Psychotherapeutic Neurology, Kliniken Schmieder, Gailingen, Germany
| | - Simon Maier
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Psychosomatic Medicine and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
38
|
Nickel K, Joos A, Tebartz van Elst L, Holovics L, Endres D, Zeeck A, Maier S. Altered cortical folding and reduced sulcal depth in adults with anorexia nervosa. EUROPEAN EATING DISORDERS REVIEW 2019; 27:655-670. [DOI: 10.1002/erv.2685] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 03/25/2019] [Accepted: 04/17/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Kathrin Nickel
- Section for Experimental Neuropsychiatry, Department of Psychiatry and PsychotherapyMedical Center – University of Freiburg, Faculty of Medicine, University of Freiburg Freiburg Germany
| | - Andreas Joos
- Department of Psychosomatic Medicine and Psychotherapy, Medical Center – University of FreiburgFaculty of Medicine, University of Freiburg Freiburg Germany
- Psychotherapeutic NeurologyKliniken Schmieder Gailingen Germany
| | - Ludger Tebartz van Elst
- Section for Experimental Neuropsychiatry, Department of Psychiatry and PsychotherapyMedical Center – University of Freiburg, Faculty of Medicine, University of Freiburg Freiburg Germany
| | - Lukas Holovics
- Department of Psychosomatic Medicine and Psychotherapy, Medical Center – University of FreiburgFaculty of Medicine, University of Freiburg Freiburg Germany
| | - Dominique Endres
- Section for Experimental Neuropsychiatry, Department of Psychiatry and PsychotherapyMedical Center – University of Freiburg, Faculty of Medicine, University of Freiburg Freiburg Germany
| | - Almut Zeeck
- Department of Psychosomatic Medicine and Psychotherapy, Medical Center – University of FreiburgFaculty of Medicine, University of Freiburg Freiburg Germany
| | - Simon Maier
- Section for Experimental Neuropsychiatry, Department of Psychiatry and PsychotherapyMedical Center – University of Freiburg, Faculty of Medicine, University of Freiburg Freiburg Germany
- Department of Psychosomatic Medicine and Psychotherapy, Medical Center – University of FreiburgFaculty of Medicine, University of Freiburg Freiburg Germany
| |
Collapse
|
39
|
Associations between brain structure and perceived intensity of sweet and bitter tastes. Behav Brain Res 2019; 363:103-108. [PMID: 30703394 DOI: 10.1016/j.bbr.2019.01.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/12/2019] [Accepted: 01/25/2019] [Indexed: 12/22/2022]
Abstract
Functional neuroimaging studies have identified brain regions associated with human taste perception, but only a few have investigated the associations with brain structure. Here, in this exploratory study, we examined the association between the volumes of 82 regions of interest (ROI) and the perceived intensities of sweet (a weighted mean rating of glucose, fructose, aspartame, neohesperidin dihydrochalcone) and bitter (propylthiouracil, quinine, caffeine) substances in a large Australian healthy cohort from the Queensland Twin IMaging (QTIM, n = 559) study and the perceived intensity of quinine in a large U.S. healthy cohort from the Human Connectome Project (HCP, n = 1101). In QTIM, the volumes of 3 cortical (right cuneus gyrus, left transverse temporal gyrus, right inferior temporal gyrus) and one subcortical structure (both left and right caudate) were associated with more than one taste stimulus (P < 0.05) and tended to be associated with both sweet and bitter tastes in the same direction, suggesting these ROIs were more broadly tuned for taste sensation. A further 11 ROIs were associated with a specific taste (sweetness: 4; propylthiouracil: 3; caffeine: 2; quinine: 2). In HCP, volumes of 5 ROIs were associated with quinine bitterness. The quinine-left entorhinal cortex association was found in both QTIM (r = -0.12, P = 3.7 × 10-3) and HCP (r = -0.06, P = 2.0 × 10-2). This study provides the first evidence that, even in healthy people, variation in brain structure is associated with taste intensity ratings, and provides new insights into the brain gustatory circuit.
