1
|
Cao X, Wang Z, Chen Y, Zhu J. Childhood maltreatment and resting-state network connectivity: The risk-buffering role of positive parenting. Dev Psychopathol 2025; 37:859-870. [PMID: 38561986 DOI: 10.1017/s0954579424000725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Unraveling the neurobiological foundations of childhood maltreatment is important due to the persistent associations with adverse mental health outcomes. However, the mechanisms through which abuse and neglect disturb resting-state network connectivity remain elusive. Moreover, it remains unclear if positive parenting can mitigate the negative impact of childhood maltreatment on network connectivity. We analyzed a cohort of 194 adolescents and young adults (aged 14-25, 47.42% female) from the Neuroscience in Psychiatry Network (NSPN) to investigate the impact of childhood abuse and neglect on resting-state network connectivity. Specifically, we examined the SAN, DMN, FPN, DAN, and VAN over time. We also explored the moderating role of positive parenting. The results showed that childhood abuse was linked to stronger connectivity within the SAN and VAN, as well as between the DMN-DAN, DMN-VAN, DMN-SAN, SAN-DAN, FPN-DAN, SAN-VAN, and VAN-DAN networks about 18 months later. Positive parenting during childhood buffered the negative impact of childhood abuse on network connectivity. To our knowledge, this is the first study to demonstrate the protective effect of positive parenting on network connectivity following childhood abuse. These findings not only highlight the importance of positive parenting but also lead to a better understanding of the neurobiology and resilience mechanisms of childhood maltreatment.
Collapse
Affiliation(s)
- Xinyu Cao
- Center for Early Environment and Brain Development, School of Education, Guangzhou University, Guangzhou, China
- Center for Cognition and Brain Disorders of Affiliated Hospital, Hangzhou Normal University, Hangzhou, China
| | - Zhengxinyue Wang
- Center for Early Environment and Brain Development, School of Education, Guangzhou University, Guangzhou, China
- Center for Cognition and Brain Disorders of Affiliated Hospital, Hangzhou Normal University, Hangzhou, China
| | - Yuanyuan Chen
- Center for Early Environment and Brain Development, School of Education, Guangzhou University, Guangzhou, China
- Department of Psychology, Guangzhou University; Guangzhou, China
| | - Jianjun Zhu
- Center for Early Environment and Brain Development, School of Education, Guangzhou University, Guangzhou, China
- Department of Psychology, Guangzhou University; Guangzhou, China
| |
Collapse
|
2
|
Elfaki LA, Sharma B, Meusel LAC, So I, Colella B, Wheeler AL, Harris JE, Green REA. Examining anterior prefrontal cortex resting-state functional connectivity patterns associated with depressive symptoms in chronic moderate-to-severe traumatic brain injury. Front Neurol 2025; 16:1541520. [PMID: 40224311 PMCID: PMC11985445 DOI: 10.3389/fneur.2025.1541520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/03/2025] [Indexed: 04/15/2025] Open
Abstract
In chronic moderate-to-severe TBI (msTBI), depression is one of the most common psychiatric consequences. Yet to date, there is limited understanding of its neural underpinnings. This study aimed to better understand this gap by examining seed-to-voxel connectivity in depression, with all voxel-wise associations seeded to the bilateral anterior prefrontal cortices (aPFC). In a secondary analysis of 32 patients with chronic msTBI and 17 age-matched controls acquired from the Toronto Rehab TBI Recovery Study database, the Personality Assessment Inventory Depression scale scores were used to group patients into an msTBI-Dep group (T ≥ 60; n = 13) and an msTBI-Non-Dep group (T < 60; n = 19). Resting-state fMRI scans were analyzed using seed-based connectivity analyses. F-tests, controlling for age and education, were used to assess differences in bilateral aPFC rsFC across the 3 groups. After nonparametric permutation testing, the left aPFC demonstrated significantly increased rsFC with the left (p = 0.041) and right (p = 0.013) fusiform gyri, the right superior temporal lobe (p = 0.032), and the right precentral gyrus (p = 0.042) in the msTBI-Dep group compared to controls. The msTBI-Non-Dep group had no significant rsFC differences with either group. To our knowledge, this study is the first to examine aPFC rsFC in a sample of patients with msTBI exclusively. Our preliminary findings suggest a role for the aPFC in the pathophysiology of depressive symptoms in patients with chronic msTBI. Increased aPFC-sensory/motor rsFC could be associated with vulnerability to depression post-TBI, a hypothesis that warrants further investigation.
Collapse
Affiliation(s)
- Layan A. Elfaki
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- The KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
| | - Bhanu Sharma
- Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON, Canada
| | - Liesel-Ann C. Meusel
- The KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
| | - Isis So
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Brenda Colella
- The KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
| | - Anne L. Wheeler
- Neuroscience and Mental Health Program, The Hospital for Sick Children, Toronto, ON, Canada
- Physiology Department, University of Toronto, Toronto, ON, Canada
| | - Jocelyn E. Harris
- Faculty of Health Sciences, School of Rehabilitation Science, McMaster University, Hamilton, ON, Canada
| | - Robin E. A. Green
- The KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
- Rehabilitation Sciences Institute, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Zhang Z, Zhang Y, Wang H, Lei M, Jiang Y, Xiong D, Chen Y, Zhang Y, Zhao G, Wang Y, Zhang W, Xu J, Zhai Y, An Q, Li S, Hao X, Liu F. Resting-state network alterations in depression: a comprehensive meta-analysis of functional connectivity. Psychol Med 2025; 55:e63. [PMID: 40008424 DOI: 10.1017/s0033291725000303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
BACKGROUND Depression has been linked to disruptions in resting-state networks (RSNs). However, inconsistent findings on RSN disruptions, with variations in reported connectivity within and between RSNs, complicate the understanding of the neurobiological mechanisms underlying depression. METHODS A systematic literature search of PubMed and Web of Science identified studies that employed resting-state functional magnetic resonance imaging (fMRI) to explore RSN changes in depression. Studies using seed-based functional connectivity analysis or independent component analysis were included, and coordinate-based meta-analyses were performed to evaluate alterations in RSN connectivity both within and between networks. RESULTS A total of 58 studies were included, comprising 2321 patients with depression and 2197 healthy controls. The meta-analysis revealed significant alterations in RSN connectivity, both within and between networks, in patients with depression compared with healthy controls. Specifically, within-network changes included both increased and decreased connectivity in the default mode network (DMN) and increased connectivity in the frontoparietal network (FPN). Between-network findings showed increased DMN-FPN and limbic network (LN)-DMN connectivity, decreased DMN-somatomotor network and LN-FPN connectivity, and varied ventral attention network (VAN)-dorsal attentional network (DAN) connectivity. Additionally, a positive correlation was found between illness duration and increased connectivity between the VAN and DAN. CONCLUSIONS These findings not only provide a comprehensive characterization of RSN disruptions in depression but also enhance our understanding of the neurobiological mechanisms underlying depression.
Collapse
Affiliation(s)
- Zhihui Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yijing Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - He Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Minghuan Lei
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yifan Jiang
- School of Nursing, Tianjin Medical University, Tianjin, China
| | - Di Xiong
- Department of Mathematics, Shanghai University, Shanghai, China
| | - Yayuan Chen
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yujie Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Guoshu Zhao
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yao Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Wanwan Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jinglei Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Ying Zhai
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Qi An
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Shen Li
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, China
- Brain Assessment & Intervention Laboratory, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, China
| | - Xiaoke Hao
- School of Artificial Intelligence, Hebei University of Technology, Tianjin, China
| | - Feng Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
4
|
Sievertsen SA, Zhu J, Fang A, Forsyth JK. Resting State Cortical Network and Subcortical Hyperconnectivity in Youth With Generalized Anxiety Disorder in the ABCD Study. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2025:S2451-9022(25)00062-X. [PMID: 39988295 DOI: 10.1016/j.bpsc.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/25/2025]
Abstract
INTRODUCTION Generalized anxiety disorder (GAD) frequently emerges during childhood or adolescence, yet, few studies have examined functional connectivity differences in youth GAD. Functional MRI studies of adult GAD have implicated multiple brain regions; however, frequent examination of individual brain seed regions and/or networks has limited a holistic view of GAD-associated differences. The current study therefore used resting-state fMRI data from the Adolescent Brain Cognitive Development study to investigate connectivity in youth with GAD across multiple cortical networks and subcortical regions implicated in adult GAD, considering diagnosis changes across two assessment periods. METHODS Within- and between-network connectivity in 164 youth with GAD and 3158 healthy controls for 6 cortical networks and 6 subcortical regions was assessed using linear mixed effect models. Changes in GAD-associated connectivity between baseline and 2-year follow-up were then compared for subjects with: continuous GAD, GAD at baseline and not follow-up (GAD-remitters), GAD at follow-up and not baseline (GAD-converters), and controls. RESULTS Youth with GAD showed greater within-ventral attention network (VAN) connectivity, and hyperconnectivity between the amygdala and cingulo-opercular network, and between striatal regions and the cingulo-opercular, default mode, and salience networks (FDR p<0.05). Within-VAN connectivity decreased for GAD-remitters between baseline and follow-up. Sensitivity analyses revealed that these hyperconnectivity patterns were not observed in major depressive disorder (n=19), separation anxiety (n=33), or social anxiety disorder (n=111) without GAD. DISCUSSION Results indicate that GAD in childhood and adolescence is associated with altered subcortical to cortical network connectivity, and that within-VAN hyperconnectivity, in particular, is associated with clinically-significant GAD-specific symptoms.
Collapse
Affiliation(s)
| | - Jinhan Zhu
- Department of Psychology, University of Washington
| | - Angela Fang
- Department of Psychology, University of Washington
| | | |
Collapse
|
5
|
Wen X, Zhang J, Wei G, Wu M, Zhang Y, Zhang Q, Hou G. Alterations in orbitofrontal cortex communication relate to suicidal attempts in patients with major depressive disorder. J Affect Disord 2025; 369:681-695. [PMID: 39383951 DOI: 10.1016/j.jad.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 09/28/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
BACKGROUND Investigating how the interaction between the orbitofrontal cortex (OFC) and various brain regions/functional networks in major depressive disorder (MDD) patients with a history of suicide attempt (SA) holds importance for understanding the neurobiology of this population. METHODS We employed resting-state functional magnetic resonance imaging (rs-fMRI) to analyze the OFC's functional segregation in 586 healthy individuals. A network analysis framework was then applied to rs-fMRI data from 86 MDD-SA patients and 85 MDD-Control patients, utilizing seed mappings of OFC subregions and a multi-connectivity-indicator strategy involving cross-correlation, total interdependencies, Granger causality, and machine learning. RESULTS Four functional subregions of left and right OFC, were designated as seed regions of interest. Relative to the MDD-Control group, the MDD-SA group exhibited enhanced functional connectivity (FC) and attenuated interaction between the OFC and the sensorimotor network, imbalanced communication between the OFC and the default mode network, enhanced FC and interaction between the OFC and the ventral attention network, enhanced interaction between the OFC and the salience network, and attenuated FC between the OFC and the frontoparietal network. LIMITATIONS The medication and treatment condition of patients with MDD was not controlled, so the medication effect on the alteration model cannot be affirmed. CONCLUSION The findings suggest an imbalanced interaction pattern between the OFC subregions and a set of cognition- and emotion-related functional networks/regions in the MDD-SA group.
Collapse
Affiliation(s)
- Xiaotong Wen
- Department of Psychology, Renmin University of China, Beijing 100872, China; Laboratory of the Department of Psychology, Renmin University of China, Beijing 100872, China.
| | - Junhui Zhang
- Department of Psychology, Renmin University of China, Beijing 100872, China; Laboratory of the Department of Psychology, Renmin University of China, Beijing 100872, China
| | - Guodong Wei
- Department of Psychology, Renmin University of China, Beijing 100872, China; Laboratory of the Department of Psychology, Renmin University of China, Beijing 100872, China
| | - Manlin Wu
- Department of Psychology, Renmin University of China, Beijing 100872, China; Laboratory of the Department of Psychology, Renmin University of China, Beijing 100872, China
| | - Yuquan Zhang
- Department of Psychology, Renmin University of China, Beijing 100872, China; Laboratory of the Department of Psychology, Renmin University of China, Beijing 100872, China
| | - Qiongyue Zhang
- Department of Psychology, Renmin University of China, Beijing 100872, China; Laboratory of the Department of Psychology, Renmin University of China, Beijing 100872, China
| | - Gangqiang Hou
- Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen 518020, China.
| |
Collapse
|
6
|
Furtado EJ, Camacho MC, Chin JH, Barch DM. Complex emotion processing and early life adversity in the Healthy Brain Network sample. Dev Cogn Neurosci 2024; 70:101469. [PMID: 39488929 PMCID: PMC11565559 DOI: 10.1016/j.dcn.2024.101469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/29/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024] Open
Abstract
OBJECTIVE Early life adversity (ELA) has shown to have negative impacts on mental health. One possible mechanism is through alterations in neural emotion processing. We sought to characterize how multiple indices of ELA were related to naturalistic neural socio-emotional processing. METHOD In 521 5-15-year-old participants from the Healthy Brain Network Biobank, we identified scenes that elicited activation of the Default Mode Network (DMN), Ventral Attention Network (VAN), Cingulo-Opercular Network (CON) and amygdala, all of which are networks shown to be associated with ELA. We used linear regression to examine associations between activation and ELA: negative parenting, social status, financial insecurity, neighborhood disadvantage, negative experiences, and parent psychopathology. RESULTS We found DMN, VAN, CON and amygdala activation during sad/emotional, bonding, action, conflict, sad, or fearful scenes. Greater inconsistent discipline was associated with greater VAN activation during sad or emotional scenes. CONCLUSION Findings suggest that the DMN, VAN, CON networks and the amygdala support socio-emotional processing consistent with prior literature. Individuals who experienced inconsistent discipline may have greater sensitivity to parent-child separation signals. Since no other ELA-activation associations were found, it is possible that unpredictability may be more strongly associated with complex neural emotion processing than socio-economic status or negative life events.
