1
|
Lambert GC, Pfisterer SG. The molecular structure of LDL has finally been elucidated. Nat Rev Cardiol 2025; 22:313-314. [PMID: 39875554 DOI: 10.1038/s41569-025-01128-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Affiliation(s)
- Gilles C Lambert
- Laboratoire Inserm Détroi, Faculté de Médecine, Université de La Réunion, Saint-Pierre, France.
| | - Simon G Pfisterer
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Khan TG, Bragazzi Cunha J, Raut C, Burroughs M, Vyas HS, Leix K, Goonewardena SN, Smrcka AV, Speliotes EK, Emmer BT. Functional interrogation of cellular Lp(a) uptake by genome-scale CRISPR screening. Atherosclerosis 2025; 403:119174. [PMID: 40174266 PMCID: PMC12011201 DOI: 10.1016/j.atherosclerosis.2025.119174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 02/04/2025] [Accepted: 03/07/2025] [Indexed: 04/04/2025]
Abstract
BACKGROUND AND AIMS An elevated level of lipoprotein(a), or Lp(a), in the bloodstream has been causally linked to the development of atherosclerotic cardiovascular disease and calcific aortic valve stenosis. Steady state levels of circulating lipoproteins are modulated by their rate of clearance, but the identity of the Lp(a) uptake receptor(s) has been controversial. METHODS We performed a genome-scale CRISPR screen to functionally interrogate all potential Lp(a) uptake regulators in HuH7 cells. Screen validation was performed by single gene disruption and overexpression. Direct binding between purified lipoproteins and recombinant protein was tested using biolayer interferometry. An association between human genetic variants and circulating Lp(a) levels was analyzed in the UK Biobank cohort. RESULTS The top positive and negative regulators of Lp(a) uptake in our screen were LDLR and MYLIP, encoding the LDL receptor and its ubiquitin ligase IDOL, respectively. We also found a significant correlation for other genes with established roles in LDLR regulation. No other gene products, including those previously proposed as Lp(a) receptors, exhibited a significant effect on Lp(a) uptake in our screen. We validated the functional influence of LDLR expression on HuH7 Lp(a) uptake, confirmed in vitro binding between the LDLR extracellular domain and purified Lp(a), and detected an association between loss-of-function LDLR variants and increased circulating Lp(a) levels in the UK Biobank cohort. CONCLUSIONS Our findings support a central role for the LDL receptor in mediating Lp(a) uptake by hepatocytes.
Collapse
Affiliation(s)
- Taslima G Khan
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
| | - Juliana Bragazzi Cunha
- Division of Hospital Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Chinmay Raut
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Michael Burroughs
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Hitarthi S Vyas
- Division of Hospital Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Kyle Leix
- Division of Hospital Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Sascha N Goonewardena
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA; Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, USA
| | - Alan V Smrcka
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Elizabeth K Speliotes
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Brian T Emmer
- Division of Hospital Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA; Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Heydari Z, Gramignoli R, Piryaei A, Zahmatkesh E, Pooyan P, Seydi H, Nussler A, Szkolnicka D, Rashidi H, Najimi M, Hay DC, Vosough M. Standard Protocols for Characterising Primary and In Vitro-Generated Human Hepatocytes. J Cell Mol Med 2025; 29:e70390. [PMID: 39910642 PMCID: PMC11798750 DOI: 10.1111/jcmm.70390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 02/07/2025] Open
Abstract
Hepatocyte-like cells (HLCs) derived from pluripotent stem cells (PSCs) or direct reprogramming are an unlimited source of human hepatocytes for biomedical applications. HLCs are used to model human diseases, develop precise drugs and establish groundbreaking regenerative cell-based therapies. Primary human hepatocytes are the gold standard for studying human liver biology and pathology. However, their widespread use is limited by their rapid dedifferentiation in vitro, reliance on transplant-rejected donor organs, poor scalability and significant batch-to-batch variations. Therefore, high-quality 'off-the-shelf' HLCs are needed to overcome those limitations. Basic stepwise differentiation protocols have been developed to generate HLCs from PSCs. To evaluate the quality of the in vitro generated products, HLCs have been phenotyped using various methods. This review discusses various biological assays and methods available for the robust evaluation of HLC quality, emphasising the importance of using 24-h cultured primary human hepatocytes (PHHs) as a reference standard for comparison.
Collapse
Affiliation(s)
- Zahra Heydari
- Department of Regenerative Medicine, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Roberto Gramignoli
- Division of Pathology, Department of Laboratory MedicineKarolinska InstitutetStockholmSweden
| | - Abbas Piryaei
- Department of Biology and Anatomical Sciences, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Ensieh Zahmatkesh
- Department of Regenerative Medicine, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Paria Pooyan
- Department of Regenerative Medicine, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Homeyra Seydi
- Department of Regenerative Medicine, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Andreas Nussler
- Siegfried Weller Institute for Trauma ResearchUniversity of TübingenTübingenGermany
| | - Dagmara Szkolnicka
- Centre for Regenerative Medicine, Institute for Repair and RegenerationUniversity of EdinburghEdinburghUK
| | - Hassan Rashidi
- Department of Developmental Biology and CancerUCL Great Ormond Street Institute of Child HealthLondonUK
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell TherapyInstitute of Experimental and Clinical Research, UCLouvainBrusselsBelgium
| | - David C. Hay
- Centre for Regenerative Medicine, Institute for Repair and RegenerationUniversity of EdinburghEdinburghUK
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Experimental Cancer MedicineInstitution for Laboratory Medicine, Karolinska Institute HuddingeHuddingeSweden
| |
Collapse
|
4
|
Andersen CJ, Fernandez ML. Emerging Biomarkers and Determinants of Lipoprotein Profiles to Predict CVD Risk: Implications for Precision Nutrition. Nutrients 2024; 17:42. [PMID: 39796476 PMCID: PMC11722654 DOI: 10.3390/nu17010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Biomarkers constitute a valuable tool to diagnose both the incidence and the prevalence of chronic diseases and may help to inform the design and effectiveness of precision nutrition interventions. Cardiovascular disease (CVD) continues to be the foremost cause of death all over the world. While the reasons that lead to increased risk for CVD are multifactorial, dyslipidemias, plasma concentrations of specific lipoproteins, and dynamic measures of lipoprotein function are strong biomarkers to predict and document coronary heart disease incidence. The aim of this review is to provide a comprehensive evaluation of the biomarkers and emerging approaches that can be utilized to characterize lipoprotein profiles as predictive tools for assessing CVD risk, including the assessment of traditional clinical lipid panels, measures of lipoprotein efflux capacity and inflammatory and antioxidant activity, and omics-based characterization of lipoprotein composition and regulators of lipoprotein metabolism. In addition, we discuss demographic, genetic, metagenomic, and lifestyle determinants of lipoprotein profiles-such as age, sex, gene variants and single-nucleotide polymorphisms, gut microbiome profiles, dietary patterns, physical inactivity, obesity status, smoking and alcohol intake, and stress-which are likely to be essential factors to explain interindividual responses to precision nutrition recommendations to mitigate CVD risk.
