1
|
Healing the Broken Hearts: A Glimpse on Next Generation Therapeutics. HEARTS 2022. [DOI: 10.3390/hearts3040013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cardiovascular diseases are the leading cause of death worldwide, accounting for 32% of deaths globally and thus representing almost 18 million people according to WHO. Myocardial infarction, the most prevalent adult cardiovascular pathology, affects over half a million people in the USA according to the last records of the AHA. However, not only adult cardiovascular diseases are the most frequent diseases in adulthood, but congenital heart diseases also affect 0.8–1.2% of all births, accounting for mild developmental defects such as atrial septal defects to life-threatening pathologies such as tetralogy of Fallot or permanent common trunk that, if not surgically corrected in early postnatal days, they are incompatible with life. Therefore, both congenital and adult cardiovascular diseases represent an enormous social and economic burden that invariably demands continuous efforts to understand the causes of such cardiovascular defects and develop innovative strategies to correct and/or palliate them. In the next paragraphs, we aim to briefly account for our current understanding of the cellular bases of both congenital and adult cardiovascular diseases, providing a perspective of the plausible lines of action that might eventually result in increasing our understanding of cardiovascular diseases. This analysis will come out with the building blocks for designing novel and innovative therapeutic approaches to healing the broken hearts.
Collapse
|
2
|
Lykov AP, Bondarenko NA, Poveshchenko OV, Kabakov AV, Surovtseva MA, Kim II, Kazakov OV, Poveshchenko AF, Iankaĭte EV. [Therapeutic potential of a biomedical cellular product in rats with lower limb ischaemia]. ANGIOLOGII︠A︡ I SOSUDISTAI︠A︡ KHIRURGII︠A︡ = ANGIOLOGY AND VASCULAR SURGERY 2020; 26:37-43. [PMID: 33063750 DOI: 10.33529/angio2020315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Critical ischaemia of lower limbs is a cause of death and invalidity in the whole world. Stem cells and products of their secretion find wide application in treatment of vascular diseases, including critical ischaemia of the lower limbs. Erythropoietin promotes an increase in the angiogenic potential of stem cells. The authors examined the therapeutic potential of a biomedical cellular product (mesenchymal stem cells and products of their secretion) and mesenchymal stem cells with erythropoietin on the processes of restoration of vessels in the hind legs of Wistar male rats following induction of lower limb critical ischaemia. Mesenchymal stem cells were derived from the bone marrow of male Wistar rats. Critical ischaemia of hind legs was modulated by transaction of the femoral artery. The parameters of microcirculation in the foot were assessed with the help of laser Doppler flowmetry. In the blood serum and crural muscles by means of solid-phase enzyme immunoassay we examined the levels of cytokines, growth factors, and persistent metabolites of nitrogen oxide - nitrites. Muscles morphology and the number of blood vessels were assessed by the findings of histological examination. It was shown that the biomedical cellular product alone and in combination with erythropoietin stimulated angiogenesis. The results of Doppler flowmetry revealed restoration of the parameters of microcirculation in the lower limb by 35-75% of the baseline values. Besides, we observed a decrease of muscle necrosis, connective tissue proliferation, and an increase in the number of the vessels supplying the muscles in the experimental groups. It was also determined that the biomedical cellular product influenced the levels of cytokines in blood serum and crural muscles. Hence, the obtained findings proved the therapeutic potential of the biomedical cellular product in critical ischaemia of lower limbs.
Collapse
Affiliation(s)
- A P Lykov
- Scientific Research Institute of Clinical and Experimental Lymphology, Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia; National Medical Research Centre named after Academician E.N. Meshalkin, Novosibirsk, Russia
| | - N A Bondarenko
- Scientific Research Institute of Clinical and Experimental Lymphology, Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia; National Medical Research Centre named after Academician E.N. Meshalkin, Novosibirsk, Russia
| | - O V Poveshchenko
- Scientific Research Institute of Clinical and Experimental Lymphology, Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia; National Medical Research Centre named after Academician E.N. Meshalkin, Novosibirsk, Russia
| | - A V Kabakov
- National Medical Research Centre named after Academician E.N. Meshalkin, Novosibirsk, Russia
| | - M A Surovtseva
- Scientific Research Institute of Clinical and Experimental Lymphology, Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia; National Medical Research Centre named after Academician E.N. Meshalkin, Novosibirsk, Russia
| | - I I Kim
- Scientific Research Institute of Clinical and Experimental Lymphology, Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia; National Medical Research Centre named after Academician E.N. Meshalkin, Novosibirsk, Russia
| | - O V Kazakov
- National Medical Research Centre named after Academician E.N. Meshalkin, Novosibirsk, Russia
| | - A F Poveshchenko
- Scientific Research Institute of Clinical and Experimental Lymphology, Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia; National Medical Research Centre named after Academician E.N. Meshalkin, Novosibirsk, Russia
| | - E V Iankaĭte
- National Medical Research Centre named after Academician E.N. Meshalkin, Novosibirsk, Russia
| |
Collapse
|
3
|
Imazu M, Fukuda H, Kanzaki H, Amaki M, Hasegawa T, Takahama H, Hitsumoto T, Tsukamoto O, Morita T, Ito S, Kitakaze M. Plasma indoxyl sulfate levels predict cardiovascular events in patients with mild chronic heart failure. Sci Rep 2020; 10:16528. [PMID: 33020564 PMCID: PMC7536212 DOI: 10.1038/s41598-020-73633-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/17/2020] [Indexed: 11/13/2022] Open
Abstract
Indoxyl sulfate (IS) is associated with either chronic kidney disease or renal failure, which may predict cardiovascular events via cardiorenal syndrome. The present study aimed to elucidate whether the plasma levels of IS can predict the occurrence of cardiovascular events in patients with chronic heart failure (CHF) and investigate which causes of CHF leading to cardiovascular events are highly influenced by plasma IS levels. We measured the plasma IS levels in 165 patients with CHF [valvular disease: 78, dilated cardiomyopathy: 29, hypertrophic cardiomyopathy (HCM): 25 and others: 33] admitted to our hospital in 2012, and we followed up these patients for more than 5 years (the median follow-up period: 5.3 years). We measured the plasma IS level in 165 patients with CHF, and Kaplan–Meier analyses showed that high plasma IS levels (≥ 0.79 µg/mL, the median value) could predict the occurrence of cardiovascular events, i.e., cardiovascular death or rehospitalization due to the worsening of CHF. The sub-analyses showed that the high IS level could predict cardiovascular events in patients with CHF due to HCM and that the plasma IS levels were closely associated with left ventricular (LV) dimension, LV systolic dysfunction, and plasma B-type natriuretic peptide levels, rather than LV diastolic dysfunction. Plasma IS level predicts cardiovascular events in patients with CHF, especially those with HCM along with cardiac dysfunction. Besides, IS may become a proper biomarker to predict cardiovascular events in patients with CHF.
Collapse
Affiliation(s)
- Miki Imazu
- Department of Clinical Research and Development, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Hiroki Fukuda
- Department of Clinical Research and Development, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Hideaki Kanzaki
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, Japan
| | - Makoto Amaki
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, Japan
| | - Takuya Hasegawa
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, Japan
| | - Hiroyuki Takahama
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, Japan
| | - Tatsuro Hitsumoto
- Department of Clinical Research and Development, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Osamu Tsukamoto
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan
| | - Toshisuke Morita
- Department of Laboratory Medicine, Toho University Omori Medical Center, Tokyo, Japan
| | - Shin Ito
- Department of Clinical Research and Development, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Masafumi Kitakaze
- Department of Clinical Research and Development, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan.
| |
Collapse
|
4
|
Pourtaji A, Jahani V, Sahebkar A, Sathyapalan T, Mohammadpour AH. Application of Erythropoietin in Chronic Heart Failure Treatment. Mini Rev Med Chem 2020; 20:2080-2089. [PMID: 32723269 DOI: 10.2174/1389557520999200728155543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 02/17/2020] [Accepted: 04/22/2020] [Indexed: 11/22/2022]
Abstract
Heart Failure (HF) is recognized as an important public health concern worldwide, especially in developed countries, due to its high rate of morbidity and mortality. Although new pharmacological and non-pharmacological agents have improved the clinical sequelae of HF in patients, its mortality remains high, especially among the elderly. Erythropoietin (EPO), a glycoprotein, besides its traditional role in promoting erythropoiesis and production of erythroid progenitors, its beneficial role in reducing infarct area and improving heart function through EPO-induced antiapoptotic and antioxidant effects have been increasingly recognized. This review gathers the evidence to date about the effectiveness of EPO in HF patients. In addition to the growing evidence of EPO in the treatment of HF in the animal studies for improving cardiac function and infarct size, more clinical studies are needed to assess the role of EPO treatment in the management of HF.
Collapse
Affiliation(s)
- Atena Pourtaji
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vajiheh Jahani
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, York Y0105DD, United Kingdom
| | | |
Collapse
|
5
|
AST-120, an Adsorbent of Uremic Toxins, Improves the Pathophysiology of Heart Failure in Conscious Dogs. Cardiovasc Drugs Ther 2019; 33:277-286. [PMID: 30903544 DOI: 10.1007/s10557-019-06875-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
PURPOSE Several lines of evidence suggest that renal dysfunction is associated with cardiovascular toxicity through the action of uremic toxins. The levels of those uremic toxins can be reportedly reduced by the spherical carbon adsorbent AST-120. Because heart failure (HF) causes renal dysfunction by low cardiac output and renal edema, the removal of uremic toxins could be cardioprotective. METHOD To determine whether blood levels of the uremic toxin indoxyl sulfate (IS) increase in HF and whether AST-120 can reduce those levels and improve HF. We induced HF in 12 beagle dogs by 6 weeks of rapid right ventricular pacing at 230 beats per min. We treated six dogs with a 1-g/kg/day oral dosage of AST-120 for 14 days from week 4 after the start of rapid ventricular pacing. The other six dogs did not receive any treatment (control group). RESULTS In the untreated dogs, IS levels increased as cardiac function deteriorated. In contrast, plasma IS levels in the treated dogs decreased to baseline levels, with both left ventricular fractional shortening and pulmonary capillary wedge pressure also improving when compared with untreated dogs. Finally, AST-120 treatment was shown to reduce both myocardial apoptosis and fibrosis along with decreases in extracellular signal-regulated kinase phosphorylation, the Bax/Bcl-2 ratio, and TGF-β1 expression and increases in AKT phosphorylation. CONCLUSIONS IS levels are increased in HF. AST-120 treatment reduces the levels of IS and improves the pathophysiology of HF in a canine model. AST-120 could be a novel candidate for the treatment of HF.
