1
|
Callow B, He X, Juriga N, Mangum KD, Joshi A, Xing X, Obi A, Chattopadhyay A, Milewicz DM, O’Riordan MX, Gudjonsson J, Gallagher K, Davis FM. Inhibition of vascular smooth muscle cell PERK/ATF4 ER stress signaling protects against abdominal aortic aneurysms. JCI Insight 2025; 10:e183959. [PMID: 39846252 PMCID: PMC11790032 DOI: 10.1172/jci.insight.183959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/08/2024] [Indexed: 01/24/2025] Open
Abstract
Abdominal aortic aneurysms (AAA) are a life-threatening cardiovascular disease for which there is a lack of effective therapy preventing aortic rupture. During AAA formation, pathological vascular remodeling is driven by vascular smooth muscle cell (VSMC) dysfunction and apoptosis, for which the mechanisms regulating loss of VSMCs within the aortic wall remain poorly defined. Using single-cell RNA-Seq of human AAA tissues, we identified increased activation of the endoplasmic reticulum stress response pathway, PERK/eIF2α/ATF4, in aortic VSMCs resulting in upregulation of an apoptotic cellular response. Mechanistically, we reported that aberrant TNF-α activity within the aortic wall induces VSMC ATF4 activation through the PERK endoplasmic reticulum stress response, resulting in progressive apoptosis. In vivo targeted inhibition of the PERK pathway, with VSMC-specific genetic depletion (Eif2ak3fl/fl Myh11-CreERT2) or pharmacological inhibition in the elastase and angiotensin II-induced AAA model preserved VSMC function, decreased elastin fragmentation, attenuated VSMC apoptosis, and markedly reduced AAA expansion. Together, our findings suggest that cell-specific pharmacologic therapy targeting the PERK/eIF2α/ATF4 pathway in VSMCs may be an effective intervention to prevent AAA expansion.
Collapse
MESH Headings
- Activating Transcription Factor 4/metabolism
- Activating Transcription Factor 4/genetics
- eIF-2 Kinase/metabolism
- eIF-2 Kinase/genetics
- eIF-2 Kinase/antagonists & inhibitors
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/drug effects
- Endoplasmic Reticulum Stress/drug effects
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/prevention & control
- Animals
- Humans
- Mice
- Signal Transduction/drug effects
- Apoptosis/drug effects
- Male
- Myocytes, Smooth Muscle/metabolism
- Disease Models, Animal
- Eukaryotic Initiation Factor-2/metabolism
- Angiotensin II
- Mice, Inbred C57BL
Collapse
Affiliation(s)
| | - Xiaobing He
- Section of Vascular Surgery, Department of Surgery, and
| | | | | | - Amrita Joshi
- Section of Vascular Surgery, Department of Surgery, and
| | - Xianying Xing
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Andrea Obi
- Section of Vascular Surgery, Department of Surgery, and
| | | | - Dianna M. Milewicz
- University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Mary X. O’Riordan
- Department Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Johann Gudjonsson
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Katherine Gallagher
- Section of Vascular Surgery, Department of Surgery, and
- Department Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
2
|
Yin L, Tong Y, Xie R, Zhang Z, Islam ZH, Zhang K, Burger J, Hoyt N, Kent EW, Marcum WA, Johnston C, Kanchetty R, Tetz Z, Stanisic S, Huang Y, Guo LW, Gong S, Wang B. Targeted NAD + repletion via biomimetic nanoparticle enables simultaneous management of intimal hyperplasia and accelerated re-endothelialization: A proof-of-concept study toward next-generation of endothelium-protective, anti-restenotic therapy. J Control Release 2024; 376:806-815. [PMID: 39461367 DOI: 10.1016/j.jconrel.2024.10.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 09/24/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
Endovascular interventions often fail due to restenosis, primarily caused by smooth muscle cell (SMC) proliferation, leading to intimal hyperplasia (IH). Current strategies to prevent restenosis are far from perfect and impose significant collateral damage on the fragile endothelial cell (EC), causing profound thrombotic risks. Nicotinamide adenine dinucleotide (NAD+) is a co-enzyme and signaling substrate implicated in redox and metabolic homeostasis, with a pleiotropic role in protecting against cardiovascular diseases. However, a functional link between NAD+ repletion and the delicate duo of IH and EC regeneration has yet to be established. NAD+ repletion has been historically challenging due to its poor cellular uptake and low bioavailability. We have recently invented the first nanocarrier that enables direct intracellular delivery of NAD+ in vivo. Combining the merits of this prototypic NAD+-loaded calcium phosphate (CaP) nanoparticle (NP) and biomimetic surface functionalization, we created a biomimetic P-NAD+-NP with platelet membrane coating, which enabled an injectable modality that targets IH with excellent biocompatibility. Using human cell primary culture, we demonstrated the benefits of NP-assisted NAD+ repletion in selectively inhibiting the excessive proliferation of aortic SMC, while differentially protecting aortic EC from apoptosis. Moreover, in a rat balloon angioplasty model, a single-dose treatment with intravenously injected P-NAD+-NP immediately post angioplasty not only mitigated IH, but also accelerated the regeneration of EC (re-endothelialization) in vivo in comparison to control groups (i.e., saline, free NAD+ solution, empty CaP-NP). Collectively, our current study provides proof-of-concept evidence supporting the role of targeted NAD+ repletion nanotherapy in managing restenosis and improving reendothelialization.
Collapse
Affiliation(s)
- Li Yin
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60603, USA; Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; Department of Vascular Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang 310058, China
| | - Yao Tong
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Ruosen Xie
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Zhanpeng Zhang
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Zain Husain Islam
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Kaijie Zhang
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60603, USA; Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; Department of Vascular Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang 310058, China
| | - Jacobus Burger
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Nicholas Hoyt
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Eric William Kent
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - William Aaron Marcum
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Campbell Johnston
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Rohan Kanchetty
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Zoe Tetz
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Sophia Stanisic
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Yitao Huang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Lian-Wang Guo
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Shaoqin Gong
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53715, USA.