Collapse
Affiliation(s)
- Catherine J. Andersen
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA;
| | - Maria Luz Fernandez
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA;
- School of Nutrition and Wellness, University of Arizona, Tucson, AZ 85712, USA
| |
Collapse
|
5
|
Baragetti A, Da Dalt L, Norata GD. New insights into the therapeutic options to lower lipoprotein(a). Eur J Clin Invest 2024; 54:e14254. [PMID: 38778431 DOI: 10.1111/eci.14254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/04/2024] [Accepted: 05/05/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Elevated levels of lipoprotein(a) [Lp(a)] represent a risk factor for cardiovascular disease including aortic valve stenosis, myocardial infarction and stroke. While the patho-physiological mechanisms linking Lp(a) with atherosclerosis are not fully understood, from genetic studies that lower Lp(a) levels protect from CVD independently of other risk factors including lipids and lipoproteins. Hereby, Lp(a) has been considered an appealing pharmacological target. RESULTS However, approved lipid lowering therapies such as statins, ezetimibe or PCSK9 inhibitors have a neutral to modest effect on Lp(a) levels, thus prompting the development of new strategies selectively targeting Lp(a). These include antisense oligonucleotides and small interfering RNAs (siRNAs) directed towards apolipoprotein(a) [Apo(a)], which are in advanced phase of clinical development. More recently, additional approaches including inhibitors of Apo(a) and gene editing approaches via CRISPR-Cas9 technology entered early clinical development. CONCLUSION If the results from the cardiovascular outcome trials, designed to demonstrate whether the reduction of Lp(a) of more than 80% as observed with pelacarsen, olpasiran or lepodisiran translates into the decrease of cardiovascular mortality and major adverse cardiovascular events, will be positive, lowering Lp(a) will become a new additional target in the management of patients with elevated cardiovascular risk.
Collapse
Grants
- RF-2019-12370896 Ministero Della Salute, Ricerca Finalizzata
- Ministero Dell'Università e Della Ricerca, CARDINNOV, ERA4 Health, GAN°101095426, the EU Horizon Europe Research and Innovation Programe
- PRIN-PNRRR2022P202294PHK Ministero Dell'Università e Della Ricerca, Progetti di Rilevante Interesse Nazionale
- PRIN2022KTSAT Ministero Dell'Università e Della Ricerca, Progetti di Rilevante Interesse Nazionale
- NANOKOSEUROPEAID/173691/DD/ACT/XK European Commission
- Ministero Dell'Università e Della Ricerca, Progetti di Rilevante Interesse Nazionale PNRR Missione 4, Progetto CN3-National Center for Gene Therpay and Drugs based on RNA Technology
- Ministero Dell'Università e Della Ricerca, Progetti di Rilevante Interesse Nazionale, MUSA-Multilayered Urban Sustainabiliy Action
- PNRR-MAD-2022-12375913 Ministero Dell'Università e Della Ricerca, Progetti di Rilevante Interesse Nazionale
Collapse
Affiliation(s)
- A Baragetti
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi di Milano, Milano, Italy
| | - L Da Dalt
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi di Milano, Milano, Italy
| | - G D Norata
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi di Milano, Milano, Italy
| |
Collapse
|
6
|
Khan TG, Cunha JB, Raut C, Burroughs M, Goonewardena SN, Smrcka AV, Speliotes EK, Emmer BT. Functional interrogation of cellular Lp(a) uptake by genome-scale CRISPR screening. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.11.593568. [PMID: 38766193 PMCID: PMC11100788 DOI: 10.1101/2024.05.11.593568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
An elevated level of lipoprotein(a), or Lp(a), in the bloodstream has been causally linked to the development of atherosclerotic cardiovascular disease and calcific aortic valve stenosis. Steady state levels of circulating lipoproteins are modulated by their rate of clearance, but the identity of the Lp(a) uptake receptor(s) has been controversial. In this study, we performed a genome-scale CRISPR screen to functionally interrogate all potential Lp(a) uptake regulators in HuH7 cells. Strikingly, the top positive and negative regulators of Lp(a) uptake in our screen were LDLR and MYLIP, encoding the LDL receptor and its ubiquitin ligase IDOL, respectively. We also found a significant correlation for other genes with established roles in LDLR regulation. No other gene products, including those previously proposed as Lp(a) receptors, exhibited a significant effect on Lp(a) uptake in our screen. We validated the functional influence of LDLR expression on HuH7 Lp(a) uptake, confirmed in vitro binding between the LDLR extracellular domain and purified Lp(a), and detected an association between loss-of-function LDLR variants and increased circulating Lp(a) levels in the UK Biobank cohort. Together, our findings support a central role for the LDL receptor in mediating Lp(a) uptake by hepatocytes.
Collapse
Affiliation(s)
- Taslima G. Khan
- Program in Chemical Biology, University of Michigan, Ann Arbor MI
| | - Juliana Bragazzi Cunha
- Division of Hospital Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor MI
| | - Chinmay Raut
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor MI
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor MI
| | | | - Sascha N. Goonewardena
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor MI
- Frankel Cardiovascular Center, University of Michigan, Ann Arbor MI
| | - Alan V. Smrcka
- Department of Pharmacology, University of Michigan, Ann Arbor MI
| | - Elizabeth K. Speliotes
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor MI
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor MI
| | - Brian T. Emmer
- Division of Hospital Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor MI
- Frankel Cardiovascular Center, University of Michigan, Ann Arbor MI
| |
Collapse
|
7
|
Siddiqui H, Deo N, Rutledge MT, Williams MJ, Redpath GM, McCormick SP. Plasminogen Receptors Promote Lipoprotein(a) Uptake by Enhancing Surface Binding and Facilitating Macropinocytosis. Arterioscler Thromb Vasc Biol 2023; 43:1851-1866. [PMID: 37589135 PMCID: PMC10521804 DOI: 10.1161/atvbaha.123.319344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/02/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND High levels of Lp(a) (lipoprotein(a)) are associated with multiple forms of cardiovascular disease. Lp(a) consists of an apoB100-containing particle attached to the plasminogen homologue apo(a). The pathways for Lp(a) clearance are not well understood. We previously discovered that the plasminogen receptor PlgRKT (plasminogen receptor with a C-terminal lysine) promoted Lp(a) uptake in liver cells. Here, we aimed to further define the role of PlgRKT and to investigate the role of 2 other plasminogen receptors, annexin A2 and S100A10 (S100 calcium-binding protein A10) in the endocytosis of Lp(a). METHODS Human hepatocellular carcinoma (HepG2) cells and haploid human fibroblast-like (HAP1) cells were used for overexpression and knockout of plasminogen receptors. The uptake of Lp(a), LDL (low-density lipoprotein), apo(a), and endocytic cargos was visualized and quantified by confocal microscopy and Western blotting. RESULTS The uptake of both Lp(a) and apo(a), but not LDL, was significantly increased in HepG2 and HAP1 cells overexpressing PlgRKT, annexin A2, or S100A10. Conversely, Lp(a) and apo(a), but not LDL, uptake was significantly reduced in HAP1 cells in which PlgRKT and S100A10 were knocked out. Surface binding studies in HepG2 cells showed that overexpression of PlgRKT, but not annexin A2 or S100A10, increased Lp(a) and apo(a) plasma membrane binding. Annexin A2 and S100A10, on the other hand, appeared to regulate macropinocytosis with both proteins significantly increasing the uptake of the macropinocytosis marker dextran when overexpressed in HepG2 and HAP1 cells and knockout of S100A10 significantly reducing dextran uptake. Bringing these observations together, we tested the effect of a PI3K (phosphoinositide-3-kinase) inhibitor, known to inhibit macropinocytosis, on Lp(a) uptake. Results showed a concentration-dependent reduction confirming that Lp(a) uptake was indeed mediated by macropinocytosis. CONCLUSIONS These findings uncover a novel pathway for Lp(a) endocytosis involving multiple plasminogen receptors that enhance surface binding and stimulate macropinocytosis of Lp(a). Although the findings were produced in cell culture models that have limitations, they could have clinical relevance since drugs that inhibit macropinocytosis are in clinical use, that is, the PI3K inhibitors for cancer therapy and some antidepressant compounds.