Collapse
|
6
|
Seo WW, Suh JW, Oh IY, Yoon CH, Cho YS, Youn TJ, Chae IH, Choi DJ. Efficacy of IntraCoronary Erythropoietin Delivery BEfore Reperfusion-Gauging Infarct Size in Patients with Acute ST-segment Elevation Myocardial Infarction (ICEBERG). Int Heart J 2019; 60:255-263. [PMID: 30799375 DOI: 10.1536/ihj.18-035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Previous clinical studies have shown inconsistent results regarding the effect of erythropoietin in ST-segment elevation myocardial infarction (STEMI). This study investigated whether directed intracoronary infusion of darbepoetin-α into ischemic myocardium before reperfusion would reduce infarct size or post-infarct remodeling in STEMI patients.Eighty STEMI patients received one of the following treatments simultaneously with the first balloon inflation: intracoronary darbepoetin-α 300 μg (n = 40) or saline (n = 40), administered via the over-the-wire balloon system. The primary endpoint was infarct size estimated by serial cardiac enzyme levels after procedure. The secondary endpoints were (1) infarct size and proportion of salvaged myocardium measured with cardiac magnetic resonance (CMR) at baseline; (2) post-infarct remodeling (PIR), defined as an increase in left ventricular end-diastolic volume more than 20% at 4 months compared to the baseline on CMR; and (3) composite cardiovascular endpoints assessed at 4 months.The peak CK-MB [median 270.0 (interquartile range 139.8-356.3) versus 231.5 (131.0-408.5) ng/mL, P = 0.55] and troponin-I [128.5 (63.5-227.8) versus 109.0 (43.8-220.0) ng/mL, P = 0.52) ] did not differ between the darbepoetin-α and control group. Fifty-seven patients completed the baseline and 4-month follow-up CMR. There were no differences in infarct size [30.6 (18.1-49.8) versus 31.5 (22.5-47.3) cm3, P = 0.91), proportion of salvaged myocardium [26.7% (15.9-42.6%) versus 35.8% (22.4-48.8%), P = 0.12) or PIR (8.0% versus 6.7%, P = 0.62) between the two groups. Composite cardiovascular outcomes did not differ between the two groups.In conclusion, administration of intracoronary darbepoetin-α before reperfusion did not reduce infarct size or post-infarct remodeling in STEMI patients.
Collapse
Affiliation(s)
- Won-Woo Seo
- Division of Cardiology, Department of Internal Medicine, Kangdong Sacred Heart Hospital
| | - Jung-Won Suh
- Department of Internal Medicine, Seoul National University College of Medicine, Cardiovascular Center, Seoul National University Bundang Hospital
| | - Il-Young Oh
- Department of Internal Medicine, Seoul National University College of Medicine, Cardiovascular Center, Seoul National University Bundang Hospital
| | - Chang-Hwan Yoon
- Department of Internal Medicine, Seoul National University College of Medicine, Cardiovascular Center, Seoul National University Bundang Hospital
| | - Young-Seok Cho
- Department of Internal Medicine, Seoul National University College of Medicine, Cardiovascular Center, Seoul National University Bundang Hospital
| | - Tae-Jin Youn
- Department of Internal Medicine, Seoul National University College of Medicine, Cardiovascular Center, Seoul National University Bundang Hospital
| | - In-Ho Chae
- Department of Internal Medicine, Seoul National University College of Medicine, Cardiovascular Center, Seoul National University Bundang Hospital
| | - Dong-Ju Choi
- Department of Internal Medicine, Seoul National University College of Medicine, Cardiovascular Center, Seoul National University Bundang Hospital
| |
Collapse
|
7
|
Effect of Erythropoietin Administration on Myocardial Viability and Coronary Microvascular Dysfunction in Anterior Acute Myocardial Infarction: Randomized Controlled Trial in the Japanese Population. Cardiol Ther 2018; 7:151-162. [PMID: 30353280 PMCID: PMC6251819 DOI: 10.1007/s40119-018-0122-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Indexed: 01/29/2023] Open
Abstract
Introduction Cardioprotective effects of erythropoietin (EPO) on infarcted myocardium in acute myocardial infarction (AMI) patients have been inconclusive. This study aimed to assess the effect of EPO administration on coronary microvascular dysfunction (CMD) and myocardial viability in anterior AMI. We also evaluated the serial changes in CMD and cardiac remodeling in these patients. Methods Patients with a successful percutaneous coronary intervention (PCI) for the first anterior AMI were randomly assigned to two groups (EPO and control groups), and given single-dose intravenous administration of recombinant human EPO (12,000 IU) or saline after PCI. Delayed-enhanced cardiac magnetic resonance imaging was performed at 1 week after AMI to assess the average of transmural extent of infarction and infarct size. Coronary flow velocity reserve (CFVR) of the left anterior descending coronary artery was measured by Doppler echocardiography at 1 week, 1 month, and 8 months after AMI. All patients underwent clinical follow-up for the assessment of cardiac remodeling. Results Sixty-one patients (EPO 32, control 29) were eligible for analysis. EPO group (2.4 ± 1.2) had a tendency of smaller transmural extent of infarction than that of control group (2.9 ± 1.1; p = 0.063). CFVR-8 months improved significantly in EPO group (2.9 ± 0.6) compared to control group (2.6 ± 0.5; p = 0.04). Left atrial (LA) volume − 8 months was significantly lower in EPO group (47 ± 11) than those of control group (65 ± 20; p = 0.004). Conclusions A single medium dose of EPO could have a favorable effect on CMD and LA remodeling in the chronic phase of anterior AMI. Trial Registration The institutional ethics committee of Wakayama Medical University, identifier, 1125. Electronic supplementary material The online version of this article (10.1007/s40119-018-0122-1) contains supplementary material, which is available to authorized users.
Collapse
|
8
|
Thiagarajan H, Thiyagamoorthy U, Shanmugham I, Dharmalingam Nandagopal G, Kaliyaperumal A. Angiogenic growth factors in myocardial infarction: a critical appraisal. Heart Fail Rev 2018. [PMID: 28639006 DOI: 10.1007/s10741-017-9630-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In the recent past, substantial advances have been made in the treatment of myocardial infarction (MI). Despite the impact of these positive developments, MI remains to be a leading cause of morbidity as well as mortality. An interesting hypothesis is that the development of new blood vessels (angiogenesis) or the remodeling of preexisting collaterals may form natural bypasses that could compensate for the occlusion of an epicardial coronary artery. A number of angiogenic factors are proven to be elicited during MI. Exogenous supplementation of these growth factors either in the form of recombinant protein or gene would enhance the collateral vessel formation and thereby improve the outcome after MI. The aim of this review is to describe the nature and potentials of different angiogenic factors, their expression, their efficacy in animal studies, and clinical trials pertaining to MI.
Collapse
Affiliation(s)
- Hemalatha Thiagarajan
- Department of Biological Materials, CSIR - Central Leather Research Institute, Adyar, Chennai, 600020, India.
| | - UmaMaheswari Thiyagamoorthy
- Department of Food Science and Nutrition, Home Science College and Research Institute, Tamil Nadu Agricultural University, Madurai, 625 014, India
| | - Iswariya Shanmugham
- Department of Biological Materials, CSIR - Central Leather Research Institute, Adyar, Chennai, 600020, India
| | | | | |
Collapse
|
9
|
Matsutani D, Sakamoto M, Kayama Y, Takeda N, Horiuchi R, Utsunomiya K. Effect of canagliflozin on left ventricular diastolic function in patients with type 2 diabetes. Cardiovasc Diabetol 2018; 17:73. [PMID: 29788955 PMCID: PMC5963148 DOI: 10.1186/s12933-018-0717-9] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/17/2018] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) greatly increases the risks of cardiovascular disease and heart failure. In particular, left ventricular diastolic dysfunction that develops from the early stages of T2DM is an important factor in the onset and exacerbation of heart failure. The effect of sodium-glucose cotransporter 2 inhibitors on left ventricular diastolic function has not been elucidated. We have performed the first prospective study on the effects of canagliflozin on left ventricular diastolic function in T2DM. METHODS This study was performed to evaluate the effects of additional treatment with canagliflozin for 3 months on left ventricular diastolic function in patients with T2DM. A total of 38 patients with T2DM were consecutively recruited for this study. Left ventricular diastolic function was assessed by echocardiography. The primary study outcome was a change in the septal E/e' as a parameter of left ventricular diastolic function. RESULTS A total of 37 patients (25 males and 12 females) were included in the analysis. Mean age of participants was 64.2 ± 8.1 years (mean ± SD), mean duration of diabetes was 13.5 ± 8.1 years, and mean HbA1c was 7.9 ± 0.7%. Of the participants, 86.5% had hypertension, 100% had dyslipidemia, and 32.4% had cardiovascular disease. Canagliflozin significantly improved left ventricular diastolic function (septal E/e' ratio 13.7 ± 3.5-12.1 ± 2.8, p = 0.001). Furthermore, among the various parameters that changed through the administration of canagliflozin, only changes in hemoglobin significantly correlated with changes in the septal E/e' ratio (p = 0.002). In multiple regression analysis, changes in hemoglobin were also revealed to be an independent predictive factor for changes in the septal E/e' ratio. CONCLUSIONS This study showed for the first time that canagliflozin could improve left ventricular diastolic function within 3 months in patients with T2DM. The benefit was especially apparent in patients with substantially improved hemoglobin values. Trial registration UMIN Clinical Trials Registry UMIN000028141.