| | - Bowen Wang
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60603, USA; Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
3
|
Kosmas K, Papathanasiou AE, Spyropoulos F, Rehman R, Cunha AA, Fredenburgh LE, Perrella MA, Christou H. Stress Granule Assembly in Pulmonary Arterial Hypertension. Cells 2024; 13:1796. [PMID: 39513903 PMCID: PMC11544768 DOI: 10.3390/cells13211796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/19/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
The role of stress granules (SGs) in pulmonary arterial hypertension (PAH) is unknown. We hypothesized that SG formation contributes to abnormal vascular phenotypes, and cardiac and skeletal muscle dysfunction in PAH. Using the rat Sugen/hypoxia (SU/Hx) model of PAH, we demonstrate the formation of SG puncta and increased expression of SG proteins compared to control animals in lungs, right ventricles, and soleus muscles. Acetazolamide (ACTZ) treatment ameliorated the disease and reduced SG formation in all of these tissues. Primary pulmonary artery smooth muscle cells (PASMCs) from diseased animals had increased SG protein expression and SG number after acute oxidative stress and this was ameliorated by ACTZ. Pharmacologic inhibition of SG formation or genetic ablation of the SG assembly protein (G3BP1) altered the SU/Hx-PASMC phenotype by decreasing proliferation, increasing apoptosis and modulating synthetic and contractile marker expression. In human PAH lungs, we found increased SG puncta in pulmonary arteries compared to control lungs and in human PAH-PASMCs we found increased SGs after acute oxidative stress compared to healthy PASMCs. Genetic ablation of G3BP1 in human PAH-PASMCs resulted in a phenotypic switch to a less synthetic and more contractile phenotype. We conclude that increased SG formation in PASMCs and other tissues may contribute to PAH pathogenesis.
Collapse
Affiliation(s)
- Kosmas Kosmas
- Department of Pediatrics, Division of Newborn Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Aimilia Eirini Papathanasiou
- Department of Pediatrics, Division of Newborn Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Fotios Spyropoulos
- Department of Pediatrics, Division of Newborn Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Rakhshinda Rehman
- Department of Pediatrics, Division of Newborn Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ashley Anne Cunha
- Department of Pediatrics, Division of Newborn Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | - Mark A. Perrella
- Department of Pediatrics, Division of Newborn Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Division of Pulmonary and Critical Care, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Helen Christou
- Department of Pediatrics, Division of Newborn Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
4
|
Liu L, Tang L, Luo JM, Chen SY, Yi CY, Liu XM, Hu CH. Activation of the PERK-CHOP signaling pathway during endoplasmic reticulum stress contributes to olanzapine-induced dyslipidemia. Acta Pharmacol Sin 2024; 45:502-516. [PMID: 37880338 PMCID: PMC10834998 DOI: 10.1038/s41401-023-01180-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 10/03/2023] [Indexed: 10/27/2023]
Abstract
Olanzapine (OLZ) is a widely prescribed antipsychotic drug with a relatively ideal effect in the treatment of schizophrenia (SCZ). However, its severe metabolic side effects often deteriorate clinical therapeutic compliance and mental rehabilitation. The peripheral mechanism of OLZ-induced metabolic disorders remains abstruse for its muti-target activities. Endoplasmic reticulum (ER) stress is implicated in cellular energy metabolism and the progression of psychiatric disorders. In this study, we investigated the role of ER stress in the development of OLZ-induced dyslipidemia. A cohort of 146 SCZ patients receiving OLZ monotherapy was recruited, and blood samples and clinical data were collected at baseline, and in the 4th week, 12th week, and 24th week of the treatment. This case-control study revealed that OLZ treatment significantly elevated serum levels of endoplasmic reticulum (ER) stress markers GRP78, ATF4, and CHOP in SCZ patients with dyslipidemia. In HepG2 cells, treatment with OLZ (25, 50 μM) dose-dependently enhanced hepatic de novo lipogenesis accompanied by SREBPs activation, and simultaneously triggered ER stress. Inhibition of ER stress by tauroursodeoxycholate (TUDCA) and 4-phenyl butyric acid (4-PBA) attenuated OLZ-induced lipid dysregulation in vitro and in vivo. Moreover, we demonstrated that activation of PERK-CHOP signaling during ER stress was a major contributor to OLZ-triggered abnormal lipid metabolism in the liver, suggesting that PERK could be a potential target for ameliorating the development of OLZ-mediated lipid dysfunction. Taken together, ER stress inhibitors could be a potentially effective intervention against OLZ-induced dyslipidemia in SCZ.
Collapse
Affiliation(s)
- Lu Liu
- School of Pharmaceutical Sciences, Medical Research Institute, Southwest University, Chongqing, 400715, China
- NMPA Key Laboratory for Quality Monitoring of Narcotic Drugs and Psychotropic Substances, Chongqing, 400715, China
- School of Mental Health, North Sichuan Medical College, Nanchong, 637100, China
| | - Lei Tang
- School of Mental Health, North Sichuan Medical College, Nanchong, 637100, China
- Mental Health Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637100, China
| | - Jia-Ming Luo
- School of Mental Health, North Sichuan Medical College, Nanchong, 637100, China
- Mental Health Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637100, China
| | - Si-Yu Chen
- Affiliated Nanchong Psychosomatic Hospital of North Sichuan Medical College, Nanchong, 637100, China
| | - Chun-Yan Yi
- Affiliated Nanchong Psychosomatic Hospital of North Sichuan Medical College, Nanchong, 637100, China
| | - Xue-Mei Liu
- School of Pharmaceutical Sciences, Medical Research Institute, Southwest University, Chongqing, 400715, China
- NMPA Key Laboratory for Quality Monitoring of Narcotic Drugs and Psychotropic Substances, Chongqing, 400715, China
| | - Chang-Hua Hu
- School of Pharmaceutical Sciences, Medical Research Institute, Southwest University, Chongqing, 400715, China.
- NMPA Key Laboratory for Quality Monitoring of Narcotic Drugs and Psychotropic Substances, Chongqing, 400715, China.