Collapse
Affiliation(s)
- Halima Siddiqui
- Department of Biochemistry (H.S., N.D., M.T.R., G.M.I.R., S.P.A.M.), Dunedin School of Medicine, University of Otago, New Zealand
- School of Biomedical Sciences, HeartOtago (H.S., N.D., M.T.R., M.J.A.W., G.M.I.R., S.P.A.M.), Dunedin School of Medicine, University of Otago, New Zealand
| | - Nikita Deo
- Department of Biochemistry (H.S., N.D., M.T.R., G.M.I.R., S.P.A.M.), Dunedin School of Medicine, University of Otago, New Zealand
- School of Biomedical Sciences, HeartOtago (H.S., N.D., M.T.R., M.J.A.W., G.M.I.R., S.P.A.M.), Dunedin School of Medicine, University of Otago, New Zealand
| | - Malcolm T. Rutledge
- Department of Biochemistry (H.S., N.D., M.T.R., G.M.I.R., S.P.A.M.), Dunedin School of Medicine, University of Otago, New Zealand
- School of Biomedical Sciences, HeartOtago (H.S., N.D., M.T.R., M.J.A.W., G.M.I.R., S.P.A.M.), Dunedin School of Medicine, University of Otago, New Zealand
| | - Michael J.A. Williams
- School of Biomedical Sciences, HeartOtago (H.S., N.D., M.T.R., M.J.A.W., G.M.I.R., S.P.A.M.), Dunedin School of Medicine, University of Otago, New Zealand
- Department of Medicine (M.J.A.W.), Dunedin School of Medicine, University of Otago, New Zealand
| | - Gregory M.I. Redpath
- Department of Biochemistry (H.S., N.D., M.T.R., G.M.I.R., S.P.A.M.), Dunedin School of Medicine, University of Otago, New Zealand
- School of Biomedical Sciences, HeartOtago (H.S., N.D., M.T.R., M.J.A.W., G.M.I.R., S.P.A.M.), Dunedin School of Medicine, University of Otago, New Zealand
| | - Sally P.A. McCormick
- Department of Biochemistry (H.S., N.D., M.T.R., G.M.I.R., S.P.A.M.), Dunedin School of Medicine, University of Otago, New Zealand
- School of Biomedical Sciences, HeartOtago (H.S., N.D., M.T.R., M.J.A.W., G.M.I.R., S.P.A.M.), Dunedin School of Medicine, University of Otago, New Zealand
| |
Collapse
|
8
|
Chang YC, Hsu LA, Ko YL. Exploring PCSK9 Genetic Impact on Lipoprotein(a) via Dual Approaches: Association and Mendelian Randomization. Int J Mol Sci 2023; 24:14668. [PMID: 37834124 PMCID: PMC10572552 DOI: 10.3390/ijms241914668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Previous investigations have suggested an association between the PCSK9 common polymorphism E670G and Lipoprotein(a) (Lp(a)) levels, as well as a link between plasma PCSK9 levels and Lp(a) concentrations. However, the causal relationship between plasma PCSK9 and Lp(a) levels remains uncertain. In this study, we explored the association between PCSK9 E670G polymorphism and Lp(a) levels in 614 healthy Taiwanese individuals. Employing a two-sample Mendelian randomization (MR) analysis using openly accessible PCSK9 and Lp(a) summary statistics from the genome-wide association studies (GWAS) and UK Biobank, we aimed to determine if a causal link exists between plasma PCSK9 levels and Lp(a) concentrations. Our findings reveal that the E670G G allele is independently associated with a decreased likelihood of developing elevated Lp(a) levels. This association persists even after adjusting for common cardiovascular risk factors and irrespective of lipid profile variations. The MR analysis, utilizing six PCSK9 GWAS-associated variants as instrumental variables to predict plasma PCSK9 levels, provides compelling evidence of a causal relationship between plasma PCSK9 levels and Lp(a) concentration. In conclusion, our study not only replicates the association between the PCSK9 E670G polymorphism and Lp(a) levels but also confirms a causative relationship between PCSK9 levels and Lp(a) concentrations through MR analysis.