Collapse
Affiliation(s)
- Daisuke Matsutani
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Masaya Sakamoto
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan.
| | - Yosuke Kayama
- Department of Cardiology, Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Norihiko Takeda
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan
| | - Ryuzo Horiuchi
- Department of Pathology, Tsuruoka Kyoritsu Hospital, 9-34, Fumizonomachi, Tsuruoka-shi, Yamagata, 997-0816, Japan
| | - Kazunori Utsunomiya
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| |
Collapse
|
10
|
Minamino T, Higo S, Araki R, Hikoso S, Nakatani D, Suzuki H, Yamada T, Okutsu M, Yamamoto K, Fujio Y, Ishida Y, Ozawa T, Kato K, Toba K, Aizawa Y, Komuro I. Low-Dose Erythropoietin in Patients With ST-Segment Elevation Myocardial Infarction (EPO-AMI-II) - A Randomized Controlled Clinical Trial. Circ J 2018; 82:1083-1091. [PMID: 29398672 DOI: 10.1253/circj.cj-17-0889] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
BACKGROUND Erythropoietin (EPO) has antiapoptotic and tissue-protective effects, but previous clinical studies using high-dose EPO have not shown cardioprotective effects, probably because of platelet activation and a lack of knowledge regarding the optimal dose. In contrast, a small pilot study using low-dose EPO has shown improvement in left ventricular function without adverse cardiovascular events. METHODS AND RESULTS We performed a multicenter (25 hospitals), prospective, randomized, double-blind, placebo-controlled, dose-finding study to clarify the efficacy and safety of low-dose EPO in patients with ST-segment elevation myocardial infarction (STEMI) under the Evaluation System of Investigational Medical Care of the Ministry of Health, Labor and Welfare of Japan. In total, 198 STEMI patients with low left ventricular ejection fraction (LVEF <50%) were randomly assigned to receive intravenous administration of EPO (6,000 or 12,000 IU) or placebo within 6 h of successful percutaneous coronary intervention. At 6 months, there was no significant dose-response relationship in LVEF improvement among the 3 groups tested (EPO 12,000 IU: 5.4±9.3%, EPO 6,000 IU: 7.3±7.7%, Placebo: 8.1±8.3%, P=0.862). Low-dose EPO also did not improve cardiac function, as evaluated by 99 mTc-MIBI SPECT or NT-proBNP at 6 months and did not increase adverse events. CONCLUSIONS Administration of low-dose EPO did not improve LVEF at 6 months in STEMI patients (UMIN000005721).
Collapse
Affiliation(s)
- Tetsuo Minamino
- Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University
| | - Shuichiro Higo
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine
| | - Ryo Araki
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine
| | - Shungo Hikoso
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine
| | - Daisaku Nakatani
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine
| | - Hiroshi Suzuki
- Department of Cardiology, Showa University Fujigaoka Hospital
| | | | - Masaaki Okutsu
- Department of Internal Medicine, Kawasaki Medical School General Medical Center
| | - Kouji Yamamoto
- Department of Medical Statistics, Osaka City University Graduate School of Medicine
| | - Yasushi Fujio
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Yoshio Ishida
- Department of Internal Medicine, Kaizuka City Hospital
| | - Takuya Ozawa
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences
| | - Kiminori Kato
- Department of Laboratory Medicine and Clinical Epidemiology for Prevention of Noncommunicable Diseases, Niigata University Graduate School of Medical and Dental Sciences
| | - Ken Toba
- Department of Hematology, Tachikawa Medical Center
| | - Yoshifusa Aizawa
- Department of Research and Development, Tachikawa Medical Center
| | - Issei Komuro
- Department of Cardiovascular Medicine, Tokyo University Graduate School of Medicine
| |
Collapse
|
11
|
Stein A, Mohr F, Laux M, Thieme S, Lorenz B, Cetindis M, Hackl J, Groha P, Demetz G, Schulz S, Mehilli J, Schömig A, Kastrati A, Ott I. Erythropoietin-induced progenitor cell mobilisation in patients with acute ST-segment-elevation myocardial infarction and restenosis. Thromb Haemost 2017; 107:769-74. [DOI: 10.1160/th11-08-0552] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 01/05/2012] [Indexed: 01/24/2023]
Abstract
SummaryErythropoietin improves myocardial function and enhances re-endothelialisation. Aim of this study was to analyse progenitor cell mobilisation and restenosis in patients from the Regeneration of Vital Myocardium in ST-Segment Elevation Myocardial Infarction by Erythropoietin (REVIVAL-3) study. Patients with STEMI undergoing percutaneous coronary intervention (PCI) were randomly assigned to Epoetin beta (EPO) (n=68) or placebo (n=70). Drug-eluting stents (DES) were utilised in 93% of patients receiving EPO and in 95% of patients receiving placebo (p=0.83). Serial venous blood samples were drawn; CD133+ progenitor cells were quantified by four-colour flow cytometry and cytokines interleukin (IL)-1β, IL-6, IL-8, IL-10, IL-12 and tumour necrosis factor (TNF) alpha were analysed by cytometric bead array. Fortyeight hours after PCI a significant increase in CD133+ progenitor cells was observed in the EPO group. Yet, no differences in plasma cytokines were found. Quantitative coronary angiography after six months revealed an increase in segment diameter stenosis in the EPO group (32 ± 19% vs. 26 ± 14%, p=0.046). However, this increase in neointima generation was not associated with progenitor cell mobilisation. EPO in patients with STEMI treated with PCI is associated with an increase in diameter stenosis that is not associated with circulating progenitor cells.ClinicalTrials.gov Identifier: NCT00390832
Collapse
|
12
|
Salehi A, Zhang JH, Obenaus A. Response of the cerebral vasculature following traumatic brain injury. J Cereb Blood Flow Metab 2017; 37:2320-2339. [PMID: 28378621 PMCID: PMC5531360 DOI: 10.1177/0271678x17701460] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The critical role of the vasculature and its repair in neurological disease states is beginning to emerge particularly for stroke, dementia, epilepsy, Parkinson's disease, tumors and others. However, little attention has been focused on how the cerebral vasculature responds following traumatic brain injury (TBI). TBI often results in significant injury to the vasculature in the brain with subsequent cerebral hypoperfusion, ischemia, hypoxia, hemorrhage, blood-brain barrier disruption and edema. The sequalae that follow TBI result in neurological dysfunction across a host of physiological and psychological domains. Given the importance of restoring vascular function after injury, emerging research has focused on understanding the vascular response after TBI and the key cellular and molecular components of vascular repair. A more complete understanding of vascular repair mechanisms are needed and could lead to development of new vasculogenic therapies, not only for TBI but potentially vascular-related brain injuries. In this review, we delineate the vascular effects of TBI, its temporal response to injury and putative biomarkers for arterial and venous repair in TBI. We highlight several molecular pathways that may play a significant role in vascular repair after brain injury.
Collapse
Affiliation(s)
- Arjang Salehi
- 1 Cell, Molecular and Developmental Biology Program, University of California, Riverside, CA, USA.,2 Department of Pediatrics, Loma Linda University, Loma Linda, CA, USA
| | - John H Zhang
- 3 Department of Physiology and Pharmacology Loma Linda University School of Medicine, CA, USA.,4 Department of Anesthesiology Loma Linda University School of Medicine, CA, USA.,5 Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Andre Obenaus
- 1 Cell, Molecular and Developmental Biology Program, University of California, Riverside, CA, USA.,2 Department of Pediatrics, Loma Linda University, Loma Linda, CA, USA.,6 Department of Pediatrics, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
13
|
Imazu M, Takahama H, Shindo K, Hasegawa T, Kanzaki H, Anzai T, Asanuma H, Morita T, Asakura M, Kitakaze M. A Pathophysiological Role of Plasma Indoxyl Sulfate in Patients with Heart Failure. INT J GERONTOL 2017. [DOI: 10.1016/j.ijge.2016.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
14
|
Oba T, Yasukawa H, Nagata T, Kyogoku S, Minami T, Nishihara M, Ohshima H, Mawatari K, Nohara S, Takahashi J, Sugi Y, Igata S, Iwamoto Y, Kai H, Matsuoka H, Takano M, Aoki H, Fukumoto Y, Imaizumi T. Renal Nerve-Mediated Erythropoietin Release Confers Cardioprotection During Remote Ischemic Preconditioning. Circ J 2015; 79:1557-67. [PMID: 25833080 DOI: 10.1253/circj.cj-14-1171] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Remote ischemic preconditioning (RIPC) induced by transient limb ischemia is a powerful innate mechanism of cardioprotection against ischemia. Several described mechanisms explain how RIPC may act through neural pathways or humoral factors; however, the mechanistic pathway linking the remote organ to the heart has not yet been fully elucidated. This study aimed to investigate the mechanisms underlying the RIPC-induced production of Janus kinase (JAK)-signal transducer and activator of the transcription (STAT)-activating cytokines and cardioprotection by using mouse and human models of RIPC. METHODS AND RESULTS Screened circulating cardioprotective JAK-STAT-activating cytokines in mice unexpectedly revealed increased serum erythropoietin (EPO) levels after RIP induced by transient ischemia. In mice, RIPC rapidly upregulated EPO mRNA and its main transcriptional factor, hypoxia-inducible factor-1α (HIF1α), in the kidney. Laser Doppler blood flowmetry revealed a prompt reduction of renal blood flow (RBF) after RIPC. RIPC activated cardioprotective signaling pathways and the anti-apoptotic Bcl-xL pathway in the heart, and reduced infarct size. In mice, these effects were abolished by administration of an EPO-neutralizing antibody. Renal nerve denervation also abolished RIPC-induced RBF reduction, EPO production, and cardioprotection. In humans, transient limb ischemia of the upper arm reduced RBF and increased serum EPO levels. CONCLUSIONS Based on the present data, we propose a novel RIPC mechanism in which inhibition of infarct size by RIPC is produced through the renal nerve-mediated reduction of RBF associated with activation of the HIF1α-EPO pathway.
