1
|
Ghadimi M, Chaibakhsh Y, Ziyaeifard M. Anesthesia and Airway Management in a Child with Frank Ter Haar Syndrome Suspected Difficult Airway Undergoing Cardiac Surgery: A Case Report. Anesth Pain Med 2024; 14:e144682. [PMID: 40078467 PMCID: PMC11895790 DOI: 10.5812/aapm-144682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 03/14/2025] Open
Abstract
Introduction Frank ter Haar syndrome (FTHS) is a rare and complex multisystem congenital genetic disorder that leads to craniofacial, cardiac, and skeletal abnormalities. We report the anesthesia and airway management of a child with FTHS who was referred for repair of atrial septal defect (ASD) and ventricular septal defect (VSD). Case Presentation The patient exhibited craniofacial and skeletal abnormalities, including craniosynostosis, micrognathia, a prominent forehead, hypertelorism, and anteverted nostrils. These features raised the possibility of a difficult airway. Conclusions For patients with potential difficult airways undergoing elective surgery, the procedure should be postponed until all necessary equipment for managing a difficult airway is available.
Collapse
Affiliation(s)
- Maryam Ghadimi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Yasmin Chaibakhsh
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Ziyaeifard
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Furundaoturan O, Esen Baris M, Ayyıldız Emecen D, Demirkilinc Biler E. Retinal detachment in a child with Frank-ter Haar syndrome. Ophthalmic Genet 2022; 44:291-294. [PMID: 36004685 DOI: 10.1080/13816810.2022.2113543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
BACKGROUND To present a rare case of ocular involvement in a child with Frank-ter Haar syndrome (FTHS) presenting retinal detachment. MATERIALS AND METHODS Detailed ophthalmological evaluation including examination under general anesthesia, ocular ultrasound, and visual evoked potential testing was completed. Photographic documentation of the physical findings was obtained. RESULTS A 3-year-old female patient with FTHS was referred to evaluate for possible ophthalmic involvement. The patient presented with the classical dysmorphic abnormalities of the syndrome. Ophthalmologic evaluation revealed a high, against-the-rule corneal astigmatism in the right eye. In the left eye, the red reflex was absent with a suspicious membrane behind the lens, and a sensory exotropia was present. Ultrasonography confirmed retinal detachment with no history of previous trauma. Due to poor visual evoked potentials, no surgery was planned. Astigmatic refractive error was corrected with routine follow-up. CONCLUSIONS FTHS is associated with multiple ocular involvement such as megalocornea, congenital glaucoma, or colobomas. This case report is the first to describe a high, against-the-rule astigmatism and retinal detachment in a female child with FTHS and demonstrates that an early and detailed ophthalmological examination is essential for these patients.
Collapse
Affiliation(s)
- Onur Furundaoturan
- Department of Ophthalmology, Ege University Faculty of Medicine, Izmir, Turkey
| | - Mine Esen Baris
- Department of Ophthalmology, Ege University Faculty of Medicine, Izmir, Turkey
| | | | | |
Collapse
|
3
|
A Novel Cell-Based Model for a Rare Disease: The Tks4-KO Human Embryonic Stem Cell Line as a Frank-Ter Haar Syndrome Model System. Int J Mol Sci 2022; 23:ijms23158803. [PMID: 35955935 PMCID: PMC9369304 DOI: 10.3390/ijms23158803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Tyrosine kinase substrate with four SH3 domains (Tks4) scaffold protein plays roles in cell migration and podosome formation and regulates systemic mechanisms such as adult bone homeostasis and adipogenesis. Mutations in the Tks4 gene (SH3PXD2b) cause a rare developmental disorder called Frank-Ter Haar syndrome (FTHS), which leads to heart abnormalities, bone tissue defects, and reduced adiposity. We aimed to produce a human stem cell-based in vitro FTHS model system to study the effects of the loss of the Tks4 protein in different cell lineages and the accompanying effects on the cell signalome. To this end, we used CRISPR/Cas9 (clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR associated (Cas9)) to knock out the SH3PXD2b gene in the HUES9 human embryonic stem cell line (hESC), and we obtained stable homo- and heterozygous knock out clones for use in studying the potential regulatory roles of Tks4 protein in embryonic stem cell biology. Based on pluripotency marker measurements and spontaneous differentiation capacity assays, we concluded that the newly generated Tks4-KO HUES9 cells retained their embryonic stem cell characteristics. We propose that the Tks4-KO HUES9 cells could serve as a tool for further cell differentiation studies to investigate the involvement of Tks4 in the complex disorder FTHS. Moreover, we successfully differentiated all of the clones into mesenchymal stem cells (MSCs). The derived MSC cultures showed mesenchymal morphology and expressed MSC markers, although the expression levels of mesodermal and osteogenic marker genes were reduced, and several EMT (epithelial mesenchymal transition)-related features were altered in the Tks4-KO MSCs. Our results suggest that the loss of Tks4 leads to FTHS by altering cell lineage differentiation and cell maturation processes, rather than by regulating embryonic stem cell potential.