Collapse
Affiliation(s)
- Ya-Ching Chang
- Department of Dermatology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Tao-Yuan 33305, Taiwan;
| | - Lung-An Hsu
- Cardiovascular Division, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Tao-Yuan 33305, Taiwan
| | - Yu-Lin Ko
- Department of Research, Division of Cardiology, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 23142, Taiwan;
| |
Collapse
|
9
|
Durrington PN, Bashir B, Bhatnagar D, Soran H. Lipoprotein (a) in familial hypercholesterolaemia. Curr Opin Lipidol 2022; 33:257-263. [PMID: 35942820 DOI: 10.1097/mol.0000000000000839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The role of lipoprotein (a) in atherogenesis has been the subject of argument for many years. Evidence that it is raised in familial hypercholesterolaemia has been disputed not least because a mechanism related to low density lipoprotein (LDL) receptor mediated catabolism has been lacking. Whether lipoprotein (a) increases the already raised atherosclerotic cardiovascular disease (ASCVD) risk in familial hypercholesterolaemia is also more dubious than is often stated. We review the evidence in an attempt to provide greater clarity. RECENT FINDINGS Lipoprotein (a) levels are raised as a consequence of inheriting familial hypercholesterolaemia. The mechanism for this is likely to involve increased hepatic production, probably mediated by PCSK9 augmented by apolipoprotein E. The extent to which raised lipoprotein (a) contributes to the increased ASCVD risk in familial hypercholesterolaemia remains controversial.Unlike, for example, statins which are effective across the whole spectrum of LDL concentrations, drugs in development to specifically lower lipoprotein (a) are likely to be most effective in people with the highest levels of lipoprotein (a). People with familial hypercholesterolaemia may therefore be in the vanguard of those in whom theses agents should be exhibited. SUMMARY Inheritance of familial hypercholesterolaemia undoubtedly increases the likelihood that lipoprotein (a) will be raised. However, in familial hypercholesterolaemia when ASCVD incidence is already greatly increased due to high LDL cholesterol, whether lipoprotein (a) contributes further to this risk cogently needs to be tested with drugs designed to specifically lower lipoprotein (a).
Collapse
Affiliation(s)
- Paul N Durrington
- Cardiovascular Research Group, Faculty of Biology, Medicine and Health, University of Manchester
| | - Bilal Bashir
- Cardiovascular Research Group, Faculty of Biology, Medicine and Health, University of Manchester
- Manchester National Institute for Health Research/Wellcome Trust Clinical Research Facility, Manchester
| | - Deepak Bhatnagar
- Cardiovascular Research Group, Faculty of Biology, Medicine and Health, University of Manchester
| | - Handrean Soran
- Cardiovascular Research Group, Faculty of Biology, Medicine and Health, University of Manchester
- Manchester National Institute for Health Research/Wellcome Trust Clinical Research Facility, Manchester
- Department of Diabetes, Endocrinology and Metabolism, Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW This review summarizes our current understanding of the processes of apolipoprotein(a) secretion, assembly of the Lp(a) particle and removal of Lp(a) from the circulation. We also identify existing knowledge gaps that need to be addressed in future studies. RECENT FINDINGS The Lp(a) particle is assembled in two steps: a noncovalent, lysine-dependent interaction of apo(a) with apoB-100 inside hepatocytes, followed by extracellular covalent association between these two molecules to form circulating apo(a).The production rate of Lp(a) is primarily responsible for the observed inverse correlation between apo(a) isoform size and Lp(a) levels, with a contribution of catabolism restricted to larger Lp(a) isoforms.Factors that affect apoB-100 secretion from hepatocytes also affect apo(a) secretion.The identification of key hepatic receptors involved in Lp(a) clearance in vivo remains unclear, with a role for the LDL receptor seemingly restricted to conditions wherein LDL concentrations are low, Lp(a) is highly elevated and LDL receptor number is maximally upregulated. SUMMARY The key role for production rate of Lp(a) [including secretion and assembly of the Lp(a) particle] rather than its catabolic rate suggests that the most fruitful therapies for Lp(a) reduction should focus on approaches that inhibit production of the particle rather than its removal from circulation.
Collapse
Affiliation(s)
| | - Marlys L Koschinsky
- Robarts Research Institute
- Department of Physiology & Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
11
|
Coassin S, Chemello K, Khantalin I, Forer L, Döttelmayer P, Schönherr S, Grüneis R, Chong-Hong-Fong C, Nativel B, Ramin-Mangata S, Gallo A, Roche M, Muelegger B, Gieger C, Peters A, Zschocke J, Marimoutou C, Meilhac O, Lamina C, Kronenberg F, Blanchard V, Lambert G. Genome-Wide Characterization of a Highly Penetrant Form of Hyperlipoprotein(a)emia Associated With Genetically Elevated Cardiovascular Risk. Circ Genom Precis Med 2022; 15:e003489. [PMID: 35133173 PMCID: PMC9018215 DOI: 10.1161/circgen.121.003489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lp(a) (lipoprotein [a]) is a highly atherogenic lipoprotein strongly associated with coronary artery disease (CAD). Lp(a) concentrations are chiefly determined genetically. Investigation of large pedigrees with extreme Lp(a) using modern whole-genome approaches may unravel the genetic determinants underpinning this pathological phenotype.
Collapse
Affiliation(s)
- Stefan Coassin
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology (S.C., L.F., P.D., S.S., R.G., C.L., F.K.), Medical University of Innsbruck, Austria
| | - Kevin Chemello
- Université de La Réunion, INSERM UMR 1188 DéTROI, Sainte-Clotilde, France (K.C., I.K., C.C.-H.-F., B.N., S.R.-M., A.G., M.R., O.M., V.B., G.L.)
| | - Ilya Khantalin
- Université de La Réunion, INSERM UMR 1188 DéTROI, Sainte-Clotilde, France (K.C., I.K., C.C.-H.-F., B.N., S.R.-M., A.G., M.R., O.M., V.B., G.L.).,CHU de La Réunion, Service de Chirurgie Cardiaque Vasculaire et Thoracique, Saint-Denis, France (I.K.)
| | - Lukas Forer
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology (S.C., L.F., P.D., S.S., R.G., C.L., F.K.), Medical University of Innsbruck, Austria
| | - Patricia Döttelmayer
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology (S.C., L.F., P.D., S.S., R.G., C.L., F.K.), Medical University of Innsbruck, Austria
| | - Sebastian Schönherr
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology (S.C., L.F., P.D., S.S., R.G., C.L., F.K.), Medical University of Innsbruck, Austria
| | - Rebecca Grüneis
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology (S.C., L.F., P.D., S.S., R.G., C.L., F.K.), Medical University of Innsbruck, Austria
| | - Clément Chong-Hong-Fong
- Université de La Réunion, INSERM UMR 1188 DéTROI, Sainte-Clotilde, France (K.C., I.K., C.C.-H.-F., B.N., S.R.-M., A.G., M.R., O.M., V.B., G.L.)
| | - Brice Nativel
- Université de La Réunion, INSERM UMR 1188 DéTROI, Sainte-Clotilde, France (K.C., I.K., C.C.-H.-F., B.N., S.R.-M., A.G., M.R., O.M., V.B., G.L.)
| | - Stéphane Ramin-Mangata
- Université de La Réunion, INSERM UMR 1188 DéTROI, Sainte-Clotilde, France (K.C., I.K., C.C.-H.-F., B.N., S.R.-M., A.G., M.R., O.M., V.B., G.L.)
| | - Antonio Gallo
- Université de La Réunion, INSERM UMR 1188 DéTROI, Sainte-Clotilde, France (K.C., I.K., C.C.-H.-F., B.N., S.R.-M., A.G., M.R., O.M., V.B., G.L.)