Collapse
Affiliation(s)
- Toyoharu Oba
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Tsai TH, Lu CH, Wallace CG, Chang WN, Chen SF, Huang CR, Tsai NW, Lan MY, Sung PH, Liu CF, Yip HK. Erythropoietin improves long-term neurological outcome in acute ischemic stroke patients: a randomized, prospective, placebo-controlled clinical trial. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:49. [PMID: 25888250 PMCID: PMC4349661 DOI: 10.1186/s13054-015-0761-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 01/20/2015] [Indexed: 11/25/2022]
Abstract
Introduction Mortality and disability following ischemic stroke (IS) remains unacceptably high with respect to the conventional therapies. This study tested the effect of erythropoietin (EPO) on long-term neurological outcome in patients after acute IS. This study aimed to evaluate the safety and efficacy of two consecutive doses of EPO (5,000 IU/dose, subcutaneously administered at 48 hours and 72 hours after acute IS) on improving the 90-day combined endpoint of recurrent stroke or death that has been previously reported. A secondary objective was to evaluate the long-term (that is, five years) outcome of patients who received EPO. Methods This was a prospective, randomized, placebo-controlled trial that was conducted between October 2008 and March 2010 in a tertiary referral center. IS stroke patients who were eligible for EPO therapy were enrolled into the study. Results The results showed that long-term recurrent stroke and mortality did not differ between group 1 (placebo-control; n = 71) and group 2 (EPO-treated; n = 71). Long-term Barthel index of <35 (defining a severe neurological deficit) was lower in group 2 than group 1 (P = 0.007). Multiple-stepwise logistic-regression analysis showed that EPO therapy was significantly and independently predictive of freedom from a Barthel index of <35 (P = 0.029). Long-term major adverse neurological event (MANE; defined as: death, recurrent stroke, or long-term Barthel index < 35) was lower in group 2 than group 1 (P = 0.04). Log-Rank test showed that MANE-free rate was higher in group 2 than group 1 (P = 0.031). Multiple-stepwise Cox-regression analysis showed that EPO therapy and higher Barthel Index at day 90 were independently predictive of freedom from long-term MANE (all P <0.04). Conclusion EPO therapy significantly improved long-term neurological outcomes in patients after IS. Trial registration ISRCTN71371114. Registered 10 October 2008.
Collapse
Affiliation(s)
- Tzu-Hsien Tsai
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 123, Ta Pei Road, Niao Sung Hsiang, Kaohsiung, Hsien, 83301, Taiwan.
| | - Cheng-Hsien Lu
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 123, Ta Pei Road, Niao Sung Hsiang, Kaohsiung, Hsien, 83301, Taiwan.
| | - Christopher Glenn Wallace
- Department of Plastic Surgery, University Hospital of South Manchester, Southmoor Road, Manchester, M23 9LT, UK.
| | - Wen-Neng Chang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 123, Ta Pei Road, Niao Sung Hsiang, Kaohsiung, Hsien, 83301, Taiwan.
| | - Shu-Feng Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 123, Ta Pei Road, Niao Sung Hsiang, Kaohsiung, Hsien, 83301, Taiwan.
| | - Chi-Ren Huang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 123, Ta Pei Road, Niao Sung Hsiang, Kaohsiung, Hsien, 83301, Taiwan.
| | - Nai-Wen Tsai
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 123, Ta Pei Road, Niao Sung Hsiang, Kaohsiung, Hsien, 83301, Taiwan.
| | - Min-Yu Lan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 123, Ta Pei Road, Niao Sung Hsiang, Kaohsiung, Hsien, 83301, Taiwan.
| | - Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 123, Ta Pei Road, Niao Sung Hsiang, Kaohsiung, Hsien, 83301, Taiwan.
| | - Chu-Feng Liu
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 123, Ta Pei Road, Niao Sung Hsiang, Kaohsiung, Hsien, 83301, Taiwan.
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 123, Ta Pei Road, Niao Sung Hsiang, Kaohsiung, Hsien, 83301, Taiwan. .,Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 123, Ta Pei Road, Niao Sung Hsiang, Kaohsiung, Hsien, 83301, Taiwan. .,Institute of Shock Wave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, 123, Ta Pei Road, Niao Sung Hsiang, Kaohsiung, Hsien, 83301, Taiwan. .,Chang Gung University College of Medicine, 123, Ta Pei Road, Niao Sung Hsiang, Kaohsiung, Hsien, 83301, Taiwan.
| |
Collapse
|
16
|
Piatkowski A, Grieb G, Simons D, Bernhagen J, van der Hulst RR. Endothelial progenitor cells--potential new avenues to improve neoangiogenesis and reendothelialization. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 306:43-81. [PMID: 24016523 DOI: 10.1016/b978-0-12-407694-5.00002-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The term endothelial progenitor cell (EPC) was established more than 10 years ago and is used to refer to a group of circulating cells that display endothelial lineage qualities and are able to home to areas of ischemia or vascular injury and to facilitate the repair of damaged blood vessels or develop new vessels as needed. This chapter reviews the current lineage relationships among all the cells called EPC and will clear the terminology used in EPC research. Furthermore, an overview of the clinical and in vitro research, as well as cytokine and drug interactions and potential EPC applications, is given.
Collapse
Affiliation(s)
- Andrzej Piatkowski
- Department of Plastic Surgery, academisch ziekenhuis Maastricht, MUMC+, Maastricht, The Netherlands.
| | | | | | | | | |
Collapse
|
17
|
Recombinant human erythropoietin improves the neurofunctional recovery of rats following traumatic brain injury via an increase in circulating endothelial progenitor cells. Transl Stroke Res 2014; 6:50-9. [PMID: 25085436 DOI: 10.1007/s12975-014-0362-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 06/17/2014] [Accepted: 07/14/2014] [Indexed: 12/12/2022]
Abstract
Previous studies show that circulating endothelial progenitor cells (EPCs) promote angiogenesis, which is a process associated with improved recovery in animal models of traumatic brain injury (TBI), and that recombinant human erythropoietin (rhEPO) plays a protective role following stroke. Thus, it was hypothesized that rhEPO would enhance recovery following brain injury in a rat model of TBI via an increase in the mobilization of EPCs and, subsequently, in angiogenesis. Flow cytometry assays using CD34- and CD133-specific antibodies were utilized to identify alterations in EPC levels, CD31 and CD34 antibody-stained brain tissue sections were used to quantify angiogenesis, and the Morris water maze (MWM) test and the modified Neurological Severity Score (mNSS) test were used to evaluate behavioral recovery. Compared with saline treatment, treatment with rhEPO significantly increased the number of circulating EPCs on days 1, 4, 7, and 14 (P < 0.05), improved spatial learning ability on days 24 and 25 (P < 0.05), and enhanced memory recovery on day 26 (P < 0.05). Moreover, rhEPO treatment decreased mNSS assessment scores on days 14, 21, and 25 (P < 0.05). There was a strong correlation between levels of circulating EPCs and CD34- and CD31-positive cells within the injured boundary zone (CD34(+) r = 0.910, P < 0.01; CD31(+) r = 0.894, P < 0.01) and the ipsilateral hippocampus (CD34(+) r = 0.841, P < 0.01; CD31(+) r = 0.835, P < 0.01). The present data demonstrate that rhEPO treatment improved functional outcomes in rats following TBI via an increase in the mobilization of EPCs and in subsequent angiogenesis.
Collapse
|
18
|
Abstract
The suppressors of cytokine signaling (SOCS) family of proteins are cytokine-inducible inhibitors of Janus kinase (JAK)-signal transducer and activator of the transcription (STAT) signaling pathways. Among the family, SOCS1 and SOCS3 potently suppress cytokine actions by inhibiting JAK kinase activities. The generation of mice lacking individual SOCS genes has been instrumental in defining the role of individual SOCS proteins in specific cytokine pathways in vivo; SOCS1 is an essential negative regulator of interferon-γ (IFNγ) and SOCS3 is an essential negative regulator of leukemia inhibitory factor (LIF). JAK-STAT3 activating cytokines have exhibited cardioprotective roles in the heart. The cardiac-specific deletion of SOCS3 enhances the activation of cardioprotective signaling pathways, inhibits myocardial apoptosis and fibrosis and results in the inhibition of left ventricular remodeling after myocardial infarction (MI). We propose that myocardial SOCS3 is a key determinant of left ventricular remodeling after MI, and SOCS3 may serve as a novel therapeutic target to prevent left ventricular remodeling after MI. In this review, we discuss the signaling pathways mediated by JAK-STAT and SOCS proteins and their roles in the development of myocardial injury under stress (e.g., pressure overload, viral infection and ischemia).
Collapse
Affiliation(s)
- Hideo Yasukawa
- Division of Cardiovascular Medicine; Department of Internal Medicine; Kurume University School of Medicine; Kurume, Japan ; Cardiovascular Research Institute; Kurume University School of Medicine; Kurume, Japan
| | | | | | | |
Collapse
|
19
|
Mastromarino V, Musumeci MB, Conti E, Tocci G, Volpe M. Erythropoietin in cardiac disease: effective or harmful? J Cardiovasc Med (Hagerstown) 2014; 14:870-8. [PMID: 23811836 DOI: 10.2459/jcm.0b013e328362c6ae] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Discovered as the primary regulator of erythropoiesis, erythropoietin (EPO) is involved in a broad variety of processes that play a major role in cardiovascular diseases. In particular, the antiapoptotic and pro-angiogenic properties of EPO have prompted a growing interest in the use of EPO for the treatment of myocardial infarction and heart failure. In a variety of myocardial ischemic injury animal models, EPO administration has been shown to acutely reduce infarct size, thereby preserving ventricular function. In addition, cardiac long-term effects of EPO, such as prevention of ventricular remodeling and heart failure, have been described. In recent years, several trials have tested the effects of recombinant human erythropoietin (rhEPO) administration in patients with myocardial infarction and chronic heart failure, in the attempt to translate the cardioprotection found in experimental models to human patients. In view of the generally controversial findings, in this updated review we provide an overview of the results of the most recent trials that investigated the role of erythropoiesis-stimulating agents (ESAs), including rhEPO and its analogue darbepoetin, in the treatment of acute myocardial infarction and heart failure. The problems related to safety and tolerability of ESA therapy are also discussed. Our analysis of the available literature demonstrates that the results of clinical studies in patients with cardiac disease are not uniform and the conclusions are contradictory. Further larger prospective studies are required to test clinical efficacy and safety of EPO.