| |
Collapse
|
5
|
Huang Y, Herbst EB, Xie Y, Yin L, Islam ZH, Kent EW, Wang B, Klibanov AL, Hossack JA. In Vivo Validation of Modulated Acoustic Radiation Force-Based Imaging in Murine Model of Abdominal Aortic Aneurysm Using VEGFR-2-Targeted Microbubbles. Invest Radiol 2023; 58:865-873. [PMID: 37433074 PMCID: PMC10784413 DOI: 10.1097/rli.0000000000001000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
OBJECTIVES The objective of this study is to validate the modulated acoustic radiation force (mARF)-based imaging method in the detection of abdominal aortic aneurysm (AAA) in murine models using vascular endothelial growth factor receptor 2 (VEGFR-2)-targeted microbubbles (MBs). MATERIALS AND METHODS The mouse AAA model was prepared using the subcutaneous angiotensin II (Ang II) infusion combined with the β-aminopropionitrile monofumarate solution dissolved in drinking water. The ultrasound imaging session was performed at 7 days, 14 days, 21 days, and 28 days after the osmotic pump implantation. For each imaging session, 10 C57BL/6 mice were implanted with Ang II-filled osmotic pumps, and 5 C57BL/6 mice received saline infusion only as the control group. Biotinylated lipid MBs conjugated to either anti-mouse VEGFR-2 antibody (targeted MBs) or isotype control antibody (control MBs) were prepared before each imaging session and were injected into mice via tail vein catheter. Two separate transducers were colocalized to image the AAA and apply ARF to translate MBs simultaneously. After each imaging session, tissue was harvested and the aortas were used for VEGFR-2 immunostaining analysis. From the collected ultrasound image data, the signal magnitude response of the adherent targeted MBs was analyzed, and a parameter, residual-to-saturation ratio ( Rres - sat ), was defined to measure the enhancement in the adherent targeted MBs signal after the cessation of ARF compared with the initial signal intensity. Statistical analysis was performed with the Welch t test and analysis of variance test. RESULTS The Rres - sat of abdominal aortic segments from Ang II-challenged mice was significantly higher compared with that in the saline-infused control group ( P < 0.001) at all 4 time points after osmotic pump implantation (1 week to 4 weeks). In control mice, the Rres - sat values were 2.13%, 1.85%, 3.26%, and 4.85% at 1, 2, 3, and 4 weeks postimplantation, respectively. In stark contrast, the Rres - sat values for the mice with Ang II-induced AAA lesions were 9.20%, 20.6%, 22.7%, and 31.8%, respectively. It is worth noting that there was a significant difference between the Rres - sat for Ang II-infused mice at all 4 time points ( P < 0.005), a finding not present in the saline-infused mice. Immunostaining results revealed the VEGFR-2 expression was increased in the abdominal aortic segments of Ang II-infused mice compared with the control group. CONCLUSIONS The mARF-based imaging technique was validated in vivo using a murine model of AAA and VEGFR-2-targeted MBs. Results in this study indicated that the mARF-based imaging technique has the ability to detect and assess AAA growth at early stages based on the signal intensity of adherent targeted MBs, which is correlated with the expression level of the desired molecular biomarker. The results may suggest, in very long term, a pathway toward eventual clinical implementation for an ultrasound molecular imaging-based approach to AAA risk assessment in asymptomatic patients.
Collapse
Affiliation(s)
- Yi Huang
- From the Department of Biomedical Engineering, University of Virginia, Charlottesville, VA (Y.H., Y.X., J.A.H.); Philips Research North America, Cambridge, MA (E.B.H.); Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA (L.Y., Z.H.I., E.W.K., B.W.); and Division of Cardiovascular Medicine, Cardiovascular Research Center and Department of Biomedical Engineering, University of Virginia, Charlottesville, VA (A.L.K.)
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Shirasu T, Yodsanit N, Li J, Huang Y, Xie X, Tang R, Wang Q, Zhang M, Urabe G, Webb A, Wang Y, Wang X, Xie R, Wang B, Kent KC, Gong S, Guo LW. Neointima abating and endothelium preserving - An adventitia-localized nanoformulation to inhibit the epigenetic writer DOT1L. Biomaterials 2023; 301:122245. [PMID: 37467597 PMCID: PMC10530408 DOI: 10.1016/j.biomaterials.2023.122245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/05/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Open vascular reconstructions such as bypass are common treatments for cardiovascular disease. Unfortunately, neointimal hyperplasia (IH) follows, leading to treatment failure for which there is no approved therapy. Here we combined the strengths of tailoring nanoplatforms for open vascular reconstructions and targeting new epigenetic mechanisms. We produced adhesive nanoparticles (ahNP) that could be pen-brushed and immobilized on the adventitia to sustainably release pinometostat, an inhibitor drug selective to the epigenetic writer DOT1L that catalyzes histone-3 lysine-79 dimethylation (H3K79me2). This treatment not only reduced IH by 76.8% in injured arteries mimicking open reconstructions in obese Zucker rats with human-like diseases but also avoided the shortcoming of endothelial impairment in IH management. In mechanistic studies, chromatin immunoprecipitation (ChIP) sequencing revealed co-enrichment of the histone mark H3K27ac(acetyl) and its reader BRD4 at the gene of aurora kinase B (AURKB), where H3K79me2 was also enriched as indicated by ChIP-qPCR. Accordingly, DOT1L co-immunoprecipitated with H3K27ac. Furthermore, the known IH driver BRD4 governed the expression of DOT1L which controlled AURKB's protein level, revealing a BRD4- > DOT1L- > AURKB axis. Consistently, AURKB-selective inhibition reduced IH. Thus, this study presents a prototype nanoformulation suited for open vascular reconstructions, and the new insights into chromatin modulators may aid future translational advances.
Collapse
Affiliation(s)
- Takuro Shirasu
- Division of Surgical Sciences, Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Nisakorn Yodsanit
- Department of Biomedical Engineering and Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Jing Li
- Division of Surgical Sciences, Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Yitao Huang
- Division of Surgical Sciences, Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA; The Biomedical Sciences Graduate Program (BIMS), School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Xiujie Xie
- Division of Surgical Sciences, Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Runze Tang
- Division of Surgical Sciences, Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Qingwei Wang
- Division of Surgical Sciences, Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Mengxue Zhang
- Division of Surgical Sciences, Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Go Urabe
- Division of Surgical Sciences, Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Amy Webb
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Yuyuan Wang
- Department of Biomedical Engineering and Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Xiuxiu Wang
- Department of Biomedical Engineering and Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Ruosen Xie
- Department of Biomedical Engineering and Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Bowen Wang
- Division of Surgical Sciences, Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - K Craig Kent
- Division of Surgical Sciences, Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA.
| | - Shaoqin Gong
- Department of Biomedical Engineering and Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53715, USA.
| | - Lian-Wang Guo
- Division of Surgical Sciences, Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA; Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22908, USA; Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, 22908, USA.
| |
Collapse
|
7
|
Muse O, Patell R, Peters CG, Yang M, El-Darzi E, Schulman S, Falanga A, Marchetti M, Russo L, Zwicker JI, Flaumenhaft R. The unfolded protein response links ER stress to cancer-associated thrombosis. JCI Insight 2023; 8:e170148. [PMID: 37651191 PMCID: PMC10629814 DOI: 10.1172/jci.insight.170148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/29/2023] [Indexed: 09/02/2023] Open
Abstract
Thrombosis is a common complication of advanced cancer, yet the cellular mechanisms linking malignancy to thrombosis are poorly understood. The unfolded protein response (UPR) is an ER stress response associated with advanced cancers. A proteomic evaluation of plasma from patients with gastric and non-small cell lung cancer who were monitored prospectively for venous thromboembolism demonstrated increased levels of UPR-related markers in plasma of patients who developed clots compared with those who did not. Release of procoagulant activity into supernatants of gastric, lung, and pancreatic cancer cells was enhanced by UPR induction and blocked by antagonists of the UPR receptors inositol-requiring enzyme 1α (IRE1α) and protein kinase RNA-like endoplasmic reticulum kinase (PERK). Release of extracellular vesicles bearing tissue factor (EVTFs) from pancreatic cancer cells was inhibited by siRNA-mediated knockdown of IRE1α/XBP1 or PERK pathways. Induction of UPR did not increase tissue factor (TF) synthesis, but rather stimulated localization of TF to the cell surface. UPR-induced TF delivery to EVTFs was inhibited by ADP-ribosylation factor 1 knockdown or GBF1 antagonism, verifying the role of vesicular trafficking. Our findings show that UPR activation resulted in increased vesicular trafficking leading to release of prothrombotic EVTFs, thus providing a mechanistic link between ER stress and cancer-associated thrombosis.