| | - Mathias Roche
- Université de La Réunion, INSERM UMR 1188 DéTROI, Sainte-Clotilde, France (K.C., I.K., C.C.-H.-F., B.N., S.R.-M., A.G., M.R., O.M., V.B., G.L.)
| | - Beatrix Muelegger
- Institute of Human Genetics (B.M., J.S.), Medical University of Innsbruck, Austria
| | - Christian Gieger
- Research Unit of Molecular Epidemiology (C.G.), Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,Institute of Epidemiology (C.G., A.P.), Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany (C.G., A.P.)
| | - Annette Peters
- Institute of Epidemiology (C.G., A.P.), Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany (C.G., A.P.)
| | - Johannes Zschocke
- Institute of Human Genetics (B.M., J.S.), Medical University of Innsbruck, Austria
| | | | - Olivier Meilhac
- Université de La Réunion, INSERM UMR 1188 DéTROI, Sainte-Clotilde, France (K.C., I.K., C.C.-H.-F., B.N., S.R.-M., A.G., M.R., O.M., V.B., G.L.).,CHU de La Réunion, CIC EC1410, Saint-Pierre, France (C.M., O.M.)
| | - Claudia Lamina
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology (S.C., L.F., P.D., S.S., R.G., C.L., F.K.), Medical University of Innsbruck, Austria
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology (S.C., L.F., P.D., S.S., R.G., C.L., F.K.), Medical University of Innsbruck, Austria
| | - Valentin Blanchard
- Université de La Réunion, INSERM UMR 1188 DéTROI, Sainte-Clotilde, France (K.C., I.K., C.C.-H.-F., B.N., S.R.-M., A.G., M.R., O.M., V.B., G.L.).,Department of Medicine, Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St Paul's Hospital, University of British Columbia, Vancouver, Canada (V.B.)
| | - Gilles Lambert
- Université de La Réunion, INSERM UMR 1188 DéTROI, Sainte-Clotilde, France (K.C., I.K., C.C.-H.-F., B.N., S.R.-M., A.G., M.R., O.M., V.B., G.L.)
| |
Collapse
|
12
|
Chemello K, Blom DJ, Marais AD, Lambert G, Blanchard V. Genetic and Mechanistic Insights into the Modulation of Circulating Lipoprotein (a) Concentration by Apolipoprotein E Isoforms. Curr Atheroscler Rep 2022; 24:399-405. [PMID: 35355214 DOI: 10.1007/s11883-022-01016-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2022] [Indexed: 01/04/2023]
Abstract
PURPOSE OF REVIEW Lipoprotein (a) [Lp(a)] is a highly atherogenic lipoprotein species. A unique feature of Lp(a) is the strong genetic determination of its concentration. The LPA gene is responsible for up to 90% of the variance in Lp(a), but other genes also have an impact. RECENT FINDINGS Genome-wide associations studies indicate that the APOE gene, encoding apolipoprotein E (apoE), is the second most important locus modulating Lp(a) concentrations. Population studies clearly show that carriers of the apoE2 variant (ε2) display reduced Lp(a) levels, the lowest concentrations being observed in ε2/ε2 homozygotes. This genotype can lead predisposed adults to develop dysbetalipoproteinemia, a lipid disorder characterized by sharp elevations in cholesterol and triglycerides. However, dysbetalipoproteinemia does not significantly modulate circulating Lp(a). Mechanistically, apoE appears to impair the production but not the catabolism of Lp(a). These observations underline the complexity of Lp(a) metabolism and provide key insights into the pathways governing Lp(a) synthesis and secretion.
Collapse
Affiliation(s)
- Kévin Chemello
- Laboratoire Inserm, UMR 1188 DéTROI, Université de La Réunion, 2 Rue Maxime Rivière, 97490, Sainte Clotilde, France
| | - Dirk J Blom
- Division of Lipidology and Cape Heart Institute, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - A David Marais
- Division of Chemical Pathology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Gilles Lambert
- Laboratoire Inserm, UMR 1188 DéTROI, Université de La Réunion, 2 Rue Maxime Rivière, 97490, Sainte Clotilde, France.
| | - Valentin Blanchard
- Laboratoire Inserm, UMR 1188 DéTROI, Université de La Réunion, 2 Rue Maxime Rivière, 97490, Sainte Clotilde, France.,Departments of Medicine, Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St. Paul's Hospital, University of British Columbia, Vancouver, Canada
| |
Collapse
|
13
|
Youssef A, Clark JR, Marcovina SM, Boffa MB, Koschinsky ML. Apo(a) and ApoB Interact Noncovalently Within Hepatocytes: Implications for Regulation of Lp(a) Levels by Modulation of ApoB Secretion. Arterioscler Thromb Vasc Biol 2022; 42:289-304. [PMID: 35045727 DOI: 10.1161/atvbaha.121.317335] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Elevated plasma Lp(a) (lipoprotein(a)) levels are associated with increased risk for atherosclerotic cardiovascular disease and aortic valve stenosis. However, the cell biology of Lp(a) biosynthesis remains poorly understood, with the locations of the noncovalent and covalent steps of Lp(a) assembly unclear and the nature of the apoB-containing particle destined for Lp(a) unknown. We, therefore, asked if apo(a) and apoB interact noncovalently within hepatocytes and if this impacts Lp(a) biosynthesis. METHODS Using human hepatocellular carcinoma cells expressing 17K (17 kringle) apo(a), or a 17KΔLBS7,8 variant with a reduced ability to bind noncovalently to apoB, we performed coimmunoprecipitation, coimmunofluorescence, and proximity ligation assays to document intracellular apo(a):apoB interactions. We used a pulse-chase metabolic labeling approach to measure apo(a) and apoB secretion rates. RESULTS Noncovalent complexes containing apo(a)/apoB are present in lysates from cells expressing 17K but not 17KΔLBS7,8, whereas covalent apo(a)/apoB complexes are absent from lysates. 17K and apoB colocalized intracellularly, overlapping with staining for markers of endoplasmic reticulum trans-Golgi, and early endosomes, and less so with lysosomes. The 17KΔLBS7,8 had lower colocalization with apoB. Proximity ligation assays directly documented intracellular 17K/apoB interactions, which were dramatically reduced for 17KΔLBS7,8. Treatment of cells with PCSK9 (proprotein convertase subtilisin/kexin type 9) enhanced, and lomitapide reduced, apo(a) secretion in a manner dependent on the noncovalent interaction between apo(a) and apoB. Apo(a) secretion was also reduced by siRNA-mediated knockdown of APOB. CONCLUSIONS Our findings explain the coupling of apo(a) and Lp(a)-apoB production observed in human metabolic studies using stable isotopes as well as the ability of agents that inhibit apoB biosynthesis to lower Lp(a) levels.