Collapse
Affiliation(s)
- Vittoria Mastromarino
- aCardiology Unit, Department of Clinical and Molecular Medicine, University 'Sapienza', Rome bIRCCS Neuromed Pozzilli (IS), Pozzilli, Italy
| | | | | | | | | |
Collapse
|
20
|
Fokkema ML, Kleijn L, van der Meer P, Belonje AM, Achterhof SK, Hillege HL, van 't Hof A, Jukema JW, Peels HO, Henriques JP, ten Berg JM, Vos J, van Gilst WH, van Veldhuisen DJ, Voors AA. Long term effects of epoetin alfa in patients with ST- elevation myocardial infarction. Cardiovasc Drugs Ther 2014; 27:433-9. [PMID: 23784615 DOI: 10.1007/s10557-013-6470-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE The HEBE III trial showed that epoetin alfa administration in patients with a first ST-elevation myocardial infarction (STEMI) did not improve left ventricular function at 6 weeks after primary percutaneous coronary intervention (PCI). The long term effects of erythropoiesis- stimulating agents on cardiovascular morbidity and mortality are unknown, therefore we evaluated clinical events at 1 year after PCI. METHODS A total of 529 patients with a first STEMI and successful primary PCI were randomized to standard optimal medical treatment (N = 266) or an additional bolus of 60,000 IU epoetin alfa administered intravenously (N = 263) within 3 h after PCI. Analyses were performed by intention to treat. RESULTS At 1 year after STEMI, 485 patients had complete follow-up. The rate of the composite end point of all-cause mortality, re-infarction, target vessel revascularization, stroke and/or heart failure was 6.4 % (N = 15) in the epoetin alfa group and 9.6 % (N = 24) in the control group (p = 0.18). Thromboembolic events were present in 1.3 % (N = 3) of patients in the epoetin alfa group and 2.4 % (N = 6) in the control group. There was no evidence of benefit from epoetin alfa administration in subgroups of patients. CONCLUSIONS Administration of a single bolus of epoetin alfa in patients with STEMI does not result in a reduction of cardiovascular events at 1 year after primary PCI. There was a comparable incidence of thromboembolic complications in both treatment groups, suggesting that epoetin alfa administration is safe at long term.
Collapse
Affiliation(s)
- Marieke L Fokkema
- Department of Cardiology, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Seifirad S. An emerging need for developing new models for myocardial infarction as a chronic complex disease: lessons learnt from animal vs. human studies on cardioprotective effects of Erythropoietin in reperfused myocardium. Front Physiol 2014; 5:44. [PMID: 24575050 PMCID: PMC3920099 DOI: 10.3389/fphys.2014.00044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Accepted: 01/23/2014] [Indexed: 12/15/2022] Open
Affiliation(s)
- Soroush Seifirad
- Department of Pediatric Cardiology, Children's Medical Center, Tehran University of Medical Sciences Tehran, Iran ; Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran, Iran
| |
Collapse
|
22
|
Wen Y, Xu J, Ma X, Gao Q. High-dose erythropoietin in acute ST-segment elevation myocardial infarction: a meta-analysis of randomized controlled trials. Am J Cardiovasc Drugs 2013; 13:435-42. [PMID: 24097294 DOI: 10.1007/s40256-013-0042-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE We sought to perform a meta-analysis to evaluate the potential influence of high-dose erythropoietin (EPO) on cardiac function parameters in patients with acute ST-segment elevation myocardial infarction (STEMI). METHODS AND RESULTS By searching PubMed, EMBASE, and the Cochrane Library (up to December 2012), seven randomized controlled trials (RCTs) reporting cardiac functional parameters with a total of 1,250 acute STEMI patients were identified. When applied to patients with acute STEMI, high-dose EPO was relatively safe and no increase in all-caused death and severe adverse effects were indicated. Estimates were pooled from fixed or random effects models. Compared with controls, high-dose EPO resulted in a slight but significant improvement in left ventricular ejection fraction of 1.02 % [95 % confidence interval (CI) 0.17-1.88, P = 0.019, I (2) = 0 %] and an improvement in left ventricular end-systolic volume of -4.61 ml (95 % CI -7.64 to -1.58, P = 0.003, I (2) = 27.7 %). CONCLUSIONS Available evidence suggested that high-dose EPO has limited cardio-protective effects in patients with STEMI. However, considering the relatively short follow-up durations and small patient populations in the current RCTs, the effects of high-dose EPO on clinical outcomes in patients with STEMI need to be evaluated in larger prospective RCTs of longer duration.
Collapse
Affiliation(s)
- Yanting Wen
- Center for Translational Medicine, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing, 210093, China
| | | | | | | |
Collapse
|
23
|
Yanagawa T, Toba K, Suzuki T, Ozawa T, Oda M, Takayama T, Kato K, Aizawa Y. Erythropoietin induces angiogenesis in a manner dependent on the intrinsic auto/paracrine production of interleukin-6 in vitro. Int J Cardiol 2013; 168:2941-3. [PMID: 23651826 DOI: 10.1016/j.ijcard.2013.03.173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 03/31/2013] [Indexed: 10/26/2022]
Affiliation(s)
- Takao Yanagawa
- First Department of Internal Medicine, Niigata University Medical and Dental Hospital, Niigata 951-8510, Japan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Barthelmes D, Irhimeh MR, Gillies MC, Karimipour M, Zhou M, Zhu L, Shen WY. Diabetes impairs mobilization of mouse bone marrow-derived Lin(-)/VEGF-R2(+) progenitor cells. Blood Cells Mol Dis 2013; 51:163-73. [PMID: 23714230 DOI: 10.1016/j.bcmd.2013.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 04/29/2013] [Accepted: 04/30/2013] [Indexed: 12/29/2022]
Abstract
Endothelial progenitor cells circulating in the peripheral blood (PB) contribute to vascular repair. This study aimed to evaluate the potential of a 'cocktail' consisting of erythropoietin, granulocyte colony-stimulating factor and tetrahydrobiopterin to mobilize hematopoietic lineage negative/vascular endothelial growth factor receptor 2 positive (Lin(-)/VEGF-R2(+)) cells from the bone marrow (BM) to PB in non-diabetic and diabetic mice. Diabetes was induced in mice by intraperitoneal injection of streptozotocin. Diabetic mice were studied after 16weeks of hyperglycemia. Half the mice in each group (non-diabetic and diabetic) received daily intraperitoneal injections of the cocktail for 6 consecutive days while the other half received vehicle buffer. Mobilization of Lin(-)/VEGF-R2(+) cells, which were expanded in MCP301 medium, was evaluated after isolating them from BM and PB and their phenotypic and morphological properties were studied. We found that 16weeks of diabetes affected neither the total number of BM mononucleated cells nor the number of Lin(-)/VEGF-R2(+) cells in BM compared with non-diabetic controls. In non-diabetic mice, cocktail treatment resulted in a significant decrease in BM Lin(-)/VEGF-R2(+) cells, paralleled by a significant increase of these cells in PB. Such changes in the number of Lin(-)/VEGF-R2(+) cells in BM and PB after the cocktail treatment were less marked in diabetic mice. In vitro studies of BM Lin(-)/VEGF-R2(+) cells from diabetic and non-diabetic mice did not reveal any differences in either phenotypes or colony forming potential. These findings indicate that diabetes impairs the mobilization of Lin(-)/VEGF-R2(+) cells from BM to PB. Impaired mobilization of BM Lin(-)/VEGF-R2(+) cells soon after the onset of diabetes may contribute to complications such as diabetic retinopathy.
Collapse
Affiliation(s)
- D Barthelmes
- Save Sight Institute, Sydney Hospital and Sydney Eye Hospital, The University of Sydney, Sydney, Australia
| | | | | | | | | | | | | |
Collapse
|
25
|
Asialoerythropoietin Exerts Stronger Angiogenic Activity than Erythropoietin Via its Binding Affinity to Tissue. Cardiovasc Drugs Ther 2013; 27:117-24. [DOI: 10.1007/s10557-013-6438-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Abstract
Extensive research during the last decade demonstrated that a single systemic administration of -erythropoietin (EPO) lead to significant attenuation of myocardial infarction (MI) induced in animals, mostly small rodents, either by a myocardial ischemia followed by reperfusion or by a permanent ligation of a coronary artery. Both methods are critically reviewed with the aim of helping the reader in appreciating key issues in the translation of experimental results to the clinic. Results of several clinical trials in patients with acute MI completed to date failed to demonstrate beneficial effects of EPO, and thus put into question the validity of results obtained in animal models. Comprehensive review of design and results of animal experiments and clinical trials presented here allowed authors to postulate that therapeutic window for EPO during developing MI is very narrow and was possibly missed in negative clinical trials. This point was illustrated by the negative outcome of experiment in the rat model of MI in which timing of EPO administration was similar to that in clinical trials. The design of future clinical trials should allow for a narrow therapeutic window of EPO. Given current standards for onset-to-door and door-to-balloon time the optimal time for EPO administration should be just prior to PCI.
