1
|
DeSpenza T, Kiziltug E, Allington G, Barson DG, McGee S, O'Connor D, Robert SM, Mekbib KY, Nanda P, Greenberg ABW, Singh A, Duy PQ, Mandino F, Zhao S, Lynn A, Reeves BC, Marlier A, Getz SA, Nelson-Williams C, Shimelis H, Walsh LK, Zhang J, Wang W, Prina ML, OuYang A, Abdulkareem AF, Smith H, Shohfi J, Mehta NH, Dennis E, Reduron LR, Hong J, Butler W, Carter BS, Deniz E, Lake EMR, Constable RT, Sahin M, Srivastava S, Winden K, Hoffman EJ, Carlson M, Gunel M, Lifton RP, Alper SL, Jin SC, Crair MC, Moreno-De-Luca A, Luikart BW, Kahle KT. PTEN mutations impair CSF dynamics and cortical networks by dysregulating periventricular neural progenitors. Nat Neurosci 2025; 28:536-557. [PMID: 39994410 PMCID: PMC12038823 DOI: 10.1038/s41593-024-01865-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/05/2024] [Indexed: 02/26/2025]
Abstract
Enlargement of the cerebrospinal fluid (CSF)-filled brain ventricles (ventriculomegaly) is a defining feature of congenital hydrocephalus (CH) and an under-recognized concomitant of autism. Here, we show that de novo mutations in the autism risk gene PTEN are among the most frequent monogenic causes of CH and primary ventriculomegaly. Mouse Pten-mutant ventriculomegaly results from aqueductal stenosis due to hyperproliferation of periventricular Nkx2.1+ neural progenitor cells (NPCs) and increased CSF production from hyperplastic choroid plexus. Pten-mutant ventriculomegalic cortices exhibit network dysfunction from increased activity of Nkx2.1+ NPC-derived inhibitory interneurons. Raptor deletion or postnatal everolimus treatment corrects ventriculomegaly, rescues cortical deficits and increases survival by antagonizing mTORC1-dependent Nkx2.1+ NPC pathology. Thus, PTEN mutations concurrently alter CSF dynamics and cortical networks by dysregulating Nkx2.1+ NPCs. These results implicate a nonsurgical treatment for CH, demonstrate a genetic association of ventriculomegaly and ASD, and help explain neurodevelopmental phenotypes refractory to CSF shunting in select individuals with CH.
Collapse
Affiliation(s)
- Tyrone DeSpenza
- Interdepartmental Neuroscience Program, Yale School of Medicine, Yale University, New Haven, CT, USA
- Medical Scientist Training Program, Yale School of Medicine, Yale University, New Haven, CT, USA
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Emre Kiziltug
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, USA
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Garrett Allington
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT, USA
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons and New York Presbyterian Hospital, New York, NY, USA
| | - Daniel G Barson
- Interdepartmental Neuroscience Program, Yale School of Medicine, Yale University, New Haven, CT, USA
- Medical Scientist Training Program, Yale School of Medicine, Yale University, New Haven, CT, USA
| | | | - David O'Connor
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Stephanie M Robert
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Kedous Y Mekbib
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, USA
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Pranav Nanda
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ana B W Greenberg
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Amrita Singh
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Phan Q Duy
- Interdepartmental Neuroscience Program, Yale School of Medicine, Yale University, New Haven, CT, USA
- Medical Scientist Training Program, Yale School of Medicine, Yale University, New Haven, CT, USA
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Francesca Mandino
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Shujuan Zhao
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Anna Lynn
- Medical Scientist Training Program, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Benjamin C Reeves
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Arnaud Marlier
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Stephanie A Getz
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Carol Nelson-Williams
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Hermela Shimelis
- Autism & Developmental Medicine Institute, Geisinger, Lewisburg, PA, USA
| | - Lauren K Walsh
- Autism & Developmental Medicine Institute, Geisinger, Lewisburg, PA, USA
| | - Junhui Zhang
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Wei Wang
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Mackenzi L Prina
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Department of Neurobiology, UAB Heersink School of Medicine, Birmingham, AL, USA
| | - Annaliese OuYang
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Asan F Abdulkareem
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Department of Neurobiology, UAB Heersink School of Medicine, Birmingham, AL, USA
| | - Hannah Smith
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - John Shohfi
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Neel H Mehta
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Evan Dennis
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Laetitia R Reduron
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Jennifer Hong
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - William Butler
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Bob S Carter
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Engin Deniz
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Evelyn M R Lake
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - R Todd Constable
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Mustafa Sahin
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Siddharth Srivastava
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kellen Winden
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ellen J Hoffman
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Marina Carlson
- Interdepartmental Neuroscience Program, Yale School of Medicine, Yale University, New Haven, CT, USA
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Murat Gunel
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Richard P Lifton
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Seth L Alper
- Division of Nephrology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, and Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Diagnostic Medicine Institute, Geisinger, Danville, PA, USA
| | - Sheng Chih Jin
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael C Crair
- Interdepartmental Neuroscience Program, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Andres Moreno-De-Luca
- Autism & Developmental Medicine Institute, Geisinger, Lewisburg, PA, USA
- Department of Radiology, Diagnostic Medicine Institute, Geisinger, Danville, PA, USA
| | - Bryan W Luikart
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
- Department of Neurobiology, UAB Heersink School of Medicine, Birmingham, AL, USA.
| | - Kristopher T Kahle
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, USA.
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
2
|
Dell’Osso L, Bonelli C, Giovannoni F, Poli F, Anastasio L, Cerofolini G, Nardi B, Cremone IM, Pini S, Carpita B. Available Treatments for Autism Spectrum Disorder: From Old Strategies to New Options. Pharmaceuticals (Basel) 2025; 18:324. [PMID: 40143102 PMCID: PMC11944800 DOI: 10.3390/ph18030324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/27/2025] [Accepted: 01/30/2025] [Indexed: 03/28/2025] Open
Abstract
Autism spectrum disorder (ASD) is a condition that is gaining increasing interest in research and clinical fields. Due to the improvement of screening programs and diagnostic procedures, an increasing number of cases are reaching clinical attention. Despite this, the available pharmacological options for treating ASD-related symptoms are still very limited, and while a wide number of studies are focused on children or adolescents, there is a need to increase research about the treatment of ASD in adult subjects. Given this framework, this work aims to review the available literature about pharmacological treatments for ASD, from older strategies to possible new therapeutic targets for this condition, which are often poorly responsive to available resources. The literature, besides confirming the efficacy of the approved drugs for ASD, shows a lack of adequate research for several psychopharmacological treatments despite possible promising results that need to be further investigated.
Collapse
Affiliation(s)
| | - Chiara Bonelli
- Department of Clinical and Experimental Medicine, University of Pisa, 67 Via Roma, 56126 Pisa, Italy; (L.D.); (F.G.); (F.P.); (L.A.); (G.C.); (B.N.); (I.M.C.); (S.P.); (B.C.)
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Matsushima T, Toji N, Wada K, Shikanai H, Izumi T. Embryonic exposure to valproic acid and neonicotinoid deteriorates the hyperpolarizing GABA shift and impairs long-term potentiation of excitatory transmission in the local circuit of intermediate medial mesopallium of chick telencephalon. Cereb Cortex 2025; 35:bhaf044. [PMID: 40037548 DOI: 10.1093/cercor/bhaf044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 03/06/2025] Open
Abstract
Embryonic exposure to valproic acid and imidacloprid (a neonicotinoid insecticide) impairs filial imprinting in hatchlings, and the deteriorating effects of valproic acid are mitigated by post-hatch injection of bumetanide, a blocker of the chloride intruder Na-K-2Cl cotransporter 1. Here, we report that these exposures depolarized the reversal potential of local GABAergic transmission in the neurons of the intermediate medial mesopallium, the pallial region critical for imprinting. Furthermore, exposure increased field excitatory post-synaptic potentials in pre-tetanus recordings and impaired long-term potentiation (LTP) by low-frequency tetanic stimulation. Bath-applied bumetanide rescued the impaired LTP in the valproic acid slices, whereas VU0463271, a blocker of the chloride extruder KCC2, suppressed LTP in the control slices, suggesting that hyperpolarizing GABA action is necessary for the potentiation of excitatory synaptic transmission. Whereas a steep increase in the gene expression of KCC2 appeared compared to NKCC1 during the peri-hatch development, significant differences were not found between valproic acid and control post-hatch chicks in these genes. Instead, both valproic acid and imidacloprid downregulated several transcriptional regulators (FOS, NR4A1, and NR4A2) and upregulated the RNA component of signal recognition particles (RN7SL1). Despite different chemical actions, valproic acid and imidacloprid could cause common neuronal effects that lead to impaired imprinting.
Collapse
Affiliation(s)
- Toshiya Matsushima
- Department of Biology, Faculty of Science, Hokkaido University, N10 W8 Kita-ku, 060-0810 Sapporo, Japan
- Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Kanazawa 1757, 061-0293 Tobetsu, Japan
- Center for Mind/Brain Sciences, University of Trento, Piazza Manifattura 1, 38068 Rovereto, Italy
| | - Noriyuki Toji
- Department of Biology, Faculty of Science, Hokkaido University, N10 W8 Kita-ku, 060-0810 Sapporo, Japan
| | - Kazuhiro Wada
- Department of Biology, Faculty of Science, Hokkaido University, N10 W8 Kita-ku, 060-0810 Sapporo, Japan
| | - Hiroki Shikanai
- Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Kanazawa 1757, 061-0293 Tobetsu, Japan
| | - Takeshi Izumi
- Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Kanazawa 1757, 061-0293 Tobetsu, Japan
| |
Collapse
|
4
|
Persico AM, Asta L, Chehbani F, Mirabelli S, Parlatini V, Cortese S, Arango C, Vitiello B. The pediatric psychopharmacology of autism spectrum disorder: A systematic review - Part II: The future. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111176. [PMID: 39490514 DOI: 10.1016/j.pnpbp.2024.111176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/31/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024]
Abstract
Part I of this systematic review summarized the state-of-the-art of pediatric psychopharmacology for Autism Spectrum Disorder (ASD), a severe and lifelong neurodevelopmental disorder. The purpose of this Part II follow-up article is to provide a systematic overview of the experimental psychopharmacology of ASD. To this aim, we have first identified in the Clinicaltrials.gov website all the 157 pharmacological and nutraceutical compounds which have been experimentally tested in children and adolescents with ASD using the randomized placebo-controlled trial (RCT) design. After excluding 24 drugs already presented in Part I, a systematic review spanning each of the remaining 133 compounds was registered on Prospero (ID: CRD42023476555), performed on PubMed (August 8, 2024), and completed with EBSCO, PsycINFO (psychology and psychiatry literature) and the Cochrane Database of Systematic reviews, yielding a total of 115 published RCTs, including 57 trials for 23 pharmacological compounds and 48 trials for 17 nutraceuticals/supplements. Melatonin and oxytocin were not included, because recent systematic reviews have been already published for both these compounds. RCTs of drugs with the strongest foundation in preclinical research, namely arbaclofen, balovaptan and bumetanide have all failed to reach their primary end-points, although efforts to target specific patient subgroups do warrant further investigation. For the vast majority of compounds, including cannabidiol, vasopressin, and probiotics, insufficient evidence of efficacy and safety is available. However, a small subset of compounds, including N-acetylcysteine, folinic acid, l-carnitine, coenzyme Q10, sulforaphane, and metformin may already be considered, with due caution, for clinical use, because there is promising evidence of efficacy and a high safety profile. For several other compounds, such as secretin, efficacy can be confidently excluded, and/or the data discourage undertaking new RCTs. Part I and Part II summarize "drug-based" information, which will be ultimately merged to provide clinicians with a "symptom-based" consensus statement in a conclusive Part III, with the overarching aim to foster evidence-based clinical practices and to organize new strategies for future clinical trials.
Collapse
Affiliation(s)
- Antonio M Persico
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Child & Adolescent Neuropsychiatry Program, Modena University Hospital, Modena, Italy.
| | - Lisa Asta
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Fethia Chehbani
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Silvestro Mirabelli
- Interdepartmental Program "Autism 0-90", "G. Martino" University Hospital, Messina, Italy
| | - Valeria Parlatini
- Center for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK; Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK; Solent NHS Trust, Southampton, UK
| | - Samuele Cortese
- Center for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK; Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK; Solent NHS Trust, Southampton, UK; Hassenfeld Children's Hospital at NYU Langone, New York University Child Study Center, New York City, NY, USA; DiMePRe-J-Department of Precision and Regenerative Medicine-Jonic Area, University "Aldo Moro", Bari, Italy
| | - Celso Arango
- Child and Adolescent Psychiatry Department, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, School of Medicine Universidad Complutense, IiSGM, CIBERSAM, Madrid, Spain
| | - Benedetto Vitiello
- Department of Public Health and Pediatric Sciences, Section of Child and Adolescent Neuropsychiatry, University of Turin, Turin, Italy
| |
Collapse
|
5
|
Kim HW, Kim JH, Chung US, Kim JI, Shim SH, Park TW, Lee MS, Hwang JW, Park EJ, Hwang SK, Joung YS. AST-001 versus placebo for social communication in children with autism spectrum disorder: A randomized clinical trial. Psychiatry Clin Neurosci 2025; 79:21-28. [PMID: 39425256 DOI: 10.1111/pcn.13757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 10/21/2024]
Abstract
AIM This study examined the efficacy of AST-001 for the core symptoms of autism spectrum disorder (ASD) in children. METHODS This phase 2 clinical trial consisted of a 12-week placebo-controlled main study, a 12-week extension, and a 12-week follow-up in children aged 2 to 11 years with ASD. The participants were randomized in a 1:1:1 ratio to a high-dose, low-dose, or placebo-to-high-dose control group during the main study. The placebo-to-high-dose control group received placebo during the main study and high-dose AST-001 during the extension. The a priori primary outcome was the mean change in the Adaptive Behavior Composite (ABC) score of the Korean Vineland Adaptive Behavior Scales II (K-VABS-II) from baseline to week 12. RESULTS Among 151 enrolled participants, 144 completed the main study, 140 completed the extension, and 135 completed the follow-up. The mean K-VABS-II ABC score at the 12th week compared with baseline was significantly increased in the high-dose group (P = 0.042) compared with the placebo-to-high-dose control group. The mean CGI-S scores were significantly decreased at the 12th week in the high-dose (P = 0.046) and low-dose (P = 0.017) groups compared with the placebo-to-high-dose control group. During the extension, the K-VABS-II ABC and CGI-S scores of the placebo-to-high-dose control group changed rapidly after administration of high-dose AST-001 and caught up with those of the high-dose group at the 24th week. AST-001 was well tolerated with no safety concern. The most common adverse drug reaction was diarrhea. CONCLUSIONS Our results provide preliminary evidence for the efficacy of AST-001 for the core symptoms of ASD.