Collapse
Affiliation(s)
- Emily J Furtado
- the Institute of Child Development at University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | - M Catalina Camacho
- Department of Psychiatry at Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Jenna H Chin
- Department of Psychology, University of Denver, Denver, CO 80208, USA
| | - Deanna M Barch
- Department of Psychological and Brain Sciences at Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
7
|
Cui J, Li M, Wu Y, Shen Q, Yan W, Zhang S, Chen M, Zhou J. Exploring the mediating role of the ventral attention network and somatosensory motor network in the association between childhood trauma and depressive symptoms in major depressive disorders. J Affect Disord 2024; 365:1-8. [PMID: 39142581 DOI: 10.1016/j.jad.2024.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 07/03/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Childhood trauma is closely tied to adult depression, but the neurobiological mechanisms remain unclear. Previous studies suggested associations between depression and large-scale brain networks such as the Ventral Attention Network (VAN) and Somatosensory Motor Network (SMN). This study hypothesized that functional connectivity (FC) within and between these networks mediates the link between childhood trauma and adult depression. METHODS The Childhood Trauma Questionnaire (CTQ) assessed developmental experiences, and the Hamilton Rating Scale for Depression (HAMD-17) gauged depressive symptoms. Resting-state functional magnetic resonance imaging (fMRI) analyzed FC within and between the VAN and SMN. RESULTS Depression group exhibited significantly higher HAMD and CTQ scores, as well as elevated FC within the VAN and between the VAN and SMN (P < 0.05). Positive correlations were found between HAMD total score and FC within the VAN (P < 0.05, r = 0.35) and between the VAN and SMN (P < 0.05, r = 0.34), as well as with CTQ total score (P < 0.05, r = 0.27). Positive correlations were also observed between CTQ total score and FC within the VAN (P < 0.05, r = 0.31) and between the VAN and SMN (P < 0.05, r = 0.29). In the mediation model, FC within and between the VAN and SMN significantly mediated childhood trauma and depression. LIMITATIONS The cross-sectional design limits causal inference. The sample size for different trauma types is relatively small, urging caution in generalizing findings. CONCLUSIONS The study underscores the association between depression severity, VAN dysfunction, abnormal VAN-SMN FC, and childhood trauma. These findings contribute to understanding the neurobiological mechanisms underlying childhood trauma and depression.
Collapse
Affiliation(s)
- Jian Cui
- Department of Psychiatry, Shandong Daizhuang Hospital, Jining, Shandong, China; Precision Medicine Laboratory, Shandong Daizhuang Hospital, Jining, Shandong, China
| | - Meng Li
- Department of Psychiatry, Shandong Daizhuang Hospital, Jining, Shandong, China
| | - Yang Wu
- School of Mental Health, Jining Medical University, Jining, Shandong, China
| | - Qinge Shen
- School of Mental Health, Jining Medical University, Jining, Shandong, China
| | - Wei Yan
- Department of Psychiatry, Shandong Daizhuang Hospital, Jining, Shandong, China; Precision Medicine Laboratory, Shandong Daizhuang Hospital, Jining, Shandong, China
| | - Shudong Zhang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & the Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Min Chen
- Department of Psychiatry, Shandong Daizhuang Hospital, Jining, Shandong, China; School of Mental Health, Jining Medical University, Jining, Shandong, China
| | - Jingjing Zhou
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & the Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| |
Collapse
|
8
|
Argyropoulou MI, Xydis VG, Astrakas LG. Functional connectivity of the pediatric brain. Neuroradiology 2024; 66:2071-2082. [PMID: 39230715 DOI: 10.1007/s00234-024-03453-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 08/14/2024] [Indexed: 09/05/2024]
Abstract
PURPOSE This review highlights the importance of functional connectivity in pediatric neuroscience, focusing on its role in understanding neurodevelopment and potential applications in clinical practice. It discusses various techniques for analyzing brain connectivity and their implications for clinical interventions in neurodevelopmental disorders. METHODS The principles and applications of independent component analysis and seed-based connectivity analysis in pediatric brain studies are outlined. Additionally, the use of graph analysis to enhance understanding of network organization and topology is reviewed, providing a comprehensive overview of connectivity methods across developmental stages, from fetuses to adolescents. RESULTS Findings from the reviewed studies reveal that functional connectivity research has uncovered significant insights into the early formation of brain circuits in fetuses and neonates, particularly the prenatal origins of cognitive and sensory systems. Longitudinal research across childhood and adolescence demonstrates dynamic changes in brain connectivity, identifying critical periods of development and maturation that are essential for understanding neurodevelopmental trajectories and disorders. CONCLUSION Functional connectivity methods are crucial for advancing pediatric neuroscience. Techniques such as independent component analysis, seed-based connectivity analysis, and graph analysis offer valuable perspectives on brain development, creating new opportunities for early diagnosis and targeted interventions in neurodevelopmental disorders, thereby paving the way for personalized therapeutic strategies.
Collapse
Affiliation(s)
- Maria I Argyropoulou
- Department of Radiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, P.O. Box 1186, Ioannina, 45110, Greece.
| | - Vasileios G Xydis
- Department of Radiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, P.O. Box 1186, Ioannina, 45110, Greece
| | - Loukas G Astrakas
- Medical Physics Laboratory, Faculty of Medicine, School of Health Sciences, University of Ioannina, P.O. Box 1186, Ioannina, 45110, Greece
| |
Collapse
|
9
|
Zundel CG, Ely S, Brokamp C, Strawn JR, Jovanovic T, Ryan P, Marusak HA. Particulate Matter Exposure and Default Mode Network Equilibrium During Early Adolescence. Brain Connect 2024; 14:307-318. [PMID: 38814823 PMCID: PMC11387001 DOI: 10.1089/brain.2023.0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Abstract
Background: Air pollution exposure has been associated with adverse cognitive and mental health outcomes in children, adolescents, and adults, although youth may be particularly susceptible given ongoing brain development. However, the neurodevelopmental mechanisms underlying the associations among air pollution, cognition, and mental health remain unclear. We examined the impact of particulate matter (PM2.5) on resting-state functional connectivity (rsFC) of the default mode network (DMN) and three key attention networks: dorsal attention, ventral attention, and cingulo-opercular. Methods: Longitudinal changes in rsFC within/between networks were assessed from baseline (9-10 years) to the 2-year follow-up (11-12 years) in 10,072 youth (M ± SD = 9.93 + 0.63 years; 49% female) from the Adolescent Brain Cognitive Development (ABCD®) study. Annual ambient PM2.5 concentrations from the 2016 calendar year were estimated using hybrid ensemble spatiotemporal models. RsFC was estimated using functional neuroimaging. Linear mixed models were used to test associations between PM2.5 and change in rsFC over time while adjusting for relevant covariates (e.g., age, sex, race/ethnicity, parental education, and family income) and other air pollutants (O3, NO2). Results: A PM2.5 × time interaction was significant for within-network rsFC of the DMN such that higher PM2.5 concentrations were associated with a smaller increase in rsFC over time. Further, significant PM2.5 × time interactions were observed for between-network rsFC of the DMN and all three attention networks, with varied directionality. Conclusion: PM2.5 exposure was associated with alterations in the development and equilibrium of the DMN-a network implicated in self-referential processing-and anticorrelated attention networks, which may impact trajectories of cognitive and mental health symptoms across adolescence.
Collapse
Affiliation(s)
- Clara G. Zundel
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan, USA
| | - Samantha Ely
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan, USA
- Translational Neuroscience Program, Wayne State University, Detroit, Michigan, USA
| | - Cole Brokamp
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jeffrey R. Strawn
- Anxiety Disorders Research Program, Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan, USA
- Merrill Palmer Skillman Institute for Child and Family Development, Wayne State University, Detroit, Michigan, USA
| | - Patrick Ryan
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Hilary A. Marusak
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan, USA
- Translational Neuroscience Program, Wayne State University, Detroit, Michigan, USA
- Merrill Palmer Skillman Institute for Child and Family Development, Wayne State University, Detroit, Michigan, USA
- Department of Pharmacology, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
10
|
Gracia-Tabuenca Z, Barbeau EB, Xia Y, Chai X. Predicting depression risk in early adolescence via multimodal brain imaging. Neuroimage Clin 2024; 42:103604. [PMID: 38603863 PMCID: PMC11015491 DOI: 10.1016/j.nicl.2024.103604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/06/2024] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
Depression is an incapacitating psychiatric disorder with increased risk through adolescence. Among other factors, children with family history of depression have significantly higher risk of developing depression. Early identification of pre-adolescent children who are at risk of depression is crucial for early intervention and prevention. In this study, we used a large longitudinal sample from the Adolescent Brain Cognitive Development (ABCD) Study (2658 participants after imaging quality control, between 9-10 years at baseline), we applied advanced machine learning methods to predict depression risk at the two-year follow-up from the baseline assessment, using a set of comprehensive multimodal neuroimaging features derived from structural MRI, diffusion tensor imaging, and task and rest functional MRI. Prediction performance underwent a rigorous cross-validation method of leave-one-site-out. Our results demonstrate that all brain features had prediction scores significantly better than expected by chance, with brain features from rest-fMRI showing the best classification performance in the high-risk group of participants with parental history of depression (N = 625). Specifically, rest-fMRI features, which came from functional connectomes, showed significantly better classification performance than other brain features. This finding highlights the key role of the interacting elements of the connectome in capturing more individual variability in psychopathology compared to measures of single brain regions. Our study contributes to the effort of identifying biological risks of depression in early adolescence in population-based samples.
Collapse
Affiliation(s)
- Zeus Gracia-Tabuenca
- Department of Statistical Methods, University of Zaragoza, Zaragoza, Spain; Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.
| | - Elise B Barbeau
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Yu Xia
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| | - Xiaoqian Chai
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
11
|
Hasan MA, Sattar P, Qazi SA, Fraser M, Vuckovic A. Brain Networks With Modified Connectivity in Patients With Neuropathic Pain and Spinal Cord Injury. Clin EEG Neurosci 2024; 55:88-100. [PMID: 34714181 DOI: 10.1177/15500594211051485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background. Neuropathic pain (NP) following spinal cord injury (SCI) affects the quality of life of almost 40% of the injured population. The modified brain connectivity was reported under different NP conditions. Therefore, brain connectivity was studied in the SCI population with and without NP with the aim to identify networks that are altered due to injury, pain, or both. Methods. The study cohort is classified into 3 groups, SCI patients with NP, SCI patients without NP, and able-bodied. EEG of each participant was recorded during motor imagery (MI) of paralyzed and painful, and nonparalyzed and nonpainful limbs. Phased locked value was calculated using Hilbert transform to study altered functional connectivity between different regions. Results. The posterior region connectivity with frontal, fronto-central, and temporal regions is strongly decreased mainly during MI of dominant upper limb (nonparalyzed and nonpainful limbs) in SCI no pain group. This modified connectivity is prominent in the alpha and high-frequency bands (beta and gamma). Moreover, oscillatory modified global connectivity is observed in the pain group during MI of painful and paralyzed limb which is more evident between fronto-posterior, frontocentral-posterior, and within posterior and within frontal regions in the theta and SMR frequency bands. Cluster coefficient and local efficiency values are reduced in patients with no reported pain group while increased in the PWP group. Conclusion. The altered theta band connectivity found in the fronto-parietal network along with a global increase in local efficiency is a consequence of pain only, while altered connectivity in the beta and gamma bands along with a decrease in cluster coefficient values observed in the sensory-motor network is dominantly a consequence of injury only. The outcomes of this study may be used as a potential diagnostic biomarker for the NP. Further, the expected insight holds great clinical relevance in the design of neurofeedback-based neurorehabilitation and connectivity-based brain-computer interfaces for SCI patients.
Collapse
Affiliation(s)
- Muhammad A Hasan
- Department of Biomedical Engineering, NED University of Engineering & Technology, Karachi, Pakistan
| | - Parisa Sattar
- Neurocomputation Laboratory, National Centre for Artificial Intelligence, Karachi, Pakistan
| | - Saad A Qazi
- Neurocomputation Laboratory, National Centre for Artificial Intelligence, Karachi, Pakistan
- Department of Electrical and Computer Engineering, NED University of Engineering & Technology, Karachi, Pakistan
| | - Matthew Fraser
- Queen Elizabeth National Spinal Unit, Southern General Hospital, Glasgow, UK
| | - Aleksandra Vuckovic
- Centre for Rehabilitation Engineering, School of Engineering, University of Glasgow, Glasgow, UK
| |
Collapse
|
12
|
Albertina EA, Barch DM, Karcher NR. Internalizing Symptoms and Adverse Childhood Experiences Associated With Functional Connectivity in a Middle Childhood Sample. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:50-59. [PMID: 35483606 PMCID: PMC9596616 DOI: 10.1016/j.bpsc.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/13/2022] [Accepted: 04/09/2022] [Indexed: 05/11/2023]
Abstract
BACKGROUND Research has found overlapping associations in adults of resting-state functional connectivity (RSFC) to both internalizing disorders (e.g., depression, anxiety) and a history of traumatic events. The present study aimed to extend this previous research to a younger sample by examining RSFC associations with both internalizing symptoms and adverse childhood experiences (ACEs) in middle childhood. METHODS We used generalized linear mixed models to examine associations between a priori within- and between-network RSFC with child-reported internalizing symptoms and ACEs using the Adolescent Brain Cognitive Development dataset (N = 10,168, mean age = 9.95 years, SD = 0.627). RESULTS We found that internalizing symptoms and ACEs were associated with both multiple overlapping and unique RSFC network patterns. Both ACEs and internalizing symptoms were associated with a reduced anticorrelation between the default mode network and the dorsal attention network. However, internalizing symptoms were uniquely associated with lower within-network default mode network connectivity, while ACEs were uniquely associated with both lower between-network connectivity of the auditory network and cingulo-opercular network, and higher within-network frontoparietal network connectivity. CONCLUSIONS The present study points to overlap in the RSFC associations with internalizing symptoms and ACEs, as well as important areas of specificity in RSFC associations. Many of the RSFC associations found have been previously implicated in attentional control functions, including modulation of attention to sensory stimuli. This may have critical importance in understanding internalizing symptoms and outcomes of ACEs.