Collapse
|
4
|
Türkyilmaz A, Sager SG, Topcu B, Kaplan AT, Günbey HP, Akin Y. Novel SH3PXD2B variant identified by whole-exome sequencing in a Turkish newborn with Frank-Ter Haar Syndrome. Clin Dysmorphol 2022; 31:45-49. [PMID: 34538861 DOI: 10.1097/mcd.0000000000000389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Ayberk Türkyilmaz
- Department of Medical Genetics, Karadeniz Technical University Faculty of Medicine, Trabzon
| | | | | | | | | | - Yasemin Akin
- Department of Pediatrics, Kartal Dr. Lutfi Kirdar City Hospital, Istanbul, Turkey
| |
Collapse
|
5
|
Multicentric Osteolysis, Nodulosis, and Arthropathy in two unrelated children with matrix metalloproteinase 2 variants: Genetic-skeletal correlations. Bone Rep 2021; 15:101106. [PMID: 34307793 PMCID: PMC8283316 DOI: 10.1016/j.bonr.2021.101106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 01/25/2023] Open
Abstract
Multicentric Osteolysis, Nodulosis, and Arthropathy (MONA) syndrome is a rare genetic skeletal dysplasia. Its diagnosis can be deceptively similar to childhood-onset genetic skeletal dysplasias and juvenile idiopathic arthritis. We aimed to report the syndrome’s clinical and radiologic features with emphasis on skeletal manifestations. And establish relevant phenotype-genotype correlations. We evaluated two boys, 4-and-7-years-old with MONA syndrome. Both patients had consanguineous parents. We verified the diagnosis by correlating the outcomes of clinical, radiologic and molecular analysis. We specifically evaluated the craniofacial morphology and clinical and radiographic skeletal abnormalities. We contextualized the resultant phenotype-genotype correlations to publications on MONA and its differential diagnosis. Skeletal manifestations were the presenting symptoms and mostly restricted to hands and feet in terms of fixed extension deformity of the metacarpophalangeal and flexion deformity of the interphalangeal joints with extension deformity of big toes. There were arthritic symptoms in the older patient especially of the wrists and minute pathologic fractures. The skeletal radiographs showed osteopenia/dysplastic changes of hands and feet. Both patients had variants in the matrix metalloproteinase2 gene which conformed to phenotype of previously reported literature in one patient while the other had a novel variant which conformed to MONA phenotype. Craniofacial abnormalities were present. However, minimal extra-skeletal manifestations. Overall, there is an emerging distinctive skeletal pattern of involvement in terms of both clinical and radiographic features. This includes age of onset and location of presenting skeletal manifestations, chronological order of joint affection, longitudinal disease progression, specifics of skeletal radiographic pathology and craniofacial features. Nevertheless, physicians are cautioned against differential diagnosis of similar genetic skeletal dysplasias and juvenile idiopathic arthritis. Presenting manifestations erupt simultaneously in the hands and feet. Skeletal manifestations proceed fairly rapidly in a distal-to-proximal fashion. Radiographic features are a mixture of osteopenia, joint destruction and fractures. Major disability may ensue in late childhood/adolescence, arthrogenic dysplasia Non-skeletal manifestations are variable in terms of age of appearance and frequency
Collapse
|
6
|
de Vos IJHM, Wong ASW, Taslim J, Ong SLM, Syder NC, Goggi JL, Carney TJ, van Steensel MAM. The novel zebrafish model pretzel demonstrates a central role for SH3PXD2B in defective collagen remodelling and fibrosis in Frank-Ter Haar syndrome. Biol Open 2020; 9:bio054270. [PMID: 33234702 PMCID: PMC7790187 DOI: 10.1242/bio.054270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 11/05/2020] [Indexed: 11/20/2022] Open
Abstract
Frank-Ter Haar syndrome (FTHS, MIM #249420) is a rare skeletal dysplasia within the defective collagen remodelling spectrum (DECORS), which is characterised by craniofacial abnormalities, skeletal malformations and fibrotic soft tissues changes including dermal fibrosis and joint contractures. FTHS is caused by homozygous or compound heterozygous loss-of-function mutation or deletion of SH3PXD2B (Src homology 3 and Phox homology domain-containing protein 2B; MIM #613293). SH3PXD2B encodes an adaptor protein with the same name, which is required for full functionality of podosomes, specialised membrane structures involved in extracellular matrix (ECM) remodelling. The pathogenesis of DECORS is still incompletely understood and, as a result, therapeutic options are limited. We previously generated an mmp14a/b knockout zebrafish and demonstrated that it primarily mimics the DECORS-related bone abnormalities. Here, we present a novel sh3pxd2b mutant zebrafish, pretzel, which primarily reflects the DECORS-related dermal fibrosis and contractures. In addition to relatively mild skeletal abnormalities, pretzel mutants develop dermal and musculoskeletal fibrosis, contraction of which seems to underlie grotesque deformations that include kyphoscoliosis, abdominal constriction and lateral folding. The discrepancy in phenotypes between mmp14a/b and sh3pxd2b mutants suggests that in fish, as opposed to humans, there are differences in spatiotemporal dependence of ECM remodelling on either sh3pxd2b or mmp14a/b The pretzel model presented here can be used to further delineate the underlying mechanism of the fibrosis observed in DECORS, as well as screening and subsequent development of novel drugs targeting DECORS-related fibrosis.This paper has an associated First Person interview with the first author of the article.