Collapse
Affiliation(s)
- Hyo-Won Kim
- Department of Psychiatry, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Ji-Hoon Kim
- Department of Psychiatry, Pusan National University Yangsan Hospital, Pusan, South Korea
| | - Un Sun Chung
- Department of Psychiatry, Kyungpook National University School of Medicine, Daegu, South Korea
| | - Johanna Inhyang Kim
- Department of Psychiatry, Hanyang University Medical Center, Seoul, South Korea
| | - Se-Hoon Shim
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Soon Chun Hyang University Cheonan Hospital, Cheonan, South Korea
| | - Tae Won Park
- Department of Psychiatry, Jeonbuk National University College of Medicine, Jeonju, South Korea
| | - Moon-Soo Lee
- Department of Psychiatry, Korea University Guro Hospital, Korea University College of Medicine, Seoul, South Korea
- Department of Life Sciences, Korea University, Seoul, South Korea
| | - Jun-Won Hwang
- Department of Psychiatry, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Eun-Jin Park
- Department of Psychiatry, Inje university, Ilsan Paik Hospital, Goyang, South Korea
| | - Su-Kyeong Hwang
- Department of Pediatrics, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Yoo-Sook Joung
- Department of Psychiatry, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, South Korea
| |
Collapse
|
6
|
Mahmoudian M, Lorigooini Z, Rahimi-Madiseh M, Shabani S, Amini-Khoei H. Protective effects of rosmarinic acid against autistic-like behaviors in a mouse model of maternal separation stress: behavioral and molecular amendments. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7819-7828. [PMID: 38730077 DOI: 10.1007/s00210-024-03143-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with worldwide increasing incidence. Maternal separation (MS) stress at the beginning of life with its own neuroendocrine changes can provide the basis for development of ASD. Rosmarinic acid (RA) is a phenolic compound with a protective effect in neurodegenerative diseases. The aim of this study was to determine the effect of RA on autistic-like behaviors in maternally separated mice focusing on its possible effects on neuroimmune response and nitrite levels in the hippocampus. In this study, 40 mice were randomly divided into five groups of control (received normal saline (1 ml/kg)) and MS that were treated with normal saline (1 ml/kg) or doses of 1, 2, and 4 mg/kg RA, respectively, for 14 days. Three-chamber sociability, shuttle box, and marble burying tests were used to investigate autistic-like behaviors. Nitrite level and gene expression of inflammatory cytokines including TNF-α, IL-1β, TLR4, and iNOS were assessed in the hippocampus. The results showed that RA significantly increased the social preference and social novelty indexes, as well as attenuated impaired passive avoidance memory and the occurrence of repetitive and obsessive behaviors in the MS mice. RA reduced the nitrite level and gene expression of inflammatory cytokines in the hippocampus. RA, probably via attenuation of the nitrite level as well as of the neuroimmune response in the hippocampus, mitigated autistic-like behaviors in maternally separated mice.
Collapse
Affiliation(s)
- Maziar Mahmoudian
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Rahimi-Madiseh
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sahreh Shabani
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
7
|
Kaye AD, Allen KE, Smith Iii VS, Tong VT, Mire VE, Nguyen H, Lee Z, Kouri M, Jean Baptiste C, Mosieri CN, Kaye AM, Varrassi G, Shekoohi S. Emerging Treatments and Therapies for Autism Spectrum Disorder: A Narrative Review. Cureus 2024; 16:e63671. [PMID: 39092332 PMCID: PMC11293483 DOI: 10.7759/cureus.63671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
The prevalence of autism spectrum disorder (ASD) has increased over the last decade. In this regard, many emerging therapies have been described as ASD therapies. Although ASD does not have a cure, there are several management options available that can help reduce symptom severity. ASD is highly variable and, therefore, standard treatment protocols and studies are challenging to perform. Many of these therapies also address comorbidities for which patients with ASD have an increased risk. These concurrent diagnoses can include psychiatric and neurological disorders, including attention deficit and hyperactivity disorder, anxiety disorders, and epilepsy, as well as gastrointestinal symptoms such as chronic constipation and diarrhea. Both the extensive list of ASD-associated disorders and adverse effects from commonly prescribed medications for patients with ASD can impact presenting symptomatology. It is important to keep these potential interactions in mind when considering additional drug treatments or complementary therapies. This review addresses current literature involving novel pharmacological treatments such as oxytocin, bumetanide, acetylcholinesterase inhibitors, and memantine. It also discusses additional therapies such as diet intervention, acupuncture, music therapy, melatonin, and the use of technology to aid education. Notably, several of these therapies require more long-term research to determine efficacy in specific ASD groups within this patient population.
Collapse
Affiliation(s)
- Alan D Kaye
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Kaitlyn E Allen
- School of Medicine, Louisiana State University Health New Orleans School of Medicine, New Orleans, USA
| | - Van S Smith Iii
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Victoria T Tong
- School of Medicine, Louisiana State University Health New Orleans School of Medicine, New Orleans, USA
| | - Vivian E Mire
- School of Medicine, Louisiana State University Health New Orleans School of Medicine, New Orleans, USA
| | - Huy Nguyen
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Zachary Lee
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Maria Kouri
- Anesthesia, National and Kapodistrian University of Athens, Athens, GRC
| | - Carlo Jean Baptiste
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Chizoba N Mosieri
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Adam M Kaye
- Department of Pharmacy Practice, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, USA
| | | | - Sahar Shekoohi
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| |
Collapse
|
8
|
Erickson CA, Perez-Cano L, Pedapati EV, Painbeni E, Bonfils G, Schmitt LM, Sachs H, Nelson M, De Stefano L, Westerkamp G, de Souza ALS, Pohl O, Laufer O, Issachar G, Blaettler T, Hyvelin JM, Durham LA. Safety, Tolerability, and EEG-Based Target Engagement of STP1 (PDE3,4 Inhibitor and NKCC1 Antagonist) in a Randomized Clinical Trial in a Subgroup of Patients with ASD. Biomedicines 2024; 12:1430. [PMID: 39062003 PMCID: PMC11274259 DOI: 10.3390/biomedicines12071430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
This study aimed to evaluate the safety and tolerability of STP1, a combination of ibudilast and bumetanide, tailored for the treatment of a clinically and biologically defined subgroup of patients with Autism Spectrum Disorder (ASD), namely ASD Phenotype 1 (ASD-Phen1). We conducted a randomized, double-blind, placebo-controlled, parallel-group phase 1b study with two 14-day treatment phases (registered at clinicaltrials.gov as NCT04644003). Nine ASD-Phen1 patients were administered STP1, while three received a placebo. We assessed safety and tolerability, along with electrophysiological markers, such as EEG, Auditory Habituation, and Auditory Chirp Synchronization, to better understand STP1's mechanism of action. Additionally, we used several clinical scales to measure treatment outcomes. The results showed that STP1 was well-tolerated, with electrophysiological markers indicating a significant and dose-related reduction of gamma power in the whole brain and in brain areas associated with executive function and memory. Treatment with STP1 also increased alpha 2 power in frontal and occipital regions and improved habituation and neural synchronization to auditory chirps. Although numerical improvements were observed in several clinical scales, they did not reach statistical significance. Overall, this study suggests that STP1 is well-tolerated in ASD-Phen1 patients and shows indirect target engagement in ASD brain regions of interest.
Collapse
Affiliation(s)
- Craig A. Erickson
- Division of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Laura Perez-Cano
- Discovery and Data Science (DDS) Unit, STALICLA SL, Moll de Barcelona, s/n, Edif Este, 08039 Barcelona, Spain
| | - Ernest V. Pedapati
- Division of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH 45229, USA
- Division of Child Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Eric Painbeni
- Drug Development Unit (DDU), STALICLA SA, Campus Biotech Innovation Park, Avenue de Sécheron 15, 1202 Geneva, Switzerland
| | - Gregory Bonfils
- Drug Development Unit (DDU), STALICLA SA, Campus Biotech Innovation Park, Avenue de Sécheron 15, 1202 Geneva, Switzerland
| | - Lauren M. Schmitt
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Hannah Sachs
- Division of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Meredith Nelson
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Lisa De Stefano
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Grace Westerkamp
- Division of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Adriano L. S. de Souza
- Drug Development Unit (DDU), STALICLA SA, Campus Biotech Innovation Park, Avenue de Sécheron 15, 1202 Geneva, Switzerland
| | - Oliver Pohl
- Drug Development Unit (DDU), STALICLA SA, Campus Biotech Innovation Park, Avenue de Sécheron 15, 1202 Geneva, Switzerland
| | | | | | - Thomas Blaettler
- Drug Development Unit (DDU), STALICLA SA, Campus Biotech Innovation Park, Avenue de Sécheron 15, 1202 Geneva, Switzerland
| | - Jean-Marc Hyvelin
- Drug Development Unit (DDU), STALICLA SA, Campus Biotech Innovation Park, Avenue de Sécheron 15, 1202 Geneva, Switzerland
| | - Lynn A. Durham
- Drug Development Unit (DDU), STALICLA SA, Campus Biotech Innovation Park, Avenue de Sécheron 15, 1202 Geneva, Switzerland
| |
Collapse
|
9
|
Aishworiya R, Valica T, Hagerman R, Restrepo B. An Update on Psychopharmacological Treatment of Autism Spectrum Disorder. FOCUS (AMERICAN PSYCHIATRIC PUBLISHING) 2024; 22:198-211. [PMID: 38680976 PMCID: PMC11046717 DOI: 10.1176/appi.focus.24022006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
While behavioral interventions remain the mainstay of treatment of autism spectrum disorder (ASD), several potential targeted treatments addressing the underlying neurophysiology of ASD have emerged in the last few years. These are promising for the potential to, in future, become part of the mainstay treatment in addressing the core symptoms of ASD. Although it is likely that the development of future targeted treatments will be influenced by the underlying heterogeneity in etiology, associated genetic mechanisms influencing ASD are likely to be the first targets of treatments and even gene therapy in the future for ASD. In this article, we provide a review of current psychopharmacological treatment in ASD including those used to address common comorbidities of the condition and upcoming new targeted approaches in autism management. Medications including metformin, arbaclofen, cannabidiol, oxytocin, bumetanide, lovastatin, trofinetide, and dietary supplements including sulforophane and N-acetylcysteine are discussed. Commonly used medications to address the comorbidities associated with ASD including atypical antipsychotics, serotoninergic agents, alpha-2 agonists, and stimulant medications are also reviewed. Targeted treatments in Fragile X syndrome (FXS), the most common genetic disorder leading to ASD, provide a model for new treatments that may be helpful for other forms of ASD. Appeared originally in Neurotherapeutics 2022; 19:248-262.
Collapse
Affiliation(s)
- Ramkumar Aishworiya
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, 2825 50th Street, Sacramento, CA 95817, USA (Aishworiya, Valica, Hagerman, Restrepo); Khoo Teck Puat-National University Children's Medical Institute, National University Health System, 5 Lower Kent Ridge Road, Singapore 119074, Singapore; Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore (Aishworiya); Association for Children With Autism, Chisinau, Moldova (Valica); Department of Pediatrics, University of California Davis School of Medicine, 4610 X St, Sacramento, CA 95817, USA (Hagerman, Restrepo)
| | - Tatiana Valica
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, 2825 50th Street, Sacramento, CA 95817, USA (Aishworiya, Valica, Hagerman, Restrepo); Khoo Teck Puat-National University Children's Medical Institute, National University Health System, 5 Lower Kent Ridge Road, Singapore 119074, Singapore; Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore (Aishworiya); Association for Children With Autism, Chisinau, Moldova (Valica); Department of Pediatrics, University of California Davis School of Medicine, 4610 X St, Sacramento, CA 95817, USA (Hagerman, Restrepo)
| | - Randi Hagerman
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, 2825 50th Street, Sacramento, CA 95817, USA (Aishworiya, Valica, Hagerman, Restrepo); Khoo Teck Puat-National University Children's Medical Institute, National University Health System, 5 Lower Kent Ridge Road, Singapore 119074, Singapore; Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore (Aishworiya); Association for Children With Autism, Chisinau, Moldova (Valica); Department of Pediatrics, University of California Davis School of Medicine, 4610 X St, Sacramento, CA 95817, USA (Hagerman, Restrepo)
| | - Bibiana Restrepo
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, 2825 50th Street, Sacramento, CA 95817, USA (Aishworiya, Valica, Hagerman, Restrepo); Khoo Teck Puat-National University Children's Medical Institute, National University Health System, 5 Lower Kent Ridge Road, Singapore 119074, Singapore; Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore (Aishworiya); Association for Children With Autism, Chisinau, Moldova (Valica); Department of Pediatrics, University of California Davis School of Medicine, 4610 X St, Sacramento, CA 95817, USA (Hagerman, Restrepo)
| |
Collapse
|
10
|
Reisi-Vanani V, Lorigooini Z, Bijad E, Amini-Khoei H. Maternal separation stress through triggering of the neuro-immune response in the hippocampus induces autistic-like behaviors in male mice. Int J Dev Neurosci 2024; 84:87-98. [PMID: 38110192 DOI: 10.1002/jdn.10310] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/28/2023] [Accepted: 12/01/2023] [Indexed: 12/20/2023] Open
Abstract
Autism spectrum disorder (ASD) is the fastest-growing neurodevelopmental disease throughout the world. Neuro-immune responses from prenatal to adulthood stages of life induce developmental defects in synaptic signaling, neurotransmitter imbalance, and even structural changes in the brain. In this study, we aimed to focus on the possible role of neuroinflammatory response in the hippocampus in development of the autistic-like behaviors following maternal separation (MS) stress in mice. To do this, mice neonates daily separated from their mothers from postnatal day (PND) 2 to PND 14 for 3 h. During PND45-60, behavioral tests related to autistic-like behaviors including three-chamber sociability, Morris water maze (MWM), shuttle box, resident-intruder, and marble burying tests were performed. Then, hippocampi were dissected out, and the gene expression of inflammatory mediators including TNF-α, IL-1β, TLR4, HMGB1, and NLRP3 was assessed in the hippocampus using RT-PCR. Results showed that MS mice exerted impaired sociability preference, repetitive behaviors, impaired passive avoidance, and spatial memories. The gene expression of inflammatory mediators significantly increased in the hippocampi of MS mice. We concluded that MS stress probably via activating of the HMGB1/TLR4 signaling cascade in the hippocampus induced autistic-like behaviors in mice.
Collapse
Affiliation(s)
- Vahid Reisi-Vanani
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Elham Bijad
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
11
|
van Andel DM, Sprengers JJ, Königs M, de Jonge MV, Bruining H. Effects of Bumetanide on Neurocognitive Functioning in Children with Autism Spectrum Disorder: Secondary Analysis of a Randomized Placebo-Controlled Trial. J Autism Dev Disord 2024; 54:894-904. [PMID: 36626004 PMCID: PMC10907457 DOI: 10.1007/s10803-022-05841-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2022] [Indexed: 01/11/2023]
Abstract
We present the secondary-analysis of neurocognitive tests in the 'Bumetanide in Autism Medication and Biomarker' (BAMBI;EUDRA-CT-2014-001560-35) study, a randomized double-blind placebo-controlled (1:1) trial testing 3-months bumetanide treatment (≤ 1 mg twice-daily) in unmedicated children 7-15 years with ASD. Children with IQ ≥ 70 were analyzed for baseline deficits and treatment-effects on the intention-to-treat-population with generalized-linear-models, principal component analysis and network analysis. Ninety-two children were allocated to treatment and 83 eligible for analyses. Heterogeneous neurocognitive impairments were found that were unaffected by bumetanide treatment. Network analysis showed higher modularity after treatment (mean difference:-0.165, 95%CI:-0.317 to - 0.013,p = .034) and changes in the relative importance of response inhibition in the neurocognitive network (mean difference:-0.037, 95%CI:-0.073 to - 0.001,p = .042). This study offers perspectives to include neurocognitive tests in ASD trials.