Collapse
|
40
|
Abstract
Anorexia nervosa is a complex psychiatric illness associated with food restriction and high mortality. Recent brain research in adolescents and adults with anorexia nervosa has used larger sample sizes compared with earlier studies and tasks that test specific brain circuits. Those studies have produced more robust results and advanced our knowledge of underlying biological mechanisms that may contribute to the development and maintenance of anorexia nervosa. It is now recognized that malnutrition and dehydration lead to dynamic changes in brain structure across the brain, which normalize with weight restoration. Some structural alterations could be trait factors but require replication. Functional brain imaging and behavioral studies have implicated learning-related brain circuits that may contribute to food restriction in anorexia nervosa. Most notably, those circuits involve striatal, insular, and frontal cortical regions that drive learning from reward and punishment, as well as habit learning. Disturbances in those circuits may lead to a vicious cycle that hampers recovery. Other studies have started to explore the neurobiology of interoception or social interaction and whether the connectivity between brain regions is altered in anorexia nervosa. All together, these studies build upon earlier research that indicated neurotransmitter abnormalities in anorexia nervosa and help us develop models of a distinct neurobiology that underlies anorexia nervosa.
Collapse
Affiliation(s)
- Guido K W Frank
- Department of Psychiatry, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA.,Neuroscience Program, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Megan E Shott
- Department of Psychiatry, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Marisa C DeGuzman
- Department of Psychiatry, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA.,Neuroscience Program, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
41
|
Barona M, Brown M, Clark C, Frangou S, White T, Micali N. White matter alterations in anorexia nervosa: Evidence from a voxel-based meta-analysis. Neurosci Biobehav Rev 2019; 100:285-295. [PMID: 30851283 DOI: 10.1016/j.neubiorev.2019.03.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 02/08/2019] [Accepted: 03/05/2019] [Indexed: 02/06/2023]
Abstract
Anorexia nervosa (AN) is a severe psychiatric disorder with a complex and poorly understood etiology. Recent studies have sought to investigate differences in white matter microstructure in AN, with significant results in several brain regions. A systematic literature search of Embase, PubMed and Psychinfo databases was conducted in order to identify Diffusion Tensor Imaging (DTI) studies of patients with AN and controls. We performed a meta-analysis of studies that met our inclusion criteria (N = 13) using effect size-signed differential mapping (AES-SDM) to detect differences in Fractional Anisotropy (FA) in patients with AN (N = 227) compared to healthy controls (N = 243). The quantitative meta-analysis of DTI studies identified decreased FA in the posterior areas of the corpus callosum, the left superior longitudinal fasciculus II, and the left precentral gyrus, as well as increased FA in the right cortico-spinal projections, and lingual gyrus in AN vs. controls. Studies of WM architecture are still limited in AN; further studies with longitudinal design are needed to better understand the complexity of abnormalities, and their persistence.
Collapse
Affiliation(s)
- Manuela Barona
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Melanie Brown
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| | | | - Sophia Frangou
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Tonya White
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Nadia Micali
- UCL Great Ormond Street Institute of Child Health, London, UK; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Psychiatry, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
42
|
Olivo G, Swenne I, Zhukovsky C, Tuunainen A, Saaid A, Salonen‐Ros H, Larsson E, Brooks SJ, Schiöth HB. Preserved white matter microstructure in adolescent patients with atypical anorexia nervosa. Int J Eat Disord 2019; 52:166-174. [PMID: 30676658 PMCID: PMC6590352 DOI: 10.1002/eat.23012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 12/10/2018] [Accepted: 12/17/2018] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Patients with atypical anorexia nervosa (AN) are often in the normal-weight range at presentation; however, signs of starvation and medical instability are not rare. White matter (WM) microstructural correlates of atypical AN have not yet been investigated, leaving an important gap in our knowledge regarding the neural pathogenesis of this disorder. METHOD We investigated WM microstructural integrity in 25 drug-naïve adolescent patients with atypical AN and 25 healthy controls, using diffusion tensor imaging (DTI) with a tract-based spatial statistics (TBSS) approach. Psychological variables related to the eating disorder and depressive symptoms were also evaluated by administering the eating disorder examination questionnaire (EDE-Q) and the Montgomery-Åsberg depression rating scale (MADRS-S) respectively, to all participants. RESULTS Patients and controls were in the normal-weight range and did not differ from the body mass index standard deviations for their age. No between groups difference in WM microstructure could be detected. DISCUSSION Our findings support the hypothesis that brain structural alterations may not be associated to early-stage atypical AN. These findings also suggest that previous observations of alterations in WM microstructure in full syndrome AN may constitute state-related consequences of severe weight loss. Whether the preservation of WM structure is a pathogenetically discriminant feature of atypical AN or only an effect of a less severe nutritional disturbance, will have to be verified by future studies on larger samples, possibly directly comparing AN and atypical AN.