Collapse
|
27
|
Lehner S, Todica A, Brunner S, Uebleis C, Wang H, Wängler C, Herbach N, Herrler T, Böning G, Laubender RP, Cumming P, Schirrmacher R, Franz W, Hacker M. Temporal Changes in Phosphatidylserine Expression and Glucose Metabolism after Myocardial Infarction: An in Vivo Imaging Study in Mice. Mol Imaging 2012. [DOI: 10.2310/7290.2012.00010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Sebastian Lehner
- From the Departments of Nuclear Medicine, Cardiology, Experimental Surgery, Institute of Veterinary Pathology, Institute of Medical Informatics, Biometry and Epidemiology, University of Munich, Munich, Germany; McConnell Brain Imaging Centre, McGill University, Montreal, PQ
| | - Andrei Todica
- From the Departments of Nuclear Medicine, Cardiology, Experimental Surgery, Institute of Veterinary Pathology, Institute of Medical Informatics, Biometry and Epidemiology, University of Munich, Munich, Germany; McConnell Brain Imaging Centre, McGill University, Montreal, PQ
| | - Stefan Brunner
- From the Departments of Nuclear Medicine, Cardiology, Experimental Surgery, Institute of Veterinary Pathology, Institute of Medical Informatics, Biometry and Epidemiology, University of Munich, Munich, Germany; McConnell Brain Imaging Centre, McGill University, Montreal, PQ
| | - Christopher Uebleis
- From the Departments of Nuclear Medicine, Cardiology, Experimental Surgery, Institute of Veterinary Pathology, Institute of Medical Informatics, Biometry and Epidemiology, University of Munich, Munich, Germany; McConnell Brain Imaging Centre, McGill University, Montreal, PQ
| | - Hao Wang
- From the Departments of Nuclear Medicine, Cardiology, Experimental Surgery, Institute of Veterinary Pathology, Institute of Medical Informatics, Biometry and Epidemiology, University of Munich, Munich, Germany; McConnell Brain Imaging Centre, McGill University, Montreal, PQ
| | - Carmen Wängler
- From the Departments of Nuclear Medicine, Cardiology, Experimental Surgery, Institute of Veterinary Pathology, Institute of Medical Informatics, Biometry and Epidemiology, University of Munich, Munich, Germany; McConnell Brain Imaging Centre, McGill University, Montreal, PQ
| | - Nadja Herbach
- From the Departments of Nuclear Medicine, Cardiology, Experimental Surgery, Institute of Veterinary Pathology, Institute of Medical Informatics, Biometry and Epidemiology, University of Munich, Munich, Germany; McConnell Brain Imaging Centre, McGill University, Montreal, PQ
| | - Tanja Herrler
- From the Departments of Nuclear Medicine, Cardiology, Experimental Surgery, Institute of Veterinary Pathology, Institute of Medical Informatics, Biometry and Epidemiology, University of Munich, Munich, Germany; McConnell Brain Imaging Centre, McGill University, Montreal, PQ
| | - Guido Böning
- From the Departments of Nuclear Medicine, Cardiology, Experimental Surgery, Institute of Veterinary Pathology, Institute of Medical Informatics, Biometry and Epidemiology, University of Munich, Munich, Germany; McConnell Brain Imaging Centre, McGill University, Montreal, PQ
| | - Rüdiger Paul Laubender
- From the Departments of Nuclear Medicine, Cardiology, Experimental Surgery, Institute of Veterinary Pathology, Institute of Medical Informatics, Biometry and Epidemiology, University of Munich, Munich, Germany; McConnell Brain Imaging Centre, McGill University, Montreal, PQ
| | - Paul Cumming
- From the Departments of Nuclear Medicine, Cardiology, Experimental Surgery, Institute of Veterinary Pathology, Institute of Medical Informatics, Biometry and Epidemiology, University of Munich, Munich, Germany; McConnell Brain Imaging Centre, McGill University, Montreal, PQ
| | - Ralf Schirrmacher
- From the Departments of Nuclear Medicine, Cardiology, Experimental Surgery, Institute of Veterinary Pathology, Institute of Medical Informatics, Biometry and Epidemiology, University of Munich, Munich, Germany; McConnell Brain Imaging Centre, McGill University, Montreal, PQ
| | - Wolfgang Franz
- From the Departments of Nuclear Medicine, Cardiology, Experimental Surgery, Institute of Veterinary Pathology, Institute of Medical Informatics, Biometry and Epidemiology, University of Munich, Munich, Germany; McConnell Brain Imaging Centre, McGill University, Montreal, PQ
| | - Marcus Hacker
- From the Departments of Nuclear Medicine, Cardiology, Experimental Surgery, Institute of Veterinary Pathology, Institute of Medical Informatics, Biometry and Epidemiology, University of Munich, Munich, Germany; McConnell Brain Imaging Centre, McGill University, Montreal, PQ
| |
Collapse
|
28
|
Gao D, Ning N, Niu X, Dang Y, Dong X, Wei J, Zhu C. Erythropoietin treatment in patients with acute myocardial infarction: a meta-analysis of randomized controlled trials. Am Heart J 2012; 164:715-727.e1. [PMID: 23137502 DOI: 10.1016/j.ahj.2012.07.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 07/27/2012] [Indexed: 02/04/2023]
Abstract
BACKGROUND In experimental models of acute myocardial infarction (AMI), erythropoietin (EPO) reduces infarct size and improves left ventricular (LV) function. However, in the clinical setting, the effect of EPO in AMI was unclear. We conducted a systematic review and meta-analysis of randomized controlled trials (RCTs) of EPO to explore the safety and therapeutic effects of EPO in patients with AMI. METHODS We identified reports of RCTs comparing EPO to placebo for AMI in adult humans in PubMed, Cochrane Central Register of Controlled Trials, and EMBASE. Outcomes included all-cause mortality, major cardiovascular events, cardiac function by LV ejection fraction and infarct size. RESULTS We included 13 articles of RCTs with data for 1,564 patients. Erythropoietin therapy did not improve LV ejection fraction (weighted mean difference [WMD] 0.33, 95% CI -1.90 to 1.24, P = .68) and had no effect on infarct size, as measured by cardiac magnetic resonance imaging (WMD -0.12, -2.16 to 1.91, P = .90) or serum peak value of creatine kinase-MB (WMD -2.01, -25.70 to 21.68, P = .87). Erythropoietin treatment did not decrease the risk of total adverse cardiac events (relative risk [RR] 1.02, 0.65-1.61, P = .92). Erythropoietin treatment also failed to decrease the risk of heart failure (RR, 0.69, 0.27-1.72, P = .42) and all-cause mortality (RR 0.55, 0.22-1.33, P = .18). Moreover, EPO had no effect on the risk of stent thrombosis (RR, 0.69, 0.29-1.64, P = .40). CONCLUSION Erythropoietin in patients with AMI seems to have no clinical benefit for heart function or reducing infarct size, cardiovascular events, and all-cause mortality. Erythropoietin may not be a choice for patients with AMI.
Collapse
Affiliation(s)
- Dengfeng Gao
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, PR China.
| | | | | | | | | | | | | |
Collapse
|
29
|
McCook O, Georgieff M, Scheuerle A, Möller P, Thiemermann C, Radermacher P. Erythropoietin in the critically ill: do we ask the right questions? CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2012; 16:319. [PMID: 23016869 PMCID: PMC3682241 DOI: 10.1186/cc11430] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
There is a plethora of experimental data on the potential therapeutic benefits of recombinant human erythropoietin (rhEPO) and its synthetic derivatives in critical care medicine, in particular in ischemia/reperfusion injury. Most of the recent clinical trials have not shown clear benefits, and, in some patients, EPO-aggravated morbidity and mortality was even reported. Treatment with rhEPO has been successfully used in patients with anemia resulting from chronic kidney disease, but even a subset of this patient population does not adequately respond to rhEPO therapy. The following viewpoint uses rhEPO as an example to highlight the possible pitfalls in current practice using young healthy animals for the evaluation of therapies to treat patients of variable age and underlying chronic co-morbidity.
Collapse
|
30
|
Minamino T, Toba K, Higo S, Nakatani D, Hikoso S, Umegaki M, Yamamoto K, Sawa Y, Aizawa Y, Komuro I. Design and Rationale of Low-Dose Erythropoietin in Patients with ST-Segment Elevation Myocardial Infarction (EPO-AMI-II Study): A Randomized Controlled Clinical Trial. Cardiovasc Drugs Ther 2012; 26:409-16. [DOI: 10.1007/s10557-012-6410-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
31
|
|
32
|
Protecting mitochondrial bioenergetic function during resuscitation from cardiac arrest. Crit Care Clin 2012; 28:245-70. [PMID: 22433486 DOI: 10.1016/j.ccc.2012.02.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
33
|
|
34
|
Moriyama M, Toba K, Hanawa H, Kato K, Yanagawa T, Takayama T, Ozawa T, Kobayashi H, Higuchi M, Saito H, Aizawa Y. A novel synthetic derivative of human erythropoietin designed to bind to glycosaminoglycans. Drug Deliv 2012; 19:202-7. [DOI: 10.3109/10717544.2012.690004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
35
|
Oba T, Yasukawa H, Hoshijima M, Sasaki KI, Futamata N, Fukui D, Mawatari K, Nagata T, Kyogoku S, Ohshima H, Minami T, Nakamura K, Kang D, Yajima T, Knowlton KU, Imaizumi T. Cardiac-specific deletion of SOCS-3 prevents development of left ventricular remodeling after acute myocardial infarction. J Am Coll Cardiol 2012; 59:838-52. [PMID: 22361405 DOI: 10.1016/j.jacc.2011.10.887] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 10/19/2011] [Accepted: 10/20/2011] [Indexed: 01/08/2023]
Abstract
OBJECTIVES The study investigated the role of myocardial suppressor of cytokine signaling-3 (SOCS3), an intrinsic negative feedback regulator of the janus kinase and signal transducer and activator of transcription (JAK-STAT) signaling pathway, in the development of left ventricular (LV) remodeling after acute myocardial infarction (AMI). BACKGROUND LV remodeling after AMI results in poor cardiac performance leading to heart failure. Although it has been shown that JAK-STAT-activating cytokines prevent LV remodeling after AMI in animals, little is known about the role of SOCS3 in this process. METHODS Cardiac-specific SOCS3 knockout mice (SOCS3-CKO) were generated and subjected to AMI induced by permanent ligation of the left anterior descending coronary artery. RESULTS Although the initial infarct size after coronary occlusion measured by triphenyltetrazolium chloride staining was comparable between SOCS3-CKO and control mice, the infarct size 14 days after AMI was remarkably inhibited in SOCS3-CKO, indicating that progression of LV remodeling after AMI was prevented in SOCS3-CKO hearts. Prompt and marked up-regulations of multiple JAK-STAT-activating cytokines including leukemia inhibitory factor and granulocyte colony-stimulating factor (G-CSF) were observed within the heart following AMI. Cardiac-specific SOCS3 deletion enhanced multiple cardioprotective signaling pathways including STAT3, AKT, and extracellular signal-regulated kinase (ERK)-1/2, while inhibiting myocardial apoptosis and fibrosis as well as augmenting antioxidant expression. CONCLUSIONS Enhanced activation of cardioprotective signaling pathways by inhibiting myocardial SOCS3 expression prevented LV remodeling after AMI. Our data suggest that myocardial SOCS3 may be a key molecule in the development of LV remodeling after AMI.