Collapse
Affiliation(s)
- Dorinde M van Andel
- Department of Psychiatry, UMC Utrecht Brain Centre, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Jan J Sprengers
- Department of Psychiatry, UMC Utrecht Brain Centre, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Marsh Königs
- Department of Paediatrics, Emma Neuroscience Group, Amsterdam UMC Emma Children's Hospital, Amsterdam, The Netherlands
| | - Maretha V de Jonge
- Department of Psychiatry, UMC Utrecht Brain Centre, University Medical Centre Utrecht, Utrecht, The Netherlands
- Department Education and Child Studies, Faculty of Social and Behavioral Sciences, Leiden University, Leiden, The Netherlands
| | - Hilgo Bruining
- Department of Psychiatry, UMC Utrecht Brain Centre, University Medical Centre Utrecht, Utrecht, The Netherlands.
- Child and Adolescent Psychiatry and Psychosocial Care, Emma Children's Hospital, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands.
- N=You Neurodevelopmental Precision Center, Amsterdam Neuroscience, Amsterdam Reproduction and Development, Amsterdam UMC, Amsterdam, Netherlands.
- Levvel, Center for Child and Adolescent Psychiatry, Amsterdam, Netherlands.
- Department of Child and Adolescent Psychiatry, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands.
| |
Collapse
|
12
|
Sprengers JJ, Geertjens L, Bruining H. Mechanism-based interventions for ASD cannot be implemented using conventional trial designs. Autism Res 2024; 17:202-203. [PMID: 38197172 DOI: 10.1002/aur.3086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/14/2023] [Indexed: 01/11/2024]
Affiliation(s)
- Jan J Sprengers
- UMC Utrecht Brain Centre, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Lisa Geertjens
- Child and Adolescent Psychiatry and Psychosocial Care, Emma Children's Hospital, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- N=You Neurodevelopmental Precision Center, Amsterdam Neuroscience, Amsterdam Reproduction and Development, Amsterdam UMC, Amsterdam, The Netherlands
| | - Hilgo Bruining
- Child and Adolescent Psychiatry and Psychosocial Care, Emma Children's Hospital, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- N=You Neurodevelopmental Precision Center, Amsterdam Neuroscience, Amsterdam Reproduction and Development, Amsterdam UMC, Amsterdam, The Netherlands
- Child and Adolescent Psychiatry, Levvel, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Matsushima T, Izumi T, Vallortigara G. The domestic chick as an animal model of autism spectrum disorder: building adaptive social perceptions through prenatally formed predispositions. Front Neurosci 2024; 18:1279947. [PMID: 38356650 PMCID: PMC10864568 DOI: 10.3389/fnins.2024.1279947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
Equipped with an early social predisposition immediately post-birth, humans typically form associations with mothers and other family members through exposure learning, canalized by a prenatally formed predisposition of visual preference to biological motion, face configuration, and other cues of animacy. If impaired, reduced preferences can lead to social interaction impairments such as autism spectrum disorder (ASD) via misguided canalization. Despite being taxonomically distant, domestic chicks could also follow a homologous developmental trajectory toward adaptive socialization through imprinting, which is guided via predisposed preferences similar to those of humans, thereby suggesting that chicks are a valid animal model of ASD. In addition to the phenotypic similarities in predisposition with human newborns, accumulating evidence on the responsible molecular mechanisms suggests the construct validity of the chick model. Considering the recent progress in the evo-devo studies in vertebrates, we reviewed the advantages and limitations of the chick model of developmental mental diseases in humans.
Collapse
Affiliation(s)
- Toshiya Matsushima
- Department of Biology, Faculty of Science, Hokkaido University, Sapporo, Japan
- Faculty of Pharmaceutical Science, Health Science University of Hokkaido, Tobetsu, Japan
- Centre for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Takeshi Izumi
- Faculty of Pharmaceutical Science, Health Science University of Hokkaido, Tobetsu, Japan
| | | |
Collapse
|
14
|
Shaker E, El Agami O, Salamah A. Bumetanide, a Diuretic That Can Help Children with Autism Spectrum Disorder. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:536-542. [PMID: 37021422 DOI: 10.2174/1871527322666230404114911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 01/17/2023] [Accepted: 01/25/2023] [Indexed: 04/08/2023]
Abstract
BACKGROUND Autism Spectrum Disorder (ASD) is a common child neurodevelopmental disorder, whose pathogenesis is not completely understood. Until now, there is no proven treatment for the core symptoms of ASD. However, some evidence indicates a crucial link between this disorder and GABAergic signals which are altered in ASD. Bumetanide is a diuretic that reduces chloride, shifts gamma-amino-butyric acid (GABA) from excitation to inhibition, and may play a significant role in the treatment of ASD. OBJECTIVE The objective of this study is to assess the safety and efficacy of bumetanide as a treatment for ASD. METHODS Eighty children, aged 3-12 years, with ASD diagnosed by Childhood Autism Rating Scale (CARS), ⩾ 30 were included in this double-blind, randomized, and controlled study. Group 1 received Bumetanide, Group 2 received a placebo for 6 months. Follow-up by CARS rating scale was performed before and after 1, 3, and 6 months of treatment. RESULTS The use of bumetanide in group 1 improved the core symptoms of ASD in a shorter time with minimal and tolerable adverse effects. There was a statistically significant decrease in CARS and most of its fifteen items in group 1 versus group 2 after 6 months of treatment (p-value <0.001). CONCLUSION Bumetanide has an important role in the treatment of core symptoms of ASD.
Collapse
Affiliation(s)
- Esraa Shaker
- Department of Pediatrics, Faculty of Medicine, Kafr El-Sheikh University, Kafr El-Sheikh, Egypt
| | - Osama El Agami
- Department of Pediatrics, Faculty of Medicine, Kafr El-Sheikh University, Kafr El-Sheikh, Egypt
| | - Abeer Salamah
- Department of Pediatrics, Faculty of Medicine, Kafr El-Sheikh University, Kafr El-Sheikh, Egypt
| |
Collapse
|
15
|
Zhang S, Meor Azlan NF, Josiah SS, Zhou J, Zhou X, Jie L, Zhang Y, Dai C, Liang D, Li P, Li Z, Wang Z, Wang Y, Ding K, Wang Y, Zhang J. The role of SLC12A family of cation-chloride cotransporters and drug discovery methodologies. J Pharm Anal 2023; 13:1471-1495. [PMID: 38223443 PMCID: PMC10785268 DOI: 10.1016/j.jpha.2023.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/20/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023] Open
Abstract
The solute carrier family 12 (SLC12) of cation-chloride cotransporters (CCCs) comprises potassium chloride cotransporters (KCCs, e.g. KCC1, KCC2, KCC3, and KCC4)-mediated Cl- extrusion, and sodium potassium chloride cotransporters (N[K]CCs, NKCC1, NKCC2, and NCC)-mediated Cl- loading. The CCCs play vital roles in cell volume regulation and ion homeostasis. Gain-of-function or loss-of-function of these ion transporters can cause diseases in many tissues. In recent years, there have been considerable advances in our understanding of CCCs' control mechanisms in cell volume regulations, with many techniques developed in studying the functions and activities of CCCs. Classic approaches to directly measure CCC activity involve assays that measure the transport of potassium substitutes through the CCCs. These techniques include the ammonium pulse technique, radioactive or nonradioactive rubidium ion uptake-assay, and thallium ion-uptake assay. CCCs' activity can also be indirectly observed by measuring γ-aminobutyric acid (GABA) activity with patch-clamp electrophysiology and intracellular chloride concentration with sensitive microelectrodes, radiotracer 36Cl-, and fluorescent dyes. Other techniques include directly looking at kinase regulatory sites phosphorylation, flame photometry, 22Na+ uptake assay, structural biology, molecular modeling, and high-throughput drug screening. This review summarizes the role of CCCs in genetic disorders and cell volume regulation, current methods applied in studying CCCs biology, and compounds developed that directly or indirectly target the CCCs for disease treatments.
Collapse
Affiliation(s)
- Shiyao Zhang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
| | - Nur Farah Meor Azlan
- Institute of Biomedical and Clinical Sciences, Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX4 4PS, UK
| | - Sunday Solomon Josiah
- Institute of Biomedical and Clinical Sciences, Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX4 4PS, UK
| | - Jing Zhou
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaoxia Zhou
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
| | - Lingjun Jie
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
| | - Yanhui Zhang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
| | - Cuilian Dai
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
| | - Dong Liang
- Aurora Discovery Inc., Foshan, Guangdong, 528300, China
| | - Peifeng Li
- Institute for Translational Medicine, Qingdao University, Qingdao, Shandong, 266021, China
| | - Zhengqiu Li
- School of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Zhen Wang
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yun Wang
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ke Ding
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yan Wang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
| | - Jinwei Zhang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
- Institute of Biomedical and Clinical Sciences, Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX4 4PS, UK
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
16
|
Nguyen TD, Ishibashi M, Sinha AS, Watanabe M, Kato D, Horiuchi H, Wake H, Fukuda A. Astrocytic NKCC1 inhibits seizures by buffering Cl - and antagonizing neuronal NKCC1 at GABAergic synapses. Epilepsia 2023; 64:3389-3403. [PMID: 37779224 DOI: 10.1111/epi.17784] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/29/2023] [Accepted: 09/29/2023] [Indexed: 10/03/2023]
Abstract
OBJECTIVE A pathological excitatory action of the major inhibitory neurotransmitter γ-aminobutyric acid (GABA) has been observed in epilepsy. Blocking the Cl- importer NKCC1 with bumetanide is expected to reduce the neuronal intracellular Cl- concentration ([Cl- ]i ) and thereby attenuate the excitatory GABA response. Accordingly, several clinical trials of bumetanide for epilepsy were conducted. Although NKCC1 is expressed in both neurons and glial cells, an involvement of glial NKCC1 in seizures has not yet been reported. Astrocytes maintain high [Cl- ]i with NKCC1, and this gradient promotes Cl- efflux via the astrocytic GABAA receptor (GABAA R). This Cl- efflux buffers the synaptic cleft Cl- concentration to maintain the postsynaptic Cl- gradient during intense firing of GABAergic neurons, thereby sustaining its inhibitory action during seizure. In this study, we investigated the function of astrocytic NKCC1 in modulating the postsynaptic action of GABA in acute seizure models. METHODS We used the astrocyte-specific conditional NKCC1 knockout (AstroNKCC1KO) mice. The seizurelike events (SLEs) in CA1 pyramidal neurons were triggered by tetanic stimulation of stratum radiatum in acute hippocampus slices. The SLE underlying GABAA R-mediated depolarization was evaluated by applying the GABAA R antagonist bicuculline. The pilocarpine-induced seizure in vivo was monitored in adult mice by the Racine scale. The SLE duration and tetanus stimulation intensity threshold and seizure behavior in AstroNKCC1KO mice and wild-type (WT) mice were compared. RESULTS The AstroNKCC1KO mice were prone to seizures with lower threshold and longer duration of SLEs and larger GABAA R-mediated depolarization underlying the SLEs, accompanied by higher Racine-scored seizures. Bumetanide reduced these indicators of seizure in AstroNKCC1KO mice (which still express neuronal NKCC1), but not in the WT, both in vitro and in vivo. SIGNIFICANCE Astrocytic NKCC1 inhibits GABA-mediated excitatory action during seizures, whereas neuronal NKCC1 has the converse effect, suggesting opposing actions of bumetanide on these cells.
Collapse
Affiliation(s)
- Trong Dao Nguyen
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masaru Ishibashi
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Adya Saran Sinha
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Miho Watanabe
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Daisuke Kato
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Horiuchi
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroaki Wake
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Atsuo Fukuda
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
17
|
Georgoula C, Ferrin M, Pietraszczyk-Kedziora B, Hervas A, Marret S, Oliveira G, Rosier A, Crutel V, Besse E, Severo CA, Ravel D, Fuentes J. A Phase III Study of Bumetanide Oral Liquid Formulation for the Treatment of Children and Adolescents Aged Between 7 and 17 Years with Autism Spectrum Disorder (SIGN 1 Trial): Participant Baseline Characteristics. Child Psychiatry Hum Dev 2023; 54:1360-1372. [PMID: 35292925 DOI: 10.1007/s10578-022-01328-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/22/2021] [Accepted: 02/05/2022] [Indexed: 02/08/2023]
Abstract
The efficacy of bumetanide (oral liquid formulation 0.5 mg bid) as a treatment for the core symptoms of autism spectrum disorders in children and adolescents aged 7-17 years is being investigated in an international, randomised, double-blind, placebo-controlled phase III study. The primary endpoint is the change in Childhood Autism Rating Scale 2 (CARS2) total raw score after 6 months of treatment. At baseline, the 211 participants analysed are broadly representative of autistic subjects in this age range: mean (SD) age, 10.4 (3.0) years; 82.5% male; 47.7% with intelligence quotient ≥ 70. Mean CARS2 score was 40.1 (4.9) and mean Social Responsiveness Scale score was 116.7 (23.4). Final study results will provide data on efficacy and safety of bumetanide in autistic children and adolescents.