Collapse
Affiliation(s)
- Gaia Olivo
- Department of Neuroscience, Functional PharmacologyUppsala UniversityUppsalaSweden
| | - Ingemar Swenne
- Department of Women's and Children's HealthUppsala UniversityUppsalaSweden
| | - Christina Zhukovsky
- Department of Neuroscience, Functional PharmacologyUppsala UniversityUppsalaSweden
| | - Anna‐Kaisa Tuunainen
- Department of Neuroscience, Functional PharmacologyUppsala UniversityUppsalaSweden
| | - Avista Saaid
- Department of Neuroscience, Functional PharmacologyUppsala UniversityUppsalaSweden
| | - Helena Salonen‐Ros
- Department of Neuroscience, Child and Adolescent PsychiatryUppsala UniversityUppsalaSweden
| | - Elna‐Marie Larsson
- Department of Surgical Sciences, RadiologyUppsala UniversityUppsalaSweden
| | - Samantha J. Brooks
- Department of Human BiologyUniversity of Cape TownCape TownSouth Africa,School of Natural Sciences and PsychologyResearch Centre for Brain & BehaviourLiverpoolUnited Kingdom
| | - Helgi B. Schiöth
- Department of Neuroscience, Functional PharmacologyUppsala UniversityUppsalaSweden
| |
Collapse
|
43
|
Zhang S, Wang W, Su X, Kemp GJ, Yang X, Su J, Tan Q, Zhao Y, Sun H, Yue Q, Gong Q. Psychoradiological investigations of gray matter alterations in patients with anorexia nervosa. Transl Psychiatry 2018; 8:277. [PMID: 30546047 PMCID: PMC6293321 DOI: 10.1038/s41398-018-0323-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 10/23/2018] [Accepted: 11/13/2018] [Indexed: 02/05/2023] Open
Abstract
Anorexia nervosa (AN) is a severe psychiatric disorder with high mortality. The underlying neurobiological mechanisms are not well understood, and high-resolution structural magnetic resonance brain imaging studies have given inconsistent results. Here we aimed to psychoradiologically define the most prominent and replicable abnormalities of gray matter volume (GMV) in AN patients, and to examine their relationship to demographics and clinical characteristics, by means of a new coordinate-based meta-analytic technique called seed-based d mapping (SDM). In a pooled analysis of all AN patients we identified decreased GMV in the bilateral median cingulate cortices and posterior cingulate cortices extending to the bilateral precuneus, and the supplementary motor area. In subgroup analysis we found an additional decreased GMV in the right fusiform in adult AN, and a decreased GMV in the left amygdala and left anterior cingulate cortex in AN patients without comorbidity (pure AN). Thus, the most consistent GMV alterations in AN patients are in the default mode network and the sensorimotor network. These psychoradiological findings of the brain abnormalities might underpin the neuropathophysiology in AN.
Collapse
Affiliation(s)
- Simin Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Weina Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Xiaorui Su
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Graham J Kemp
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Xibiao Yang
- Department of Radiology, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, 610041, Chengdu, China
| | - Jingkai Su
- Department of Radiology, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, 610041, Chengdu, China
| | - Qiaoyue Tan
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Youjin Zhao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Huaiqiang Sun
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Qiang Yue
- Department of Radiology, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, 610041, Chengdu, China.
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
44
|
Nickel K, Joos A, Tebartz van Elst L, Matthis J, Holovics L, Endres D, Zeeck A, Hartmann A, Tüscher O, Maier S. Recovery of cortical volume and thickness after remission from acute anorexia nervosa. Int J Eat Disord 2018; 51:1056-1069. [PMID: 30212599 DOI: 10.1002/eat.22918] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Reduced grey (GM) and white matter (WM) volumes and increased cerebrospinal fluid (CSF) have been frequently reported in anorexia nervosa (AN), but studies focusing on cortical thickness (CT) are scarce and findings inconsistent. We conducted the first study in AN that analyzed both parameters in the same study to gain novel and comprehensive insight. METHOD Voxel-based morphometry (VBM) analysis was performed on T1-weighted magnetic resonance images from 34 predominantly adult women with acute AN, 24 REC participants, and 41 healthy controls (HC). Global brain segment volumes (GM, WM, and CSF), regional GM volume, and cortical thickness measures were obtained from the same study sample. We further focused on recovery by including a REC group. RESULTS The GM and WM volumes were decreased, and correspondingly, the CSF volume increased in the AN in comparison to the HC and REC groups. No significant volume differences between the REC and HC groups could be observed. AN patients showed reduced regional GM volumes in the right hippocampus and the left middle and right inferior frontal gyrus. Cortical thinning occurred in the AN group, which was particularly robust in fronto-parietal areas. The REC and HC groups failed to show any regional GM or cortical thickness differences. DISCUSSION AN is accompanied by severe loss of brain volume and cortical thickness as assessed by complementary investigation tools. However, these changes seem to be largely reversible, which should be encouraging for therapists and patients. The underlying neurobiological mechanisms remain unclear and should be assessed in further studies.