Collapse
Affiliation(s)
- Amer Youssef
- Robarts Research Institute (A.Y., M.B.B., M.L.K.), Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada
| | - Justin R Clark
- Department of Physiology & Pharmacology (J.R.C., M.L.K.), Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada
| | | | - Michael B Boffa
- Robarts Research Institute (A.Y., M.B.B., M.L.K.), Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada.,Department of Biochemistry (M.B.B.), Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada
| | - Marlys L Koschinsky
- Robarts Research Institute (A.Y., M.B.B., M.L.K.), Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada.,Department of Physiology & Pharmacology (J.R.C., M.L.K.), Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada
| |
Collapse
|
14
|
Durlach V, Bonnefont-Rousselot D, Boccara F, Varret M, Di-Filippo Charcosset M, Cariou B, Valero R, Charriere S, Farnier M, Morange PE, Meilhac O, Lambert G, Moulin P, Gillery P, Beliard-Lasserre S, Bruckert E, Carrié A, Ferrières J, Collet X, Chapman MJ, Anglés-Cano E. Lipoprotein(a): Pathophysiology, measurement, indication and treatment in cardiovascular disease. A consensus statement from the Nouvelle Société Francophone d'Athérosclérose (NSFA). Arch Cardiovasc Dis 2021; 114:828-847. [PMID: 34840125 DOI: 10.1016/j.acvd.2021.10.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 10/19/2022]
Abstract
Lipoprotein(a) is an apolipoprotein B100-containing low-density lipoprotein-like particle that is rich in cholesterol, and is associated with a second major protein, apolipoprotein(a). Apolipoprotein(a) possesses structural similarity to plasminogen but lacks fibrinolytic activity. As a consequence of its composite structure, lipoprotein(a) may: (1) elicit a prothrombotic/antifibrinolytic action favouring clot stability; and (2) enhance atherosclerosis progression via its propensity for retention in the arterial intima, with deposition of its cholesterol load at sites of plaque formation. Equally, lipoprotein(a) may induce inflammation and calcification in the aortic leaflet valve interstitium, leading to calcific aortic valve stenosis. Experimental, epidemiological and genetic evidence support the contention that elevated concentrations of lipoprotein(a) are causally related to atherothrombotic risk and equally to calcific aortic valve stenosis. The plasma concentration of lipoprotein(a) is principally determined by genetic factors, is not influenced by dietary habits, remains essentially constant over the lifetime of a given individual and is the most powerful variable for prediction of lipoprotein(a)-associated cardiovascular risk. However, major interindividual variations (up to 1000-fold) are characteristic of lipoprotein(a) concentrations. In this context, lipoprotein(a) assays, although currently insufficiently standardized, are of considerable interest, not only in stratifying cardiovascular risk, but equally in the clinical follow-up of patients treated with novel lipid-lowering therapies targeted at lipoprotein(a) (e.g. antiapolipoprotein(a) antisense oligonucleotides and small interfering ribonucleic acids) that markedly reduce circulating lipoprotein(a) concentrations. We recommend that lipoprotein(a) be measured once in subjects at high cardiovascular risk with premature coronary heart disease, in familial hypercholesterolaemia, in those with a family history of coronary heart disease and in those with recurrent coronary heart disease despite lipid-lowering treatment. Because of its clinical relevance, the cost of lipoprotein(a) testing should be covered by social security and health authorities.
Collapse
Affiliation(s)
- Vincent Durlach
- Champagne-Ardenne University, UMR CNRS 7369 MEDyC & Cardio-Thoracic Department, Reims University Hospital, 51092 Reims, France
| | - Dominique Bonnefont-Rousselot
- Metabolic Biochemistry Department, Hôpital Pitié-Salpêtrière, AP-HP, 75013 Paris, France; Université de Paris, CNRS, INSERM, UTCBS, 75006 Paris, France
| | - Franck Boccara
- Sorbonne University, GRC n(o) 22, C(2)MV, INSERM UMR_S 938, Centre de Recherche Saint-Antoine, IHU ICAN, 75012 Paris, France; Service de Cardiologie, Hôpital Saint-Antoine, AP-HP, 75012 Paris, France
| | - Mathilde Varret
- Laboratory for Vascular Translational Science (LVTS), INSERM U1148, Centre Hospitalier Universitaire Xavier Bichat, 75018 Paris, France; Université de Paris, 75018 Paris, France
| | - Mathilde Di-Filippo Charcosset
- Hospices Civils de Lyon, UF Dyslipidémies, 69677 Bron, France; Laboratoire CarMen, INSERM, INRA, INSA, Université Claude-Bernard Lyon 1, 69495 Pierre-Bénite, France
| | - Bertrand Cariou
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'Institut du Thorax, 44000 Nantes, France
| | - René Valero
- Endocrinology Department, La Conception Hospital, AP-HM, Aix-Marseille University, INSERM, INRAE, C2VN, 13005 Marseille, France
| | - Sybil Charriere
- Hospices Civils de Lyon, INSERM U1060, Laboratoire CarMeN, Université Lyon 1, 69310 Pierre-Bénite, France
| | - Michel Farnier
- PEC2, EA 7460, University of Bourgogne Franche-Comté, 21079 Dijon, France; Department of Cardiology, CHU Dijon Bourgogne, 21000 Dijon, France
| | - Pierre E Morange
- Aix-Marseille University, INSERM, INRAE, C2VN, 13385 Marseille, France
| | - Olivier Meilhac
- INSERM, UMR 1188 DéTROI, Université de La Réunion, 97744 Saint-Denis de La Réunion, Reunion; CHU de La Réunion, CIC-EC 1410, 97448 Saint-Pierre, Reunion
| | - Gilles Lambert
- INSERM, UMR 1188 DéTROI, Université de La Réunion, 97744 Saint-Denis de La Réunion, Reunion; CHU de La Réunion, CIC-EC 1410, 97448 Saint-Pierre, Reunion
| | - Philippe Moulin
- Hospices Civils de Lyon, INSERM U1060, Laboratoire CarMeN, Université Lyon 1, 69310 Pierre-Bénite, France
| | - Philippe Gillery
- Laboratory of Biochemistry-Pharmacology-Toxicology, Reims University Hospital, University of Reims Champagne-Ardenne, UMR CNRS/URCA n(o) 7369, 51092 Reims, France
| | - Sophie Beliard-Lasserre
- Endocrinology Department, La Conception Hospital, AP-HM, Aix-Marseille University, INSERM, INRAE, C2VN, 13005 Marseille, France
| | - Eric Bruckert
- Service d'Endocrinologie-Métabolisme, Hôpital Pitié-Salpêtrière, AP-HP, 75013 Paris, France; IHU ICAN, Sorbonne University, 75013 Paris, France
| | - Alain Carrié
- Sorbonne University, UMR INSERM 1166, IHU ICAN, Laboratory of Endocrine and Oncological Biochemistry, Obesity and Dyslipidaemia Genetic Unit, Hôpital Pitié-Salpêtrière, AP-HP, 75013 Paris, France
| | - Jean Ferrières
- Department of Cardiology and INSERM UMR 1295, Rangueil University Hospital, TSA 50032, 31059 Toulouse, France
| | - Xavier Collet
- INSERM U1048, Institute of Metabolic and Cardiovascular Diseases, Rangueil University Hospital, BP 84225, 31432 Toulouse, France
| | - M John Chapman
- Sorbonne University, Hôpital Pitié-Salpêtrière and National Institute for Health and Medical Research (INSERM), 75013 Paris, France
| | - Eduardo Anglés-Cano
- Université de Paris, INSERM, Innovative Therapies in Haemostasis, 75006 Paris, France.