Collapse
Affiliation(s)
- Oluwatoyosi Muse
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Rushad Patell
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Christian G. Peters
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Moua Yang
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Emale El-Darzi
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Sol Schulman
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Anna Falanga
- Immunohematology and Transfusion Medicine, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Marina Marchetti
- Immunohematology and Transfusion Medicine, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Laura Russo
- Immunohematology and Transfusion Medicine, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Jeffrey I. Zwicker
- Hematology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Yodsanit N, Shirasu T, Huang Y, Yin L, Islam ZH, Gregg AC, Riccio AM, Tang R, Kent EW, Wang Y, Xie R, Zhao Y, Ye M, Zhu J, Huang Y, Hoyt N, Zhang M, Hossack JA, Salmon M, Kent KC, Guo LW, Gong S, Wang B. Targeted PERK inhibition with biomimetic nanoclusters confers preventative and interventional benefits to elastase-induced abdominal aortic aneurysms. Bioact Mater 2023; 26:52-63. [PMID: 36875050 PMCID: PMC9975632 DOI: 10.1016/j.bioactmat.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/25/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a progressive aortic dilatation, causing ∼80% mortality upon rupture. Currently, there is no approved drug therapy for AAA. Surgical repairs are invasive and risky and thus not recommended to patients with small AAAs which, however, account for ∼90% of the newly diagnosed cases. It is therefore a compelling unmet clinical need to discover effective non-invasive strategies to prevent or slow down AAA progression. We contend that the first AAA drug therapy will only arise through discoveries of both effective drug targets and innovative delivery methods. There is substantial evidence that degenerative smooth muscle cells (SMCs) orchestrate AAA pathogenesis and progression. In this study, we made an exciting finding that PERK, the endoplasmic reticulum (ER) stress Protein Kinase R-like ER Kinase, is a potent driver of SMC degeneration and hence a potential therapeutic target. Indeed, local knockdown of PERK in elastase-challenged aorta significantly attenuated AAA lesions in vivo. In parallel, we also conceived a biomimetic nanocluster (NC) design uniquely tailored to AAA-targeting drug delivery. This NC demonstrated excellent AAA homing via a platelet-derived biomembrane coating; and when loaded with a selective PERK inhibitor (PERKi, GSK2656157), the NC therapy conferred remarkable benefits in both preventing aneurysm development and halting the progression of pre-existing aneurysmal lesions in two distinct rodent models of AAA. In summary, our current study not only establishes a new intervention target for mitigating SMC degeneration and aneurysmal pathogenesis, but also provides a powerful tool to facilitate the development of effective drug therapy of AAA.
Collapse
Affiliation(s)
- Nisakorn Yodsanit
- Department of Biomedical Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Takuro Shirasu
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Yitao Huang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
- The Biomedical Sciences Graduate Program (BIMS), School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Li Yin
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Zain Husain Islam
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | | | - Alessandra Marie Riccio
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Runze Tang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Eric William Kent
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Yuyuan Wang
- Department of Biomedical Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Ruosen Xie
- Department of Biomedical Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Yi Zhao
- Department of Biomedical Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Mingzhou Ye
- Department of Biomedical Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Jingcheng Zhu
- Department of Biomedical Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Yi Huang
- Department of Biomedical Engineering, School of Engineering, University of Virginia, Charlottesville, VA, 22908, USA
| | - Nicholas Hoyt
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
- School of Medicine and Health Sciences, George Washington University, Washington, DC, 20052, USA
| | - Mengxue Zhang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - John A. Hossack
- Department of Biomedical Engineering, School of Engineering, University of Virginia, Charlottesville, VA, 22908, USA
| | - Morgan Salmon
- Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - K. Craig Kent
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Lian-Wang Guo
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Shaoqin Gong
- Department of Biomedical Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Bowen Wang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| |
Collapse
|
9
|
Chattopadhyay A, Guan (关蒲骏) P, Majumder S, Kaw K, Zhou (周桢) Z, Zhang C, Prakash SK, Kaw A, Buja LM, Kwartler CS, Milewicz DM. Preventing Cholesterol-Induced Perk (Protein Kinase RNA-Like Endoplasmic Reticulum Kinase) Signaling in Smooth Muscle Cells Blocks Atherosclerotic Plaque Formation. Arterioscler Thromb Vasc Biol 2022; 42:1005-1022. [PMID: 35708026 PMCID: PMC9311463 DOI: 10.1161/atvbaha.121.317451] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/31/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Vascular smooth muscle cells (SMCs) undergo complex phenotypic modulation with atherosclerotic plaque formation in hyperlipidemic mice, which is characterized by de-differentiation and heterogeneous increases in the expression of macrophage, fibroblast, osteogenic, and stem cell markers. An increase of cellular cholesterol in SMCs triggers similar phenotypic changes in vitro with exposure to free cholesterol due to cholesterol entering the endoplasmic reticulum, triggering endoplasmic reticulum stress and activating Perk (protein kinase RNA-like endoplasmic reticulum kinase) signaling. METHODS We generated an SMC-specific Perk knockout mouse model, induced hyperlipidemia in the mice by AAV-PCSK9DY injection, and subjected them to a high-fat diet. We then assessed atherosclerotic plaque formation and performed single-cell transcriptomic studies using aortic tissue from these mice. RESULTS SMC-specific deletion of Perk reduces atherosclerotic plaque formation in male hyperlipidemic mice by 80%. Single-cell transcriptomic data identify 2 clusters of modulated SMCs in hyperlipidemic mice, one of which is absent when Perk is deleted in SMCs. The 2 modulated SMC clusters have significant overlap of transcriptional changes, but the Perk-dependent cluster uniquely shows a global decrease in the number of transcripts. SMC-specific Perk deletion also prevents migration of both contractile and modulated SMCs from the medial layer of the aorta. CONCLUSIONS Our results indicate that hypercholesterolemia drives both Perk-dependent and Perk-independent SMC modulation and that deficiency of Perk significantly blocks atherosclerotic plaque formation.