Collapse
Affiliation(s)
- Kathrin Nickel
- Faculty of Medicine, Department of Psychiatry and Psychotherapy, Section for Experimental Neuropsychiatry, Medical Center, University of Freiburg, Freiburg, Germany
| | - Andreas Joos
- Faculty of Medicine, Department of Psychosomatic Medicine and Psychotherapy, Medical Center, University of Freiburg, Freiburg, Germany
| | - Ludger Tebartz van Elst
- Faculty of Medicine, Department of Psychiatry and Psychotherapy, Section for Experimental Neuropsychiatry, Medical Center, University of Freiburg, Freiburg, Germany
| | - Jamila Matthis
- Faculty of Medicine, Department of Psychiatry and Psychotherapy, Section for Experimental Neuropsychiatry, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, Department of Psychosomatic Medicine and Psychotherapy, Medical Center, University of Freiburg, Freiburg, Germany
| | - Lukas Holovics
- Faculty of Medicine, Department of Psychosomatic Medicine and Psychotherapy, Medical Center, University of Freiburg, Freiburg, Germany
| | - Dominique Endres
- Faculty of Medicine, Department of Psychiatry and Psychotherapy, Section for Experimental Neuropsychiatry, Medical Center, University of Freiburg, Freiburg, Germany
| | - Almut Zeeck
- Faculty of Medicine, Department of Psychosomatic Medicine and Psychotherapy, Medical Center, University of Freiburg, Freiburg, Germany
| | - Armin Hartmann
- Faculty of Medicine, Department of Psychosomatic Medicine and Psychotherapy, Medical Center, University of Freiburg, Freiburg, Germany
| | - Oliver Tüscher
- Faculty of Medicine, Department of Psychiatry and Psychotherapy, Medical Center, University of Mainz, Mainz, Germany
| | - Simon Maier
- Faculty of Medicine, Department of Psychiatry and Psychotherapy, Section for Experimental Neuropsychiatry, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, Department of Psychosomatic Medicine and Psychotherapy, Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|
45
|
Lavagnino L, Mwangi B, Cao B, Shott ME, Soares JC, Frank GK. Cortical thickness patterns as state biomarker of anorexia nervosa. Int J Eat Disord 2018; 51:241-249. [PMID: 29412456 PMCID: PMC5843530 DOI: 10.1002/eat.22828] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 01/08/2018] [Accepted: 01/08/2018] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Only few studies have investigated cortical thickness in anorexia nervosa (AN), and it is unclear whether patterns of altered cortical thickness can be identified as biomarkers for AN. METHOD Cortical thickness was measured in 19 adult women with restricting-type AN, 24 individuals recovered from restricting-type AN (REC-AN) and 24 healthy controls. Those individuals with current or recovered from AN had previously shown altered regional cortical volumes across orbitofrontal cortex and insula. A linear relevance vector machine-learning algorithm estimated patterns of regional thickness across 24 subdivisions of those regions. RESULTS Region-based analysis showed higher cortical thickness in AN and REC-AN, compared to controls, in the right medial orbital (olfactory) sulcus, and greater cortical thickness for short insular gyri in REC-AN versus controls bilaterally. The machine-learning algorithm identified a pattern of relatively higher right orbital, right insular and left middle frontal cortical thickness, but lower left orbital, right middle and inferior frontal, and bilateral superior frontal cortical thickness specific to AN versus controls (74% specificity and 74% sensitivity, χ2 p < .004); predicted probabilities differed significantly between AN and controls (p < .023). No pattern significantly distinguished the REC-AN group from controls. CONCLUSIONS Higher cortical thickness in medial orbitofrontal cortex and insula probably contributes to higher gray matter volume in AN in those regions. The machine-learning algorithm identified a mixed pattern of mostly higher orbital and insular, but relatively lower superior frontal cortical thickness in individuals with current AN. These novel results suggest that regional cortical thickness patterns could be state markers for AN.