Collapse
Affiliation(s)
| | | | - Bozena Pietraszczyk-Kedziora
- Child and Adolescent Psychiatry Unit, Niepubliczny Zakład Opieki Zdrowotnej Gdańskie Centrum Zdrowia, Gdańsk, Poland
| | - Amaia Hervas
- Child and Adolescent Mental Health Unit, Hospital Universitari Mútua de Terrassa, and Global Institute of Neurodevelopment Integrated Care (IGAIN), Barcelona, Spain
| | - Stéphane Marret
- Department of Neonatal Pediatrics, Intensive Care, and Neuropediatrics, Rouen University Hospital and INSERM U 1245 Team 4 Neovasc, School of Medicine, Normandy University, Rouen, France
| | - Guiomar Oliveira
- Neurodevelopmental and Autism Unit From Child Developmental Center and Centro de Investigação e Formação Clínica, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Faculty of Medicine, University Clinic of Pediatrics, University of Coimbra, Coimbra, Portugal
| | - Antoine Rosier
- Department of Neonatal Pediatrics, CHU de Rouen and CHU le Rouvray, Sotteville les Rouen, France
| | - Véronique Crutel
- Neuro Inflammation Therapeutic Area, Institut de Recherches Internationales Servier, 50 Rue Carnot, 92284, Suresnes CEDEX, France
| | - Emmanuelle Besse
- Neuro Inflammation Therapeutic Area, Institut de Recherches Internationales Servier, 50 Rue Carnot, 92284, Suresnes CEDEX, France
| | - Cristina Albarrán Severo
- Neuro Inflammation Therapeutic Area, Institut de Recherches Internationales Servier, 50 Rue Carnot, 92284, Suresnes CEDEX, France.
| | | | - Joaquin Fuentes
- Child & Adolescent Psychiatry Service, Policlínica Gipuzkoa and Gipuzkoa Autism Society (GAUTENA), Donostia/San Sebastián, Spain
| |
Collapse
|
18
|
Fuentes J, Parellada M, Georgoula C, Oliveira G, Marret S, Crutel V, Albarran C, Lambert E, Pénélaud PF, Ravel D, Ben Ari Y. Bumetanide oral solution for the treatment of children and adolescents with autism spectrum disorder: Results from two randomized phase III studies. Autism Res 2023; 16:2021-2034. [PMID: 37794745 DOI: 10.1002/aur.3005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 07/21/2023] [Indexed: 10/06/2023]
Abstract
The efficacy and safety of bumetanide oral solution for the treatment of autism spectrum disorder (ASD) in children and adolescents was evaluated in two international, multi-center, randomized, double-blind, placebo-controlled phase III trials; one enrolled patients aged 7-17 years (SIGN 1 trial) and the other enrolled younger patients aged 2-6 years (SIGN 2). In both studies, patients were randomized to receive bumetanide oral solution twice daily (BID) or placebo BID during a 6-month double-blind treatment period. The primary endpoint was change in Childhood Autism Rating Scale 2 (CARS2) total raw score from baseline to Week 26. Key secondary endpoints included changes in Social Responsiveness Scale-2, Clinical Global Impression Scale, and Vineland Adaptive Behavior Scale. Each study enrolled 211 patients (bumetanide, n = 107; placebo, n = 104). Both studies were terminated early due to absence of any significant difference between bumetanide and placebo in the overall studied populations. In both studies, CARS2 total raw score decreased from baseline to Week 26 in the bumetanide and placebo groups, with no statistically significant difference between groups. No differences were observed between treatment groups for any of the secondary efficacy endpoints in either study. In both studies, treatment-emergent adverse events that occurred more frequently with bumetanide than placebo included thirst, polyuria, hypokalemia, and dry mouth. These large phase III trials failed to demonstrate a benefit of bumetanide for the treatment of pediatric ASD compared with placebo. Consequently, the sponsor has discontinued the development of bumetanide for the treatment of this condition. Trial registration: https://clinicaltrials.gov: SIGN 1: NCT03715166; SIGN 2: NCT03715153.
Collapse
Affiliation(s)
- Joaquin Fuentes
- Child & Adolescent Psychiatry Service, Policlínica Gipuzkoa & GAUTENA Autism Society, San Sebastián, Spain
| | - Mara Parellada
- Servicio de Psiquiatría del Niño y del Adolescente Hospital, General Universitario Gregorio Marañón, CIBERSAM, IiSGM, Madrid, Spain
| | | | - Guiomar Oliveira
- Neurodevelopmental and Autism Unit from Child Developmental Center and Centro de Investigação e Formação Clínica, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Stéphane Marret
- Department of Neonatal Pediatrics, Intensive Care, and Neuropediatrics, Rouen University Hospital and INSERM U 1245 Team 4 Neovasc, School of Medicine, Normandy University, Rouen, France
| | - Véronique Crutel
- Neuro Immuno-Inflammation Therapeutic Area, Institut de Recherches Internationales Servier, Suresnes CEDEX, France
| | - Cristina Albarran
- Neuro Immuno-Inflammation Therapeutic Area, Institut de Recherches Internationales Servier, Suresnes CEDEX, France
| | - Estelle Lambert
- Neuro Immuno-Inflammation Therapeutic Area, Institut de Recherches Internationales Servier, Suresnes CEDEX, France
| | - Pierre-François Pénélaud
- Neuro Immuno-Inflammation Therapeutic Area, Institut de Recherches Internationales Servier, Suresnes CEDEX, France
| | | | | |
Collapse
|
19
|
Boyarko B, Podvin S, Greenberg B, Momper JD, Huang Y, Gerwick WH, Bang AG, Quinti L, Griciuc A, Kim DY, Tanzi RE, Feldman HH, Hook V. Evaluation of bumetanide as a potential therapeutic agent for Alzheimer's disease. Front Pharmacol 2023; 14:1190402. [PMID: 37601062 PMCID: PMC10436590 DOI: 10.3389/fphar.2023.1190402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/28/2023] [Indexed: 08/22/2023] Open
Abstract
Therapeutics discovery and development for Alzheimer's disease (AD) has been an area of intense research to alleviate memory loss and the underlying pathogenic processes. Recent drug discovery approaches have utilized in silico computational strategies for drug candidate selection which has opened the door to repurposing drugs for AD. Computational analysis of gene expression signatures of patients stratified by the APOE4 risk allele of AD led to the discovery of the FDA-approved drug bumetanide as a top candidate agent that reverses APOE4 transcriptomic brain signatures and improves memory deficits in APOE4 animal models of AD. Bumetanide is a loop diuretic which inhibits the kidney Na+-K+-2Cl- cotransporter isoform, NKCC2, for the treatment of hypertension and edema in cardiovascular, liver, and renal disease. Electronic health record data revealed that patients exposed to bumetanide have lower incidences of AD by 35%-70%. In the brain, bumetanide has been proposed to antagonize the NKCC1 isoform which mediates cellular uptake of chloride ions. Blocking neuronal NKCC1 leads to a decrease in intracellular chloride and thus promotes GABAergic receptor mediated hyperpolarization, which may ameliorate disease conditions associated with GABAergic-mediated depolarization. NKCC1 is expressed in neurons and in all brain cells including glia (oligodendrocytes, microglia, and astrocytes) and the vasculature. In consideration of bumetanide as a repurposed drug for AD, this review evaluates its pharmaceutical properties with respect to its estimated brain levels across doses that can improve neurologic disease deficits of animal models to distinguish between NKCC1 and non-NKCC1 mechanisms. The available data indicate that bumetanide efficacy may occur at brain drug levels that are below those required for inhibition of the NKCC1 transporter which implicates non-NKCC1 brain mechansims for improvement of brain dysfunctions and memory deficits. Alternatively, peripheral bumetanide mechanisms may involve cells outside the central nervous system (e.g., in epithelia and the immune system). Clinical bumetanide doses for improved neurological deficits are reviewed. Regardless of mechanism, the efficacy of bumetanide to improve memory deficits in the APOE4 model of AD and its potential to reduce the incidence of AD provide support for clinical investigation of bumetanide as a repurposed AD therapeutic agent.
Collapse
Affiliation(s)
- Ben Boyarko
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Sonia Podvin
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Barry Greenberg
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jeremiah D. Momper
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Yadong Huang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, United States
- Departments of Neurology and Pathology, University of California, San Francisco, San Francisco, CA, United States
| | - William H. Gerwick
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States
| | - Anne G. Bang
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys, San Diego, CA, United States
| | - Luisa Quinti
- Genetics and Aging Research Unit, McCance Center for Brain Health, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Ana Griciuc
- Genetics and Aging Research Unit, McCance Center for Brain Health, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Doo Yeon Kim
- Genetics and Aging Research Unit, McCance Center for Brain Health, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Rudolph E. Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Howard H. Feldman
- Department of Neurosciences and Department of Pharmacology, University of California, San Diego, San Diego, United States
- Alzheimer’s Disease Cooperative Study, University of California, San Diego, La Jolla, CA, United States
| | - Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
- Department of Neurosciences and Department of Pharmacology, University of California, San Diego, San Diego, United States
| |
Collapse
|
20
|
Aran A, Harel M, Ovadia A, Shalgy S, Cayam-Rand D. Mediators of Placebo Response to Cannabinoid Treatment in Children with Autism Spectrum Disorder. J Clin Med 2023; 12:jcm12093098. [PMID: 37176538 PMCID: PMC10179251 DOI: 10.3390/jcm12093098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
The placebo response has a substantial impact on treatment outcome. However, data regarding mediators of the placebo response in children with autism spectrum disorder (ASD) are sparse. This retrospective study investigated possible mediators of the placebo response among participants of a placebo-controlled trial of cannabinoid treatment for behavioral problems in children with ASD (CBA trial, age 5-21 years). We used a specifically designed questionnaire to explore possible mediators of the placebo response in 88 participants of the CBA trial who received a placebo and had valid outcome scores. The parents of 67 participants completed the questionnaire. The placebo response was positively associated with the child's comprehension of the treatment purpose (p = 0.037). There was also a trend for participants who had a relative aggravation of symptoms before treatment onset to improve following placebo treatment (p = 0.053). No other domains, including parental expectations, previous positive experience with similar treatments (behavioral conditioning), parental locus of control, quality of the patient-physician relationships, and adherence to study medications were associated with placebo-response. This finding suggests that efforts to explain the treatment purpose to children with disabilities may enhance treatment efficacy in clinical practice and decrease differences in the placebo response between study arms. Contrary to our hypothesis, parental expectations regarding cannabinoid treatment were not associated with the placebo response.
Collapse
Affiliation(s)
- Adi Aran
- Neuropediatric Unit, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Moria Harel
- Neuropediatric Unit, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
| | - Aminadav Ovadia
- Psychology Department, Yezreel Valley College, Yezreel Valley 1930600, Israel
| | - Shulamit Shalgy
- Psychology Department, Yezreel Valley College, Yezreel Valley 1930600, Israel
| | - Dalit Cayam-Rand
- Neuropediatric Unit, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
| |
Collapse
|
21
|
Egawa K, Watanabe M, Shiraishi H, Sato D, Takahashi Y, Nishio S, Fukuda A. Imbalanced expression of cation-chloride cotransporters as a potential therapeutic target in an Angelman syndrome mouse model. Sci Rep 2023; 13:5685. [PMID: 37069177 PMCID: PMC10110603 DOI: 10.1038/s41598-023-32376-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 03/27/2023] [Indexed: 04/19/2023] Open
Abstract
Angelman syndrome is a neurodevelopmental disorder caused by loss of function of the maternally expressed UBE3A gene. Treatments for the main manifestations, including cognitive dysfunction or epilepsy, are still under development. Recently, the Cl- importer Na+-K+-Cl- cotransporter 1 (NKCC1) and the Cl- exporter K+-Cl- cotransporter 2 (KCC2) have garnered attention as therapeutic targets for many neurological disorders. Dysregulation of neuronal intracellular Cl- concentration ([Cl-]i) is generally regarded as one of the mechanisms underlying neuronal dysfunction caused by imbalanced expression of these cation-chloride cotransporters (CCCs). Here, we analyzed the regulation of [Cl-]i and the effects of bumetanide, an NKCC1 inhibitor, in Angelman syndrome models (Ube3am-/p+ mice). We observed increased NKCC1 expression and decreased KCC2 expression in the hippocampi of Ube3am-/p+ mice. The average [Cl-]i of CA1 pyramidal neurons was not significantly different but demonstrated greater variance in Ube3am-/p+ mice. Tonic GABAA receptor-mediated Cl- conductance was reduced, which may have contributed to maintaining the normal average [Cl-]i. Bumetanide administration restores cognitive dysfunction in Ube3am-/p+ mice. Seizure susceptibility was also reduced regardless of the genotype. These results suggest that an imbalanced expression of CCCs is involved in the pathophysiological mechanism of Ube3am-/p+ mice, although the average [Cl-]i is not altered. The blockage of NKCC1 may be a potential therapeutic strategy for patients with Angelman syndrome.
Collapse
Affiliation(s)
- Kiyoshi Egawa
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-Ku, Sapporo, 060-8638, Japan.
| | - Miho Watanabe
- Department of Neurophysiology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu City, Shizuoka, 431-3192, Japan
| | - Hideaki Shiraishi
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-Ku, Sapporo, 060-8638, Japan
| | - Daisuke Sato
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-Ku, Sapporo, 060-8638, Japan
| | - Yukitoshi Takahashi
- Department of Clinical Research, National Epilepsy Center, NHO, Shizuoka Institute of Epilepsy and Neurological Disorders, Urushiyama 886, Aoi-Ku, Shizuoka, 420-8688, Japan
| | - Saori Nishio
- Department of Rheumatology, Endocrinology, and Nephrology, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-Ku, Sapporo, 060-8638, Japan
| | - Atsuo Fukuda
- Department of Neurophysiology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu City, Shizuoka, 431-3192, Japan
| |
Collapse
|
22
|
Pressey JC, de Saint-Rome M, Raveendran VA, Woodin MA. Chloride transporters controlling neuronal excitability. Physiol Rev 2023; 103:1095-1135. [PMID: 36302178 DOI: 10.1152/physrev.00025.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Synaptic inhibition plays a crucial role in regulating neuronal excitability, which is the foundation of nervous system function. This inhibition is largely mediated by the neurotransmitters GABA and glycine that activate Cl--permeable ion channels, which means that the strength of inhibition depends on the Cl- gradient across the membrane. In neurons, the Cl- gradient is primarily mediated by two secondarily active cation-chloride cotransporters (CCCs), NKCC1 and KCC2. CCC-mediated regulation of the neuronal Cl- gradient is critical for healthy brain function, as dysregulation of CCCs has emerged as a key mechanism underlying neurological disorders including epilepsy, neuropathic pain, and autism spectrum disorder. This review begins with an overview of neuronal chloride transporters before explaining the dependent relationship between these CCCs, Cl- regulation, and inhibitory synaptic transmission. We then discuss the evidence for how CCCs can be regulated, including by activity and their protein interactions, which underlie inhibitory synaptic plasticity. For readers who may be interested in conducting experiments on CCCs and neuronal excitability, we have included a section on techniques for estimating and recording intracellular Cl-, including their advantages and limitations. Although the focus of this review is on neurons, we also examine how Cl- is regulated in glial cells, which in turn regulate neuronal excitability through the tight relationship between this nonneuronal cell type and synapses. Finally, we discuss the relatively extensive and growing literature on how CCC-mediated neuronal excitability contributes to neurological disorders.
Collapse
Affiliation(s)
- Jessica C Pressey
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Miranda de Saint-Rome
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Vineeth A Raveendran
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Melanie A Woodin
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Juarez-Martinez EL, Sprengers JJ, Cristian G, Oranje B, van Andel DM, Avramiea AE, Simpraga S, Houtman SJ, Hardstone R, Gerver C, Jan van der Wilt G, Mansvelder HD, Eijkemans MJC, Linkenkaer-Hansen K, Bruining H. Prediction of Behavioral Improvement Through Resting-State Electroencephalography and Clinical Severity in a Randomized Controlled Trial Testing Bumetanide in Autism Spectrum Disorder. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:251-261. [PMID: 34506972 DOI: 10.1016/j.bpsc.2021.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/31/2021] [Accepted: 08/26/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Mechanism-based treatments such as bumetanide are being repurposed for autism spectrum disorder. We recently reported beneficial effects on repetitive behavioral symptoms that might be related to regulating excitation-inhibition (E/I) balance in the brain. Here, we tested the neurophysiological effects of bumetanide and the relationship to clinical outcome variability and investigated the potential for machine learning-based predictions of meaningful clinical improvement. METHODS Using modified linear mixed models applied to intention-to-treat population, we analyzed E/I-sensitive electroencephalography (EEG) measures before and after 91 days of treatment in the double-blind, randomized, placebo-controlled Bumetanide in Autism Medication and Biomarker study. Resting-state EEG of 82 subjects out of 92 participants (7-15 years) were available. Alpha frequency band absolute and relative power, central frequency, long-range temporal correlations, and functional E/I ratio treatment effects were related to the Repetitive Behavior Scale-Revised (RBS-R) and the Social Responsiveness Scale 2 as clinical outcomes. RESULTS We observed superior bumetanide effects on EEG, reflected in increased absolute and relative alpha power and functional E/I ratio and in decreased central frequency. Associations between EEG and clinical outcome change were restricted to subgroups with medium to high RBS-R improvement. Using machine learning, medium and high RBS-R improvement could be predicted by baseline RBS-R score and EEG measures with 80% and 92% accuracy, respectively. CONCLUSIONS Bumetanide exerts neurophysiological effects related to clinical changes in more responsive subsets, in whom prediction of improvement was feasible through EEG and clinical measures.