Collapse
Affiliation(s)
- Abhijnan Chattopadhyay
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School The University of Texas Health Science Center at Houston (A.C., P.G., S.M., K.K., Z.Z., S.K.P.‚ A.K., C.S.K., D.M.M.)
| | - Pujun Guan (关蒲骏)
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School The University of Texas Health Science Center at Houston (A.C., P.G., S.M., K.K., Z.Z., S.K.P.‚ A.K., C.S.K., D.M.M.)
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and UTHealth, Houston (P.G.)
| | - Suravi Majumder
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School The University of Texas Health Science Center at Houston (A.C., P.G., S.M., K.K., Z.Z., S.K.P.‚ A.K., C.S.K., D.M.M.)
| | - Kaveeta Kaw
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School The University of Texas Health Science Center at Houston (A.C., P.G., S.M., K.K., Z.Z., S.K.P.‚ A.K., C.S.K., D.M.M.)
| | - Zhen Zhou (周桢)
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School The University of Texas Health Science Center at Houston (A.C., P.G., S.M., K.K., Z.Z., S.K.P.‚ A.K., C.S.K., D.M.M.)
| | - Chen Zhang
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX (C.Z.)
- Department of Cardiovascular Surgery, Texas Heart Institute, Houston (C.Z.)
| | - Siddharth K. Prakash
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School The University of Texas Health Science Center at Houston (A.C., P.G., S.M., K.K., Z.Z., S.K.P.‚ A.K., C.S.K., D.M.M.)
| | - Anita Kaw
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School The University of Texas Health Science Center at Houston (A.C., P.G., S.M., K.K., Z.Z., S.K.P.‚ A.K., C.S.K., D.M.M.)
| | - L. Maximillian Buja
- Department of Pathology and Laboratory Medicine, The University of Texas Health Science Center at Houston (L.M.B.)
| | - Callie S. Kwartler
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School The University of Texas Health Science Center at Houston (A.C., P.G., S.M., K.K., Z.Z., S.K.P.‚ A.K., C.S.K., D.M.M.)
| | - Dianna M. Milewicz
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School The University of Texas Health Science Center at Houston (A.C., P.G., S.M., K.K., Z.Z., S.K.P.‚ A.K., C.S.K., D.M.M.)
| |
Collapse
|
10
|
Li L, Liu S, Tan J, Wei L, Wu D, Gao S, Weng Y, Chen J. Recent advance in treatment of atherosclerosis: Key targets and plaque-positioned delivery strategies. J Tissue Eng 2022; 13:20417314221088509. [PMID: 35356091 PMCID: PMC8958685 DOI: 10.1177/20417314221088509] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Atherosclerosis, a chronic inflammatory disease of vascular wall, is a progressive pathophysiological process with lipids oxidation/depositing initiation and innate/adaptive immune responses. The coordination of multi systems covering oxidative stress, dysfunctional endothelium, diseased lipid uptake, cell apoptosis, thrombotic and pro-inflammatory responding as well as switched SMCs contributes to plaque growth. In this circumstance, inevitably, targeting these processes is considered to be effective for treating atherosclerosis. Arriving, retention and working of payload candidates mediated by targets in lesion direct ultimate therapeutic outcomes. Accumulating a series of scientific studies and clinical practice in the past decades, lesion homing delivery strategies including stent/balloon/nanoparticle-based transportation worked as the potent promotor to ensure a therapeutic effect. The objective of this review is to achieve a very brief summary about the effective therapeutic methods cooperating specifical targets and positioning-delivery strategies in atherosclerosis for better outcomes.
Collapse
Affiliation(s)
- Li Li
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Sainan Liu
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Jianying Tan
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Lai Wei
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Dimeng Wu
- Chengdu Daxan Innovative Medical Tech. Co., Ltd., Chengdu, PR China
| | - Shuai Gao
- Chengdu Daxan Innovative Medical Tech. Co., Ltd., Chengdu, PR China
| | - Yajun Weng
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Junying Chen
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| |
Collapse
|
11
|
Witkowski M, Witkowski M, Friebel J, Buffa JA, Li XS, Wang Z, Sangwan N, Li L, DiDonato JA, Tizian C, Haghikia A, Kirchhofer D, Mach F, Räber L, Matter CM, Tang WHW, Landmesser U, Lüscher TF, Rauch U, Hazen SL. Vascular endothelial tissue factor contributes to trimethylamine N-oxide-enhanced arterial thrombosis. Cardiovasc Res 2021; 118:2367-2384. [PMID: 34352109 PMCID: PMC9890461 DOI: 10.1093/cvr/cvab263] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 08/02/2021] [Indexed: 02/04/2023] Open
Abstract
AIMS Gut microbiota and their generated metabolites impact the host vascular phenotype. The metaorganismal metabolite trimethylamine N-oxide (TMAO) is both associated with adverse clinical thromboembolic events, and enhances platelet responsiveness in subjects. The impact of TMAO on vascular Tissue Factor (TF) in vivo is unknown. Here, we explore whether TMAO-enhanced thrombosis potential extends beyond TMAO effects on platelets, and is linked to TF. We also further explore the links between gut microbiota and vascular endothelial TF expression in vivo. METHODS AND RESULTS In initial exploratory clinical studies, we observed that among sequential stable subjects (n = 2989) on anti-platelet therapy undergoing elective diagnostic cardiovascular evaluation at a single-site referral centre, TMAO levels were associated with an increased incident (3 years) risk for major adverse cardiovascular events (MACE) (myocardial infarction, stroke, or death) [4th quartile (Q4) vs. Q1 adjusted hazard ratio (HR) 95% confidence interval (95% CI), 1.73 (1.25-2.38)]. Similar results were observed within subjects on aspirin mono-therapy during follow-up [adjusted HR (95% CI) 1.75 (1.25-2.44), n = 2793]. Leveraging access to a second higher risk cohort with previously reported TMAO data and monitoring of anti-platelet medication use, we also observed a strong association between TMAO and incident (1 year) MACE risk in the multi-site Swiss Acute Coronary Syndromes Cohort, focusing on the subset (n = 1469) on chronic dual anti-platelet therapy during follow-up [adjusted HR (95% CI) 1.70 (1.08-2.69)]. These collective clinical data suggest that the thrombosis-associated effects of TMAO may be mediated by cells/factors that are not inhibited by anti-platelet therapy. To test this, we first observed in human microvascular endothelial cells that TMAO dose-dependently induced expression of TF and vascular cell adhesion molecule (VCAM)1. In mouse studies, we observed that TMAO-enhanced aortic TF and VCAM1 mRNA and protein expression, which upon immunolocalization studies, was shown to co-localize with vascular endothelial cells. Finally, in arterial injury mouse models, TMAO-dependent enhancement of in vivo TF expression and thrombogenicity were abrogated by either a TF-inhibitory antibody or a mechanism-based microbial choline TMA-lyase inhibitor (fluoromethylcholine). CONCLUSION Endothelial TF contributes to TMAO-related arterial thrombosis potential, and can be specifically blocked by targeted non-lethal inhibition of gut microbial choline TMA-lyase.