| |
Collapse
|
15
|
Ruscica M, Sirtori CR, Corsini A, Watts GF, Sahebkar A. Lipoprotein(a): Knowns, unknowns and uncertainties. Pharmacol Res 2021; 173:105812. [PMID: 34450317 DOI: 10.1016/j.phrs.2021.105812] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023]
Abstract
Over the last 10 years, there have been advances on several aspects of lipoprotein(a) which are reviewed in the present article. Since the standard immunoassays for measuring lipoprotein(a) are not fully apo(a) isoform-insensitive, the application of an LC-MS/MS method for assaying molar concentrations of lipoprotein(a) has been advocated. Genome wide association, epidemiological, and clinical studies have established high lipoprotein(a) as a causal risk factor for atherosclerotic cardiovascular diseases (ASCVD). However, the relative importance of molar concentration, apo(a) isoform size or variants within the LPA gene is still controversial. Lipoprotein(a)-raising single nucleotide polymorphisms has not been shown to add on value in predicting ASCVD beyond lipoprotein(a) concentrations. Although hyperlipoproteinemia(a) represents an important confounder in the diagnosis of familial hypercholesterolemia (FH), it enhances the risk of ASCVD in these patients. Thus, identification of new cases of hyperlipoproteinemia(a) during cascade testing can increase the identification of high-risk individuals. However, it remains unclear whether FH itself increases lipoprotein(a). The ASCVD risk associated with lipoprotein(a) seems to follow a linear gradient across the distribution, regardless of racial subgroups and other risk factors. The inverse association with the risk of developing type 2 diabetes needs consideration as effective lipoprotein(a) lowering therapies are progressing towards the market. Considering that Mendelian randomization analyses have identified the degree of lipoprotein(a)-lowering that is required to achieve ASCVD benefit, the findings of the ongoing outcome trial with pelacarsen will clarify whether dramatically lowering lipoprotein(a) levels can reduce the risk of ASCVD.
Collapse
Affiliation(s)
- Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Italy.
| | - Cesare R Sirtori
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Italy
| | - Alberto Corsini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Italy; IRCCS MultiMedica, Sesto S. Giovanni, Milan, Italy
| | - Gerald F Watts
- School of Medicine, University of Western Australia, Perth, Australia; Lipid Disorders Clinic, Cardiometabolic Services, Department of Cardiology, Royal Perth Hospital, Australia
| | - Amirhossein Sahebkar
- School of Medicine, University of Western Australia, Perth, Australia; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
16
|
Martinez LO, Perret B, Genoux A. Update on proprotein convertase subtilisin/kexin type 9 inhibitors, lipoprotein(a) and cardiovascular risk. Curr Opin Lipidol 2021; 32:324-327. [PMID: 34472540 DOI: 10.1097/mol.0000000000000771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Laurent O Martinez
- I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS)
| | - Bertrand Perret
- I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS)
- Service de Biochimie, Pôle de biologie, Hôpital de Purpan, CHU de Toulouse, Toulouse, France
| | - Annelise Genoux
- I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS)
- Service de Biochimie, Pôle de biologie, Hôpital de Purpan, CHU de Toulouse, Toulouse, France
| |
Collapse
|
17
|
Korneva VA, Kuznetsova TY, Julius U. Modern Approaches to Lower Lipoprotein(a) Concentrations and Consequences for Cardiovascular Diseases. Biomedicines 2021; 9:biomedicines9091271. [PMID: 34572458 PMCID: PMC8469722 DOI: 10.3390/biomedicines9091271] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/09/2021] [Accepted: 09/15/2021] [Indexed: 12/11/2022] Open
Abstract
Lipoprotein(a) (Lp(a)) is a low density lipoprotein particle that is associated with poor cardiovascular prognosis due to pro-atherogenic, pro-thrombotic, pro-inflammatory and pro-oxidative properties. Traditional lipid-lowering therapy does not provide a sufficient Lp(a) reduction. For PCSK9 inhibitors a small reduction of Lp(a) levels could be shown, which was associated with a reduction in cardiovascular events, independently of the effect on LDL cholesterol. Another option is inclisiran, for which no outcome data are available yet. Lipoprotein apheresis acutely and in the long run decreases Lp(a) levels and effectively improves cardiovascular prognosis in high-risk patients who cannot be satisfactorily treated with drugs. New drugs inhibiting the synthesis of apolipoprotein(a) (an antisense oligonucleotide (Pelacarsen) and two siRNA drugs) are studied. Unlike LDL-cholesterol, for Lp(a) no target value has been defined up to now. This overview presents data of modern capabilities of cardiovascular risk reduction by lowering Lp(a) level.