Collapse
Affiliation(s)
- Erika L Juarez-Martinez
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience, VU University Amsterdam, Amsterdam, The Netherlands; NBT Analytics BV, Amsterdam, The Netherlands; Child and Adolescent Psychiatry and Psychosocial Care, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jan J Sprengers
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Gianina Cristian
- Child and Adolescent Psychiatry and Psychosocial Care, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Department of Health Evidence, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Health Evidence, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bob Oranje
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Dorinde M van Andel
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Arthur-Ervin Avramiea
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience, VU University Amsterdam, Amsterdam, The Netherlands
| | - Sonja Simpraga
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience, VU University Amsterdam, Amsterdam, The Netherlands; NBT Analytics BV, Amsterdam, The Netherlands
| | - Simon J Houtman
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience, VU University Amsterdam, Amsterdam, The Netherlands
| | - Richard Hardstone
- Neuroscience Institute, New York University School of Medicine, New York, New York
| | - Cathalijn Gerver
- Child and Adolescent Psychiatry and Psychosocial Care, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Department of Psychiatry, UMC Utrecht Brain Center, University Medical Centre Utrecht, Utrecht, The Netherlands; N=You Neurodevelopmental Precision Center, Amsterdam Neuroscience, Amsterdam Reproduction and Development, Amsterdam UMC, Amsterdam, The Netherlands
| | - Gert Jan van der Wilt
- Department of Health Evidence, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience, VU University Amsterdam, Amsterdam, The Netherlands
| | - Marinus J C Eijkemans
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Centre Utrecht, Utrecht, The Netherlands; Department of Biostatistics & Research Support, Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Klaus Linkenkaer-Hansen
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience, VU University Amsterdam, Amsterdam, The Netherlands
| | - Hilgo Bruining
- Child and Adolescent Psychiatry and Psychosocial Care, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Department of Psychiatry, UMC Utrecht Brain Center, University Medical Centre Utrecht, Utrecht, The Netherlands; N=You Neurodevelopmental Precision Center, Amsterdam Neuroscience, Amsterdam Reproduction and Development, Amsterdam UMC, Amsterdam, The Netherlands; Levvel, Center for Child and Adolescent Psychiatry, Amsterdam, The Netherlands.
| |
Collapse
|
24
|
Breaux R, Baweja R, Eadeh HM, Shroff DM, Cash AR, Swanson CS, Knehans A, Waxmonsky JG. Systematic Review and Meta-analysis: Pharmacological and Nonpharmacological Interventions for Persistent Nonepisodic Irritability. J Am Acad Child Adolesc Psychiatry 2023; 62:318-334. [PMID: 35714838 DOI: 10.1016/j.jaac.2022.05.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 04/11/2022] [Accepted: 06/07/2022] [Indexed: 12/29/2022]
Abstract
OBJECTIVE This meta-analysis examined the efficacy of available pharmacological and nonpharmacological interventions for irritability among youth with autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), disruptive behavior disorders (DBD), disruptive mood dysregulation disorder (DMDD), and/or severe mood dysregulation (SMD). METHOD Literature searches were conducted in October 2020, resulting in 564 abstracts being reviewed to identify relevant papers, with 387 articles being reviewed in full. A random effects model was used for the meta-analysis, with subgroup meta-regressions run to assess effects of study design, intervention type, medication class, and clinical population. RESULTS A total of 101 studies were included (80 pharmacological, 13 nonpharmacological, 8 combined). Despite high heterogeneity in effects (I2 = 94.3%), pooled posttreatment effect size for decreasing irritability was large (Hedges' g = 1.62). Large effects were found for pharmacological (g = 1.85) and nonpharmacological (g = 1.11) interventions; moderate effects were found for combined interventions relative to monotherapy interventions (g = 0.69). Antipsychotic medications provided the largest effect for reducing irritability relative to all other medication classes and nonpharmacological interventions. A large effect was found for youth with ASD (g = 1.89), whereas a medium effect was found for youth with ADHD/DMDD/DBD/SMD (g = 0.64). CONCLUSION This meta-analysis provides a comprehensive review of interventions targeting persistent nonepisodic irritability among youth with various psychiatric disorders. Strong evidence was found for medium-to-large effects across study design, intervention type, and clinical populations, with the largest effects for pharmacological interventions, particularly antipsychotic medications and combined pharmacological interventions, and interventions for youth with ASD.
Collapse
Affiliation(s)
- Rosanna Breaux
- Virginia Polytechnic Institute and State University, Blacksburg.
| | - Raman Baweja
- Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | | | | | - Annah R Cash
- Virginia Polytechnic Institute and State University, Blacksburg
| | | | - Amy Knehans
- Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | | |
Collapse
|
25
|
Salazar de Pablo G, Pastor Jordá C, Vaquerizo-Serrano J, Moreno C, Cabras A, Arango C, Hernández P, Veenstra-VanderWeele J, Simonoff E, Fusar-Poli P, Santosh P, Cortese S, Parellada M. Systematic Review and Meta-analysis: Efficacy of Pharmacological Interventions for Irritability and Emotional Dysregulation in Autism Spectrum Disorder and Predictors of Response. J Am Acad Child Adolesc Psychiatry 2023; 62:151-168. [PMID: 35470032 DOI: 10.1016/j.jaac.2022.03.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 02/13/2022] [Accepted: 04/14/2022] [Indexed: 02/01/2023]
Abstract
OBJECTIVE Emotional dysregulation and irritability are common in individuals with autism spectrum disorder (ASD). We conducted the first meta-analysis assessing the efficacy of a broad range of pharmacological interventions for emotional dysregulation and irritability in ASD and predictors of response. METHOD Following a preregistered protocol (PROSPERO: CRD42021235779), we systematically searched multiple databases until January 1, 2021. We included placebo-controlled randomized controlled trials (RCTs) and evaluated the efficacy of pharmacological interventions and predictors of response for emotional dysregulation and irritability. We assessed heterogeneity using Q statistics and publication bias. We conducted subanalyses and meta-regressions to identify predictors of response. The primary effect size was the standardized mean difference. Quality of studies was assessed using the Cochrane Risk of Bias Tool (RoB2). RESULTS A total of 2,856 individuals with ASD in 45 studies were included, among which 26.7% of RCTs had a high risk of bias. Compared to placebo, antipsychotics (standardized mean difference = 1.028, 95% CI = 0.824-1.232) and medications used to treat attention-deficit/hyperactivity disorder (ADHD) (0.471, 0.061-0.881) were significantly better than placebo in improving emotional dysregulation and irritability, whereas evidence of efficacy was not found for other drug classes (p > .05). Within individual medications, evidence of efficacy was found for aripiprazole (1.179, 0.838-1.520) and risperidone (1.074, 0.818-1.331). Increased rates of comorbid epilepsy (β = -0.049, p = .026) were associated with a lower efficacy. CONCLUSION Some pharmacological interventions (particularly risperidone and aripiprazole) have proved efficacy for short-term treatment of emotional dysregulation and irritability in ASD and should be considered within a multimodal treatment plan, taking into account also the tolerability profile and families' preferences.
Collapse
Affiliation(s)
- Gonzalo Salazar de Pablo
- Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom; Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), CIBERSAM, Madrid, Spain; Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| | - Carolina Pastor Jordá
- University of Pittsburgh Medical Center, Pittsburgh, the Western Psychiatric Institute and Clinic, Pittsburgh, Pennsylvania, and Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Julio Vaquerizo-Serrano
- Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), CIBERSAM, Madrid, Spain; Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| | - Carmen Moreno
- Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), CIBERSAM, Madrid, Spain
| | | | - Celso Arango
- Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), CIBERSAM, Madrid, Spain
| | - Patricia Hernández
- Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), CIBERSAM, Madrid, Spain
| | | | - Emily Simonoff
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| | - Paolo Fusar-Poli
- Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom; University of Pavia, Italy, and OASIS service, South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - Paramala Santosh
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| | - Samuele Cortese
- Centre for Innovation in Mental Health, Academic Unit of Psychology, Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, United Kingdom, the New York University Child Study Center, New York, Solent NHS Trust, and the Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, United Kingdom
| | - Mara Parellada
- Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), CIBERSAM, Madrid, Spain.
| |
Collapse
|
26
|
Savardi A, Patricelli Malizia A, De Vivo M, Cancedda L, Borgogno M. Preclinical Development of the Na-K-2Cl Co-transporter-1 (NKCC1) Inhibitor ARN23746 for the Treatment of Neurodevelopmental Disorders. ACS Pharmacol Transl Sci 2023; 6:1-11. [PMID: 36654749 PMCID: PMC9841778 DOI: 10.1021/acsptsci.2c00197] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Indexed: 01/06/2023]
Abstract
Alterations in the expression of the Cl- importer Na-K-2Cl co-transporter-1 (NKCC1) and the exporter K-Cl co-transporter 2 (KCC2) lead to impaired intracellular chloride concentration in neurons and imbalanced excitation/inhibition in the brain. These alterations have been observed in several neurological disorders (e.g., Down syndrome and autism). Recently, we have reported the discovery of the selective NKCC1 inhibitor "compound ARN23746" for the treatment of Down syndrome and autism in mouse models. Here, we report on an extensive preclinical characterization of ARN23746 toward its development as a clinical candidate. ARN23746 shows an overall excellent metabolism profile and good brain penetration. Moreover, ARN23746 is effective in rescuing cognitive impairment in Down syndrome mice upon per os administration, in line with oral treatment of neurodevelopmental disorders. Notably, ARN23746 does not present signs of toxicity or diuresis even if administered up to 50 times the effective dose. These results further support ARN23746 as a solid candidate for clinical trial-enabling studies.
Collapse
Affiliation(s)
| | | | - Marco De Vivo
- IAMA
Therapeutics, via Filippo
Turati 2/9, 16128 Genoa, Italy
- Molecular
Modeling & Drug Discovery Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy
| | - Laura Cancedda
- IAMA
Therapeutics, via Filippo
Turati 2/9, 16128 Genoa, Italy
- Brain
Development & Disease Laboratory, Istituto
Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy
| | - Marco Borgogno
- IAMA
Therapeutics, via Filippo
Turati 2/9, 16128 Genoa, Italy
| |
Collapse
|
27
|
Dong Y, Dong L, Gu X, Wang Y, Liao Y, Luque R, Chen Z. Sustainable production of active pharmaceutical ingredients from lignin-based benzoic acid derivatives via “demand orientation”. GREEN CHEMISTRY 2023; 25:3791-3815. [DOI: 10.1039/d3gc00241a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Catalytic production of several representative active pharmaceutical ingredients (APIs) from lignin.
Collapse
Affiliation(s)
- Yuguo Dong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lin Dong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoli Gu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yanqin Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuhe Liao
- CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, P.R. China
| | - Rafael Luque
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya str., 117198, Moscow, Russian Federation
- Universidad ECOTEC, Km 13.5 Samborondón, Samborondón, EC092302, Ecuador
| | - Zupeng Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
28
|
Fernell E, Gillberg C. Autism under the umbrella of ESSENCE. Front Psychiatry 2023; 14:1002228. [PMID: 36756219 PMCID: PMC9901504 DOI: 10.3389/fpsyt.2023.1002228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
This brief article gives a short overview of "comorbidity" in autism. The most common co-occurring disorders will be presented and discussed within the context of ESSENCE (Early Symptomatic Syndromes Eliciting Neurodevelopmental Clinical Examinations), a concept that provides a holistic perspective for neurodevelopmental disorders. The ESSENCE concept also considers the heterogeneous and changing clinical panorama of developmental disorders over time, and also the multifactorial etiologies, including so called behavioral phenotype syndromes. Aspects on behavioral interventions in autism are presented-interventions that need to be adapted and take into account all non-autism associated ESSENCE, including intellectual disability and Attention-Deficit/Hyperactivity Disorder (ADHD). The article also focuses on current research on pharmacological intervention based on the hypothesis of imbalance in excitatory/inhibitory transmitter systems in autism and some other ESSENCE.
Collapse
Affiliation(s)
- Elisabeth Fernell
- Gillberg Neuropsychiatry Centre, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Christopher Gillberg
- Gillberg Neuropsychiatry Centre, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| |
Collapse
|
29
|
Matsushima T, Miura M, Patzke N, Toji N, Wada K, Ogura Y, Homma KJ, Sgadò P, Vallortigara G. Fetal blockade of nicotinic acetylcholine transmission causes autism-like impairment of biological motion preference in the neonatal chick. Cereb Cortex Commun 2022; 3:tgac041. [PMID: 37674673 PMCID: PMC10478028 DOI: 10.1093/texcom/tgac041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/16/2022] [Accepted: 10/25/2022] [Indexed: 09/08/2023] Open
Abstract
Several environmental chemicals are suspected risk factors for autism spectrum disorder (ASD), including valproic acid (VPA) and pesticides acting on nicotinic acetylcholine receptors (nAChRs), if administered during pregnancy. However, their target processes in fetal neuro-development are unknown. We report that the injection of VPA into the fetus impaired imprinting to an artificial object in neonatal chicks, while a predisposed preference for biological motion (BM) remained intact. Blockade of nAChRs acted oppositely, sparing imprinting and impairing BM preference. Beside ketamine and tubocurarine, significant effects of imidacloprid (a neonicotinoid insecticide) appeared at a dose ≤1 ppm. In accord with the behavioral dissociations, VPA enhanced histone acetylation in the primary cell culture of fetal telencephalon, whereas ketamine did not. VPA reduced the brain weight and the ratio of NeuN-positive cells (matured neurons) in the telencephalon of hatchlings, whereas ketamine/tubocurarine did not. Despite the distinct underlying mechanisms, both VPA and nAChR blockade similarly impaired imprinting to biological image composed of point-light animations. Furthermore, both impairments were abolished by postnatal bumetanide treatment, suggesting a common pathology underlying the social attachment malformation. Neurotransmission via nAChR is thus critical for the early social bond formation, which is hindered by ambient neonicotinoids through impaired visual predispositions for animate objects.