Collapse
Affiliation(s)
- Ivo J H M de Vos
- Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), 308232, Singapore
| | - Arnette Shi Wei Wong
- Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), 308232, Singapore
| | - Jason Taslim
- Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), 308232, Singapore
| | - Sheena Li Ming Ong
- Institute of Medical Biology (IMB), Agency for Science, Technology and Research (A*STAR), 138648, Singapore
| | - Nicole C Syder
- Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), 308232, Singapore
| | - Julian L Goggi
- Singapore Bioimaging Consortium (SBIC), Agency for Science, Technology and Research (A*STAR), 138667, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), 117593, Singapore
| | - Thomas J Carney
- Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), 636921, Singapore
| | - Maurice A M van Steensel
- Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), 308232, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), 636921, Singapore
| |
Collapse
|
7
|
Advances in Understanding TKS4 and TKS5: Molecular Scaffolds Regulating Cellular Processes from Podosome and Invadopodium Formation to Differentiation and Tissue Homeostasis. Int J Mol Sci 2020; 21:ijms21218117. [PMID: 33143131 PMCID: PMC7663256 DOI: 10.3390/ijms21218117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
Scaffold proteins are typically thought of as multi-domain "bridging molecules." They serve as crucial regulators of key signaling events by simultaneously binding multiple participants involved in specific signaling pathways. In the case of epidermal growth factor (EGF)-epidermal growth factor receptor (EGFR) binding, the activated EGFR contacts cytosolic SRC tyrosine-kinase, which then becomes activated. This process leads to the phosphorylation of SRC-substrates, including the tyrosine kinase substrates (TKS) scaffold proteins. The TKS proteins serve as a platform for the recruitment of key players in EGFR signal transduction, promoting cell spreading and migration. The TKS4 and the TKS5 scaffold proteins are tyrosine kinase substrates with four or five SH3 domains, respectively. Their structural features allow them to recruit and bind a variety of signaling proteins and to anchor them to the cytoplasmic surface of the cell membrane. Until recently, TKS4 and TKS5 had been recognized for their involvement in cellular motility, reactive oxygen species-dependent processes, and embryonic development, among others. However, a number of novel functions have been discovered for these molecules in recent years. In this review, we attempt to cover the diverse nature of the TKS molecules by discussing their structure, regulation by SRC kinase, relevant signaling pathways, and interaction partners, as well as their involvement in cellular processes, including migration, invasion, differentiation, and adipose tissue and bone homeostasis. We also describe related pathologies and the established mouse models.
Collapse
|
8
|
A Rare Case Report of Frank Ter Haar Syndrome in a Sibling Pair Presenting With Congenital Glaucoma. J Glaucoma 2020; 29:236-238. [PMID: 31809395 DOI: 10.1097/ijg.0000000000001420] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Frank Ter Haar syndrome (FTHS) is a rare autosomal recessive disorder with characteristic skeletal, cardiac, ocular, and craniofacial abnormalities. We report a sibling pair presenting with clinical features typical of FTHS, born to consanguineous parents, with a novel mutation in the SH3PXD2B gene on chromosome 5q35.1 that results in premature truncation of the protein encoded. The children presented with brachycephaly, multiple joint contractures, cardiac valvular defects, bilateral megalocornea, and congenital glaucoma. Trabeculotomy combined with trabeculectomy was performed in both siblings to control intraocular pressure. The characteristic clinical features with the underlying genetic defects confirmed the diagnosis of FTHS. Early diagnosis and treatment of congenital glaucoma preserved vision in the children.