Collapse
Affiliation(s)
- Luca Lavagnino
- University of Texas Health Sciences Center at Houston, Department of Psychiatry and Behavioral Sciences, Houston, Texas, USA
| | - Benson Mwangi
- University of Texas Health Sciences Center at Houston, Department of Psychiatry and Behavioral Sciences, Houston, Texas, USA
| | - Bo Cao
- University of Texas Health Sciences Center at Houston, Department of Psychiatry and Behavioral Sciences, Houston, Texas, USA
| | - Megan E. Shott
- Departments of Psychiatry and Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jair C. Soares
- University of Texas Health Sciences Center at Houston, Department of Psychiatry and Behavioral Sciences, Houston, Texas, USA
| | - Guido K.W. Frank
- Departments of Psychiatry and Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
46
|
Structural Neuroimaging of Anorexia Nervosa: Future Directions in the Quest for Mechanisms Underlying Dynamic Alterations. Biol Psychiatry 2018; 83:224-234. [PMID: 28967386 PMCID: PMC6053269 DOI: 10.1016/j.biopsych.2017.08.011] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 07/21/2017] [Accepted: 08/14/2017] [Indexed: 02/07/2023]
Abstract
Anorexia nervosa (AN) is a serious eating disorder characterized by self-starvation and extreme weight loss. Pseudoatrophic brain changes are often readily visible in individual brain scans, and AN may be a valuable model disorder to study structural neuroplasticity. Structural magnetic resonance imaging studies have found reduced gray matter volume and cortical thinning in acutely underweight patients to normalize following successful treatment. However, some well-controlled studies have found regionally greater gray matter and persistence of structural alterations following long-term recovery. Findings from diffusion tensor imaging studies of white matter integrity and connectivity are also inconsistent. Furthermore, despite the severity of AN, the number of existing structural neuroimaging studies is still relatively low, and our knowledge of the underlying cellular and molecular mechanisms for macrostructural brain changes is rudimentary. We critically review the current state of structural neuroimaging in AN and discuss the potential neurobiological basis of structural brain alterations in the disorder, highlighting impediments to progress, recent developments, and promising future directions. In particular, we argue for the utility of more standardized data collection, adopting a connectomics approach to understanding brain network architecture, employing advanced magnetic resonance imaging methods that quantify biomarkers of brain tissue microstructure, integrating data from multiple imaging modalities, strategic longitudinal observation during weight restoration, and large-scale data pooling. Our overarching objective is to motivate carefully controlled research of brain structure in eating disorders, which will ultimately help predict therapeutic response and improve treatment.
Collapse
|
47
|
Pfuhl G, King JA, Geisler D, Roschinski B, Ritschel F, Seidel M, Bernardoni F, Müller DK, White T, Roessner V, Ehrlich S. Preserved white matter microstructure in young patients with anorexia nervosa? Hum Brain Mapp 2018; 37:4069-4083. [PMID: 27400772 DOI: 10.1002/hbm.23296] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 06/13/2016] [Accepted: 06/15/2016] [Indexed: 02/06/2023] Open
Abstract
A massive but reversible reduction of cortical thickness and subcortical gray matter (GM) volumes in Anorexia Nervosa (AN) has been recently reported. However, the literature on alterations in white matter (WM) volume and microstructure changes in both acutely underweight AN (acAN) and after recovery (recAN) is sparse and results are inconclusive. Here, T1-weighted and diffusion-weighted MRI data in a sizable sample of young and medication-free acAN (n = 35), recAN (n = 32), and age-matched female healthy controls (HC, n = 62) were obtained. For analysis, a well-validated global probabilistic tractography reconstruction algorithm including rigorous motion correction implemented in FreeSurfer: TRACULA (TRActs Constrained by UnderLying Anatomy) were used. Additionally, a clustering algorithm and a multivariate pattern classification technique to WM metrics to predict group membership were applied. No group differences in either WM volume or WM microstructure were detected with standard analysis procedures either in acAN or recAN relative to HC after controlling for the number of performed statistical tests. These findings were not affected by age, IQ, or psychiatric symptoms. While cluster analysis was unsuccessful at discriminating between groups, multivariate pattern classification showed some ability to separate acAN from HC (but not recAN from HC). However, these results were not compatible with a straightforward hypothesis of impaired WM microstructure. The current findings suggest that WM integrity is largely preserved in non-chronic AN. This finding stands in contrast to findings in GM, but may help to explain the relatively intact cognitive performance of young patients with AN and provide the basis for the fast recovery of GM structures. Hum Brain Mapp 37:4069-4083, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Gerit Pfuhl
- Eating Disorders Research and Treatment Center at the Dept. of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,Department of Psychology, UiT the Arctic University of Norway & Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Joseph A King
- Eating Disorders Research and Treatment Center at the Dept. of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Daniel Geisler