Collapse
Affiliation(s)
- Toshiya Matsushima
- Department of Biology, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
- Faculty of Pharmaceutical Science, Health Science University of Hokkaido, Tobetsu 061-0293, Japan
- Center for Mind/Brain Sciences, University of Trento, Rovereto 38068, Italy
| | - Momoko Miura
- Department of Biology, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
- Faculty of Pharmaceutical Science, Health Science University of Hokkaido, Tobetsu 061-0293, Japan
| | - Nina Patzke
- Department of Biology, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
- Health and Medical University, Potsdam 14471, Germany
| | - Noriyuki Toji
- Department of Biology, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Kazuhiro Wada
- Department of Biology, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Yukiko Ogura
- Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8654, Japan
- Japan Science and Technology Agency, PRESTO, Kawaguchi 332-0012, Japan
| | - Koichi J Homma
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo 173-8605, Japan
| | - Paola Sgadò
- Center for Mind/Brain Sciences, University of Trento, Rovereto 38068, Italy
| | | |
Collapse
|
30
|
Maniram J, Karrim SBS, Oosthuizen F, Wiafe E. Pharmacological Management of Core Symptoms and Comorbidities of Autism Spectrum Disorder in Children and Adolescents: A Systematic Review. Neuropsychiatr Dis Treat 2022; 18:1629-1644. [PMID: 35968512 PMCID: PMC9371468 DOI: 10.2147/ndt.s371013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/21/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose The pharmacological management of Autism Spectrum Disorder (ASD) in children remains a challenge due to limited effective management options and the absence of approved drugs to manage the core symptoms. This review aims to describe and highlight effective pharmacological management options employed in managing the core symptoms and comorbidities of ASD from eligible studies over the past decade. Methods A search of databases; PubMed, Scopus, Science Direct, and PsychInfo for pharmacotherapeutic options for ASD was conducted in this systematic review. Duplicate studies were removed by utilizing the EndNote citation manager. The studies were subsequently screened independently by two authors. Eligible studies from 01 January 2012 to 01 January 2022 were included based on established eligibility criteria. A narrative synthesis was used for data analysis. Results The systematic review provides a comprehensive list of effective management options for ASD comorbidities and core symptoms from 33 included studies. The management options for ASD comorbidities; insomnia, hyperactivity, irritability and aggression, gastrointestinal disturbances, and subclinical epileptiform discharges, were reviewed. Risperidone, aripiprazole, methylphenidate, guanfacine, levetiracetam, and atomoxetine are examples of effective pharmacological drugs against ASD comorbidities. Additionally, this review identified various drugs that improve the core symptoms of ASD and include but are not limited to, bumetanide, buspirone, intranasal oxytocin, intranasal vasopressin, and prednisolone. Conclusion This review has successfully summarized the pharmacological advancements made in the past decade to manage ASD. Although there is still no pharmacological cure for ASD core symptoms or additional drugs that have obtained regulatory approval for use in ASD, the availability of promising pharmacological agents are under evaluation and study.
Collapse
Affiliation(s)
- Jennal Maniram
- School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Saira B S Karrim
- School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Frasia Oosthuizen
- School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Ebenezer Wiafe
- School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Clinical Pharmacy Services Unit, Directorate of Pharmacy, Ho Teaching Hospital, Ho, Ghana
| |
Collapse
|
31
|
Holdman R, Vigil D, Robinson K, Shah P, Contreras AE. Safety and Efficacy of Medical Cannabis in Autism Spectrum Disorder Compared with Commonly Used Medications. Cannabis Cannabinoid Res 2022; 7:451-463. [PMID: 34432543 PMCID: PMC9418362 DOI: 10.1089/can.2020.0154] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Objective: The objective of this study was to evaluate the safety and efficacy of medications commonly used in autism spectrum disorder (ASD) and compare this to what current research has shown regarding medical cannabis use in this population. Methods: Searches were performed to collect information surrounding currently used medications and their safety and efficacy profiles, biologic plausibility of cannabis use for symptoms of ASD, and studies detailing cannabis' safety and efficacy profile for use in the ASD population. Results were used to compare medications to cannabis as a proposed treatment. Results: The heterogeneity of ASD produces great difficulties in finding appropriate treatment, leading to many medication changes or treatment trials throughout a patient's life. Commonly prescribed medications display varying levels of efficacy, safety, and tolerability between patients and symptoms targeted. Some of the most common side effects cited are also considered the most troubling symptoms associated with ASD; aggression, anxiety, irritability, and a negative effect on cognition, leading many patients to discontinue use as the side effects outweigh benefits. Recent case reports and retrospective studies have displayed the potential efficacy, safety, and tolerability of cannabidiol (CBD)-rich medical cannabis use for treating both core symptoms of ASD and many comorbid symptoms such as irritability and sleep problems. Studies have also identified circulating endocannabinoids as a possible biomarker for ASD, providing another possible method of diagnosis. Conclusions: Currently, there are no approved medications for the core symptoms of ASD and only two medications Food and Drug Administration approved for associated irritability. Prescribed medications for symptoms associated with ASD display varying levels of efficacy, safety, and tolerability among the heterogeneous ASD population. At the time of this study there are no published placebo-controlled trials of medical cannabis for ASD and the observational studies have limitations. CBD-rich medical cannabis seems to be an effective, tolerable, and relatively safe option for many symptoms associated with ASD, however, the long-term safety is unknown at this time.
Collapse
Affiliation(s)
- Richard Holdman
- Colorado Department of Public Health and Environment, Marijuana Health Monitoring and Research, Denver, Colorado, USA
| | - Daniel Vigil
- Colorado Department of Public Health and Environment, Marijuana Health Monitoring and Research, Denver, Colorado, USA
| | - Kelsey Robinson
- Colorado Department of Public Health and Environment, Marijuana Health Monitoring and Research, Denver, Colorado, USA
| | - Puja Shah
- Colorado Department of Public Health and Environment, Marijuana Health Monitoring and Research, Denver, Colorado, USA
| | - Alexandra Elyse Contreras
- Colorado Department of Public Health and Environment, Marijuana Health Monitoring and Research, Denver, Colorado, USA
| |
Collapse
|
32
|
Carnovale C, Perrotta C, Baldelli S, Cattaneo D, Montrasio C, Barbieri SS, Pompilio G, Vantaggiato C, Clementi E, Pozzi M. Antihypertensive drugs and brain function: mechanisms underlying therapeutically beneficial and harmful neuropsychiatric effects. Cardiovasc Res 2022; 119:647-667. [PMID: 35895876 PMCID: PMC10153433 DOI: 10.1093/cvr/cvac110] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 11/14/2022] Open
Abstract
A bidirectional relationship exists between hypertension and psychiatric disorders, including unipolar and bipolar depression, anxiety, post-traumatic stress disorder (PTSD), psychosis, schizophrenia, mania, and dementia/cognitive decline. Repurposing of antihypertensive drugs to treat mental disorders is thus being explored. A systematic knowledge of the mechanisms of action and clinical consequences of the use of antihypertensive agents on neuropsychiatric functions has not been achieved yet. In this article, we review the putative role of antihypertensive agents in psychiatric disorders, discuss the targets and mechanisms of action, and examine how and to what extent specific drug classes/molecules may trigger, worsen, or mitigate psychiatric symptoms. In addition, we review pharmacokinetics (brain penetration of drugs) and pharmacogenetics data that add important information to assess risks and benefits of antihypertensive drugs in neuropsychiatric settings. The scientific literature shows robust evidence of a positive effect of α1 blockers on PTSD symptoms, nightmares and sleep quality, α2 agonists on core symptoms, executive function and quality of life in Attention-Deficit/Hyperactivity Disorder, PTSD, Tourette's syndrome, and β blockers on anxiety, aggression, working memory, and social communication. Renin-angiotensin system modulators exert protective effects on cognition, depression, and anxiety, and the loop diuretic bumetanide reduced the core symptoms of autism in a subset of patients. There is no evidence of clear benefits of calcium channel blockers in mood disorders in the scientific literature. These findings are mainly from preclinical studies; clinical data are still insufficient or of anecdotal nature, and seldom systematic. The information herewith provided can support a better therapeutic approach to hypertension, tailored to patients with, or with high susceptibility to, psychiatric illness. It may prompt clinical studies exploring the potential benefit of antihypertensive drugs in selected patients with neuropsychiatric comorbidities that include outcomes of neuropsychiatric interest and specifically assess undesirable effects or interactions.
Collapse
Affiliation(s)
- Carla Carnovale
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences (DIBIC), ASST Fatebenefratelli-Sacco University Hospital, Università degli Studi di Milano, 20157 Milano, Italy
| | - Cristiana Perrotta
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences (DIBIC), ASST Fatebenefratelli-Sacco University Hospital, Università degli Studi di Milano, 20157 Milano, Italy
| | - Sara Baldelli
- Unit of Clinical Pharmacology, ASST Fatebenefratelli-Sacco University Hospital, 20157 Milano, Italy
| | - Dario Cattaneo
- Unit of Clinical Pharmacology, ASST Fatebenefratelli-Sacco University Hospital, 20157 Milano, Italy
| | - Cristina Montrasio
- Unit of Clinical Pharmacology, ASST Fatebenefratelli-Sacco University Hospital, 20157 Milano, Italy
| | - Silvia S Barbieri
- Unit of Brain-Heart axis: cellular and molecular mechanisms - Centro Cardiologico Monzino IRCCS, 20138 Milano, Italy
| | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine - Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy.,Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
| | | | - Emilio Clementi
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences (DIBIC), ASST Fatebenefratelli-Sacco University Hospital, Università degli Studi di Milano, 20157 Milano, Italy.,Scientific Institute IRCCS Eugenio Medea, Bosisio Parini (LC), Italy
| | - Marco Pozzi
- Scientific Institute IRCCS Eugenio Medea, Bosisio Parini (LC), Italy
| |
Collapse
|
33
|
Jiang CC, Lin LS, Long S, Ke XY, Fukunaga K, Lu YM, Han F. Signalling pathways in autism spectrum disorder: mechanisms and therapeutic implications. Signal Transduct Target Ther 2022; 7:229. [PMID: 35817793 PMCID: PMC9273593 DOI: 10.1038/s41392-022-01081-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/19/2022] [Accepted: 06/23/2022] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a prevalent and complex neurodevelopmental disorder which has strong genetic basis. Despite the rapidly rising incidence of autism, little is known about its aetiology, risk factors, and disease progression. There are currently neither validated biomarkers for diagnostic screening nor specific medication for autism. Over the last two decades, there have been remarkable advances in genetics, with hundreds of genes identified and validated as being associated with a high risk for autism. The convergence of neuroscience methods is becoming more widely recognized for its significance in elucidating the pathological mechanisms of autism. Efforts have been devoted to exploring the behavioural functions, key pathological mechanisms and potential treatments of autism. Here, as we highlight in this review, emerging evidence shows that signal transduction molecular events are involved in pathological processes such as transcription, translation, synaptic transmission, epigenetics and immunoinflammatory responses. This involvement has important implications for the discovery of precise molecular targets for autism. Moreover, we review recent insights into the mechanisms and clinical implications of signal transduction in autism from molecular, cellular, neural circuit, and neurobehavioural aspects. Finally, the challenges and future perspectives are discussed with regard to novel strategies predicated on the biological features of autism.
Collapse
Affiliation(s)
- Chen-Chen Jiang
- International Joint Laboratory for Drug Target of Critical Illnesses; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Li-Shan Lin
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Sen Long
- Department of Pharmacy, Hangzhou Seventh People's Hospital, Mental Health Center Zhejiang University School of Medicine, Hangzhou, 310013, China
| | - Xiao-Yan Ke
- Child Mental Health Research Center, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Kohji Fukunaga
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Ying-Mei Lu
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
| | - Feng Han
- International Joint Laboratory for Drug Target of Critical Illnesses; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
- Institute of Brain Science, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215002, China.
| |
Collapse
|
34
|
Hui KK, Chater TE, Goda Y, Tanaka M. How Staying Negative Is Good for the (Adult) Brain: Maintaining Chloride Homeostasis and the GABA-Shift in Neurological Disorders. Front Mol Neurosci 2022; 15:893111. [PMID: 35875665 PMCID: PMC9305173 DOI: 10.3389/fnmol.2022.893111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/10/2022] [Indexed: 01/27/2023] Open
Abstract
Excitatory-inhibitory (E-I) imbalance has been shown to contribute to the pathogenesis of a wide range of neurodevelopmental disorders including autism spectrum disorders, epilepsy, and schizophrenia. GABA neurotransmission, the principal inhibitory signal in the mature brain, is critically coupled to proper regulation of chloride homeostasis. During brain maturation, changes in the transport of chloride ions across neuronal cell membranes act to gradually change the majority of GABA signaling from excitatory to inhibitory for neuronal activation, and dysregulation of this GABA-shift likely contributes to multiple neurodevelopmental abnormalities that are associated with circuit dysfunction. Whilst traditionally viewed as a phenomenon which occurs during brain development, recent evidence suggests that this GABA-shift may also be involved in neuropsychiatric disorders due to the "dematuration" of affected neurons. In this review, we will discuss the cell signaling and regulatory mechanisms underlying the GABA-shift phenomenon in the context of the latest findings in the field, in particular the role of chloride cotransporters NKCC1 and KCC2, and furthermore how these regulatory processes are altered in neurodevelopmental and neuropsychiatric disorders. We will also explore the interactions between GABAergic interneurons and other cell types in the developing brain that may influence the GABA-shift. Finally, with a greater understanding of how the GABA-shift is altered in pathological conditions, we will briefly outline recent progress on targeting NKCC1 and KCC2 as a therapeutic strategy against neurodevelopmental and neuropsychiatric disorders associated with improper chloride homeostasis and GABA-shift abnormalities.
Collapse
Affiliation(s)
- Kelvin K. Hui
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, United States
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Thomas E. Chater
- Laboratory for Synaptic Plasticity and Connectivity, RIKEN Center for Brain Science, Wako, Japan
| | - Yukiko Goda
- Laboratory for Synaptic Plasticity and Connectivity, RIKEN Center for Brain Science, Wako, Japan
- Synapse Biology Unit, Okinawa Institute for Science and Technology Graduate University, Onna, Japan
| | - Motomasa Tanaka
- Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Wako, Japan
| |
Collapse
|
35
|
Single-case experimental designs for bumetanide across neurodevelopmental disorders: BUDDI protocol. BMC Psychiatry 2022; 22:452. [PMID: 35799144 PMCID: PMC9260985 DOI: 10.1186/s12888-022-04033-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 06/01/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bumetanide is a selective NKCC1 chloride importer antagonist which is being repurposed as a mechanism-based treatment for neurodevelopmental disorders (NDDs). Due to their specific actions, these kinds of interventions will only be effective in particular subsets of patients. To anticipate stratified application, we recently completed three bumetanide trials each focusing on different stratification strategies with the additional objective of deriving the most optimal endpoints. Here we publish the protocol of the post-trial access combined cohort study to confirm previous effects and stratification strategies in the trial cohorts and in new participants. METHOD/DESIGN Participants of the three previous cohorts and a new cohort will be subjected to 6 months bumetanide treatment using multiple baseline Single Case Experimental Designs. The primary outcome is the change, relative to baseline, in a set of patient reported outcome measures focused on direct and indirect effects of sensory processing difficulties. Secondary outcome measures include the conventional questionnaires 'social responsiveness scale', 'repetitive behavior scale', 'sensory profile' and 'aberrant behavior scale'. Resting-state EEG measurements will be performed at several time-points including at Tmax after the first administration. Assessment of cognitive endpoints will be conducted using the novel Emma Tool box, an in-house designed battery of computerized tests to measure neurocognitive functions in children. DISCUSSION This study aims to replicate previously shown effects of bumetanide in NDD subpopulations, validate a recently proposed treatment prediction effect methodology and refine endpoint measurements. TRIAL REGISTRATION EudraCT: 2020-002196-35, registered 16 November 2020, https://www.clinicaltrialsregister.eu/ctr-search/trial/2020-002196-35/NL.