Collapse
Affiliation(s)
- Emily A Albertina
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, Missouri.
| | - Deanna M Barch
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Nicole R Karcher
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| |
Collapse
|
13
|
Picci G, Ott LR, Petro NM, Casagrande CC, Killanin AD, Rice DL, Coutant AT, Arif Y, Embury CM, Okelberry HJ, Johnson HJ, Springer SD, Pulliam HR, Wang YP, Calhoun VD, Stephen JM, Heinrichs-Graham E, Taylor BK, Wilson TW. Developmental alterations in the neural oscillatory dynamics underlying attentional reorienting. Dev Cogn Neurosci 2023; 63:101288. [PMID: 37567094 PMCID: PMC10432959 DOI: 10.1016/j.dcn.2023.101288] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 07/23/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
The neural and cognitive processes underlying the flexible allocation of attention undergo a protracted developmental course with changes occurring throughout adolescence. Despite documented age-related improvements in attentional reorienting throughout childhood and adolescence, the neural correlates underlying such changes in reorienting remain unclear. Herein, we used magnetoencephalography (MEG) to examine neural dynamics during a Posner attention-reorienting task in 80 healthy youth (6-14 years old). The MEG data were examined in the time-frequency domain and significant oscillatory responses were imaged in anatomical space. During the reorienting of attention, youth recruited a distributed network of regions in the fronto-parietal network, along with higher-order visual regions within the theta (3-7 Hz) and alpha-beta (10-24 Hz) spectral windows. Beyond the expected developmental improvements in behavioral performance, we found stronger theta oscillatory activity as a function of age across a network of prefrontal brain regions irrespective of condition, as well as more limited age- and validity-related effects for alpha-beta responses. Distinct brain-behavior associations between theta oscillations and attention-related symptomology were also uncovered across a network of brain regions. Taken together, these data are the first to demonstrate developmental effects in the spectrally-specific neural oscillations serving the flexible allocation of attention.
Collapse
Affiliation(s)
- Giorgia Picci
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Lauren R Ott
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Nathan M Petro
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Chloe C Casagrande
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Abraham D Killanin
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Danielle L Rice
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Anna T Coutant
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Yasra Arif
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Christine M Embury
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Hannah J Okelberry
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Hallie J Johnson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Seth D Springer
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Haley R Pulliam
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) [Georgia State University, Georgia Institute of Technology, Emory University], Atlanta, GA, USA
| | | | - Elizabeth Heinrichs-Graham
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| | - Brittany K Taylor
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA.
| |
Collapse
|
14
|
Karcher NR, Merchant J, Rappaport BI, Barch DM. Associations with youth psychotic-like experiences over time: Evidence for trans-symptom and specific cognitive and neural risk factors. JOURNAL OF PSYCHOPATHOLOGY AND CLINICAL SCIENCE 2023; 132:514-526. [PMID: 37023280 PMCID: PMC10164137 DOI: 10.1037/abn0000820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
The current study examined whether impairments in cognitive and neural factors at baseline (ages 9-10) predict initial levels or changes in psychotic-like experiences (PLEs) and whether such impairments generalize to other psychopathology symptoms (i.e., internalizing and externalizing symptoms). Using unique longitudinal Adolescent Brain Cognitive Development Study data, the study examined three time points from ages 9 to 13. Univariate latent growth models examined associations between baseline cognitive and neural metrics with symptom measures using discovery (n = 5,926) and replication (n = 5,952) data sets. For symptom measures (i.e., PLEs, internalizing, externalizing), we examined mean initial levels (i.e., intercepts) and changes over time (i.e., slopes). Predictors included neuropsychological test performance, global structural MRI, and several a priori within-network resting-state functional connectivity metrics. Results showed a pattern whereby baseline cognitive and brain metric impairments showed the strongest associations with PLEs over time. Lower cognitive, volume, surface area, and cingulo-opercular within-network connectivity metrics showed associations with increased PLEs and higher initial levels of externalizing and internalizing symptoms. Several metrics were uniquely associated with PLEs, including lower cortical thickness with higher initial PLEs and lower default mode network connectivity with increased PLEs slopes. Neural and cognitive impairments in middle childhood were broadly associated with increased PLEs over time, and showed stronger associations with PLEs compared with other psychopathology symptoms. The current study also identified markers potentially uniquely associated with PLEs (e.g., cortical thickness). Impairments in broad cognitive metrics, brain volume and surface area, and a network associated with information integration may represent risk factors for general psychopathology. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Collapse
Affiliation(s)
| | - Jaisal Merchant
- Department of Psychology, Washington University in St. Louis
| | | | - Deanna M. Barch
- Department of Psychiatry, Washington University School of Medicine
- Department of Psychology, Washington University in St. Louis
| |
Collapse
|
15
|
Wen X, Shu Y, Qu D, Wang Y, Cui Z, Zhang X, Chen R. Associations of bullying perpetration and peer victimization subtypes with preadolescent's suicidality, non-suicidal self-injury, neurocognition, and brain development. BMC Med 2023; 21:141. [PMID: 37046279 PMCID: PMC10091581 DOI: 10.1186/s12916-023-02808-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/27/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Although both peer victimization and bullying perpetration negatively impact preadolescents' development, the underlying neurobiological mechanism of this adverse relationship remains unclear. Besides, the specific psycho-cognitive patterns of different bullying subtypes also need further exploration, warranting large-scale studies on both general bullying and specific bullying subtypes. METHODS We adopted a retrospective methodology by utilizing the data from the Adolescent Brain and Cognitive DevelopmentSM Study (ABCD Study®) cohort collected between July 2018 and January 2021. Participants were preadolescents aged from 10 to 13 years. The main purpose of our study is to examine the associations of general and specific peer victimization/bullying perpetration with preadolescents' (1) suicidality and non-suicidal self-injury; (2) executive function and memory, including attention inhibition, processing speed, emotion working memory, and episodic memory; (3) brain structure abnormalities; and (4) brain network disturbances. Age, sex, race/ethnicity, body mass index (BMI), socioeconomic status (SES), and data acquisition site were included as covariates. RESULTS A total of 5819 participants aged from 10 to 13 years were included in this study. Higher risks of suicide ideation, suicide attempt, and non-suicidal self-injury were found to be associated with both bullying perpetration/peer victimization and their subtypes (i.e., overt, relational, and reputational). Meanwhile, poor episodic memory was shown to be associated with general victimization. As for perpetration, across all four tasks, significant positive associations of relational perpetration with executive function and episodic memory consistently manifested, yet opposite patterns were shown in overt perpetration. Notably, distinct psycho-cognitive patterns were shown among different subtypes. Additionally, victimization was associated with structural brain abnormalities in the bilateral paracentral and posterior cingulate cortex. Furthermore, victimization was associated with brain network disturbances between default mode network and dorsal attention network, between default mode network and fronto-parietal network, and ventral attention network related connectivities, including default mode network, dorsal attention network, cingulo-opercular network, cingulo-parietal network, and sensorimotor hand network. Perpetration was also associated with brain network disturbances between the attention network and the sensorimotor hand network. CONCLUSIONS Our findings offered new evidence for the literature landscape by emphasizing the associations of bullying experiences with preadolescents' clinical characteristics and cognitive functions, while distinctive psycho-cognitive patterns were shown among different subtypes. Additionally, there is evidence that these associations are related to neurocognitive brain networks involved in attention control and episodic retrieval. Given our findings, future interventions targeting ameliorating the deleterious effect of bullying experiences on preadolescents should consider their subtypes and utilize an ecosystemic approach involving all responsible parties.
Collapse
Affiliation(s)
- Xue Wen
- Vanke School of Public Health, Tsinghua University, Beijing, 100084, China
- Institute for Healthy China, Tsinghua University, Beijing, China
| | - Yinuo Shu
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Diyang Qu
- Vanke School of Public Health, Tsinghua University, Beijing, 100084, China
- Institute for Healthy China, Tsinghua University, Beijing, China
| | - Yinzhe Wang
- Vanke School of Public Health, Tsinghua University, Beijing, 100084, China
| | - Zaixu Cui
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Xiaoqian Zhang
- Department of Psychiatry, Tsinghua University Yuquan Hospital, Beijing, China.
| | - Runsen Chen
- Vanke School of Public Health, Tsinghua University, Beijing, 100084, China.
- Institute for Healthy China, Tsinghua University, Beijing, China.
| |
Collapse
|
16
|
Transcutaneous Electrical Cranial-Auricular Acupoint Stimulation Modulating the Brain Functional Connectivity of Mild-to-Moderate Major Depressive Disorder: An fMRI Study Based on Independent Component Analysis. Brain Sci 2023; 13:brainsci13020274. [PMID: 36831816 PMCID: PMC9953795 DOI: 10.3390/brainsci13020274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Evidence has shown the roles of taVNS and TECS in improving depression but few studies have explored their synergistic effects on MDD. Therefore, the treatment responsivity and neurological effects of TECAS were investigated and compared to escitalopram, a commonly used medication for depression. Fifty patients with mild-to-moderate MDD (29 in the TECAS group and 21 in another) and 49 demographically matched healthy controls were recruited. After an eight-week treatment, the outcomes of TECAS and escitalopram were evaluated by the effective rate and reduction rate based on the Montgomery-Asberg Depression Rating Scale, Hamilton Depression Rating Scale, and Hamilton Anxiety Rating Scale. Altered brain networks were analyzed between pre- and post-treatment using independent component analysis. There was no significant difference in clinical scales between TECAS and escitalopram but these were significantly decreased after each treatment. Both treatments modulated connectivity of the default mode network (DMN), dorsal attention network (DAN), right frontoparietal network (RFPN), and primary visual network (PVN), and the decreased PVN-RFPN connectivity might be the common brain mechanism. However, there was increased DMN-RFPN and DMN-DAN connectivity after TECAS, while it decreased in escitalopram. In conclusion, TECAS could relieve symptoms of depression similarly to escitalopram but induces different changes in brain networks.
Collapse
|
17
|
Faraj MM, Evanski J, Zundel CG, Peters C, Brummelte S, Lundahl L, Marusak H. Impact of prenatal cannabis exposure on functional connectivity of the salience network in children. J Neurosci Res 2023; 101:162-171. [PMID: 36226844 PMCID: PMC10015638 DOI: 10.1002/jnr.25136] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/29/2022] [Accepted: 10/05/2022] [Indexed: 11/09/2022]
Abstract
Cannabis use among pregnant people has increased over the past decade. This is of concern as prenatal cannabis exposure (PCE) is associated with cognitive, motor, and social deficits among offspring. Here, we examined resting-state functional connectivity (rsFC) of the salience network (SN)-a core neurocognitive network that integrates emotional and sensory information-in children with (vs. without) PCE. Using neuroimaging and developmental history data collected from 10,719 children (M ± SD = 9.92 ± 0.62 years; 47.9% female) from the Adolescent Brain Cognitive Development study, we assessed the impact of parent-reported PCE (before or after knowledge of pregnancy) on rsFC within and between the SN and five other core neurocognitive networks. We also evaluated whether SN rsFC mediated the association between PCE and child psychopathology. Results showed that PCE before (but not after) knowledge of pregnancy was associated with lower SN-ventral attention network (VAN) rsFC. Furthermore, psychotic-like experiences mediated the association between PCE and SN-VAN rsFC, and reversal of the model was also significant, such that SN-VAN rsFC mediated the association between PCE and psychotic-like symptoms. However, these mediation effects were no longer significant after the inclusion of covariates. Taken together, these findings suggest that developmental alterations in SN-VAN interactions may explain the previously reported association between PCE and elevated risk of child psychopathology.
Collapse
Affiliation(s)
- Mohammed M. Faraj
- Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, Michigan, USA, 48201
- School of Medicine, Wayne State University, Detroit, Michigan, USA, 48201
| | - Julia Evanski
- Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, Michigan, USA, 48201
| | - Clara G. Zundel
- Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, Michigan, USA, 48201
| | - Craig Peters
- Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, Michigan, USA, 48201
| | - Susanne Brummelte
- Department of Psychology, Wayne State University, Detroit, Michigan, USA, 48201
| | - Leslie Lundahl
- Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, Michigan, USA, 48201
| | - Hilary Marusak
- Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, Michigan, USA, 48201
- Merrill Palmer Skillman Institute for Child and Family Development, Wayne State University, Detroit, Michigan, USA, 48201
| |
Collapse
|
18
|
Qadir H, Stewart BW, VanRyzin JW, Wu Q, Chen S, Seminowicz DA, Mathur BN. The mouse claustrum synaptically connects cortical network motifs. Cell Rep 2022; 41:111860. [PMID: 36543121 PMCID: PMC9838879 DOI: 10.1016/j.celrep.2022.111860] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/31/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Spatially distant areas of the cerebral cortex coordinate their activity into networks that are integral to cognitive processing. A common structural motif of cortical networks is co-activation of frontal and posterior cortical regions. The neural circuit mechanisms underlying such widespread inter-areal cortical coordination are unclear. Using a discovery based functional magnetic resonance imaging (fMRI) approach in mouse, we observe frontal and posterior cortical regions that demonstrate significant functional connectivity with the subcortical nucleus, the claustrum. Examining whether the claustrum synaptically supports such frontoposterior cortical network architecture, we observe cortico-claustro-cortical circuits reflecting the fMRI data: significant trans-claustral synaptic connectivity from frontal cortices to posteriorly lying sensory and sensory association cortices contralaterally. These data reveal discrete cortical pathways through the claustrum that are positioned to support cortical network motifs central to cognitive control functions and add to the canon of major extended cortico-subcortico-cortical systems in the mammalian brain.
Collapse
Affiliation(s)
- Houman Qadir
- Department of Pharmacology, University of Maryland School of Medicine, HSF III 9179, Baltimore, MD 21201, USA
| | - Brent W. Stewart
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Jonathan W. VanRyzin
- Department of Pharmacology, University of Maryland School of Medicine, HSF III 9179, Baltimore, MD 21201, USA
| | - Qiong Wu
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Shuo Chen
- Division of Biostatistics and Bioinformatics, Department of Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - David A. Seminowicz
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, USA,Department of Medical Biophysics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Brian N. Mathur
- Department of Pharmacology, University of Maryland School of Medicine, HSF III 9179, Baltimore, MD 21201, USA,Lead contact,Correspondence:
| |
Collapse
|
19
|
Xiang Q, Chen K, Peng L, Luo J, Jiang J, Chen Y, Lan L, Song H, Zhou X. Prediction of the trajectories of depressive symptoms among children in the adolescent brain cognitive development (ABCD) study using machine learning approach. J Affect Disord 2022; 310:162-171. [PMID: 35545159 DOI: 10.1016/j.jad.2022.05.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 03/02/2022] [Accepted: 05/05/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Depression often first emerges during adolescence and evidence shows that the long-term patterns of depressive symptoms over time are heterogeneous. It is meaningful to predict the trajectory of depressive symptoms in adolescents to find early intervention targets. METHODS Based on the Adolescent Brain Cognitive Development Study, we included 4962 participants aged 9-10 who were followed-up for 2 years. Trajectories of depressive symptoms were identified by Latent Class Growth Analyses (LCGA). Four types of machine learning models were built to predict the identified trajectories and to obtain variables with predictive value based on the best performance model. RESULTS Of all participants, 536 (10.80%) were classified as increasing, 269 (5.42%) as persistently high, 433 (8.73%) as decreasing, and 3724 (75.05%) as persistently low by LCGA. Gradient Boosting Machine (GBM) model got the highest discriminant performance. Sleep quality, parental emotional state and family financial adversities were the most important predictors and three resting state functional magnetic resonance imaging functional connectivity data were also helpful to distinguish trajectories. LIMITATION We only have depressive symptom scores at three time points. Some valuable predictors are not specific to depression. External validation is an important next step. These predictors should not be interpreted as etiology and some variables were reported by parents/caregivers. CONCLUSION Using GBM combined with baseline characteristics, the trajectories of depressive symptoms with two years among adolescents aged 9-10 years can be well predicted, which might further facilitate the identification of adolescents at high risk of depressive symptoms and development of effective early interventions.