- Eating Disorders Research and Treatment Center at the Dept. of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Benjamin Roschinski
- Eating Disorders Research and Treatment Center at the Dept. of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Franziska Ritschel
- Eating Disorders Research and Treatment Center at the Dept. of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Maria Seidel
- Eating Disorders Research and Treatment Center at the Dept. of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Fabio Bernardoni
- Eating Disorders Research and Treatment Center at the Dept. of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Dirk K Müller
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Tonya White
- Department of Child and Adolescent Psychiatry & Department of Radiology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Veit Roessner
- Eating Disorders Research and Treatment Center at the Dept. of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Stefan Ehrlich
- Eating Disorders Research and Treatment Center at the Dept. of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany. .,Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany. .,MGH/MIT/HMS Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts. .,Harvard Medical School, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts.
| |
Collapse
|
48
|
Seitz J, Konrad K, Herpertz-Dahlmann B. Extend, Pathomechanism and Clinical Consequences of Brain Volume Changes in Anorexia Nervosa. Curr Neuropharmacol 2018; 16:1164-1173. [PMID: 29119931 PMCID: PMC6187749 DOI: 10.2174/1570159x15666171109145651] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 01/01/1970] [Accepted: 11/07/2017] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Brain volume deficits of grey matter (GM) and white matter (WM) are often found in patients with anorexia nervosa (AN). However, until recently, little was known about the influencing factors of these brain volume alterations, nor their exact quantification and rehabilitation. METHODS This review addresses these open questions and further explores what is now known about the underlying pathobiology and the clinical consequences including human studies as well as animal studies mimicking anorexia nervosa in rodents. RESULTS GM was reduced by 3.7% in adults and 7.6% in adolescents with AN. WM was reduced on average 2.2% in adult patients and 3.2% in adolescents. Most volume deficits in adults are reversible after long-term recovery; for adolescents, data are less clear. The main influencing factors for GM were absolute lowest weight at admission and illness duration. Cerebellar and WM reductions at admission predicted clinical outcome at one year follow-up. New studies found GABA receptor changes in GM and astrocyte loss in both GM and WM, as well as a possible role for oestrogen deficit. All three could partly explain clinical symptoms of anxiety, rigidity and learning impairments in patients with AN. CONCLUSION Brain volume deficits in AN seem to play a causal role in the course and the prognosis of AN. A better understanding of these brain changes could lead to more targeted therapies for patients with AN, including astrocyte-directed approaches.
Collapse
Affiliation(s)
- Jochen Seitz
- Clinic for Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, University Hospital RWTH Aachen, Aachen, Germany
| | - Kerstin Konrad
- Clinic for Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, University Hospital RWTH Aachen, Aachen, Germany
| | - Beate Herpertz-Dahlmann
- Clinic for Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
49
|
Bang L, Rø Ø, Endestad T. Normal white matter microstructure in women long-term recovered from anorexia nervosa: A diffusion tensor imaging study. Int J Eat Disord 2018; 51:46-52. [PMID: 29120488 DOI: 10.1002/eat.22802] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/25/2017] [Accepted: 10/26/2017] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Studies point to white matter (WM) microstructure alterations in both adolescent and adult patients with anorexia nervosa (AN). These include reduced fractional anisotropy in several WM fiber tracts, suggesting reduced WM integrity. The extent to which these alterations are reversible with recovery from AN is unclear. There is a paucity of research investigating the presence of WM microstructure alterations in recovered AN patients, and results are inconsistent. This study aimed to investigate the presence of WM microstructure alterations in women long-term recovered from AN. METHOD Twenty-one adult women who were recovered from AN for at least 1 year were compared to 21 adult comparison women. Participants were recruited via user-organizations for eating disorders, local advertisements, and online forums. Diffusion tensor imaging was used to compare WM microstructure between groups. Correlations between WM microstructure and clinical characteristics were also explored. RESULTS There were no statistically significant between-group differences in WM microstructure. These null findings remained when employing liberal alpha level thresholds. Furthermore, there were no statistically significant correlations between WM microstructure and clinical characteristics. DISCUSSION Our findings showed normal WM microstructure in long-term recovered patients, indicating the alterations observed during the acute phase are reversible. Given the paucity of research and inconsistent findings, future studies are warranted to determine the presence of WM microstructure alterations following recovery from AN.