Collapse
Affiliation(s)
- Toyoharu Oba
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Did clinical trials in which erythropoietin failed to reduce acute myocardial infarct size miss a narrow therapeutic window? PLoS One 2012; 7:e34819. [PMID: 22529941 PMCID: PMC3329541 DOI: 10.1371/journal.pone.0034819] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 03/05/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND To test a hypothesis that in negative clinical trials of erythropoietin in patients with acute myocardial infarction (MI) the erythropoietin (rhEPO) could be administered outside narrow therapeutic window. Despite overwhelming evidence of cardioprotective properties of rhEPO in animal studies, the outcomes of recently concluded phase II clinical trials have failed to demonstrate the efficacy of rhEPO in patients with acute MI. However, the time between symptoms onset and rhEPO administration in negative clinical trials was much longer that in successful animal experiments. METHODOLOGY/PRINCIPAL FINDINGS MI was induced in rats either by a permanent ligation of a descending coronary artery or by a 2-hr occlusion followed by a reperfusion. rhEPO, 3000 IU/kg, was administered intraperitoneally at the time of reperfusion, 4 hrs after beginning of reperfusion, or 6 hrs after permanent occlusion. MI size was measured histologically 24 hrs after coronary occlusion. The area of myocardium at risk was similar among groups. The MI size in untreated rats averaged ~42% of area at risk, or ~24% of left ventricle, and was reduced by more than 50% (p<0.001) in rats treated with rhEPO at the time of reperfusion. The MI size was not affected by treatment administered 4 hrs after reperfusion or 6 hrs after permanent coronary occlusion. Therefore, our study in a rat experimental model of MI demonstrates that rhEPO administered within 2 hrs of a coronary occlusion effectively reduces MI size, but when rhEPO was administered following a delay similar to that encountered in clinical trials, it had no effect on MI size. CONCLUSIONS/SIGNIFICANCE The clinical trials that failed to demonstrate rhEPO efficacy in patients with MI may have missed a narrow therapeutic window defined in animal experiments.
Collapse
|
37
|
Abstract
Because ischemic heart diseases (IHDs) are a major cause of mortality and heart failure, novel therapeutic approaches are expected to improve the clinical outcomes of patients with IHDs such as acute myocardial infarction and ischemic heart failure. Brief episodes of nonlethal ischemia and reperfusion before sustained ischemia or at the onset of reperfusion can reduce ischemia-reperfusion injury. These ischemic conditioning phenomena are termed "ischemic preconditioning" and "ischemic postconditioning", respectively. Furthermore, brief episodes of nonlethal ischemia and reperfusion applied to the organ or tissue distal to the heart reduce myocardial infarct size, known as "remote ischemic conditioning". The cardioprotection afforded by these ischemic conditionings can be used to treat patients with acute myocardial infarction or cardiac operations. Extensive research has determined that autacoids (eg, adenosine, bradykinin opioid) and cytokines, their respective receptors, kinase signaling pathways and mitochondrial modulation are involved in ischemic conditioning. Modification of these factors by pharmacological agents mimics the cardioprotection by ischemic conditioning and provides a novel therapeutic intervention for IHDs. Here, the potential mechanisms of ischemic conditioning and its "proof-of-concept" translational studies are reviewed. In the near future, large, multicenter, randomized, placebo-controlled, clinical trials will be required to determine whether pharmacological and ischemic conditioning can improve the clinical outcomes of patients with IHDs.
Collapse
Affiliation(s)
- Tetsuo Minamino
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita 565-0871, Japan.
| |
Collapse
|
38
|
Prunier F, Bière L, Gilard M, Boschat J, Mouquet F, Bauchart JJ, Charbonnier B, Genée O, Guérin P, Warin-Fresse K, Durand E, Lafont A, Christiaens L, Abi-Khalil W, Delépine S, Benard T, Furber A. Single high-dose erythropoietin administration immediately after reperfusion in patients with ST-segment elevation myocardial infarction: results of the erythropoietin in myocardial infarction trial. Am Heart J 2012; 163:200-7.e1. [PMID: 22305837 DOI: 10.1016/j.ahj.2011.11.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 11/07/2011] [Indexed: 12/22/2022]
Abstract
BACKGROUND Preclinical studies and pilot clinical trials have shown that high-dose erythropoietin (EPO) reduces infarct size in acute myocardial infarction. We investigated whether a single high-dose of EPO administered immediately after reperfusion in patients with ST-segment elevation myocardial infarction (STEMI) would limit infarct size. METHODS A total of 110 patients undergoing successful primary coronary intervention for a first STEMI was randomized to receive standard care either alone (n = 57) or combined with intravenous administration of 1,000 U/kg of epoetin β immediately after reperfusion (n = 53). The primary end point was infarct size assessed by gadolinium-enhanced cardiac magnetic resonance after 3 months. Secondary end points included left ventricular (LV) volume and function at 5-day and 3-month follow-up, incidence of microvascular obstruction (MVO), and safety. RESULTS Erythropoietin significantly decreased the incidence of MVO (43.4% vs 65.3% in the control group, P = .03) and reduced LV volume, mass, and function impairment at 5-day follow-up (all P < .05). After 3 months, median infarct size (interquartile range) was 17.5 g (7.6-26.1 g) in the EPO group and 16.0 g (9.4-28.2 g) in the control group (P = .64); LV mass, volume, and function were not significantly different between the 2 groups. The same number of major adverse cardiac events occurred in both groups. CONCLUSIONS Single high-dose EPO administered immediately after successful reperfusion in patients with STEMI did not reduce infarct size at 3-month follow-up. However, this regimen decreased the incidence of MVO and was associated with transient favorable effects on LV volume and function.
Collapse
|
39
|
Yeh KH, Tsai TH, Chai HT, Leu S, Chung SY, Chua S, Chen YL, Lin HS, Yuen CM, Yip HK. Comparison of acute versus convalescent stage high-sensitivity C-Reactive protein level in predicting clinical outcome after acute ischemic stroke and impact of erythropoietin. J Transl Med 2012; 10:6. [PMID: 22222005 PMCID: PMC3286363 DOI: 10.1186/1479-5876-10-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Accepted: 01/05/2012] [Indexed: 11/17/2022] Open
Abstract
Background and Aim Currently, no data on the optimal time point after acute ischemic stroke (IS) at which high-sensitivity C-reactive protein (hs-CRP) level is most predictive of unfavorable outcome. We tested the hypothesis that hs-CRP levels during both acute (48 h after IS) and convalescent (21 days after IS) phases are equally important in predicting 90-day clinical outcome after acute IS. We further evaluated the impact of erythropoietin (EPO), an anti-inflammatory agent, on level of hs-CRP after acute IS. Methods Totally 160 patients were prospectively randomized to receive either EPO therapy (group 1, n = 80) (5,000 IU each time, subcutaneously) at 48 h and 72 h after acute IS, or placebo (group 2, n = 80). Serum level of hs-CRP was determined using ELISA at 48 h and on day 21 after IS and once in 60 healthy volunteers. Results Serum level of hs-CRP was substantially higher in all patients with IS than in healthy controls at 48 h and day 21 after IS (all p < 0.001). Levels of hs-CRP did not differ between group 1 and 2 at 48 h and day 21 after IS (all p > 0.5). Multivariate analysis showed that hs-CRP levels (at 48 h and day 21) were independently predictive of 90-day major adverse neurological event (MANE) (defined as recurrent stroke, NIHSS≥8, or death) (all p < 0.03), whereas EPO therapy was independently predictive of reduced 90-day MANE (all p < 0.02). Conclusion EPO therapy which was independently predictive of freedom from 90-day MANE did not alter the crucial role of hs-CRP levels measured at 48 h and 21-day in predicting unfavorable clinical outcome after IS.