Collapse
Affiliation(s)
- Qu Xiang
- West China Biomedical Big Data Center, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China; Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Kai Chen
- School of Public Health, University of Texas Health Center at Houston, Houston, TX, USA
| | - Li Peng
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiawei Luo
- West China Biomedical Big Data Center, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China; Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Jingwen Jiang
- West China Biomedical Big Data Center, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China; Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Yang Chen
- West China Biomedical Big Data Center, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China; Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Lan Lan
- West China Biomedical Big Data Center, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China; Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Huan Song
- West China Biomedical Big Data Center, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China; Med-X Center for Informatics, Sichuan University, Chengdu, China.
| | - Xiaobo Zhou
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
20
|
Kenwood MM, Kalin NH, Barbas H. The prefrontal cortex, pathological anxiety, and anxiety disorders. Neuropsychopharmacology 2022; 47:260-275. [PMID: 34400783 PMCID: PMC8617307 DOI: 10.1038/s41386-021-01109-z] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 02/07/2023]
Abstract
Anxiety is experienced in response to threats that are distal or uncertain, involving changes in one's subjective state, autonomic responses, and behavior. Defensive and physiologic responses to threats that involve the amygdala and brainstem are conserved across species. While anxiety responses typically serve an adaptive purpose, when excessive, unregulated, and generalized, they can become maladaptive, leading to distress and avoidance of potentially threatening situations. In primates, anxiety can be regulated by the prefrontal cortex (PFC), which has expanded in evolution. This prefrontal expansion is thought to underlie primates' increased capacity to engage high-level regulatory strategies aimed at coping with and modifying the experience of anxiety. The specialized primate lateral, medial, and orbital PFC sectors are connected with association and limbic cortices, the latter of which are connected with the amygdala and brainstem autonomic structures that underlie emotional and physiological arousal. PFC pathways that interface with distinct inhibitory systems within the cortex, the amygdala, or the thalamus can regulate responses by modulating neuronal output. Within the PFC, pathways connecting cortical regions are poised to reduce noise and enhance signals for cognitive operations that regulate anxiety processing and autonomic drive. Specialized PFC pathways to the inhibitory thalamic reticular nucleus suggest a mechanism to allow passage of relevant signals from thalamus to cortex, and in the amygdala to modulate the output to autonomic structures. Disruption of specific nodes within the PFC that interface with inhibitory systems can affect the negative bias, failure to regulate autonomic arousal, and avoidance that characterize anxiety disorders.
Collapse
Affiliation(s)
- Margaux M Kenwood
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Neuroscience Training Program at University of Wisconsin-Madison, Madison, USA
| | - Ned H Kalin
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Neuroscience Training Program at University of Wisconsin-Madison, Madison, USA
- Wisconsin National Primate Center, Madison, WI, USA
| | - Helen Barbas
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA, USA.
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
21
|
Langenecker SA, Westlund Schreiner M, Thomas LR, Bessette KL, DelDonno SR, Jenkins LM, Easter RE, Stange JP, Pocius SL, Dillahunt A, Love TM, Phan KL, Koppelmans V, Paulus M, Lindquist MA, Caffo B, Mickey BJ, Welsh RC. Using Network Parcels and Resting-State Networks to Estimate Correlates of Mood Disorder and Related Research Domain Criteria Constructs of Reward Responsiveness and Inhibitory Control. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:76-84. [PMID: 34271215 PMCID: PMC8748287 DOI: 10.1016/j.bpsc.2021.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/14/2021] [Accepted: 06/13/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Resting-state graph-based network edges can be powerful tools for identification of mood disorders. We address whether these edges can be integrated with Research Domain Criteria (RDoC) constructs for accurate identification of mood disorder-related markers, while minimizing active symptoms of disease. METHODS We compared 132 individuals with currently remitted or euthymic mood disorder with 65 healthy comparison participants, ages 18-30 years. Subsets of smaller brain parcels, combined into three prominent networks and one network of parcels overlapping across these networks, were used to compare edge differences between groups. Consistent with the RDoC framework, we evaluated individual differences with performance measure regressors of inhibitory control and reward responsivity. Within an omnibus regression model, we predicted edges related to diagnostic group membership, performance within both RDoC domains, and relevant interactions. RESULTS There were several edges of mood disorder group, predominantly of greater connectivity across networks, different than those related to individual differences in inhibitory control and reward responsivity. Edges related to diagnosis and inhibitory control did not align well with prior literature, whereas edges in relation to reward responsivity constructs showed greater alignment with prior literature. Those edges in interaction between RDoC constructs and diagnosis showed a divergence for inhibitory control (negative interactions in default mode) relative to reward (positive interactions with salience and emotion network). CONCLUSIONS In conclusion, there is evidence that prior simple network models of mood disorders are currently of insufficient biological or diagnostic clarity or that parcel-based edges may be insufficiently sensitive for these purposes.
Collapse
Affiliation(s)
| | | | - Leah R Thomas
- Department of Psychiatry, University of Utah, Salt Lake City, Utah; Department of Psychology, University of Utah, Salt Lake City, Utah
| | - Katie L Bessette
- Department of Psychiatry, University of Utah, Salt Lake City, Utah; Department of Psychiatry & Psychology, University of Illinois at Chicago, Chicago, Illinois
| | - Sophia R DelDonno
- Department of Psychiatry & Psychology, University of Illinois at Chicago, Chicago, Illinois
| | - Lisanne M Jenkins
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Evanston, Illinois
| | - Rebecca E Easter
- Department of Psychiatry & Psychology, University of Illinois at Chicago, Chicago, Illinois
| | - Jonathan P Stange
- Department of Psychiatry & Psychology, University of Illinois at Chicago, Chicago, Illinois; Department of Psychology, University of Southern California, Los Angeles, California
| | | | - Alina Dillahunt
- Department of Psychiatry, University of Utah, Salt Lake City, Utah
| | - Tiffany M Love
- Department of Psychiatry, University of Utah, Salt Lake City, Utah
| | - K Luan Phan
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, Ohio
| | | | - Martin Paulus
- Laureate Institute for Brain Research, Tulsa, Oklahoma
| | | | - Brian Caffo
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Brian J Mickey
- Department of Psychiatry, University of Utah, Salt Lake City, Utah
| | - Robert C Welsh
- Department of Psychiatry, University of Utah, Salt Lake City, Utah
| |
Collapse
|
22
|
Perino MT, Myers MJ, Wheelock MD, Yu Q, Harper JC, Manhart MF, Gordon EM, Eggebrecht AT, Pine DS, Barch DM, Luby JL, Sylvester CM. Whole-Brain Resting-State Functional Connectivity Patterns Associated With Pediatric Anxiety and Involuntary Attention Capture. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2021; 1:229-238. [PMID: 36033105 PMCID: PMC9417088 DOI: 10.1016/j.bpsgos.2021.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/22/2021] [Accepted: 05/24/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Pediatric anxiety disorders are linked to dysfunction in multiple functional brain networks, as well as to alterations in the allocation of spatial attention. We used network-level analyses to characterize resting-state functional connectivity (rs-fc) alterations associated with 1) symptoms of anxiety and 2) alterations in stimulus-driven attention associated with pediatric anxiety disorders. We hypothesized that anxiety was related to altered connectivity of the frontoparietal, default mode, cingulo-opercular, and ventral attention networks and that anxiety-related connectivity alterations that include the ventral attention network would simultaneously be related to deviations in stimulus-driven attention. METHODS A sample of children (n = 61; mean = 10.6 years of age), approximately half of whom met criteria for a current anxiety disorder, completed a clinical assay, an attention task, and rs-fc magnetic resonance imaging scans. Network-level analyses examined whole-brain rs-fc patterns associated with clinician-rated anxiety and with involuntary capture of attention. Post hoc analyses controlled for comorbid symptoms. RESULTS Elevated clinician-rated anxiety was associated with altered connectivity within the cingulo-opercular network, as well as between the cingulo-opercular network and the ventral attention, default mode, and visual networks. Connectivity between the ventral attention and cingulo-opercular networks was associated with variation in both anxiety and stimulus-driven attention. CONCLUSIONS Pediatric anxiety is related to aberrant connectivity patterns among several networks, most of which include the cingulo-opercular network. These results help clarify the within- and between-network interactions associated with pediatric anxiety and its association with altered attention, suggesting that specific network connections could be targeted to improve specific altered processes associated with anxiety.
Collapse
Affiliation(s)
- Michael T. Perino
- School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Michael J. Myers
- School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Muriah D. Wheelock
- School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Qiongru Yu
- Department of Psychology, San Diego State University, San Diego, California
- Department of Psychiatry, University of California San Diego, San Diego, California
| | - Jennifer C. Harper
- School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Megan F. Manhart
- School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Evan M. Gordon
- School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Adam T. Eggebrecht
- School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Daniel S. Pine
- Development & Emotion Branch, National Institute of Mental Health, Bethesda, Maryland
| | - Deanna M. Barch
- School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Joan L. Luby
- School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Chad M. Sylvester
- School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
23
|
Ross AJ, Roule AL, Deveney CM, Towbin KE, Brotman MA, Leibenluft E, Tseng WL. A preliminary study on functional activation and connectivity during frustration in youths with bipolar disorder. Bipolar Disord 2021; 23:263-273. [PMID: 32790927 PMCID: PMC8074834 DOI: 10.1111/bdi.12985] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Frustration is associated with impaired attention, heightened arousal, and greater unhappiness in youths with bipolar disorder (BD) vs healthy volunteers (HV). Little is known about functional activation and connectivity in the brain of BD youths in response to frustration. This exploratory study compared BD youths and HV on attentional abilities, self-reported affect, and functional activation and connectivity during a frustrating attention task. METHODS Twenty BD (Mage = 15.86) and 20 HV (Mage = 15.55) youths completed an fMRI paradigm that differentiated neural responses during processing of frustrating feedback from neural responses during attention orienting following frustrating feedback. We examined group differences in (a) functional connectivity using amygdala, inferior frontal gyrus (IFG), and striatum as seeds and (b) whole-brain and regions of interest (amygdala, IFG, striatum) activation. We explored task performance (accuracy, reaction time), self-reported frustration and unhappiness, and correlations between these variables and irritability, depressive, and manic symptoms. RESULTS Bipolar disorder youths, relative to HV, exhibited positive IFG-ventromedial prefrontal cortex (vmPFC) connectivity yet failed to show negative striatum-insula connectivity during feedback processing. Irritability symptoms were positively associated with striatum-insula connectivity during feedback processing. Moreover, BD vs HV youths showed positive IFG-parahippocampal gyrus (PHG)/periaqueductal gray (PAG) connectivity and negative amygdala-cerebellum connectivity during attention orienting following frustration. BD was not associated with atypical activation patterns. CONCLUSIONS Positive IFG-vmPFC connectivity and striatum-insula decoupling in BD during feedback processing may mediate heightened sensitivity to reward-relevant stimuli. Elevated IFG-PAG/PHG connectivity in BD following frustration may suggest greater recruitment of attention network to regulate arousal and maintain goal-directed behavior.
Collapse
Affiliation(s)
- Andrew J Ross
- Emotion and Development Branch, Department of Health and Human Services, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
- Department of Psychology, University of Rochester, Rochester, NY, USA
| | - Alexandra L Roule
- Department of Psychology, The Pennsylvania State University, University Park, PA, USA
| | | | - Kenneth E Towbin
- Emotion and Development Branch, Department of Health and Human Services, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Melissa A Brotman
- Emotion and Development Branch, Department of Health and Human Services, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Ellen Leibenluft
- Emotion and Development Branch, Department of Health and Human Services, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Wan-Ling Tseng
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
24
|
Donner SL. Making Meaning through Play: Psychoanalytic Intervention in a Pre-School Child with Global Developmental Delay. PSYCHOANALYTIC STUDY OF THE CHILD 2021. [DOI: 10.1080/00797308.2020.1859278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Susan L. Donner
- Training and Child, Adolescent and Adult Supervising Analyst, Chair of Child and Adolescent Psychoanalytic Program and Director of Infant, Child and Adolescent (0-21) Clinic, New Center for Psychoanalysis
- Psychiatry, UCLA Geffen School of Medicine
- Geographic Child and Adolescent Psychoanalytic Supervisor, Western Regional Consortium; New Center for Psychoanalysis, Los Angeles; Department of Psychiatry and Behavioral Sciences, UCLA Semel Institute of Neuroscience and Behavior
| |
Collapse
|
25
|
Perino MT, Yu Q, Myers MJ, Harper JC, Baumel WT, Petersen SE, Barch DM, Luby JL, Sylvester CM. Attention Alterations in Pediatric Anxiety: Evidence From Behavior and Neuroimaging. Biol Psychiatry 2021; 89:726-734. [PMID: 33012520 PMCID: PMC9166685 DOI: 10.1016/j.biopsych.2020.07.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/30/2020] [Accepted: 07/08/2020] [Indexed: 01/29/2023]
Abstract
BACKGROUND Pediatric anxiety disorders involve greater capture of attention by threatening stimuli. However, it is not known if disturbances extend to nonthreatening stimuli, as part of a pervasive disturbance in attention-related brain systems. We hypothesized that pediatric anxiety involves greater capture of attention by salient, nonemotional stimuli, coupled with greater activity in the portion of the inferior frontal gyrus (IFG) specific to the ventral attention network (VAN). METHODS A sample of children (n = 129, 75 girls, mean 10.6 years of age), approximately half of whom met criteria for a current anxiety disorder, completed a task measuring involuntary capture of attention by nonemotional (square boxes) and emotional (angry and neutral faces) stimuli. A subset (n = 61) completed a task variant during functional magnetic resonance imaging. A priori analyses examined activity in functional brain areas within the right IFG, supplemented by a whole-brain, exploratory analysis. RESULTS Higher clinician-rated anxiety was associated with greater capture of attention by nonemotional, salient stimuli (F1,125 = 4.94, p = .028) and greater activity in the portion of the IFG specific to the VAN (F1,57 = 10.311, p = .002). Whole-brain analyses confirmed that the effect of anxiety during capture of attention was most pronounced in the VAN portion of the IFG, along with additional areas of the VAN and the default mode network. CONCLUSIONS The pathophysiology of pediatric anxiety appears to involve greater capture of attention to salient stimuli, as well as greater activity in attention-related brain networks. These results provide novel behavioral and brain-based targets for treatment of pediatric anxiety disorders.