Collapse
Affiliation(s)
- Marco Witkowski
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, 9500 Euclid Ave, Cleveland, OH 44195, USA,Department of Cardiology, Charité Centrum 11, Charité–Universitätsmedizin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Mario Witkowski
- Department of Microbiology, Infectious Diseases and Immunology, Laboratory of Innate Immunity, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Julian Friebel
- Department of Cardiology, Charité Centrum 11, Charité–Universitätsmedizin, Hindenburgdamm 30, 12203, Berlin, Germany,Berlin Institute of Health, Anna-Louisa-Karsch-Straße 2, 10178, Berlin, Germany
| | - Jennifer A Buffa
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, 9500 Euclid Ave, Cleveland, OH 44195, USA
| | - Xinmin S Li
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, 9500 Euclid Ave, Cleveland, OH 44195, USA
| | - Zeneng Wang
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, 9500 Euclid Ave, Cleveland, OH 44195, USA
| | - Naseer Sangwan
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, 9500 Euclid Ave, Cleveland, OH 44195, USA
| | - Lin Li
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, 9500 Euclid Ave, Cleveland, OH 44195, USA
| | - Joseph A DiDonato
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, 9500 Euclid Ave, Cleveland, OH 44195, USA
| | - Caroline Tizian
- Department of Microbiology, Infectious Diseases and Immunology, Laboratory of Innate Immunity, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Arash Haghikia
- Department of Cardiology, Charité Centrum 11, Charité–Universitätsmedizin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Daniel Kirchhofer
- Department of Early Discovery Biochemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - François Mach
- Department of Cardiology, University Hospital Geneva, Rue Gabrielle-Perret-Gentil 4 1205, Geneva, Switzerland
| | - Lorenz Räber
- Department of Cardiology, Inselspital Bern, Freiburgstrasse 18 CH-3010, Bern, Switzerland
| | - Christian M Matter
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, CH-8952 Schlieren, Switzerland,Department of Cardiology, University Heart Center, University Hospital Zurich, Raemistrasse 100 8091, Zurich, Switzerland
| | - W H Wilson Tang
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, 9500 Euclid Ave, Cleveland, OH 44195, USA,Department of Cardiovascular Medicine, Heart, Vascular & Thoracic Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, USA
| | - Ulf Landmesser
- Department of Cardiology, Charité Centrum 11, Charité–Universitätsmedizin, Hindenburgdamm 30, 12203, Berlin, Germany,Berlin Institute of Health, Anna-Louisa-Karsch-Straße 2, 10178, Berlin, Germany
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, CH-8952 Schlieren, Switzerland,Department of Cardiology, Royal Brompton and Harefield Hospitals, Imperial College, Sydney St, London SW3 6NP, UK
| | - Ursula Rauch
- Corresponding author. Tel: +1 216 445 9763; fax: +1 216 444 9404, E-mail: (S.L.H.); Tel: +49 30 8445 2362; fax: +49 30 8445 4648, E-mail: (U.R.)
| | - Stanley L Hazen
- Corresponding author. Tel: +1 216 445 9763; fax: +1 216 444 9404, E-mail: (S.L.H.); Tel: +49 30 8445 2362; fax: +49 30 8445 4648, E-mail: (U.R.)
| |
Collapse
|
12
|
Huotan Jiedu Tongluo Decoction Inhibits Balloon-Injury-Induced Carotid Artery Intimal Hyperplasia in the Rat through the PERK-eIF2 α-ATF4 Pathway and Autophagy Mediation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5536237. [PMID: 34335815 PMCID: PMC8318774 DOI: 10.1155/2021/5536237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/07/2021] [Accepted: 07/10/2021] [Indexed: 11/18/2022]
Abstract
In-stent restenosis (ISR) is the main factor affecting the outcome of percutaneous coronary intervention (PCI), and its main pathological feature is neointimal hyperplasia. Huotan Jiedu Tongluo decoction (HTJDTLD) is an effective traditional Chinese medicine (TCM) prescription for the treatment of vascular stenosis diseases. However, the precise anti-ISR mechanism of HTJDTLD remains unclear. Here, we investigated whether HTJDTLD can inhibit the excessive activation of endoplasmic reticulum stress (ERS) and reduce the level of autophagy factors through regulating the PERK-eIF2α-ATF4 pathway, thereby inhibiting the proliferation of the intima of blood vessels damaged by balloon injury (BI) and preventing the occurrence of ISR. In this study, a 2F Fogarty balloon was used to establish a common carotid artery (CCA) BI model in male Sprague-Dawley rats. Then, HTJDTLD (16.33 g/kg/d) or atorvastatin (1.19 mg/kg/d) was administered by gavage. Four weeks later, hematoxylin-eosin (HE) and Masson staining of the injured CCA were performed to observe the histological changes in the CCA. Immunohistochemistry (IHC) was used to assess the proliferation and dedifferentiation of vascular smooth muscle cells (VSMCs) in the CCA. Western blotting and RT-PCR were used to measure the expression of ERS- and autophagy-related proteins and mRNAs in the CCA. The results indicated that HTJDTLD significantly alleviated BI-induced carotid artery intimal hyperplasia and fibrosis and reduced the neointimal area (NIA) and NIA/medial area (MA) ratio. In addition, HTJDTLD inhibited the proliferation and dedifferentiation of VSMCs, reduced the expression of proliferating cell nuclear antigen (PCNA), and increased the smooth-muscle-α-actin- (SMα-actin-) positive area. HTJDTLD also significantly reduced the expression of the ERS-related factors: GRP78, p-PERK/PERK, p-eIF2α/eIF2α, ATF4, and CHOP. In addition, the expression of the autophagy-related factors, Beclin1, LC3B, and ATG12, was significantly decreased. In addition, in vitro experiments showed that HTJDTLD inhibited the above-mentioned ERS signal molecules in human umbilical vein endothelial cells (HUVEC) and rat aortic smooth muscle cells (A7R5) induced by tunicamycin (TM) and played a crucial role in protecting cells from damage. HTJDTLD may be a very promising drug for the treatment of ISR.