Collapse
|
36
|
Li Q, Zhang L, Shan H, Yu J, Dai Y, He H, Li WG, Langley C, Sahakian BJ, Yao Y, Luo Q, Li F. The immuno-behavioural covariation associated with the treatment response to bumetanide in young children with autism spectrum disorder. Transl Psychiatry 2022; 12:228. [PMID: 35660740 PMCID: PMC9166783 DOI: 10.1038/s41398-022-01987-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 05/21/2022] [Accepted: 05/25/2022] [Indexed: 11/09/2022] Open
Abstract
Bumetanide, a drug being studied in autism spectrum disorder (ASD) may act to restore gamma-aminobutyric acid (GABA) function, which may be modulated by the immune system. However, the interaction between bumetanide and the immune system remains unclear. Seventy-nine children with ASD were analysed from a longitudinal sample for a 3-month treatment of bumetanide. The covariation between symptom improvements and cytokine changes was calculated and validated by sparse canonical correlation analysis. Response patterns to bumetanide were revealed by clustering analysis. Five classifiers were used to test whether including the baseline information of cytokines could improve the prediction of the response patterns using an independent test sample. An immuno-behavioural covariation was identified between symptom improvements in the Childhood Autism Rating Scale (CARS) and the cytokine changes among interferon (IFN)-γ, monokine induced by gamma interferon and IFN-α2. Using this covariation, three groups with distinct response patterns to bumetanide were detected, including the best (21.5%, n = 17; Hedge's g of improvement in CARS = 2.16), the least (22.8%, n = 18; g = 1.02) and the medium (55.7%, n = 44; g = 1.42) responding groups. Including the cytokine levels significantly improved the prediction of the best responding group before treatment (the best area under the curve, AUC = 0.832) compared with the model without the cytokine levels (95% confidence interval of the improvement in AUC was [0.287, 0.319]). Cytokine measurements can help in identifying possible responders to bumetanide in ASD children, suggesting that immune responses may interact with the mechanism of action of bumetanide to enhance the GABA function in ASD.
Collapse
Affiliation(s)
- Qingyang Li
- Department of Computational Biology, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Lingli Zhang
- Department of Developmental and Behavioural Pediatric & Child Primary Care, Brain and Behavioural Research Unit of Shanghai Institute for Pediatric Research and MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China
| | - Haidi Shan
- Department of Developmental and Behavioural Pediatric & Child Primary Care, Brain and Behavioural Research Unit of Shanghai Institute for Pediatric Research and MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China
| | - Juehua Yu
- Department of Developmental and Behavioural Pediatric & Child Primary Care, Brain and Behavioural Research Unit of Shanghai Institute for Pediatric Research and MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China
- Center for Experimental Studies and Research, The First Affiliated Hospital of Kunming Medical University, 650032, Kunming, China
| | - Yuan Dai
- Department of Developmental and Behavioural Pediatric & Child Primary Care, Brain and Behavioural Research Unit of Shanghai Institute for Pediatric Research and MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China
| | - Hua He
- Department of Developmental and Behavioural Pediatric & Child Primary Care, Brain and Behavioural Research Unit of Shanghai Institute for Pediatric Research and MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China
| | - Wei-Guang Li
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Christelle Langley
- Department of Psychiatry and the Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB21TN, UK
| | - Barbara J Sahakian
- Department of Developmental and Behavioural Pediatric & Child Primary Care, Brain and Behavioural Research Unit of Shanghai Institute for Pediatric Research and MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China
- Department of Psychiatry and the Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB21TN, UK
- National Clinical Research Center for Aging and Medicine at Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, 200433, Shanghai, China
| | - Yin Yao
- Department of Computational Biology, School of Life Sciences, Fudan University, 200438, Shanghai, China
- Human Phenome Institute, Fudan University, 201203, Shanghai, China
| | - Qiang Luo
- National Clinical Research Center for Aging and Medicine at Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, 200433, Shanghai, China.
- Human Phenome Institute, Fudan University, 201203, Shanghai, China.
- Center for Computational Psychiatry, Ministry of Education-Key Laboratory of Computational Neuroscience and Brain-Inspired, Research Institute of Intelligent Complex Systems, Fudan University, 200040, Shanghai, China.
| | - Fei Li
- Department of Developmental and Behavioural Pediatric & Child Primary Care, Brain and Behavioural Research Unit of Shanghai Institute for Pediatric Research and MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China.
| |
Collapse
|
37
|
Ben-Ari Y, Caly H, Rabiei H, Lemonnier É. [Early prognostic of ASD: A challenge]. Med Sci (Paris) 2022; 38:431-437. [PMID: 35608465 DOI: 10.1051/medsci/2022054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Autism Spectrum Disorders (ASD) are born in the womb generated by intrauterine genetic or environmental insult. ASD diagnostic is made at the age of 3-5 years in Europe and in the US. Relying on this, we have tested the hypothesis of identifying already at birth babies who might be diagnosed later with ASD, thereby facilitating an early use of psychoeducative techniques to attenuate the severity of the symptoms. Here, we discuss the various approaches that have been used to enable an early diagnosis. We have ourselves used an approach based on a "without a priori" machine learning analysis of all maternity biological and ultrasound data available in French maternities (around 116) in utero and after birth. This program made it possible to identify at birth almost all (96%) of babies who will be later neurotypical and around half of those who will be diagnosed with ASD. Some of the parameters allowing this identification were largely unexpected with no known links with ASD. This approach will enable an early identification of babies at risk, but also might be used to diagnose ASD later on, and perhaps could help to get a better understanding of the heterogeneity of ASD.
Collapse
Affiliation(s)
- Yehezkel Ben-Ari
- B&A Biomedical, bâtiment Beret-Delaage, parc scientifique et technologique de Luminy, zone Luminy biotech entreprises, 163 avenue de Luminy, 13273 Marseille, France - Neurochlore, bâtiment Beret-Delaage, parc scientifique et technologique de Luminy, zone Luminy biotech entreprises, 163 avenue de Luminy, 13273 Marseille, France
| | - Hugues Caly
- CHU Limoges, 23 avenue Dominique Larrey, 87042 Limoges, France
| | - Hamed Rabiei
- B&A Biomedical, bâtiment Beret-Delaage, parc scientifique et technologique de Luminy, zone Luminy biotech entreprises, 163 avenue de Luminy, 13273 Marseille, France
| | - Éric Lemonnier
- Centre ressources autisme, CHU Limoges, 23 avenue Dominique Larrey, 87042 Limoges, France
| |
Collapse
|
38
|
Lv H, Gu X, Shan X, Zhu T, Ma B, Zhang HT, Bambini-Junior V, Zhang T, Li WG, Gao X, Li F. Nanoformulated Bumetanide Ameliorates Social Deficiency in BTBR Mice Model of Autism Spectrum Disorder. Front Immunol 2022; 13:870577. [PMID: 35693812 PMCID: PMC9179025 DOI: 10.3389/fimmu.2022.870577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is a prevalent neurodevelopmental disorder with few medication options. Bumetanide, an FDA-approved diuretic, has been proposed as a viable candidate to treat core symptoms of ASD, however, neither the brain region related to its effect nor the cell-specific mechanism(s) is clear. The availability of nanoparticles provides a viable way to identify pharmacological mechanisms for use in ASD. Here, we found that treatment with bumetanide, in a systemic and medial prefrontal cortex (mPFC) region-specific way, attenuated social deficits in BTBR mice. Furthermore, using poly (ethylene glycol)-poly(l-lactide) (PEG-PLA) nanoparticles [NP(bumetanide)], we showed that the administration of NP(bumetanide) in a mPFC region-specific way also alleviated the social deficits of BTBR mice. Mechanistically, the behavioral effect of NP(bumetanide) was dependent on selective microglia-specific targeting in the mPFC. Pharmacological depletion of microglia significantly reduced the effect of nanoencapsulation and depletion of microglia alone did not improve the social deficits in BTBR mice. These findings suggest the potential therapeutic capabilities of nanotechnology for ASD, as well as the relevant link between bumetanide and immune cells.
Collapse
Affiliation(s)
- Hui Lv
- Department of Developmental and Behavioral Pediatric & Child Primary Care, Brain and Behavioural Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Gu
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingyue Shan
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Life Sciences, East China Normal University, Shanghai, China
| | - Tailin Zhu
- Department of Developmental and Behavioral Pediatric & Child Primary Care, Brain and Behavioural Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bingke Ma
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Life Sciences, East China Normal University, Shanghai, China
| | - Hao-Tian Zhang
- Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education (MOE)-Shanghai Key Laboratory for Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Victorio Bambini-Junior
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Tiantian Zhang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Life Sciences, East China Normal University, Shanghai, China
| | - Wei-Guang Li
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Xiaoling Gao
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fei Li
- Department of Developmental and Behavioral Pediatric & Child Primary Care, Brain and Behavioural Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
39
|
Juarez-Martinez EL, van Andel DM, Sprengers JJ, Avramiea AE, Oranje B, Scheepers FE, Jansen FE, Mansvelder HD, Linkenkaer-Hansen K, Bruining H. Bumetanide Effects on Resting-State EEG in Tuberous Sclerosis Complex in Relation to Clinical Outcome: An Open-Label Study. Front Neurosci 2022; 16:879451. [PMID: 35645706 PMCID: PMC9134117 DOI: 10.3389/fnins.2022.879451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/15/2022] [Indexed: 12/05/2022] Open
Abstract
Neuronal excitation-inhibition (E/I) imbalances are considered an important pathophysiological mechanism in neurodevelopmental disorders. Preclinical studies on tuberous sclerosis complex (TSC), suggest that altered chloride homeostasis may impair GABAergic inhibition and thereby E/I-balance regulation. Correction of chloride homeostasis may thus constitute a treatment target to alleviate behavioral symptoms. Recently, we showed that bumetanide-a chloride-regulating agent-improved behavioral symptoms in the open-label study Bumetanide to Ameliorate Tuberous Sclerosis Complex Hyperexcitable Behaviors trial (BATSCH trial; Eudra-CT: 2016-002408-13). Here, we present resting-state EEG as secondary analysis of BATSCH to investigate associations between EEG measures sensitive to network-level changes in E/I balance and clinical response to bumetanide. EEGs of 10 participants with TSC (aged 8-21 years) were available. Spectral power, long-range temporal correlations (LRTC), and functional E/I ratio (fE/I) in the alpha-frequency band were compared before and after 91 days of treatment. Pre-treatment measures were compared against 29 typically developing children (TDC). EEG measures were correlated with the Aberrant Behavioral Checklist-Irritability subscale (ABC-I), the Social Responsiveness Scale-2 (SRS-2), and the Repetitive Behavior Scale-Revised (RBS-R). At baseline, TSC showed lower alpha-band absolute power and fE/I than TDC. Absolute power increased through bumetanide treatment, which showed a moderate, albeit non-significant, correlation with improvement in RBS-R. Interestingly, correlations between baseline EEG measures and clinical outcomes suggest that most responsiveness might be expected in children with network characteristics around the E/I balance point. In sum, E/I imbalances pointing toward an inhibition-dominated network are present in TSC. We established neurophysiological effects of bumetanide although with an inconclusive relationship with clinical improvement. Nonetheless, our results further indicate that baseline network characteristics might influence treatment response. These findings highlight the possible utility of E/I-sensitive EEG measures to accompany new treatment interventions for TSC. Clinical Trial Registration EU Clinical Trial Register, EudraCT 2016-002408-13 (www.clinicaltrialsregister.eu/ctr-search/trial/2016-002408-13/NL). Registered 25 July 2016.
Collapse
Affiliation(s)
- Erika L. Juarez-Martinez
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, Netherlands
- Child and Adolescent Psychiatry and Psychosocial Care, Emma Children’s Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Dorinde M. van Andel
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Jan J. Sprengers
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Arthur-Ervin Avramiea
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, Netherlands
| | - Bob Oranje
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Floortje E. Scheepers
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Floor E. Jansen
- Department of Pediatric Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Huibert D. Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, Netherlands
| | - Klaus Linkenkaer-Hansen
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, Netherlands
| | - Hilgo Bruining
- Child and Adolescent Psychiatry and Psychosocial Care, Emma Children’s Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Centre Utrecht, Utrecht, Netherlands
- N=You Neurodevelopmental Precision Center, Amsterdam Neuroscience, Amsterdam Reproduction and Development, Amsterdam UMC, Amsterdam, Netherlands
- Levvel, Academic Center for Child and Adolescent Psychiatry, Amsterdam, Netherlands
| |
Collapse
|
40
|
Tian J, Gao X, Yang L. Repetitive Restricted Behaviors in Autism Spectrum Disorder: From Mechanism to Development of Therapeutics. Front Neurosci 2022; 16:780407. [PMID: 35310097 PMCID: PMC8924045 DOI: 10.3389/fnins.2022.780407] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/09/2022] [Indexed: 01/28/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder characterized by deficits in social communication, social interaction, and repetitive restricted behaviors (RRBs). It is usually detected in early childhood. RRBs are behavioral patterns characterized by repetition, inflexibility, invariance, inappropriateness, and frequent lack of obvious function or specific purpose. To date, the classification of RRBs is contentious. Understanding the potential mechanisms of RRBs in children with ASD, such as neural connectivity disorders and abnormal immune functions, will contribute to finding new therapeutic targets. Although behavioral intervention remains the most effective and safe strategy for RRBs treatment, some promising drugs and new treatment options (e.g., supplementary and cell therapy) have shown positive effects on RRBs in recent studies. In this review, we summarize the latest advances of RRBs from mechanistic to therapeutic approaches and propose potential future directions in research on RRBs.
Collapse
Affiliation(s)
| | | | - Li Yang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Beijing, China
| |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW There are currently no approved medications for the core symptoms of autism spectrum disorder (ASD), and only limited data on the management of co-occurring mental health and behavioural symptoms. The purpose of this review is to synthesize recent trials on novel treatments in ASD, with a focus on research trends in the past 2 years. RECENT FINDINGS No new pharmacologic agents received regulatory approval for use in ASD. Several large randomized controlled trials (RCTs) had negative or ambiguous results (e.g. fluoxetine, oxytocin). A cross-over RCT of an oral cannabinoid suggested possible benefits for disruptive behaviours. Two large-scale multicentre trials of bumetanide were terminated early for lack of efficacy. Multicenter trials using repetitive transcranial magnetic stimulation are underway. Recent meta-analyses indicate that specific behavioural and psychological interventions can support social communication and treat anxiety. Numerous novel treatment targets informed by biological mechanisms are under investigation. SUMMARY Recent data support the use of behavioural and psychological interventions for social communication and anxiety in ASD; data are more limited regarding pharmacotherapy for core and associated symptoms. Next steps include replication of early findings, trials of new molecular targets, and the identification of novel biomarkers, including genetic predictors, of treatment response.