Collapse
Affiliation(s)
- Michael T Perino
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri.
| | - Qiongru Yu
- Department of Psychology, San Diego State University, San Diego, California; Department of Psychiatry, University of California San Diego School of Medicine, San Diego, California
| | - Michael J Myers
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Jennifer C Harper
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - William T Baumel
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati School of Medicine, Cincinnati, Ohio
| | - Steven E Petersen
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, Missouri; Department of Neuroscience, Washington University School of Medicine in St. Louis, St. Louis, Missouri; Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Deanna M Barch
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri; Department of Psychological and Brain Sciences, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Joan L Luby
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Chad M Sylvester
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri.
| |
Collapse
|
26
|
Urban K, Schudlo L, Keightley M, Alain S, Reed N, Chau T. Altered Brain Activation in Youth following Concussion: Using a Dual-task Paradigm. Dev Neurorehabil 2021; 24:187-198. [PMID: 33012188 DOI: 10.1080/17518423.2020.1825539] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A concussion is known as a functional injury affecting brain communication, integration, and processing. There is a need to objectively measure how concussions disrupt brain activation while completing ecologically relevant tasks.The objective of this study was to compare brain activation patterns between concussion and comparison groups (non-concussed youth) during a cognitive-motor single and dual-task paradigm utilizing functional near-infrared spectroscopy (fNIRS) in regions of the frontal-parietal attention network and compared to task performance.Youth with concussion generally exhibited hyperactivation and recruitment of additional brain regions in the dorsal lateral prefrontal (DLPFC), superior (SPC) and inferior parietal cortices (IPC), which are associated with processing, information integration, and response selection. Additionally, hyper- or hypo-activation patterns were associated with slower processing speed on the cognitive task. Our findings corroborate the growing literature suggesting that neural recovery may be delayed compared to the restoration of behavioral performance post-concussion.Concussion, near-infrared spectroscopy, dual-task paradigm, cognitive, motor, brain activation.
Collapse
Affiliation(s)
- Karolina Urban
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada.,Rehabilitation Science Institute, University of Toronto, Toronto, Canada
| | - Larissa Schudlo
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada.,Electrical, Computer and Biomedical Engineering Department, Ryerson University, Toronto, Canada
| | | | - Sam Alain
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
| | - Nick Reed
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada.,Rehabilitation Science Institute, University of Toronto, Toronto, Canada.,Department of Occupational Science and Occupational Therapy, University of Toronto, Toronto, Canada
| | - Tom Chau
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| |
Collapse
|
27
|
La Buissonniere-Ariza V, Fitzgerald K, Meoded A, Williams LL, Liu G, Goodman WK, Storch EA. Neural correlates of cognitive behavioral therapy response in youth with negative valence disorders: A systematic review of the literature. J Affect Disord 2021; 282:1288-1307. [PMID: 33601708 DOI: 10.1016/j.jad.2020.12.182] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 11/25/2020] [Accepted: 12/24/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Cognitive-behavioral therapy (CBT) is the gold-standard psychotherapeutic treatment for pediatric negative valence disorders. However, some youths do not respond optimally to treatment, which may be due to variations in neural functioning. METHODS We systematically reviewed functional magnetic resonance imaging studies in youths with negative valence disorders to identify pre- and post-treatment neural correlates of CBT response. RESULTS A total of 21 studies were identified, of overall weak to moderate quality. The most consistent findings across negative valence disorders consisted of associations of treatment response with pre- and post-treatment task-based activation and/or functional connectivity within and between the prefrontal cortex, the medial temporal lobe, and other limbic regions. Associations of CBT response with baseline and/or post-treatment activity in the striatum, precentral and postcentral gyri, medial and posterior cingulate cortices, and parietal cortex, connectivity within and between the default-mode, cognitive control, salience, and frontoparietal networks, and metrics of large-scale brain network organization, were also reported, although less consistently. LIMITATIONS The poor quality and limited number of studies and the important heterogeneity of study designs and results considerably limit the conclusions that can be drawn from this literature. CONCLUSIONS Despite these limitations, these findings provide preliminary evidence suggesting youths presenting certain patterns of brain function may respond better to CBT, whereas others may benefit from alternative or augmented forms of treatment.
Collapse
Affiliation(s)
- Valerie La Buissonniere-Ariza
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, One Baylor Plaza - BCM350, Houston, TX, 77030, USA.
| | - Kate Fitzgerald
- Department of Psychiatry, University of Michigan, Rachel Upjohn Building, 4250 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Avner Meoded
- Edward B. Singleton Department of Radiology, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, USA
| | - Laurel L Williams
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, One Baylor Plaza - BCM350, Houston, TX, 77030, USA
| | - Gary Liu
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Wayne K Goodman
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, One Baylor Plaza - BCM350, Houston, TX, 77030, USA
| | - Eric A Storch
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, One Baylor Plaza - BCM350, Houston, TX, 77030, USA
| |
Collapse
|
28
|
Dobson ET, Croarkin PE, Schroeder HK, Varney ST, Mossman SA, Cecil K, Strawn JR. Bridging Anxiety and Depression: A Network Approach in Anxious Adolescents. J Affect Disord 2021; 280:305-314. [PMID: 33221716 PMCID: PMC7744436 DOI: 10.1016/j.jad.2020.11.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/22/2020] [Accepted: 11/07/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND The phenomenology and neurobiology of depressive symptoms in anxious youth is poorly understood. METHODS Association networks of anxiety and depressive symptoms were developed in adolescents with generalized anxiety disorder (GAD; N=52, mean age: 15.4±1.6 years) who had not yet developed major depressive disorder. Community analyses were used to create consensus clusters of depressive and anxiety symptoms and to identify "bridge" symptoms between the clusters. In a subset of this sample (n=39), correlations between cortical thickness and depressive symptom severity was examined. RESULTS Ten symptoms clustered into an anxious community, 5 clustered into a depressive community and 5 bridged the two communities: impaired schoolwork, excessive weeping, low self-esteem, disturbed appetite, and physical symptoms of depression. Patients with more depressive cluster burden had altered cortical thickness in prefrontal, inferior and medial parietal (e.g., precuneus, supramarginal) regions and had decreases in cortical thickness-age relationships in prefrontal, temporal and parietal cortices. LIMITATIONS Data are cross-sectional and observational. Limited sample size precluded secondary analysis of comorbidities and demographics. CONCLUSIONS In youth with GAD, a sub-set of symptoms not directly related to anxiety bridge anxiety and depression. Youth with greater depressive cluster burden had altered cortical thickness in cortical structures within the default mode and central executive networks. These alternations in cortical thickness may represent a distinct neurostructural fingerprint in anxious youth with early depressive symptoms. Finally, youth with GAD and high depressive symptoms had reduced age-cortical thickness correlations. The emergence of depressive symptoms in early GAD and cortical development may have bidirectional, neurobiological relationships.
Collapse
Affiliation(s)
- Eric T Dobson
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina.
| | | | - Heidi K Schroeder
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, College of Medicine, Cincinnati, OH 45219
| | - Sara T Varney
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, College of Medicine, Cincinnati, OH 45219
| | - Sarah A Mossman
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, College of Medicine, Cincinnati, OH 45219
| | - Kim Cecil
- Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45267
| | - Jeffrey R Strawn
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, College of Medicine, Cincinnati, OH 45219
| |
Collapse
|
29
|
Lammertink F, Vinkers CH, Tataranno ML, Benders MJNL. Premature Birth and Developmental Programming: Mechanisms of Resilience and Vulnerability. Front Psychiatry 2021; 11:531571. [PMID: 33488409 PMCID: PMC7820177 DOI: 10.3389/fpsyt.2020.531571] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022] Open
Abstract
The third trimester of pregnancy represents a sensitive phase for infant brain plasticity when a series of fast-developing cellular events (synaptogenesis, neuronal migration, and myelination) regulates the development of neural circuits. Throughout this dynamic period of growth and development, the human brain is susceptible to stress. Preterm infants are born with an immature brain and are, while admitted to the neonatal intensive care unit, precociously exposed to stressful procedures. Postnatal stress may contribute to altered programming of the brain, including key systems such as the hypothalamic-pituitary-adrenal axis and the autonomic nervous system. These neurobiological systems are promising markers for the etiology of several affective and social psychopathologies. As preterm birth interferes with early development of stress-regulatory systems, early interventions might strengthen resilience factors and might help reduce the detrimental effects of chronic stress exposure. Here we will review the impact of stress following premature birth on the programming of neurobiological systems and discuss possible stress-related neural circuits and pathways involved in resilience and vulnerability. Finally, we discuss opportunities for early intervention and future studies.
Collapse
Affiliation(s)
- Femke Lammertink
- Department of Neonatology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Christiaan H. Vinkers
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Maria L. Tataranno
- Department of Neonatology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Manon J. N. L. Benders
- Department of Neonatology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
30
|
Fields ME, Mirro AE, Guilliams KP, Binkley MM, Gil Diaz L, Tan J, Fellah S, Eldeniz C, Chen Y, Ford AL, Shimony JS, King AA, An H, Smyser CD, Lee JM. Functional Connectivity Decreases with Metabolic Stress in Sickle Cell Disease. Ann Neurol 2020; 88:995-1008. [PMID: 32869335 PMCID: PMC7592195 DOI: 10.1002/ana.25891] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/16/2020] [Accepted: 08/22/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Children with sickle cell disease (SCD) experience cognitive deficits even when unaffected by stroke. Using functional connectivity magnetic resonance imaging (MRI) as a potential biomarker of cognitive function, we tested our hypothesis that children with SCD would have decreased functional connectivity, and that children experiencing the greatest metabolic stress, indicated by elevated oxygen extraction fraction, would have the lowest connectivity. METHODS We prospectively obtained brain MRIs and cognitive testing in healthy controls and children with SCD. RESULTS We analyzed data from 60 participants (20 controls and 40 with sickle cell disease). There was no difference in global cognition or cognitive subdomains between cohorts. However, we found decreased functional connectivity within the sensory-motor, lateral sensory-motor, auditory, salience, and subcortical networks in participants with SCD compared with controls. Further, as white matter oxygen extraction fraction increased, connectivity within the visual (p = 0.008, parameter estimate = -0.760 [95% CI = -1.297, -0.224]), default mode (p = 0.012, parameter estimate = -0.417 [95% CI = -0.731, -0.104]), and cingulo-opercular (p = 0.009, parameter estimate = -0.883 [95% CI = -1.517, -0.250]) networks decreased. INTERPRETATION We conclude that there is diminished functional connectivity within these anatomically contiguous networks in children with SCD compared with controls, even when differences are not seen with cognitive testing. Increased white matter oxygen extraction fraction was associated with decreased connectivity in select networks. These data suggest that elevated oxygen extraction fraction and disrupted functional connectivity are potentially presymptomatic neuroimaging biomarkers for cognitive decline in SCD. ANN NEUROL 2020;88:995-1008.
Collapse
Affiliation(s)
- Melanie E Fields
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Amy E Mirro
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Kristin P Guilliams
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael M Binkley
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Luisa Gil Diaz
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jessica Tan
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Slim Fellah
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Cihat Eldeniz
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yasheng Chen
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Andria L Ford
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Joshua S Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Allison A King
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Program of Occupational Therapy, Washington University School of Medicine, St. Louis, MO, USA
| | - Hongyu An
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Christopher D Smyser
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jin-Moo Lee
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
31
|
Ramphal B, Whalen DJ, Kenley JK, Yu Q, Smyser CD, Rogers CE, Sylvester CM. Brain connectivity and socioeconomic status at birth and externalizing symptoms at age 2 years. Dev Cogn Neurosci 2020; 45:100811. [PMID: 32823180 PMCID: PMC7451824 DOI: 10.1016/j.dcn.2020.100811] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/20/2020] [Accepted: 06/25/2020] [Indexed: 12/17/2022] Open
Abstract
Low childhood socioeconomic status (SES) predisposes individuals to altered trajectories of brain development and increased rates of mental illness. Brain connectivity at birth is associated with psychiatric outcomes. We sought to investigate whether SES at birth is associated with neonatal brain connectivity and if these differences account for socioeconomic disparities in infant symptoms at age 2 years that are predictive of psychopathology. Resting state functional MRI was performed on 75 full-term and 37 term-equivalent preterm newborns (n = 112). SES was characterized by insurance type, the Area Deprivation Index, and a composite score. Seed-based voxelwise linear regression related SES to whole-brain functional connectivity of five brain regions representing functional networks implicated in psychiatric illnesses and affected by socioeconomic disadvantage: striatum, medial prefrontal cortex (mPFC), ventrolateral prefrontal cortex (vlPFC), and dorsal anterior cingulate cortex. Lower SES was associated with differences in striatum and vlPFC connectivity. Striatum connectivity with frontopolar and medial PFC mediated the relationship between SES and behavioral inhibition at age 2 measured by the Infant-Toddler Social Emotional Assessment (n = 46). Striatum-frontopolar connectivity mediated the relationship between SES and externalizing symptoms. These results, convergent across three SES metrics, suggest that neurodevelopmental trajectories linking SES and mental illness may begin as early as birth.