Collapse
|
9
|
Durand B, Stoetzel C, Schaefer E, Calmels N, Scheidecker S, Kempf N, De Melo C, Guilbert AS, Timbolschi D, Donato L, Astruc D, Sauer A, Antal MC, Dollfus H, El Chehadeh S. A severe case of Frank-ter Haar syndrome and literature review: Further delineation of the phenotypical spectrum. Eur J Med Genet 2020; 63:103857. [DOI: 10.1016/j.ejmg.2020.103857] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/07/2019] [Accepted: 01/17/2020] [Indexed: 11/26/2022]
|
10
|
Effect of ocular hypertension on the pattern of retinal ganglion cell subtype loss in a mouse model of early-onset glaucoma. Exp Eye Res 2019; 185:107703. [PMID: 31211954 PMCID: PMC7430001 DOI: 10.1016/j.exer.2019.107703] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/06/2019] [Accepted: 06/15/2019] [Indexed: 12/16/2022]
Abstract
Glaucoma is a neurodegenerative disease with elevated intraocular pressure as one of the major risk factors. Glaucoma leads to irreversible loss of vision and its progression involves optic nerve head cupping, axonal degeneration, retinal ganglion cell (RGC) loss, and visual field defects. Despite its high global prevalence, glaucoma still remains a major neurodegenerative disease. Introduction of mouse models of experimental glaucoma has become integral to glaucoma research due to well-studied genetics as well as ease of manipulations. Many established inherent and inducible mouse models of glaucoma are used to study the molecular and physiological progression of the disease. One such model of spontaneous mutation is the nee model, which is caused by mutation of the Sh3pxd2b gene. In both humans and mice, mutations disrupting function of the SH3PXD2B adaptor protein cause a developmental syndrome including secondary congenital glaucoma. The purpose of this study was to characterize the early onset nee glaucoma phenotype on the C57BL/6J background and to evaluate the pattern of RGC loss and axonal degeneration in specific RGC subtypes. We found that the B6.Sh3pxd2bnee mutant animals exhibit glaucoma phenotypes of elevated intraocular pressure, RGC loss and axonal degeneration. Moreover, the non-image forming RGCs survived longer than the On-Off direction selective RGCs (DSGC), and the axonal death in these RGCs was independent of their respective RGC subtype. In conclusion, through this study we characterized an experimental model of early onset glaucoma on a C57BL/6J background exhibiting key glaucoma phenotypes. In addition, we describe that RGC death has subtype-specific sensitivities and follows a specific pattern of cell death under glaucomatous conditions.
Collapse
|
11
|
de Vos IJHM, Wong ASW, Welting TJM, Coull BJ, van Steensel MAM. Multicentric osteolytic syndromes represent a phenotypic spectrum defined by defective collagen remodeling. Am J Med Genet A 2019; 179:1652-1664. [PMID: 31218820 DOI: 10.1002/ajmg.a.61264] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 04/15/2019] [Accepted: 05/13/2019] [Indexed: 02/06/2023]
Abstract
Frank-Ter Haar syndrome (FTHS), Winchester syndrome (WS), and multicentric osteolysis, nodulosis, and arthropathy (MONA) are ultra-rare multisystem disorders characterized by craniofacial malformations, reduced bone density, skeletal and cardiac anomalies, and dermal fibrosis. These autosomal recessive syndromes are caused by homozygous mutation or deletion of respectively SH3PXD2B (SH3 and PX Domains 2B), MMP14 (matrix metalloproteinase 14), or MMP2. Here, we give an overview of the clinical features of 63 previously reported patients with an SH3PXD2B, MMP14, or MMP2 mutation, demonstrating considerable clinical overlap between FTHS, WS, and MONA. Interestingly, the protein products of SH3PXD2B, MMP14, and MMP2 directly cooperate in collagen remodeling. We review animal models for these three disorders that accurately reflect the major clinical features and likewise show significant phenotypical similarity with each other. Furthermore, they demonstrate that defective collagen remodeling is central in the underlying pathology. As such, we propose a nosological revision, placing these SH3PXD2B, MMP14, and MMP2 related syndromes in a novel "defective collagen-remodelling spectrum (DECORS)". In our opinion, this revised nosology better reflects the central role for impaired collagen remodeling, a potential target for pharmaceutical intervention.
Collapse
Affiliation(s)
- Ivo J H M de Vos
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Arnette Shi Wei Wong
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Tim J M Welting
- Department of Orthopedic Surgery, Maastricht University Medical Center+, Maastricht, the Netherlands.,School for Public Health and Primary Care (CAPHRI), Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Barry J Coull
- Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Maurice A M van Steensel
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), Singapore, Singapore
| |
Collapse
|
12
|
Chang TC, Stoler J. Envirotyping: The Next Leap Forward in the Practice of Precision Medicine? Am J Ophthalmol 2019; 202:xi-xiii. [PMID: 31159974 DOI: 10.1016/j.ajo.2019.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|