Collapse
Affiliation(s)
- Danielle Baribeau
- University of Toronto
- The Hospital for Sick Children, Toronto, Ontario, Canada
- Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
| | - Jacob Vorstman
- University of Toronto
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Evdokia Anagnostou
- University of Toronto
- The Hospital for Sick Children, Toronto, Ontario, Canada
- Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
| |
Collapse
|
42
|
Following Excitation/Inhibition Ratio Homeostasis from Synapse to EEG in Monogenetic Neurodevelopmental Disorders. Genes (Basel) 2022; 13:genes13020390. [PMID: 35205434 PMCID: PMC8872324 DOI: 10.3390/genes13020390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 12/26/2022] Open
Abstract
Pharmacological options for neurodevelopmental disorders are limited to symptom suppressing agents that do not target underlying pathophysiological mechanisms. Studies on specific genetic disorders causing neurodevelopmental disorders have elucidated pathophysiological mechanisms to develop more rational treatments. Here, we present our concerted multi-level strategy ‘BRAINMODEL’, focusing on excitation/inhibition ratio homeostasis across different levels of neuroscientific interrogation. The aim is to develop personalized treatment strategies by linking iPSC-based models and novel EEG measurements to patient report outcome measures in individual patients. We focus our strategy on chromatin- and SNAREopathies as examples of severe genetic neurodevelopmental disorders with an unmet need for rational interventions.
Collapse
|
43
|
Ben-Ari Y, Cherubini E. The GABA Polarity Shift and Bumetanide Treatment: Making Sense Requires Unbiased and Undogmatic Analysis. Cells 2022; 11:396. [PMID: 35159205 PMCID: PMC8834580 DOI: 10.3390/cells11030396] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/05/2022] [Accepted: 01/13/2022] [Indexed: 12/17/2022] Open
Abstract
GABA depolarizes and often excites immature neurons in all animal species and brain structures investigated due to a developmentally regulated reduction in intracellular chloride concentration ([Cl-]i) levels. The control of [Cl-]i levels is mediated by the chloride cotransporters NKCC1 and KCC2, the former usually importing chloride and the latter exporting it. The GABA polarity shift has been extensively validated in several experimental conditions using often the NKCC1 chloride importer antagonist bumetanide. In spite of an intrinsic heterogeneity, this shift is abolished in many experimental conditions associated with developmental disorders including autism, Rett syndrome, fragile X syndrome, or maternal immune activation. Using bumetanide, an EMA- and FDA-approved agent, many clinical trials have shown promising results with the expected side effects. Kaila et al. have repeatedly challenged these experimental and clinical observations. Here, we reply to the recent reviews by Kaila et al. stressing that the GABA polarity shift is solidly accepted by the scientific community as a major discovery to understand brain development and that bumetanide has shown promising effects in clinical trials.
Collapse
Affiliation(s)
- Yehezkel Ben-Ari
- Neurochlore, Batiment Beret Delaage, Campus Scientifique de Luminy, 13009 Marseille, France
| | - Enrico Cherubini
- European Brain Research Institute (EBRI)-Rita Levi-Montalcini, 00161 Roma, Italy;
| |
Collapse
|
44
|
Cherubini E, Di Cristo G, Avoli M. Dysregulation of GABAergic Signaling in Neurodevelomental Disorders: Targeting Cation-Chloride Co-transporters to Re-establish a Proper E/I Balance. Front Cell Neurosci 2022; 15:813441. [PMID: 35069119 PMCID: PMC8766311 DOI: 10.3389/fncel.2021.813441] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 11/30/2021] [Indexed: 01/01/2023] Open
Abstract
The construction of the brain relies on a series of well-defined genetically and experience- or activity -dependent mechanisms which allow to adapt to the external environment. Disruption of these processes leads to neurological and psychiatric disorders, which in many cases are manifest already early in postnatal life. GABA, the main inhibitory neurotransmitter in the adult brain is one of the major players in the early assembly and formation of neuronal circuits. In the prenatal and immediate postnatal period GABA, acting on GABAA receptors, depolarizes and excites targeted cells via an outwardly directed flux of chloride. In this way it activates NMDA receptors and voltage-dependent calcium channels contributing, through intracellular calcium rise, to shape neuronal activity and to establish, through the formation of new synapses and elimination of others, adult neuronal circuits. The direction of GABAA-mediated neurotransmission (depolarizing or hyperpolarizing) depends on the intracellular levels of chloride [Cl−]i, which in turn are maintained by the activity of the cation-chloride importer and exporter KCC2 and NKCC1, respectively. Thus, the premature hyperpolarizing action of GABA or its persistent depolarizing effect beyond the postnatal period, leads to behavioral deficits associated with morphological alterations and an excitatory (E)/inhibitory (I) imbalance in selective brain areas. The aim of this review is to summarize recent data concerning the functional role of GABAergic transmission in building up and refining neuronal circuits early in development and its dysfunction in neurodevelopmental disorders such as Autism Spectrum Disorders (ASDs), schizophrenia and epilepsy. In particular, we focus on novel information concerning the mechanisms by which alterations in cation-chloride co-transporters (CCC) generate behavioral and cognitive impairment in these diseases. We discuss also the possibility to re-establish a proper GABAA-mediated neurotransmission and excitatory (E)/inhibitory (I) balance within selective brain areas acting on CCC.
Collapse
Affiliation(s)
- Enrico Cherubini
- European Brain Research Institute (EBRI)-Rita Levi-Montalcini, Roma, Italy
- *Correspondence: Enrico Cherubini
| | - Graziella Di Cristo
- Neurosciences Department, Université de Montréal and CHU Sainte-Justine Research Center, Montreal, QC, Canada
| | - Massimo Avoli
- Montreal Neurological Institute-Hospital and Departments of Neurology and Neurosurgery and of Physiology, McGill University, Montreal, QC, Canada
| |
Collapse
|
45
|
van Andel DM, Sprengers JJ, Keijzer-Veen MG, Schulp AJA, Lillien MR, Scheepers FE, Bruining H. Bumetanide for Irritability in Children With Sensory Processing Problems Across Neurodevelopmental Disorders: A Pilot Randomized Controlled Trial. Front Psychiatry 2022; 13:780281. [PMID: 35211042 PMCID: PMC8861379 DOI: 10.3389/fpsyt.2022.780281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Treatment development for neurodevelopmental disorders (NDDs) such as autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD) is impeded by heterogeneity in clinical manifestation and underlying etiologies. Symptom traits such as aberrant sensory reactivity are present across NDDs and might reflect common mechanistic pathways. Here, we test the effectiveness of repurposing a drug candidate, bumetanide, on irritable behavior in a cross-disorder neurodevelopmental cohort defined by the presence of sensory reactivity problems. METHODS Participants, aged 5-15 years and IQ ≥ 55, with ASD, ADHD, and/or epilepsy and proven aberrant sensory reactivity according to deviant Sensory Profile scores were included. Participants were randomly allocated (1:1) to bumetanide (max 1 mg twice daily) or placebo tablets for 91 days followed by a 28-day wash-out period using permuted block design and minimization. Participants, parents, healthcare providers, and outcome assessors were blinded for treatment allocation. Primary outcome was the differences in ABC-irritability at day 91. Secondary outcomes were differences in SRS-2, RBS-R, SP-NL, BRIEF parent, BRIEF teacher at D91. Differences were analyzed in a modified intention-to-treat sample with linear mixed models and side effects in the intention-to-treat population. RESULTS A total of 38 participants (10.1 [SD 3.1] years) were enrolled between June 2017 and June 2019 in the Netherlands. Nineteen children were allocated to bumetanide and nineteen to placebo. Five patients discontinued (n = 3 bumetanide). Bumetanide was superior to placebo on the ABC-irritability [mean difference (MD) -4.78, 95%CI: -8.43 to -1.13, p = 0.0125]. No effects were found on secondary endpoints. No wash-out effects were found. Side effects were as expected: hypokalemia (p = 0.046) and increased diuresis (p = 0.020). CONCLUSION Despite the results being underpowered, this study raises important recommendations for future cross-diagnostic trial designs.
Collapse
Affiliation(s)
- Dorinde M van Andel
- Department of Psychiatry, University Medical Center Utrecht Brain Centre, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jan J Sprengers
- Department of Psychiatry, University Medical Center Utrecht Brain Centre, University Medical Center Utrecht, Utrecht, Netherlands
| | - Mandy G Keijzer-Veen
- Department of Pediatric Nephrology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Annelien J A Schulp
- Department of Pediatric Nephrology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Marc R Lillien
- Department of Pediatric Nephrology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Floortje E Scheepers
- Department of Psychiatry, University Medical Center Utrecht Brain Centre, University Medical Center Utrecht, Utrecht, Netherlands
| | - Hilgo Bruining
- N=You Neurodevelopmental Precision Center, Amsterdam Neuroscience, Amsterdam Reproduction and Development, Amsterdam UMC, Amsterdam, Netherlands
| |
Collapse
|
46
|
Aishworiya R, Valica T, Hagerman R, Restrepo B. An Update on Psychopharmacological Treatment of Autism Spectrum Disorder. Neurotherapeutics 2022; 19:248-262. [PMID: 35029811 PMCID: PMC9130393 DOI: 10.1007/s13311-022-01183-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2022] [Indexed: 01/05/2023] Open
Abstract
While behavioral interventions remain the mainstay of treatment of autism spectrum disorder (ASD), several potential targeted treatments addressing the underlying neurophysiology of ASD have emerged in the last few years. These are promising for the potential to, in future, become part of the mainstay treatment in addressing the core symptoms of ASD. Although it is likely that the development of future targeted treatments will be influenced by the underlying heterogeneity in etiology, associated genetic mechanisms influencing ASD are likely to be the first targets of treatments and even gene therapy in the future for ASD. In this article, we provide a review of current psychopharmacological treatment in ASD including those used to address common comorbidities of the condition and upcoming new targeted approaches in autism management. Medications including metformin, arbaclofen, cannabidiol, oxytocin, bumetanide, lovastatin, trofinetide, and dietary supplements including sulforophane and N-acetylcysteine are discussed. Commonly used medications to address the comorbidities associated with ASD including atypical antipsychotics, serotoninergic agents, alpha-2 agonists, and stimulant medications are also reviewed. Targeted treatments in Fragile X syndrome (FXS), the most common genetic disorder leading to ASD, provide a model for new treatments that may be helpful for other forms of ASD.
Collapse
Affiliation(s)
- Ramkumar Aishworiya
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, 2825 50th Street, Sacramento, CA, 95817, USA
- Khoo Teck Puat-National University Children's Medical Institute, National University Health System, 5 Lower Kent Ridge Road, Singapore, 119074, Singapore
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore, 119228, Singapore
| | - Tatiana Valica
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, 2825 50th Street, Sacramento, CA, 95817, USA
- Association for Children With Autism, Chisinau, Moldova
| | - Randi Hagerman
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, 2825 50th Street, Sacramento, CA, 95817, USA.
- Department of Pediatrics, University of California Davis School of Medicine, 4610 X St, Sacramento, CA, 95817, USA.
| | - Bibiana Restrepo
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, 2825 50th Street, Sacramento, CA, 95817, USA
- Department of Pediatrics, University of California Davis School of Medicine, 4610 X St, Sacramento, CA, 95817, USA
| |
Collapse
|
47
|
Novins DK, Althoff RR, Cortese S, Drury SS, Frazier JA, Henderson SW, McCauley E, Njoroge WFM, White T. Editors' Best of 2021. J Am Acad Child Adolesc Psychiatry 2022; 61:4-9. [PMID: 34949338 DOI: 10.1016/j.jaac.2021.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022]
Abstract
There is, in the content of the Journal, an embarrassment of riches, and picking a "best" seems to demand a certain qualification: is the "best" the most interesting, most surprising, most educational, most important, most provocative, most enjoyable? How to choose? We are hardly unbiased and can admit to a special affection for the ones that we and the authors worked hardest on, hammering version after version into shape. Acknowledging these biases, here are the 2021 articles that we think deserve your attention or at least a second read.
Collapse
|
48
|
Aykan S, Puglia MH, Kalaycıoğlu C, Pelphrey KA, Tuncalı T, Nalçacı E. Right Anterior Theta Hypersynchrony as a Quantitative Measure Associated with Autistic Traits and K-Cl Cotransporter KCC2 Polymorphism. J Autism Dev Disord 2022; 52:61-72. [PMID: 33635423 DOI: 10.1007/s10803-021-04924-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
Our aim was to use theta coherence as a quantitative trait to investigate the relation of the polymorphisms in NKCC1 (rs3087889) and KCC2 (rs9074) channel protein genes to autistic traits (AQ) in neurotypicals. Coherence values for candidate connection regions were calculated from eyes-closed resting EEGs in two independent groups. Hypersynchrony within the right anterior region was related to AQ in both groups (p < 0.05), and variability in this hypersynchrony was related to the rs9074 polymorphism in the total group (p < 0.05). In conclusion, theta hypersynchrony within the right anterior region during eyes-closed rest can be considered a quantitative measure for autistic traits. Replicating our findings in two independent populations with different backgrounds strengthens the validity of the current study.
Collapse
Affiliation(s)
- Simge Aykan
- Department of Physiology, Ankara University School of Medicine, Ankara, Turkey.
| | - Meghan H Puglia
- Department of Neurology, University of Virginia, Charlottesville, VA, USA
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - Canan Kalaycıoğlu
- Department of Physiology, Ankara University School of Medicine, Ankara, Turkey
| | - Kevin A Pelphrey
- Department of Neurology, University of Virginia, Charlottesville, VA, USA
| | - Timur Tuncalı
- Department of Medical Genetics, Ankara University School of Medicine, Ankara, Turkey
| | - Erhan Nalçacı
- Department of Physiology, Ankara University School of Medicine, Ankara, Turkey
| |
Collapse
|
49
|
Riemersma IW, Havekes R, Kas MJH. Spatial and Temporal Gene Function Studies in Rodents: Towards Gene-Based Therapies for Autism Spectrum Disorder. Genes (Basel) 2021; 13:28. [PMID: 35052369 PMCID: PMC8774890 DOI: 10.3390/genes13010028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/06/2021] [Accepted: 12/20/2021] [Indexed: 12/26/2022] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition that is characterized by differences in social interaction, repetitive behaviors, restricted interests, and sensory differences beginning early in life. Especially sensory symptoms are highly correlated with the severity of other behavioral differences. ASD is a highly heterogeneous condition on multiple levels, including clinical presentation, genetics, and developmental trajectories. Over a thousand genes have been implicated in ASD. This has facilitated the generation of more than two hundred genetic mouse models that are contributing to understanding the biological underpinnings of ASD. Since the first symptoms already arise during early life, it is especially important to identify both spatial and temporal gene functions in relation to the ASD phenotype. To further decompose the heterogeneity, ASD-related genes can be divided into different subgroups based on common functions, such as genes involved in synaptic function. Furthermore, finding common biological processes that are modulated by this subgroup of genes is essential for possible patient stratification and the development of personalized early treatments. Here, we review the current knowledge on behavioral rodent models of synaptic dysfunction by focusing on behavioral phenotypes, spatial and temporal gene function, and molecular targets that could lead to new targeted gene-based therapy.
Collapse
Affiliation(s)
| | | | - Martien J. H. Kas
- Groningen Institute for Evolutionary Life Sciences, Neurobiology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands; (I.W.R.); (R.H.)
| |
Collapse
|
50
|
Mucke HAM. Drug Repurposing Patent Applications July-September 2021. Assay Drug Dev Technol 2021. [PMID: 34936476 DOI: 10.1089/adt.2021.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|