Collapse
Affiliation(s)
- Bruce Ramphal
- New York State Psychiatric Institute and Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, NY, United States.
| | - Diana J Whalen
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Jeanette K Kenley
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Qiongru Yu
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Christopher D Smyser
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States; Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Cynthia E Rogers
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Chad M Sylvester
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
32
|
Karcher NR, Michelini G, Kotov R, Barch DM. Associations Between Resting-State Functional Connectivity and a Hierarchical Dimensional Structure of Psychopathology in Middle Childhood. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 6:508-517. [PMID: 33229246 DOI: 10.1016/j.bpsc.2020.09.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/11/2020] [Accepted: 09/14/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Previous research from the Adolescent Brain Cognitive Development (ABCD) Study delineated and validated a hierarchical 5-factor structure with a general psychopathology (p) factor at the apex and 5 specific factors (internalizing, somatoform, detachment, neurodevelopmental, externalizing) using parent-reported child symptoms. The present study is the first to examine associations between dimensions from a hierarchical structure and resting-state functional connectivity (RSFC) networks. METHODS Using 9- to 11-year-old children from the ABCD Study baseline sample, we examined the variance explained by each hierarchical structure level (p-factor, 2-factor, 3-factor, 4-factor, and 5-factor models) in associations with RSFC. Analyses were first conducted in a discovery dataset (n = 3790), and significant associations were examined in a replication dataset (n = 3791). RESULTS There were robust associations between the p-factor and lower connectivity within the default mode network, although stronger effects emerged for the neurodevelopmental factor. Neurodevelopmental impairments were also related to variation in RSFC networks associated with attention to internal states and external stimuli. Analyses revealed robust associations between the neurodevelopmental dimension and several RSFC metrics, including within the default mode network, between the default mode network with cingulo-opercular and "Other" (unassigned) networks, and between the dorsal attention network with the Other network. CONCLUSIONS The hierarchical structure of psychopathology showed replicable links to RSFC associations in middle childhood. The specific neurodevelopmental dimension showed robust associations with multiple RSFC metrics. These results show the utility of examining associations between intrinsic brain architecture and specific dimensions of psychopathology, revealing associations especially with neurodevelopmental impairments.
Collapse
Affiliation(s)
- Nicole R Karcher
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri.
| | - Giorgia Michelini
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Roman Kotov
- Department of Psychiatry and Behavioral Health, Stony Brook University, Stony Brook, New York
| | - Deanna M Barch
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri; Department of Psychology, Washington University, St. Louis, Missouri
| |
Collapse
|
33
|
Bernard F, Lemee JM, Mazerand E, Leiber LM, Menei P, Ter Minassian A. The ventral attention network: the mirror of the language network in the right brain hemisphere. J Anat 2020; 237:632-642. [PMID: 32579719 DOI: 10.1111/joa.13223] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 04/28/2020] [Accepted: 05/04/2020] [Indexed: 12/29/2022] Open
Abstract
Resting-state functional MRI (RfMRI) analyses have identified two anatomically separable fronto-parietal attention networks in the human brain: a bilateral dorsal attention network and a right-lateralised ventral attention network (VAN). The VAN has been implicated in visuospatial cognition and, thus, potentially in the unilateral spatial neglect associated with right hemisphere lesions. Its parietal, frontal and temporal endpoints are thought to be structurally supported by undefined white matter tracts. We investigated the white matter tract connecting the VAN. We used three approaches to study the structural anatomy of the VAN: (a) independent component analysis on RfMRI (50 subjects), defining the endpoints of the VAN, (b) tractography in the same 50 healthy volunteers, with regions of interest defined by the MNI coordinates of cortical areas involved in the VAN used in a seed-based approach and (c) dissection, by Klingler's method, of 20 right hemispheres, for ex vivo studies of the fibre tracts connecting VAN endpoints. The VAN includes the temporoparietal junction and the ventral frontal cortex. The endpoints of the superior longitudinal fasciculus in its third portion (SLF III) and the arcuate fasciculus (AF) overlap with the VAN endpoints. The SLF III connects the supramarginal gyrus to the ventral portion of the precentral gyrus and the pars opercularis. The AF connects the middle and inferior temporal gyrus and the middle and inferior frontal gyrus. We reconstructed the structural connectivity of the VAN and considered it in the context if the pathophysiology of unilateral neglect and right hemisphere awake brain surgery.
Collapse
Affiliation(s)
- Florian Bernard
- Laboratory of Anatomy, Faculté de Médecine, Angers, France.,Department of Neurosurgery, Angers Teaching Hospital, Angers, France.,UMR 1232 INSERM/CNRS and EA7315 Team, CRCINA, Angers, France
| | - Jean-Michel Lemee
- Department of Neurosurgery, Angers Teaching Hospital, Angers, France.,UMR 1232 INSERM/CNRS and EA7315 Team, CRCINA, Angers, France
| | - Edouard Mazerand
- Department of Neurosurgery, Angers Teaching Hospital, Angers, France
| | | | - Philippe Menei
- Department of Neurosurgery, Angers Teaching Hospital, Angers, France.,UMR 1232 INSERM/CNRS and EA7315 Team, CRCINA, Angers, France
| | - Aram Ter Minassian
- Department of Reanimation, Angers Teaching Hospital, Angers, France.,EA7315 Team, INSERM 1066, Angers, France
| |
Collapse
|
34
|
The role of attention in the relationship between early life stress and depression. Sci Rep 2020; 10:6154. [PMID: 32273568 PMCID: PMC7145865 DOI: 10.1038/s41598-020-63351-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/25/2020] [Indexed: 12/22/2022] Open
Abstract
Early life stress (ELS) can be very harmful to an individual's wellbeing and brain development. It is well established that childhood maltreatment is a significant risk factor for depression. ELS is positively correlated with depressive symptoms both in major depression disorder patients and healthy individuals, but the cognitive and neural mechanisms underlying this association are still unclear. In the present study, we calculate the within/between-network connectivity in 528 college students, and Pearson correlation was performed to investigate the relationship between network measures and ELS. Additionally, the same method was applied to verify these results in another sample. Finally, mediation analysis was performed to explore the cognitive and neural mechanisms regarding the association between ELS and depression. Correlation analysis indicated that ELS was positively correlated with the within-network connectivity of the ventral attention network (VAN), the dorsal attention network (DAN), the salience network (SN), the somatosensory network (SMN) and the between-network connectivity of ventral attention network-dorsal attention network (VAN-DAN), ventral attention network- somatosensory network (VAN-SMN), and ventral attention network-visual network (VAN-VN). Validation results indicated that ELS is associated with the within-network connectivity of VAN and DAN. Mediation analysis revealed that attention bias and the within-network connectivity of VAN could mediated the relationship between ELS and depression. Both behavioral and neural evidence emphasize ELS's influence on individual's emotion attention. Furthermore, the present study also provides two possible mediation models to explain the potential mechanisms behind the relationship between ELS and depression.
Collapse
|
35
|
Lopez KC, Kandala S, Marek S, Barch DM. Development of Network Topology and Functional Connectivity of the Prefrontal Cortex. Cereb Cortex 2019; 30:2489-2505. [DOI: 10.1093/cercor/bhz255] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 01/08/2023] Open
Abstract
Abstract
The prefrontal cortex (PFC) comprises distinct regions and networks that vary in their trajectories across development. Further understanding these diverging trajectories may elucidate the neural mechanisms by which distinct PFC regions contribute to cognitive maturity. In particular, it remains unclear whether PFC regions of distinct network affiliations differ in topology and their relationship to cognition. We examined 615 individuals (8–21 years) to characterize age-related effects in participation coefficient of 28 PFC regions of distinct networks, evaluating connectivity profiles of each region to understand patterns influencing topological maturity. Findings revealed that PFC regions of attention, frontoparietal, and default mode networks (DMN) displayed varying rates of decline in participation coefficient with age, characterized by stronger connectivity with each PFC’s respective network; suggesting that PFC regions largely aid network segregation. Conversely, PFC regions of the cinguloopercular/salience network increased in participation coefficient with age, marked by stronger between-network connections, suggesting that some PFC regions feature a distinctive ability to facilitate network integration. PFC topology of the DMN, in particular, predicted improvements in global cognition, including motor speed and higher order abilities. Together, these findings elucidate systematic differences in topology across PFC regions of different network affiliation, representing important neural signatures of typical brain development.
Collapse
Affiliation(s)
- Katherine C Lopez
- Department of Psychological & Brain Sciences, Washington University, St Louis, 63130 MO, USA
| | - Sridhar Kandala
- Department of Psychiatry, Washington University, St Louis, 63110 MO, USA
| | - Scott Marek
- Department of Psychiatry, Washington University, St Louis, 63110 MO, USA
| | - Deanna M Barch
- Department of Psychological & Brain Sciences, Washington University, St Louis, 63130 MO, USA
- Department of Psychiatry, Washington University, St Louis, 63110 MO, USA
- Department of Radiology, Washington University, St Louis, 63110 MO, USA
| |
Collapse
|
36
|
Wee CY, Poh JS, Wang Q, Broekman BF, Chong YS, Kwek K, Shek LP, Saw SM, Gluckman PD, Fortier MV, Meaney MJ, Qiu A. Behavioral Heterogeneity in Relation with Brain Functional Networks in Young Children. Cereb Cortex 2019; 28:3322-3331. [PMID: 30124829 DOI: 10.1093/cercor/bhx205] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/19/2017] [Indexed: 11/14/2022] Open
Abstract
This study aimed to identify distinct behavioral profiles in a population-based sample of 654 4-year-old children and characterize their relationships with brain functional networks using resting-state functional magnetic resonance imaging data. Young children showed 7 behavioral profiles, including a super healthy behavioral profile with the lowest scores across all Child Behavior CheckList (CBCL) subscales (G1) and other 6 behavioral profiles, respectively with pronounced withdrawal (G2), somatic complaints (G3), anxiety and withdrawal (G4), somatic complaints and withdrawal (G5), the mixture of emotion, withdrawal, and aggression (G6), and attention (G7) problems. Compared with children in G1, children with withdrawal shared abnormal functional connectivities among the sensorimotor networks. Children in emotionally relevant problems shared the common pattern among the attentional and frontal networks. Nevertheless, children in sole withdrawal problems showed a unique pattern of connectivity alterations among the sensorimotor, cerebellar, and salience networks. Children with somatic complaints showed abnormal functional connectivities between the attentional and subcortical networks, and between the language and posterior default mode networks. This study provides novel evidence on the existence of behavioral heterogeneity in early childhood and its associations with specific functional networks that are clinically relevant phenotypes for mental illness and are apparent from early childhood.
Collapse
Affiliation(s)
- Chong-Yaw Wee
- Department of Biomedical Engineering and Clinical Imaging Research Center, National University of Singapore, Singapore, Singapore
| | - Joann S Poh
- Singapore Institute for Clinical Sciences, Singapore, Singapore
| | - Qiang Wang
- Department of Biomedical Engineering and Clinical Imaging Research Center, National University of Singapore, Singapore, Singapore
| | - Birit Fp Broekman
- Singapore Institute for Clinical Sciences, Singapore, Singapore.,Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore
| | - Yap-Seng Chong
- Singapore Institute for Clinical Sciences, Singapore, Singapore.,Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore
| | - Kenneth Kwek
- KK Women's and Children's Hospital, Singapore, Singapore
| | - Lynette P Shek
- Department of Pediatrics, Khoo Teck Puat - National University Children's Medical Institute, National University of Singapore, Singapore, Singapore
| | - Seang-Mei Saw
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | | | - Marielle V Fortier
- Department of Diagnostic and Interventional Imaging, KK Women's and Children's Hospital, Singapore, Singapore
| | - Michael J Meaney
- Singapore Institute for Clinical Sciences, Singapore, Singapore.,Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Canada QC.,Sackler Program for Epigenetics & Psychobiology at McGill University, Canada QC
| | - Anqi Qiu
- Department of Biomedical Engineering and Clinical Imaging Research Center, National University of Singapore, Singapore, Singapore.,Singapore Institute for Clinical Sciences, Singapore, Singapore
| |
Collapse
|
37
|
Lemée JM, Berro DH, Bernard F, Chinier E, Leiber LM, Menei P, Ter Minassian A. Resting-state functional magnetic resonance imaging versus task-based activity for language mapping and correlation with perioperative cortical mapping. Brain Behav 2019; 9:e01362. [PMID: 31568681 PMCID: PMC6790308 DOI: 10.1002/brb3.1362] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/19/2019] [Accepted: 06/24/2019] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Preoperative language mapping using functional magnetic resonance imaging (fMRI) aims to identify eloquent areas in the vicinity of surgically resectable brain lesions. fMRI methodology relies on the blood-oxygen-level-dependent (BOLD) analysis to identify brain language areas. Task-based fMRI studies the BOLD signal increase in brain areas during a language task to identify brain language areas, which requires patients' cooperation, whereas resting-state fMRI (rsfMRI) allows identification of functional networks without performing any explicit task through the analysis of the synchronicity of spontaneous BOLD signal oscillation between brain areas. The aim of this study was to compare preoperative language mapping using rsfMRI and task fMRI to cortical mapping (CM) during awake craniotomies. METHODS Fifty adult patients surgically treated for a brain lesion were enrolled. All patients had a presurgical language mapping with both task fMRI and rsfMRI. Identified language networks were compared to perioperative language mapping using electric cortical stimulation. RESULTS Resting-state fMRI was able to detect brain language areas during CM with a sensitivity of 100% compared to 65.6% with task fMRI. However, we were not able to perform a specificity analysis and compare task-based and rest fMRI with our perioperative setting in the current study. In second-order analysis, task fMRI imaging included main nodes of the SN and main areas involved in semantics were identified in rsfMRI. CONCLUSION Resting-state fMRI for presurgical language mapping is easy to implement, allowing the identification of functional brain language network with a greater sensitivity than task-based fMRI, at the cost of some precautions and a lower specificity. Further study is required to compare both the sensitivity and the specificity of the two methods and to evaluate the clinical value of rsfMRI as an alternative tool for the presurgical identification of brain language areas.