Collapse
|
13
|
Shirasu T, Yodsanit N, Xie X, Zhao Y, Wang Y, Xie R, Huang Y, Wang B, Urabe G, Gong S, Guo LW, Kent KC. An adventitial painting modality of local drug delivery to abate intimal hyperplasia. Biomaterials 2021; 275:120968. [PMID: 34153787 DOI: 10.1016/j.biomaterials.2021.120968] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/04/2021] [Indexed: 12/29/2022]
Abstract
A major medical problem is the persistent lack of approved therapeutic methods to prevent postoperative intimal hyperplasia (IH) which leads to high-rate failure of open vascular reconstructions such as bypass grafting. Hydrogel has been widely used in preclinical trials for perivascular drug administration to mitigate postoperative IH. However, bulky hydrogel is potentially pro-inflammatory, posing a significant hurdle to clinical translation. Here we developed a new modality of directly "painting" drug-loaded unimolecular micelles (UM) to the adventitia thus obviating the need for a hydrogel. To render tissue adhesion, we generated amine-reactive unimolecular micelles with N-hydroxysuccinimide ester (UM-NHS) terminal groups to form stable amide bonds with the adventitia. To test periadventitial application, we either soaked balloon-injured rat carotid arteries in crosslinked UM-NHS (Mode-1) or non-crosslinked UM-NHS (Mode-2), or painted the vessel surface with non-crosslinked UM-NHS (Mode-3). The UM-NHS were loaded with or without a model drug (rapamycin) known to be IH inhibitory. We found that Mode-1 produced a marked IH-mitigating drug effect but also caused severe tissue damage. Mode-2 resulted in lower tissue toxicity yet less drug effect on IH. However, the painting method, Mode-3, demonstrated a pronounced therapeutic effect (75% inhibition of IH) without obvious toxicity. In summary, we present a simple painting modality of periadventitial local drug delivery using tissue-adhesive UM. Given the robust IH-abating efficacy and low tissue toxicity, this prototype merits further development towards an effective anti-stenosis therapy suitable for open vascular reconstructions.
Collapse
Affiliation(s)
- Takuro Shirasu
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22903, USA
| | - Nisakorn Yodsanit
- Department of Biomedical Engineering, And Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Xiujie Xie
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22903, USA
| | - Yi Zhao
- Department of Biomedical Engineering, And Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Yuyuan Wang
- Department of Biomedical Engineering, And Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Ruosen Xie
- Department of Biomedical Engineering, And Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA; Department of Material Science and Engineering, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Yitao Huang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22903, USA
| | - Bowen Wang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22903, USA
| | - Go Urabe
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22903, USA
| | - Shaoqin Gong
- Department of Biomedical Engineering, And Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA; Department of Material Science and Engineering, University of Wisconsin-Madison, Madison, WI, 53715, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53715, USA.
| | - Lian-Wang Guo
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22903, USA; Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA.
| | - K Craig Kent
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22903, USA.
| |
Collapse
|
14
|
Bose RJ, Ha K, McCarthy JR. Bio-inspired nanomaterials as novel options for the treatment of cardiovascular disease. Drug Discov Today 2021; 26:1200-1211. [PMID: 33561512 PMCID: PMC8205945 DOI: 10.1016/j.drudis.2021.01.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/11/2021] [Accepted: 01/20/2021] [Indexed: 11/28/2022]
Abstract
Cardiovascular disease (CVD) and its sequelae have long been the leading causes of death and disability in the developed world. Although mortality associated with CVD has been decreasing, due in large part to novel therapeutic options, the rate of decrease has flattened. Thus, there is a great need to investigate alternate therapeutic strategies that can increase efficacy while decreasing adverse effects. Nanomaterials have been widely investigated and have emerged as promising tools for both therapeutic and diagnostic purposes in oncology; however, the potential of nanomaterials has not been extensively explored for cardiovascular medicine. In this review, we focus on recent developments in the field of nanomedicines targeted for CVDs, with a special emphasis on cell membrane-coated nanoparticles (NPs) and their applications.
Collapse
Affiliation(s)
- Rajendran Jc Bose
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, Utica, NY, USA
| | - Khan Ha
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, Utica, NY, USA
| | - Jason R McCarthy
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, Utica, NY, USA.
| |
Collapse
|
15
|
Wang B, Zhang M, Urabe G, Shirasu T, Guo LW, Kent KC. PERK Inhibition Promotes Post-angioplasty Re-endothelialization via Modulating SMC Phenotype Changes. J Surg Res 2021; 257:294-305. [PMID: 32871430 PMCID: PMC11034999 DOI: 10.1016/j.jss.2020.05.070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/19/2020] [Accepted: 05/06/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Drug-eluting stents impair post-angioplasty re-endothelialization thus compromising restenosis prevention while heightening thrombotic risks. We recently found that inhibition of protein kinase RNA-like endoplasmic reticulum kinase (PERK) effectively mitigated both restenosis and thrombosis in rodent models. This motivated us to determine how PERK inhibition impacts re-endothelialization. METHODS Re-endothelialization was evaluated in endothelial-denuded rat carotid arteries after balloon angioplasty and periadventitial administration of PERK inhibitor in a hydrogel. To study whether PERK in smooth muscle cells (SMCs) regulates re-endothelialization by paracrinally influencing endothelial cells (ECs), denuded arteries exposing SMCs were lentiviral-infected to silence PERK; in vitro, the extracellular vesicles isolated from the medium of PDGF-activated, PERK-upregulating human primary SMCs were transferred to human primary ECs. RESULTS Treatment with PERK inhibitor versus vehicle control accelerated re-endothelialization in denuded arteries. PERK-specific silencing in the denuded arterial wall (mainly SMCs) also enhanced re-endothelialization compared to scrambled shRNA control. In vitro, while medium transfer from PDGF-activated SMCs impaired EC viability and increased the mRNA levels of dysfunctional EC markers, either PERK inhibition or silencing in donor SMCs mitigated these EC changes. Furthermore, CXCL10, a paracrine cytokine detrimental to ECs, was increased by PDGF activation and decreased after PERK inhibition or silencing in SMCs. CONCLUSIONS Attenuating PERK activity pharmacologically or genetically provides an approach to accelerating post-angioplasty re-endothelialization in rats. The mechanism may involve paracrine factors regulated by PERK in SMCs that impact neighboring ECs. This study rationalizes future development of PERK-targeted endothelium-friendly vascular interventions.