Collapse
Affiliation(s)
- Victoria A. Korneva
- Department of Faculty Therapy, Petrozavodsk State University, Lenin Ave. 33, 185000 Petrozavodsk, Russia;
- Correspondence:
| | | | - Ulrich Julius
- Lipidology and Lipoprotein Apheresis Center, Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany;
| |
Collapse
|
18
|
Blanchard V, Chemello K, Hollstein T, Hong-Fong CC, Schumann F, Grenkowitz T, Nativel B, Coassin S, Croyal M, Kassner U, Lamina C, Steinhagen-Thiessen E, Lambert G. The size of apolipoprotein (a) is an independent determinant of the reduction in lipoprotein (a) induced by PCSK9 inhibitors. Cardiovasc Res 2021; 118:2103-2111. [PMID: 34314498 DOI: 10.1093/cvr/cvab247] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/24/2021] [Indexed: 12/14/2022] Open
Abstract
AIMS Lipoprotein (a) [Lp(a)] is a lipoprotein species causatively associated with atherosclerosis. Unlike statins, PCSK9 inhibitors (PCSK9i) reduce Lp(a), but this reduction is highly variable. Levels of Lp(a) are chiefly governed by the size of its signature protein, apolipoprotein (a) [apo(a)]. Whether this parameter determines some of the reduction in Lp(a) induced by PCSK9i remains unknown. We aimed to investigate if the Lp(a) lowering efficacy of PCSK9i is modulated by the size of apo(a), which is genetically determined by the variable number of KIV domains present on that protein. METHODS AND RESULTS The levels of Lp(a) and the size of apo(a) were assessed in plasma samples from 268 patients before and after treatment with PCSK9i. Patients were recruited at the Outpatient Lipid Clinic of the Charité Hospital (Berlin) between 2015 and 2020. They were hypercholesterolemic at very high CVD risk with LDL-cholesterol levels above therapeutic targets despite maximally tolerated lipid-lowering therapy. Patients received either Alirocumab (75 or 150 mg) or Evolocumab (140 mg) every 2 weeks. Apo(a), apoB100, and apoE concentrations as well as apoE major isoforms were determined by liquid chromatography high-resolution mass spectrometry. Apo(a) isoforms sizes were determined by Western Blot. PCSK9i sharply reduced LDL-cholesterol (-57%), apoB100 (-47%) and Lp(a) (-36%). There was a positive correlation between the size of apo(a) and the relative reduction in Lp(a) induced by PCSK9i (r = 0.363, p = 0.0001). The strength of this association remained unaltered after adjustment for baseline Lp(a) levels and all other potential confounding factors. In patients with two detectable apo(a) isoforms, there was also a positive correlation between the size of apo(a) and the reduction in Lp(a), separately for the smaller (r = 0.350, p = 0.0001) and larger (r = 0.324, p = 0.0003) isoforms. The relative contribution of the larger isoform to the total concentration of apo(a) was reduced from 29% to 15% (p < 0.0001). CONCLUSIONS The size of apo(a) is an independent determinant of the response to PCSK9i. Each additional kringle domain is associated with a 3% additional reduction in Lp(a). This explains in part the variable efficacy of PCSK9i and allows to identify patients who will benefit most from these therapies in terms of Lp(a) lowering. TRANSLATIONAL PERSPECTIVE Unlike statins, PCSK9 inhibitors reduce the circulating levels of the highly atherogenic Lipoprotein (a). The underlying mechanism remains a matter of considerable debate. The size of apo(a), the signature protein of Lp(a), is extremely variable (300 to more than 800 kDa) and depends on its number of kringle domains. We now show that each increase in apo(a) size by one kringle domain is associated with a 3% additional reduction in Lp(a) following PCSK9i treatment and that apo(a) size polymorphism is an independent predictor of the reduction in Lp(a) induced by these drugs. In an era of personalized medicine, this allows to identify patients who will benefit most from PCSK9i in terms of Lp(a) lowering.
Collapse
Affiliation(s)
- Valentin Blanchard
- Université de La Réunion, INSERM UMR 1188 DéTROI, Sainte-Clotilde, France.,Centre for Heart & Lung Innovation, St. Paul's Hospital, Vancouver, Canada; Department of Medicine, UBC, Vancouver, Canada
| | - Kévin Chemello
- Université de La Réunion, INSERM UMR 1188 DéTROI, Sainte-Clotilde, France
| | - Tim Hollstein
- Department of Endocrinology, Campus Virchow-Klinikum, Charité Universitätsmedizin, Berlin, Germany.,Division of Endocrinology, Diabetology and Clinical Nutrition, Department of Internal Medicine 1, University of Kiel, Kiel, Germany
| | | | - Friederike Schumann
- Department of Endocrinology, Campus Virchow-Klinikum, Charité Universitätsmedizin, Berlin, Germany
| | - Thomas Grenkowitz
- Department of Endocrinology, Campus Virchow-Klinikum, Charité Universitätsmedizin, Berlin, Germany
| | - Brice Nativel
- Université de La Réunion, INSERM UMR 1188 DéTROI, Sainte-Clotilde, France
| | - Stefan Coassin
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbrück, Innsbrück, Austria
| | - Mikaël Croyal
- NUN, INRA, CHU Nantes, UMR 1280, PhAN, IMAD, CRNH-O, Nantes, France
| | - Ursula Kassner
- Department of Endocrinology, Campus Virchow-Klinikum, Charité Universitätsmedizin, Berlin, Germany
| | - Claudia Lamina
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbrück, Innsbrück, Austria
| | | | - Gilles Lambert
- Université de La Réunion, INSERM UMR 1188 DéTROI, Sainte-Clotilde, France
| |
Collapse
|
19
|
Chemello K, García-Nafría J, Gallo A, Martín C, Lambert G, Blom D. Lipoprotein metabolism in familial hypercholesterolemia. J Lipid Res 2021; 62:100062. [PMID: 33675717 PMCID: PMC8050012 DOI: 10.1016/j.jlr.2021.100062] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/20/2021] [Accepted: 02/21/2021] [Indexed: 02/06/2023] Open
Abstract
Familial hypercholesterolemia (FH) is one of the most common genetic disorders in humans. It is an extremely atherogenic metabolic disorder characterized by lifelong elevations of circulating LDL-C levels often leading to premature cardiovascular events. In this review, we discuss the clinical phenotypes of heterozygous and homozygous FH, the genetic variants in four genes (LDLR/APOB/PCSK9/LDLRAP1) underpinning the FH phenotype as well as the most recent in vitro experimental approaches used to investigate molecular defects affecting the LDL receptor pathway. In addition, we review perturbations in the metabolism of lipoproteins other than LDL in FH, with a major focus on lipoprotein (a). Finally, we discuss the mode of action and efficacy of many of the currently approved hypocholesterolemic agents used to treat patients with FH, with a special emphasis on the treatment of phenotypically more severe forms of FH.
Collapse
Affiliation(s)
- Kévin Chemello
- Inserm UMR 1188 DéTROI, Université de La Réunion, Saint- Denis de La Réunion, France
| | - Javier García-Nafría
- Institute for Biocomputation and Physics of complex systems (BIFI), University of Zaragoza, Zaragoza, Spain; Laboratorio de Microscopías Avanzadas, University of Zaragoza, Zaragoza, Spain
| | - Antonio Gallo
- Cardiovascular Prevention Unit, Department of Endocrinology and Metabolism, Pitié-Salpêtrière University Hospital, Paris, France; Laboratoire d'imagerie Biomédicale, INSERM 1146, CNRS 7371, Sorbonne University, Paris, France
| | - Cesar Martín
- Instituto Biofisika (UPV/EHU, CSIC) and Departamento de Bioquímica, Universidad del País Vasco UPV/EHU, Bilbao, Spain
| | - Gilles Lambert
- Inserm UMR 1188 DéTROI, Université de La Réunion, Saint- Denis de La Réunion, France.
| | - Dirk Blom
- Hatter Institute for Cardiovascular Research in Africa and Division of Lipidology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|