Collapse
Affiliation(s)
- Jean-Michel Lemée
- Department of Neurosurgery, University Hospital of Angers, Angers, France.,INSERM CRCINA Équipe 17, Bâtiment IRIS, Angers, France
| | | | - Florian Bernard
- Department of Neurosurgery, University Hospital of Angers, Angers, France.,Angers Medical Faculty, Anatomy Laboratory, Angers, France
| | - Eva Chinier
- Department of Physical Medicine and Rehabilitation, University Hospital of Angers, Nantes, France
| | | | - Philippe Menei
- Department of Neurosurgery, University Hospital of Angers, Angers, France.,INSERM CRCINA Équipe 17, Bâtiment IRIS, Angers, France
| | - Aram Ter Minassian
- Department of Anesthesiology, University Hospital of Angers, Angers, France.,LARIS EA 7315, Image Signal et Sciences du Vivant, Angers Teaching Hospital, Angers, France
| |
Collapse
|
38
|
Liu J, Xu P, Zhang J, Jiang N, Li X, Luo Y. Ventral attention-network effective connectivity predicts individual differences in adolescent depression. J Affect Disord 2019; 252:55-59. [PMID: 30978625 DOI: 10.1016/j.jad.2019.04.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 03/08/2019] [Accepted: 04/07/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Stimulus-driven negative attention bias is a central deficit in depression and might play an important role in vulnerability to depression Adolescents are susceptible to depression. Thus, investigating the neural correlates of attention bias in adolescents is a critical step for identifying neural markers of early onset of depression. Previous studies have shown that the ventral attention network (VAN), which includes bilateral ventrolateral prefrontal cortex (VLPFC) and bilateral temporal-parietal junction (TPJ), is the key brain network for stimulus-driven attention. However, the relationship between depression and effective connectivity within the VAN in adolescents is poorly understood. METHOD We employed resting-state fMRI to assess the relationship between directional effective connectivity within the VAN and depression scores in 216 healthy adolescents. RESULTS Using stochastic dynamic modeling, we found that individuals who exhibited higher self-reported depression showed stronger effective connectivity between right VLPFC and left TPJ within the VAN. LIMITATION The level of depression in this study was assessed with self-reported questionnaire. This measure might be more influenced by current mood in adolescents than that in adults. Future studies should emplo more objective measures to index levels of depression. CONCLUSIONS Our findings indicate that effective connectivity between right VLPFC and left TPJ could at least partially serve as a biomarker for bottom-up processing of depression in adolescents.
Collapse
Affiliation(s)
- Jie Liu
- College of Psychology and Sociology, Shenzhen University, Shenzhen, China; Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Center for Brain Disorders and Cognitive Neuroscience, Shenzhen University, Shenzhen, China
| | - Pengfei Xu
- College of Psychology and Sociology, Shenzhen University, Shenzhen, China; Center for Brain Disorders and Cognitive Neuroscience, Shenzhen University, Shenzhen, China
| | - Jingyuan Zhang
- College of Psychology and Sociology, Shenzhen University, Shenzhen, China
| | - Nengzhi Jiang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xinying Li
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| | - Yuejia Luo
- College of Psychology and Sociology, Shenzhen University, Shenzhen, China; Centre for Emotion and Brain, Shenzhen Institute of Neuroscience, Shenzhen, China; Department of Psychology, Southern Medical University, Guangzhou, China.
| |
Collapse
|
39
|
Ernst M, Benson B, Artiges E, Gorka AX, Lemaitre H, Lago T, Miranda R, Banaschewski T, Bokde ALW, Bromberg U, Brühl R, Büchel C, Cattrell A, Conrod P, Desrivières S, Fadai T, Flor H, Grigis A, Gallinat J, Garavan H, Gowland P, Grimmer Y, Heinz A, Kappel V, Nees F, Papadopoulos-Orfanos D, Penttilä J, Poustka L, Smolka MN, Stringaris A, Struve M, van Noort BM, Walter H, Whelan R, Schumann G, Grillon C, Martinot MLP, Martinot JL. Pubertal maturation and sex effects on the default-mode network connectivity implicated in mood dysregulation. Transl Psychiatry 2019; 9:103. [PMID: 30804326 PMCID: PMC6389927 DOI: 10.1038/s41398-019-0433-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 10/11/2018] [Accepted: 01/01/2019] [Indexed: 01/03/2023] Open
Abstract
This study examines the effects of puberty and sex on the intrinsic functional connectivity (iFC) of brain networks, with a focus on the default-mode network (DMN). Consistently implicated in depressive disorders, the DMN's function may interact with puberty and sex in the development of these disorders, whose onsets peak in adolescence, and which show strong sex disproportionality (females > males). The main question concerns how the DMN evolves with puberty as a function of sex. These effects are expected to involve within- and between-network iFC, particularly, the salience and the central-executive networks, consistent with the Triple-Network Model. Resting-state scans of an adolescent community sample (n = 304, male/female: 157/147; mean/std age: 14.6/0.41 years), from the IMAGEN database, were analyzed using the AFNI software suite and a data reduction strategy for the effects of puberty and sex. Three midline regions (medial prefrontal, pregenual anterior cingulate, and posterior cingulate), within the DMN and consistently implicated in mood disorders, were selected as seeds. Within- and between-network clusters of the DMN iFC changed with pubertal maturation differently in boys and girls (puberty-X-sex). Specifically, pubertal maturation predicted weaker iFC in girls and stronger iFC in boys. Finally, iFC was stronger in boys than girls independently of puberty. Brain-behavior associations indicated that lower connectivity of the anterior cingulate seed predicted higher internalizing symptoms at 2-year follow-up. In conclusion, weaker iFC of the anterior DMN may signal disconnections among circuits supporting mood regulation, conferring risk for internalizing disorders.
Collapse
Affiliation(s)
| | | | - Eric Artiges
- INSERM, UMR 1000, Research unit "Neuroimaging and Psychiatry", DIGITEO Labs, University Paris-Saclay, and University Paris Descartes, Gif sur Yvette, France
- INSERM, UMR 1000, Faculté de médecine, University Paris-Saclay, DIGITEO Labs, Gif sur Yvette, France
- University Paris Descartes, Paris, France
- Center for Neuroimaging Research (CENIR), Brain & Spine Institute, Paris, France
- Psychiatry Department 91G16, Orsay Hospital, Paris, France
| | | | - Herve Lemaitre
- INSERM, UMR 1000, Research unit "Neuroimaging and Psychiatry", DIGITEO Labs, University Paris-Saclay, and University Paris Descartes, Gif sur Yvette, France
- INSERM, UMR 1000, Faculté de médecine, University Paris-Saclay, DIGITEO Labs, Gif sur Yvette, France
| | | | - Ruben Miranda
- INSERM, UMR 1000, Research unit "Neuroimaging and Psychiatry", DIGITEO Labs, University Paris-Saclay, and University Paris Descartes, Gif sur Yvette, France
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Arun L W Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neurosciences, Trinity College, Dublin, Ireland
| | - Uli Bromberg
- University Medical Centre Hamburg-Eppendorf, House W34, 3.OG, Hamburg, Germany
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt, Abbestr. 2 - 12, Berlin, Germany
| | - Christian Büchel
- University Medical Centre Hamburg-Eppendorf, House W34, 3.OG, Hamburg, Germany
| | - Anna Cattrell
- Medical Research Council - Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Patricia Conrod
- Department of Psychological Medicine and Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
- Department of Psychiatry, Université de Montréal, CHU Ste Justine Hospital, Montréal, QC, Canada
| | - Sylvane Desrivières
- Medical Research Council - Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Tahmine Fadai
- University Medical Centre Hamburg-Eppendorf, House W34, 3.OG, Hamburg, Germany
| | - Herta Flor
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Psychology, School of Social Sciences, University of Mannheim, 68131, Mannheim, Germany
| | - Antoine Grigis
- Neurospin, Commissariat à l'Energie Atomique, CEA-Saclay Center, Saclay, France
| | - Juergen Gallinat
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont, 05405, Burlington, VT, USA
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Yvonne Grimmer
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, Campus CharitéMitte, Charité-Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany
| | - Viola Kappel
- Department of Child and Adolescent Psychiatry Psychosomatics and Psychotherapy, Campus CharitéMitte, Charité-Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Psychology, School of Social Sciences, University of Mannheim, 68131, Mannheim, Germany
| | | | - Jani Penttilä
- Department of Social and Health Care, Psychosocial Services Adolescent Outpatient Clinic, University of Tampere, Kauppakatu 14, Lahti, Finland
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Child and Adolescent Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Michael N Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Argyris Stringaris
- NIMH/NIH, Bethesda, MD, USA
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Maren Struve
- Department of Psychology, University College, Dublin, Ireland
| | - Betteke M van Noort
- Department of Child and Adolescent Psychiatry Psychosomatics and Psychotherapy, Campus CharitéMitte, Charité-Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy, Campus CharitéMitte, Charité-Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany
| | - Robert Whelan
- Department of Psychology, University College, Dublin, Ireland
| | - Gunter Schumann
- Medical Research Council - Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | | | - Marie-Laure Paillère Martinot
- INSERM, UMR 1000, Research unit "Neuroimaging and Psychiatry", DIGITEO Labs, University Paris-Saclay, and University Paris Descartes, Gif sur Yvette, France
- University Paris Descartes, Paris, France
- AP-HP, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, Paris, France
- Sorbonne Universités, Paris, France
| | - Jean-Luc Martinot
- INSERM, UMR 1000, Research unit "Neuroimaging and Psychiatry", DIGITEO Labs, University Paris-Saclay, and University Paris Descartes, Gif sur Yvette, France
- INSERM, UMR 1000, Faculté de médecine, University Paris-Saclay, DIGITEO Labs, Gif sur Yvette, France
- University Paris Descartes, Paris, France
- Center for Neuroimaging Research (CENIR), Brain & Spine Institute, Paris, France
| |
Collapse
|
40
|
Increased Functional Connectivity Between Ventral Attention and Default Mode Networks in Adolescents With Bulimia Nervosa. J Am Acad Child Adolesc Psychiatry 2019; 58:232-241. [PMID: 30738550 PMCID: PMC6462410 DOI: 10.1016/j.jaac.2018.09.433] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 09/19/2018] [Accepted: 10/22/2018] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Bulimia nervosa (BN) is characterized by excessive attention to self and specifically to body shape and weight, but the ventral attention (VAN) and default mode (DMN) networks that support attentional and self-referential processes are understudied in BN. This study assessed whether altered functional connectivity within and between these networks contributes to such excessive concerns in adolescents with BN early the course of the disorder. METHOD Resting-state functional magnetic resonance images were acquired from 33 adolescents with BN and 37 healthy control adolescents (12-21 years) group matched by age and body mass index. Region-of-interest analyses were performed to examine group differences in functional connectivity within and between the VAN and DMN. In addition associations of VAN-DMN connectivity with BN symptoms, body shape/weight concerns, and sustained attention were explored using the Continuous Performance Test (CPT). RESULTS Compared with control adolescents, those with BN showed significantly increased positive connectivity between the right ventral supramarginal gyrus and all DMN regions and between the right ventrolateral prefrontal cortex and the left lateral parietal cortex. Within-network connectivity did not differ between groups. VAN-DMN connectivity was associated with BN severity and body shape/weight concerns in the BN group. No significant group-by-CPT interactions on VAN-DMN connectivity were detected. CONCLUSION Increased positive VAN-DMN connectivity in adolescents with BN could reflect abnormal engagement of VAN-mediated attentional processes at rest, perhaps related to their excessive attention to self-referential thoughts about body shape/weight. Future studies should further investigate these circuits as targets for the development of early interventions aimed at decreasing excessive body shape/weight concerns.
Collapse
|
41
|
Marek S, Dosenbach NUF. The frontoparietal network: function, electrophysiology, and importance of individual precision mapping. DIALOGUES IN CLINICAL NEUROSCIENCE 2018. [PMID: 30250390 PMCID: PMC6136121 DOI: 10.31887/dcns.2018.20.2/smarek] [Citation(s) in RCA: 458] [Impact Index Per Article: 65.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The frontoparietal network is critical for our ability to coordinate behavior in a rapid, accurate, and flexible goal-driven manner. In this review, we outline support for the framing of the frontoparietal network as a distinct control network, in part functioning to flexibly interact with and alter other functional brain networks. This network coordination likely occurs in a 4 Hz to 73 Hz θ/α rhythm, both during resting state and task state. Precision mapping of individual human brains has revealed that the functional topography of the frontoparietal network is variable between individuals, underscoring the notion that group-average studies of the frontoparietal network may be obscuring important typical and atypical features. Many forms of psychopathology implicate the frontoparietal network, such as schizophrenia and attention-deficit/hyperactivity disorder. Given the interindividual variability in frontoparietal network organization, clinical studies will likely benefit greatly from acquiring more individual subject data to accurately characterize resting-state networks compromised in psychopathology.
Collapse
Affiliation(s)
- Scott Marek
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Nico U F Dosenbach
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA; Program in Occupational Therapy, Washington University School of Medicine, St Louis, Missouri, USA; Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
42
|
Network changes associated with transdiagnostic depressive symptom improvement following cognitive behavioral therapy in MDD and PTSD. Mol Psychiatry 2018; 23:2314-2323. [PMID: 30104727 DOI: 10.1038/s41380-018-0201-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 05/30/2018] [Accepted: 06/05/2018] [Indexed: 01/08/2023]
Abstract
Despite widespread use of cognitive behavioral therapy (CBT) in clinical practice, its mechanisms with respect to brain networks remain sparsely described. In this study, we applied tools from graph theory and network science to better understand the transdiagnostic neural mechanisms of this treatment for depression. A sample of 64 subjects was included in a study of network dynamics: 33 patients (15 MDD, 18 PTSD) received longitudinal fMRI resting state scans before and after 12 weeks of CBT. Depression severity was rated on the Montgomery-Asberg Depression Rating Scale (MADRS). Thirty-one healthy controls were included to determine baseline network roles. Univariate and multivariate regression analyses were conducted on the normalized change scores of within- and between-system connectivity and normalized change score of the MADRS. Penalized regression was used to select a sparse set of predictors in a data-driven manner. Univariate analyses showed greater symptom reduction was associated with an increased functional role of the Ventral Attention (VA) system as an incohesive provincial system (decreased between- and decreased within-system connectivity). Multivariate analyses selected between-system connectivity of the VA system as the most prominent feature associated with depression improvement. Observed VA system changes are interesting in light of brain controllability descriptions: attentional control systems, including the VA system, fall on the boundary between-network communities, and facilitate integration or segregation of diverse cognitive systems. Thus, increasing segregation of the VA system following CBT (decreased between-network connectivity) may result in less contribution of emotional attention to cognitive processes, thereby potentially improving cognitive control.
Collapse
|
43
|
Marek S. The frontoparietal network: function, electrophysiology, and importance of individual precision mapping. DIALOGUES IN CLINICAL NEUROSCIENCE 2018; 20:133-140. [PMID: 30250390 PMCID: PMC6136121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
The frontoparietal network is critical for our ability to coordinate behavior in a rapid, accurate, and flexible goal-driven manner. In this review, we outline support for the framing of the frontoparietal network as a distinct control network, in part functioning to flexibly interact with and alter other functional brain networks. This network coordination likely occurs in a 4 Hz to 73 Hz θ/α rhythm, both during resting state and task state. Precision mapping of individual human brains has revealed that the functional topography of the frontoparietal network is variable between individuals, underscoring the notion that group-average studies of the frontoparietal network may be obscuring important typical and atypical features. Many forms of psychopathology implicate the frontoparietal network, such as schizophrenia and attention-deficit/hyperactivity disorder. Given the interindividual variability in frontoparietal network organization, clinical studies will likely benefit greatly from acquiring more individual subject data to accurately characterize resting-state networks compromised in psychopathology.