Collapse
MESH Headings
- Angioplasty, Balloon/adverse effects
- Angioplasty, Balloon/instrumentation
- Animals
- Carotid Arteries/drug effects
- Carotid Arteries/pathology
- Carotid Arteries/surgery
- Coronary Restenosis/etiology
- Coronary Restenosis/prevention & control
- Disease Models, Animal
- Drug-Eluting Stents/adverse effects
- Endothelial Cells/drug effects
- Endothelial Cells/pathology
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/pathology
- Humans
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Paracrine Communication/drug effects
- Paracrine Communication/genetics
- Protein Kinase Inhibitors/administration & dosage
- RNA, Small Interfering/metabolism
- Rats
- Re-Epithelialization/drug effects
- Re-Epithelialization/genetics
- eIF-2 Kinase/antagonists & inhibitors
- eIF-2 Kinase/genetics
Collapse
Affiliation(s)
- Bowen Wang
- Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio; Department of Surgery, College of Medicine, The Ohio State University, Columbus, Ohio; Department of Surgery, School of Medicine, University of Virginia, Charlottesville, Virginia
| | - Mengxue Zhang
- Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio; Department of Surgery, College of Medicine, The Ohio State University, Columbus, Ohio; Cellular and Molecular Pathology Graduate Program, Department of Pathology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Go Urabe
- Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio; Department of Surgery, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Takuro Shirasu
- Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio; Department of Surgery, College of Medicine, The Ohio State University, Columbus, Ohio; Department of Surgery, School of Medicine, University of Virginia, Charlottesville, Virginia; Department of Physiology & Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Lian-Wang Guo
- Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio; Department of Surgery, College of Medicine, The Ohio State University, Columbus, Ohio; Department of Surgery, School of Medicine, University of Virginia, Charlottesville, Virginia; Department of Physiology & Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio.
| | - K Craig Kent
- Department of Surgery, College of Medicine, The Ohio State University, Columbus, Ohio; Department of Surgery, School of Medicine, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
16
|
Chattopadhyay A, Kwartler CS, Kaw K, Li Y, Kaw A, Chen J, LeMaire SA, Shen YH, Milewicz DM. Cholesterol-Induced Phenotypic Modulation of Smooth Muscle Cells to Macrophage/Fibroblast-like Cells Is Driven by an Unfolded Protein Response. Arterioscler Thromb Vasc Biol 2021; 41:302-316. [PMID: 33028096 PMCID: PMC7752246 DOI: 10.1161/atvbaha.120.315164] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Vascular smooth muscle cells (SMCs) dedifferentiate and initiate expression of macrophage markers with cholesterol exposure. This phenotypic switching is dependent on the transcription factor Klf4 (Krüppel-like factor 4). We investigated the molecular pathway by which cholesterol induces SMC phenotypic switching. Approach and Results: With exposure to free cholesterol, SMCs decrease expression of contractile markers, activate Klf4, and upregulate a subset of macrophage and fibroblast markers characteristic of modulated SMCs that appear with atherosclerotic plaque formation. These phenotypic changes are associated with activation of all 3 pathways of the endoplasmic reticulum unfolded protein response (UPR), Perk (protein kinase RNA-like endoplasmic reticulum kinase), Ire (inositol-requiring enzyme) 1α, and Atf (activating transcription factor) 6. Blocking the movement of cholesterol from the plasma membrane to the endoplasmic reticulum prevents free cholesterol-induced UPR, Klf4 activation, and upregulation of the majority of macrophage and fibroblast markers. Cholesterol-induced phenotypic switching is also prevented by global UPR inhibition or specific inhibition of Perk signaling. Exposure to chemical UPR inducers, tunicamycin and thapsigargin, is sufficient to induce these same phenotypic transitions. Finally, analysis of published single-cell RNA sequencing data during atherosclerotic plaque formation in hyperlipidemic mice provides preliminary in vivo evidence of a role of UPR activation in modulated SMCs. CONCLUSIONS Our data demonstrate that UPR is necessary and sufficient to drive phenotypic switching of SMCs to cells that resemble modulated SMCs found in atherosclerotic plaques. Preventing a UPR in hyperlipidemic mice diminishes atherosclerotic burden, and our data suggest that preventing SMC transition to dedifferentiated cells expressing macrophage and fibroblast markers contributes to this decreased plaque burden.
Collapse
MESH Headings
- Activating Transcription Factor 4/metabolism
- Animals
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Cell Line
- Cell Transdifferentiation/drug effects
- Cholesterol/toxicity
- Endoplasmic Reticulum Stress/drug effects
- Eukaryotic Initiation Factor-2/metabolism
- Female
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Kruppel-Like Factor 4
- Kruppel-Like Transcription Factors/metabolism
- Macrophages/drug effects
- Macrophages/metabolism
- Macrophages/pathology
- Male
- Mice, Inbred C57BL
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Phenotype
- Plaque, Atherosclerotic
- Unfolded Protein Response/drug effects
- eIF-2 Kinase/metabolism
- Mice
Collapse
Affiliation(s)
- Abhijnan Chattopadhyay
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX (A.C., C.S.K., K.K., A.K., J.C., D.M.M.)
| | - Callie S. Kwartler
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX (A.C., C.S.K., K.K., A.K., J.C., D.M.M.)
| | - Kaveeta Kaw
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX (A.C., C.S.K., K.K., A.K., J.C., D.M.M.)
| | - Yanming Li
- Division of Cardiothoracic Surgery, Baylor College of Medicine, Houston, TX (.L., S.A.L., Y.H.S.)
| | - Anita Kaw
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX (A.C., C.S.K., K.K., A.K., J.C., D.M.M.)
| | - Jiyuan Chen
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX (A.C., C.S.K., K.K., A.K., J.C., D.M.M.)
| | - Scott A. LeMaire
- Division of Cardiothoracic Surgery, Baylor College of Medicine, Houston, TX (.L., S.A.L., Y.H.S.)
| | - Ying H. Shen
- Division of Cardiothoracic Surgery, Baylor College of Medicine, Houston, TX (.L., S.A.L., Y.H.S.)
| | - Dianna M. Milewicz
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX (A.C., C.S.K., K.K., A.K., J.C., D.M.M.)
| |
Collapse
|
17
|
Kubra KT, Akhter MS, Uddin MA, Barabutis N. Unfolded protein response in cardiovascular disease. Cell Signal 2020; 73:109699. [PMID: 32592779 DOI: 10.1016/j.cellsig.2020.109699] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/20/2020] [Accepted: 06/21/2020] [Indexed: 12/21/2022]
Abstract
The unfolded protein response (UPR) is a highly conserved molecular machinery, which protects the cells against a diverse variety of stimuli. Activation of this element has been associated with both human health and disease. The purpose of the current manuscript is to provide the most updated information on the involvement of UPR towards the improvement; or deterioration of cardiovascular functions. Since UPR is consisted of three distinct elements, namely the activating transcription factor 6, the protein kinase RNA-like endoplasmic reticulum kinase; and the inositol-requiring enzyme-1α, a highly orchestrated manipulation of those molecular branches may provide new therapeutic possibilities against the severe outcomes of cardiovascular disease.
Collapse
Affiliation(s)
- Khadeja-Tul Kubra
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Mohammad S Akhter
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Mohammad A Uddin
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA.
| |
Collapse
|