Collapse
Affiliation(s)
- Kuo-Ho Yeh
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kagaya Y, Asaumi Y, Wang W, Takeda M, Nakano M, Satoh K, Fukumoto Y, Shimokawa H. Current Perspectives on Protective Roles of Erythropoietin in Cardiovascular System: Erythropoietin Receptor as a Novel Therapeutic Target. TOHOKU J EXP MED 2012; 227:83-91. [DOI: 10.1620/tjem.227.83] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Yutaka Kagaya
- Comprehensive Education Center for Community Medicine, Tohoku University Graduate School of Medicine
| | - Yasuhide Asaumi
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine
| | - Wanting Wang
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine
| | - Morihiko Takeda
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine
| | - Makoto Nakano
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine
| | - Kimio Satoh
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine
| | - Yoshihiro Fukumoto
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine
| |
Collapse
|
41
|
Ribatti D. Angiogenic Effects of Erythropoietin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 299:199-234. [DOI: 10.1016/b978-0-12-394310-1.00005-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
42
|
Hematopoietic Growth Factor Family for Stroke Drug Development. Transl Stroke Res 2012. [DOI: 10.1007/978-1-4419-9530-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
43
|
Li J, Xu H, Gao Q, Wen Y. Effect of erythropoiesis-stimulating agents in acute ST-segment elevation myocardial infarction: a systematic review. Eur J Clin Pharmacol 2011; 68:469-77. [DOI: 10.1007/s00228-011-1160-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Accepted: 10/25/2011] [Indexed: 10/15/2022]
|
44
|
|
45
|
Effects of erythropoietin on angiogenesis after myocardial infarction in porcine. Heart Vessels 2011; 27:79-88. [DOI: 10.1007/s00380-011-0197-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 11/19/2010] [Indexed: 10/15/2022]
|
46
|
Kanashiro-Takeuchi RM, Takeuchi LM, Hatzistergos K, Quevedo H, Selem SM, Treuer AV, Premer C, Balkan W, Margitich I, Song Y, Hu Q, Hare JM. Effects of combination of proliferative agents and erythropoietin on left ventricular remodeling post-myocardial infarction. Clin Transl Sci 2011; 4:168-74. [PMID: 21707946 DOI: 10.1111/j.1752-8062.2011.00278.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
UNLABELLED Erythropoietin (EPO) has the potential to improve ischemic tissue by mobilizing endothelial progenitor cells and enhancing neovascularization. We hypothesized that combining EPO with human chorionic gonadotrophin (hCG) would improve post-myocardial infarction (MI) effects synergistically. METHODS After MI, five to seven animals were randomly assigned to each of the following treatments: control; hCG; EPO; hCG + EPO, and prolactin (PRL) + EPO. Follow-up echocardiograms were performed to assess cardiac structure and function. Apoptosis was determined by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay and western blot analysis for apoptosis-related proteins, and cell proliferation by immunostaining for Ki67 and c-kit cells. RESULTS The MI-mediated increased chamber systolic dimension (p < 0.05 in controls) was attenuated by hCG, EPO, and hCG + EPO (p < 0.05 vs. control) but not PRL + EPO. Similarly all treatment groups, except PRL + EPO, reduced MI-induced increases (p < 0.05 vs. control) in ejection fraction (EF). The functional improvement in the EPO-treated groups was accompanied by increased capillary density. Apoptosis was markedly reduced in all treated groups. Significantly more cardiac c-kit(+) cells were found in the hCG + EPO group. CONCLUSION Our findings revealed that EPO, hCG, or their combination ameliorate cardiac remodeling post-MI. Whereas EPO stimulates neovascularization only and hCG + EPO stimulates c-kit+ cell proliferation. These data suggest that combining mobilizing and proliferative agents adds to the durability and sustainability of cytokine-based therapies for remodeling post-MI.
Collapse
|
47
|
Sanganalmath SK, Abdel-Latif A, Bolli R, Xuan YT, Dawn B. Hematopoietic cytokines for cardiac repair: mobilization of bone marrow cells and beyond. Basic Res Cardiol 2011; 106:709-33. [PMID: 21541807 PMCID: PMC4281455 DOI: 10.1007/s00395-011-0183-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 04/11/2011] [Accepted: 04/15/2011] [Indexed: 12/20/2022]
Abstract
Hematopoietic cytokines, traditionally known to influence cellular proliferation, differentiation, maturation, and lineage commitment in the bone marrow, include granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor, stem cell factor, Flt-3 ligand, and erythropoietin among others. Emerging evidence suggests that these cytokines also exert multifarious biological effects on diverse nonhematopoietic organs and tissues. Although the precise mechanisms remain unclear, numerous studies in animal models of myocardial infarction (MI) and heart failure indicate that hematopoietic cytokines confer potent cardiovascular benefits, possibly through mobilization and subsequent homing of bone marrow-derived cells into the infarcted heart with consequent induction of myocardial repair involving multifarious mechanisms. In addition, these cytokines are also known to exert direct cytoprotective effects. However, results from small-scale clinical trials of G-CSF therapy as a single agent after acute MI have been discordant and largely disappointing. It is likely that cardiac repair following cytokine therapy depends on a number of known and unknown variables, and further experimental and clinical studies are certainly warranted to accurately determine the true therapeutic potential of such therapy. In this review, we discuss the biological features of several key hematopoietic cytokines and present the basic and clinical evidence pertaining to cardiac repair with hematopoietic cytokine therapy.
Collapse
Affiliation(s)
- Santosh K. Sanganalmath
- Division of Cardiovascular Diseases, Cardiovascular Research Institute, University of Kansas Medical Center, 3901 Rainbow Blvd, Rm. 1001 Eaton, MS 3006, Kansas City, KS 66160, USA
| | - Ahmed Abdel-Latif
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Roberto Bolli
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, USA
| | - Yu-Ting Xuan
- Division of Cardiovascular Diseases, Cardiovascular Research Institute, University of Kansas Medical Center, 3901 Rainbow Blvd, Rm. 1001 Eaton, MS 3006, Kansas City, KS 66160, USA
| | - Buddhadeb Dawn
- Division of Cardiovascular Diseases, Cardiovascular Research Institute, University of Kansas Medical Center, 3901 Rainbow Blvd, Rm. 1001 Eaton, MS 3006, Kansas City, KS 66160, USA
| |
Collapse
|
48
|
Yuen CM, Sun CK, Lin YC, Chang LT, Kao YH, Yen CH, Chen YL, Tsai TH, Chua S, Shao PL, Leu S, Yip HK. Combination of cyclosporine and erythropoietin improves brain infarct size and neurological function in rats after ischemic stroke. J Transl Med 2011; 9:141. [PMID: 21864394 PMCID: PMC3177906 DOI: 10.1186/1479-5876-9-141] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 08/24/2011] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND This study tested the superiority of combined cyclosporine A (CsA)-erythropoietin (EPO) therapy compared with either one in limiting brain infarction area (BIA) and preserving neurological function in rat after ischemic stroke (IS). METHODS Fifty adult-male SD rats were equally divided into sham control (group 1), IS plus intra-peritoneal physiological saline (at 0.5/24/48 h after IS) (group 2), IS plus CsA (20.0 mg/kg at 0.5/24h, intra-peritoneal) (group 3), IS plus EPO (5,000IU/kg at 0.5/24/48h, subcutaneous) (group 4), combined CsA and EPO (same route and dosage as groups 3 and 4) treatment (group 5) after occlusion of distal left internal carotid artery. RESULTS BIA on day 21 after acute IS was higher in group 2 than in other groups and lowest in group 5 (all p < 0.01). The sensorimotor functional test showed higher frequency of left turning in group 2 than in other groups and lowest in group 5 (all p < 0.05). mRNA and protein expressions of apoptotic markers and number of apoptotic nuclei on TUNEL were higher in group 2 than in other groups and lowest in group 1 and 5, whereas the anti-apoptotic markers exhibited an opposite trend (all p < 0.05). The expressions of inflammatory and oxidized protein were higher in group 2 than in other groups and lowest in group 1 and 5, whereas anti-inflammatory markers showed reversed changes in group 1 and other groups (all p < 0.05). The number of aquaporin-4+ and glial fibrillary acid protein+ stained cells were higher in group 2 as compared to other groups and lowest in groups 1 and 5 (all p < 0.01). CONCLUSION combined treatment with CsA and EPO was superior to either one alone in protecting rat brain from ischemic damage after IS.
Collapse
Affiliation(s)
- Chun-Man Yuen
- Division of Trauma, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Ferrario M, Arbustini E, Massa M, Rosti V, Marziliano N, Raineri C, Campanelli R, Bertoletti A, De Ferrari GM, Klersy C, Angoli L, Bramucci E, Marinoni B, Ferlini M, Moretti E, Raisaro A, Repetto A, Schwartz PJ, Tavazzi L. High-dose erythropoietin in patients with acute myocardial infarction: A pilot, randomised, placebo-controlled study. Int J Cardiol 2011; 147:124-31. [DOI: 10.1016/j.ijcard.2009.10.028] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 08/22/2009] [Accepted: 10/18/2009] [Indexed: 10/20/2022]
|
50
|
Yip HK, Tsai TH, Lin HS, Chen SF, Sun CK, Leu S, Yuen CM, Tan TY, Lan MY, Liou CW, Lu CH, Chang WN. Effect of erythropoietin on level of circulating endothelial progenitor cells and outcome in patients after acute ischemic stroke. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2011; 15:R40. [PMID: 21269484 PMCID: PMC3221969 DOI: 10.1186/cc10002] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 01/07/2011] [Accepted: 01/26/2011] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Erythropoietin (EPO) enhances the circulating level of endothelial progenitor cells (EPCs), which has been reported to be associated with prognostic outcome in ischemic stroke (IS) patients. The aim of this study was to evaluate the time course of circulating EPC level and the impact of EPO therapy on EPC level and clinical outcome in patients after acute IS. METHODS In total, 167 patients were prospectively randomized to receive either EPO therapy (group 1) (5,000 IU each time, subcutaneously) at 48 h and 72 h after acute IS, or serve as placebo (group 2). The circulating level of EPCs (double-stained markers: CD31/CD34 (E1), CD62E/CD34 (E2) and KDR/CD34 (E3)) was determined using flow cytometry at 48 h and on days 7 and 21 after IS. EPC level was also evaluated once in 60 healthy volunteers. RESULTS Circulating EPC (E1 to E3) level at 48 h after IS was remarkably higher in patients than in control subjects (P < 0.02). At 48 h and on Day 7 after IS, EPC (E1 to E3) level did not differ between groups 1 and 2 (all P > 0.1). However, by Day 21, EPC (E1 to E3) level was significantly higher in group 1 than in group 2 (all P < 0.03). Additionally, 90-day recurrent stroke rate was notably lower in group 1 compared with group 2 (P = 0.022). Multivariate analysis demonstrated that EPO therapy (95% confidence interval (CI), 0.153 to 0.730; P = 0.006) and EPC (E3) (95% CI, 0.341 to 0.997; P = 0.049) levels were significantly and independently predictive of a reduced 90-day major adverse neurological event (MANE) (defined as recurrent stroke, National Institutes of Health Stroke scale ≥8, or death). CONCLUSIONS EPO therapy significantly improved circulating EPC level and 90-day MANE. TRIAL REGISTRATION NUMBER ISRCTN: ISRCTN96340690.
Collapse
Affiliation(s)
- Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital - Kaohsiung Medical Center, Chang Gung University College of Medicine, 123 Ta-Pei Road, Niaosong District, Kaohsiung City 833, Taiwan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|