Collapse
Affiliation(s)
- Scott Marek
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
44
|
Lopez KC, Luby JL, Belden AC, Barch DM. Emotion dysregulation and functional connectivity in children with and without a history of major depressive disorder. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2018; 18:232-248. [PMID: 29524099 PMCID: PMC6383365 DOI: 10.3758/s13415-018-0564-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recent interest has emerged in understanding the neural mechanisms by which deficits in emotion regulation (ER) early in development may relate to later depression. Corticolimbic alterations reported in emotion dysregulation and depression may be one possible link. We examined the relationships between emotion dysregulation in school age, corticolimbic resting-state functional connectivity (rs-FC) in preadolescence, and depressive symptoms in adolescence. Participants were 143 children from a longitudinal preschool onset depression study who completed the Children Sadness Management Scale (CSMS; measuring ER), Child Depression Inventory (CDI-C; measuring depressive symptoms), and two resting-state MRI scans. Rs-FC between four primary regions of interest (ROIs; bilateral dorsolateral prefrontal cortex [dlPFC] and amygdala) and six target ROIs thought to contribute to ER were examined. Findings showed that ER in school age did not predict depressive symptoms in adolescence, but did predict preadolescent increases in dlPFC-insula and dlPFC-ventromedial PFC rs-FC across diagnosis, as well as increased dlPFC-dorsal anterior cingulate cortex (dACC) rs-FC in children with a history of depression. Of these profiles, only dlPFC-dACC rs-FC in preadolescence predicted depressive symptoms in adolescence. However, dlPFC-dACC connectivity did not mediate the relationship between ER in school age and depressive symptoms in adolescence. Despite the absence of a direct relationship between ER and depressive symptoms and no significant rs-FC mediation, the rs-FC profiles predicted by ER are consistent with the hypothesis that emotion dysregulation is associated with abnormalities in top-down control functions. The extent to which these relationships might confer greater risk for later depression, however, remains unclear.
Collapse
Affiliation(s)
- Katherine C Lopez
- Department of Psychological & Brain Sciences, Washington University, St. Louis, MO, USA
| | - Joan L Luby
- Department of Psychiatry, Washington University, St. Louis, MO, USA
| | - Andy C Belden
- Department of Psychiatry, Washington University, St. Louis, MO, USA
| | - Deanna M Barch
- Department of Psychological & Brain Sciences, Washington University, St. Louis, MO, USA.
- Department of Psychiatry, Washington University, St. Louis, MO, USA.
- Department of Radiology, Washington University, St. Louis, MO, USA.
| |
Collapse
|
45
|
Sylvester CM, Smyser CD, Smyser T, Kenley J, Ackerman JJ, Shimony JS, Petersen SE, Rogers CE. Cortical Functional Connectivity Evident After Birth and Behavioral Inhibition at Age 2. Am J Psychiatry 2018; 175:180-187. [PMID: 28774192 PMCID: PMC5794627 DOI: 10.1176/appi.ajp.2017.17010018] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The infant temperament behavioral inhibition is a potent risk factor for development of an anxiety disorder. It is difficult to predict risk for behavioral inhibition at birth, however, and the neural underpinnings are poorly understood. The authors hypothesized that neonatal functional connectivity of the ventral attention network is related to behavioral inhibition at age 2 years beyond sociodemographic and familial factors. This hypothesis is supported by the ventral attention network's role in attention to novelty, a key feature of behavioral inhibition. METHOD Using a longitudinal design (N=45), the authors measured functional connectivity using MRI in neonates and behavioral inhibition at age 2 using the Infant-Toddler Social and Emotional Assessment. Whole-brain connectivity maps were computed for regions from the ventral attention, default mode, and salience networks. Regression analyses related these maps to behavioral inhibition at age 2, covarying for sex, social risk, and motion during scanning. RESULTS Decreased neonatal functional connectivity of three connections was associated with increased behavioral inhibition at age 2. One connection (between the right ventrolateral prefrontal cortex and the right temporal-parietal junction) included the ventral attention network seed, and two connections (between the medial prefrontal cortex and both the right superior parietal lobule and the left lateral occipital cortex) included the default mode network seed. CONCLUSIONS Neonatal functional connectivity of the ventral attention and default mode networks is associated with behavioral inhibition at age 2. These results inform the developmental neurobiology of behavioral inhibition and anxiety disorders and may aid in early risk assessment and intervention.
Collapse
Affiliation(s)
| | - Christopher D. Smyser
- Department of Neurology, Washington University School of Medicine
- Department of Pediatrics, Washington University School of Medicine
- Department of Radiology, Washington University School of Medicine
| | - Tara Smyser
- Department of Psychiatry, Washington University School of Medicine
| | - Jeanette Kenley
- Department of Neurology, Washington University School of Medicine
| | | | | | - Steve E. Petersen
- Department of Neurology, Washington University School of Medicine
- Department of Radiology, Washington University School of Medicine
- Department of Psychology, Washington University School of Medicine
- Department of Neuroscience, Washington University School of Medicine
| | - Cynthia E. Rogers
- Department of Psychiatry, Washington University School of Medicine
- Department of Pediatrics, Washington University School of Medicine
| |
Collapse
|
46
|
Chan JSY, Wang Y, Yan JH, Chen H. Developmental implications of children's brain networks and learning. Rev Neurosci 2018; 27:713-727. [PMID: 27362958 DOI: 10.1515/revneuro-2016-0007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/14/2016] [Indexed: 11/15/2022]
Abstract
The human brain works as a synergistic system where information exchanges between functional neuronal networks. Rudimentary networks are observed in the brain during infancy. In recent years, the question of how functional networks develop and mature in children has been a hotly discussed topic. In this review, we examined the developmental characteristics of functional networks and the impacts of skill training on children's brains. We first focused on the general rules of brain network development and on the typical and atypical development of children's brain networks. After that, we highlighted the essentials of neural plasticity and the effects of learning on brain network development. We also discussed two important theoretical and practical concerns in brain network training. Finally, we concluded by presenting the significance of network training in typically and atypically developed brains.
Collapse
|
47
|
Davis K, Margolis AE, Thomas L, Huo Z, Marsh R. Amygdala sub-regional functional connectivity predicts anxiety in children with reading disorder. Dev Sci 2017; 21:e12631. [PMID: 29143475 DOI: 10.1111/desc.12631] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 09/19/2017] [Indexed: 01/14/2023]
Abstract
Pediatric reading disorder (RD) is associated with an increased risk of anxiety symptoms, yet understudied are the neurobiological factors that might underlie anxiety in children with RD. Given the role of the amygdala in anxiety, we assessed resting state functional connectivity of amygdalar subregions in children with RD to identify functional correlates of anxiety and reading impairment. We collected resting state functional MRI data from 22 children with RD and 21 typically developing (TD) children, ages 7 to 13 years. We assessed group differences in resting state functional connectivity (RSFC) from amygdalar subregions. Associations of amygdalar RSFC and volume with reading impairment, reading fluency scores, and anxiety symptoms were explored. Relative to TD children, those with RD showed increased RSFC from amygdalar nuclei to medial prefrontal cortex. Across all subjects, RSFC from right centromedial amygdala to left medial prefrontal cortex positively predicted both reading impairment and self-reported anxiety, and anxiety mediated the relationship between RSFC and reading impairment. These findings are consistent with amygdalar functional abnormalities in pediatric anxiety disorders, suggesting a common neurobiological mechanism underlying anxiety and reading impairment in children. Thus, aberrant patterns of RSFC from amygdalar subregions may serve as potential targets for the treatment of anxiety symptoms that typically co-occur with RD. Our dimensional approach to studying anxiety in RD revealed how amygdalar connectivity underlies anxiety and reading impairment across a continuum from normal to abnormal.
Collapse
Affiliation(s)
- Katie Davis
- The Division of Child and Adolescent Psychiatry in the Department of Psychiatry, the New York State Psychiatric Institute, New York.,The College of Physicians & Surgeons, Columbia University, New York, USA
| | - Amy E Margolis
- The Division of Child and Adolescent Psychiatry in the Department of Psychiatry, the New York State Psychiatric Institute, New York.,The College of Physicians & Surgeons, Columbia University, New York, USA
| | - Lauren Thomas
- The Division of Child and Adolescent Psychiatry in the Department of Psychiatry, the New York State Psychiatric Institute, New York.,The College of Physicians & Surgeons, Columbia University, New York, USA
| | - Zhiyong Huo
- The Division of Child and Adolescent Psychiatry in the Department of Psychiatry, the New York State Psychiatric Institute, New York.,The College of Physicians & Surgeons, Columbia University, New York, USA
| | - Rachel Marsh
- The Division of Child and Adolescent Psychiatry in the Department of Psychiatry, the New York State Psychiatric Institute, New York.,The College of Physicians & Surgeons, Columbia University, New York, USA
| |
Collapse
|
48
|
Abstract
BACKGROUND Individuals with anxiety disorders exhibit a 'vigilance-avoidance' pattern of attention to threatening stimuli when threatening and neutral stimuli are presented simultaneously, a phenomenon referred to as 'threat bias'. Modifying threat bias through cognitive retraining during adolescence reduces symptoms of anxiety, and so elucidating neural mechanisms of threat bias during adolescence is of high importance. We explored neural mechanisms by testing whether threat bias in adolescents is associated with generalized or threat-specific differences in the neural processing of faces. METHOD Subjects were categorized into those with (n = 25) and without (n = 27) threat avoidance based on a dot-probe task at average age 12.9 years. Threat avoidance in this cohort has previously been shown to index threat bias. Brain response to individually presented angry and neutral faces was assessed in a separate session using functional magnetic resonance imaging. RESULTS Adolescents with threat avoidance exhibited lower activity for both angry and neutral faces relative to controls in several regions in the occipital, parietal, and temporal lobes involved in early visual and facial processing. Results generalized to happy, sad, and fearful faces. Adolescents with a prior history of depression and/or an anxiety disorder had lower activity for all faces in these same regions. A subset of results replicated in an independent dataset. CONCLUSIONS Threat bias is associated with generalized, rather than threat-specific, differences in the neural processing of faces in adolescents. Findings may aid in the development of novel treatments for anxiety disorders that use attention training to modify threat bias.
Collapse
Affiliation(s)
| | - Steve E. Petersen
- Department of Neurology, Washington University School of Medicine
- Department of Psychology, Washington University School of Medicine
| | - Joan L. Luby
- Department of Psychiatry, Washington University School of Medicine
| | - Deanna M. Barch
- Department of Psychiatry, Washington University School of Medicine
- Department of Psychology, Washington University School of Medicine
- Department of Radiology, Washington University School of Medicine
| |
Collapse
|
49
|
Stange JP, Bessette KL, Jenkins LM, Peters AT, Feldhaus C, Crane NA, Ajilore O, Jacobs RH, Watkins ER, Langenecker SA. Attenuated intrinsic connectivity within cognitive control network among individuals with remitted depression: Temporal stability and association with negative cognitive styles. Hum Brain Mapp 2017; 38:2939-2954. [PMID: 28345197 DOI: 10.1002/hbm.23564] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 02/06/2023] Open
Abstract
Many individuals with major depressive disorder (MDD) experience cognitive dysfunction including impaired cognitive control and negative cognitive styles. Functional connectivity magnetic resonance imaging studies of individuals with current MDD have documented altered resting-state connectivity within the default-mode network and across networks. However, no studies to date have evaluated the extent to which impaired connectivity within the cognitive control network (CCN) may be present in remitted MDD (rMDD), nor have studies examined the temporal stability of such attenuation over time. This represents a major gap in understanding stable, trait-like depression risk phenotypes. In this study, resting-state functional connectivity data were collected from 52 unmedicated young adults with rMDD and 47 demographically matched healthy controls, using three bilateral seeds in the CCN (dorsolateral prefrontal cortex, inferior parietal lobule, and dorsal anterior cingulate cortex). Mean connectivity within the entire CCN was attenuated among individuals with rMDD, was stable and reliable over time, and was most pronounced with the right dorsolateral prefrontal cortex and right inferior parietal lobule, results that were corroborated by supplemental independent component analysis. Attenuated connectivity in rMDD appeared to be specific to the CCN as opposed to representing attenuated within-network coherence in other networks (e.g., default-mode, salience). In addition, attenuated connectivity within the CCN mediated relationships between rMDD status and cognitive risk factors for depression, including ruminative brooding, pessimistic attributional style, and negative automatic thoughts. Given that these cognitive markers are known predictors of relapse, these results suggest that attenuated connectivity within the CCN could represent a biomarker for trait phenotypes of depression risk. Hum Brain Mapp 38:2939-2954, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | | | | | - Amy T Peters
- University of Illinois at Chicago, Chicago, Illinois
| | | | | | | | | | | | | |
Collapse
|
50
|
Cognitive Control Deficits in Shifting and Inhibition in Preschool Age Children are Associated with Increased Depression and Anxiety Over 7.5 Years of Development. JOURNAL OF ABNORMAL CHILD PSYCHOLOGY 2017; 44:1185-96. [PMID: 26607383 DOI: 10.1007/s10802-015-0101-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Although depression and anxiety are common in youth (Costello et al. 2003), factors that put children at risk for such symptoms are not well understood. The current study examined associations between early childhood cognitive control deficits and depression and anxiety over the course of development through school age. Participants were 188 children (at baseline M = 5.42 years, SD = 0.79 years) and their primary caregiver. Caregivers completed ratings of children's executive functioning at preschool age and measures of depression and anxiety severity over seven assessment waves (a period of approximately 7.5 years). Longitudinal multilevel linear models were used to examine the effect of attention shifting and inhibition deficits on depression and anxiety. Inhibition deficits at preschool were associated with significantly greater depression severity scores at each subsequent assessment wave (up until 7.5 years later). Inhibition deficits were associated with greater anxiety severity from 3.5 to 7.5 years later. Greater shifting deficits at preschool age were associated with greater depression severity up to 5.5 years later. Shifting deficits were also associated with significantly greater anxiety severity up to 3.5 years later. Importantly, these effects were significant even after accounting for the influence of other key predictors including assessment wave/time, gender, parental education, IQ, and symptom severity at preschool age, suggesting that effects are robust. Overall, findings indicate that cognitive control deficits are an early vulnerability factor for developing affective symptoms. Timely assessment and intervention may be beneficial as an early prevention strategy.
Collapse
|