Collapse
Affiliation(s)
- Lasse Bang
- Regional Department for Eating Disorders, Division of Mental Health and Addiction, Oslo University Hospital, P.O. Box 4956 Nydalen, Oslo, 0424, Norway
| | - Øyvind Rø
- Regional Department for Eating Disorders, Division of Mental Health and Addiction, Oslo University Hospital, P.O. Box 4956 Nydalen, Oslo, 0424, Norway.,Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, P.O. Box 1171 Blindern, Oslo, 0318, Norway
| | - Tor Endestad
- Institute of Psychology, University of Oslo, P.O. Box 1094 Blindern, Oslo, 0317, Norway
| |
Collapse
|
50
|
Gaudio S, Quattrocchi CC, Piervincenzi C, Zobel BB, Montecchi FR, Dakanalis A, Riva G, Carducci F. White matter abnormalities in treatment-naive adolescents at the earliest stages of Anorexia Nervosa: A diffusion tensor imaging study. Psychiatry Res Neuroimaging 2017; 266:138-145. [PMID: 28666248 DOI: 10.1016/j.pscychresns.2017.06.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 05/21/2017] [Accepted: 06/18/2017] [Indexed: 11/21/2022]
Abstract
Few studies have examined white matter (WM) integrity in long-lasting Anorexia Nervosa (AN) patients using Diffusion Tensor Imaging (DTI). In this paper, we investigated WM integrity at the earliest stages of AN (i.e. less than 6 months duration). Fourteen treatment-naive female adolescents with AN restrictive type (AN-r) in its earliest stages and 15 age-matched healthy females received brain MRI. Fractional Anisotropy (FA), Axial Diffusivity (AD), Radial diffusivity (RD), and Mean Diffusivity (MD) maps were computed from DTI data using Tract-Based Spatial Statistics analysis. AN-r patients showed FA decreases compared to controls (pFWE < 0.05) mainly in left anterior and superior corona radiata and left superior longitudinal fasciculus. AN-r patients also showed decreased AD in superior longitudinal fasciculus bilaterally and left superior and anterior corona radiata, (pFWE < 0.05). No significant differences were found in RD and MD values between the two groups. FA and AD integrity appears to be specifically affected at the earliest stages of AN. Alterations in the microstructural properties of the above mentioned tracts, also involved in cognitive control and visual perception and processing, may be early mechanisms of vulnerability/resilience of WM in AN and sustain the key symptoms of AN, such as impaired cognitive flexibility and body image distortion.
Collapse
Affiliation(s)
- Santino Gaudio
- Departmental Faculty of Medicine and Surgery, Università "Campus Bio-Medico di Roma", Rome, Italy; Eating Disorders Centre "La Cura del Girasole" ONLUS, Rome, Italy; Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24 Uppsala, Sweden.
| | - Carlo Cosimo Quattrocchi
- Departmental Faculty of Medicine and Surgery, Università "Campus Bio-Medico di Roma", Rome, Italy
| | - Claudia Piervincenzi
- Department of Physiology and Pharmacology, Neuroimaging Laboratory, Sapienza University, Rome, Italy
| | - Bruno Beomonte Zobel
- Departmental Faculty of Medicine and Surgery, Università "Campus Bio-Medico di Roma", Rome, Italy
| | | | - Antonios Dakanalis
- Department of Brain and Behavioural Sciences, University of Pavia, P.za Botta 11, 27100 Pavia, Italy; Department of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | - Giuseppe Riva
- Applied Technology for Neuro-Psychology Lab, Istituto Auxologico Italiano, Milan, Italy; Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| | - Filippo Carducci
- Department of Physiology and Pharmacology, Neuroimaging Laboratory, Sapienza University, Rome, Italy
| |
Collapse
|