1
|
Żera T, Paleczny B, Siński M, Conde SV, Narkiewicz K, Ponikowski P, Paton JFR, Niewiński P. Translating physiology of the arterial chemoreflex into novel therapeutic interventions targeting carotid bodies in cardiometabolic disorders. J Physiol 2025. [PMID: 40186613 DOI: 10.1113/jp285081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 03/10/2025] [Indexed: 04/07/2025] Open
Abstract
This review resulted from a conference on the pathological role of arterial chemoreflex and carotid bodies in cardiometabolic diseases held at the 27th Congress of the Polish Cardiac Society in September 2023 in Poznan, Poland. It reflects the contribution of Polish researchers and their international collaborations, which have been fundamental in the development of the field. Aberrant activity of the carotid bodies leads to both high tonicity and increased sensitivity of the arterial chemoreflex with resultant sympathoexcitation in chronic heart failure, resistant hypertension and obstructive sleep apnoea. This observation has led to several successful attempts of removing or denervating the carotid bodies as a therapeutic option in humans. Regrettably, such interventions are accompanied by serious respiratory and acid-base balance side-effects. Rather than a single stereotyped reaction, arterial chemoreflex comprises an integrative multi-system response to a variety of stimulants and its specific reflex components may be individually conveyed at varying intensities. Recent research has revealed that carotid bodies express diverse receptors, synthesize a cocktail of mediators, and respond to a plethora of metabolic, hormonal and autonomic nervous stimuli. This state-of-the-art summary discusses exciting new discoveries regarding GLP-1 receptors, purinergic receptors, the glutamate-GABA system, efferent innervation and regulation of blood flow in the carotid body and how they open new avenues for novel pharmacological treatments selectively targeting specific receptors, mediators and neural pathways to correct distinct responses of the carotid body-evoked arterial chemoreflex in cardiometabolic diseases. The carotid body offers novel and advantageous therapeutic opportunities for future consideration by trialists.
Collapse
Affiliation(s)
- Tymoteusz Żera
- Department of Experimental and Clinical Physiology, Medical University of Warsaw, Warsaw, Poland
| | - Bartłomiej Paleczny
- Department of Physiology and Pathophysiology, Wroclaw Medical University, Wroclaw, Poland
| | - Maciej Siński
- Department of Internal Medicine, Hypertension and Vascular Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Sílvia V Conde
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Krzysztof Narkiewicz
- Department of Hypertension and Diabetology, Medical University of Gdańsk, Gdańsk, Poland
| | - Piotr Ponikowski
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Julian F R Paton
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland, Auckland, New Zealand
| | - Piotr Niewiński
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
2
|
Jura M, Tubek S, Reczuch J, Seredyński R, Niewiński P, Protasiewicz M, Ponikowska B, Paleczny B. Hemodynamic Factors Driving Peripheral Chemoreceptor Hypersensitivity: Is Severe Aortic Stenosis Treated with Transcatheter Aortic Valve Implantation a Valuable Human Model? Biomedicines 2025; 13:611. [PMID: 40149588 PMCID: PMC11940327 DOI: 10.3390/biomedicines13030611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/17/2025] [Accepted: 02/22/2025] [Indexed: 03/29/2025] Open
Abstract
Background: A reduction in carotid artery blood flow (CABF) and ultimately in wall shear stress (WSS) is a major driver of heightened peripheral chemoreceptor (PCh) activity in animal models of heart failure. However, it is yet to be translated to humans. To provide more insight into this matter, we considered severe aortic stenosis (AS) before and after transcatheter aortic valve implantation (TAVI) as a human model of carotid and aortic body function under dramatically different hemodynamic conditions. Materials and Methods: A total of 26 severe AS patients (aged 77 ± 6 y, body mass index: 29.1 ± 5.1 kg/m2, left ventricular ejection fraction (LVEF): 50 ± 15%) were subjected to a transient hypoxia test twice: immediately before vs. 1-4 months after TAVI (median follow-up: 95 days). PCh function was analyzed in terms of ventilatory (HVR, L/min/SpO2%) and heart rate responses to hypoxia (HR slope, bpm/SpO2%). Standard ultrasound (inc. aortic valve area [AVA], mean aortic valve gradient, peak aortic jet velocity, LVEF, and CABF), respiratory, hemodynamic, and blood parameters were collected at both visits. Pre- vs. post-TAVI data regarding HVR and HR slopes were available for N = 26 and N = 10 patients, respectively. Results: HVR did not change following TAVI (pre- vs. post-TAVI: 0.42 ± 0.29 vs. 0.39 ± 0.33 L/min/SpO2%, p = 0.523). The HR slope increased after TAVI (pre- vs. post-TAVI: 0.26 ± 0.23 vs. 0.37 ± 0.30 bpm/SpO2%, p = 0.019), and the magnitude of the increase was strongly associated with an increase in AVA (Spearman's R = 0.80, p = 0.006). No other significant relations between pre- vs. post-TAVI changes in PCh activity measures vs. hemodynamic parameters were found (all p > 0.12). Conclusions: The ventilatory component of the PCh reflex (defined as HVR) in severe AS patients is not affected by TAVI, and pre-TAVI values in this group are fairly comparable to those reported previously for healthy subjects. On the contrary, HR responses to hypoxia are increased after TAVI, and pre-TAVI values appear to be lower compared to the healthy population. An extraordinarily strong correlation between post-TAVI increases in HR slope and AVA may suggest that hemodynamic repercussions of the surgery in the aortic body area (most likely reduced WSS) play a critical role in determining aortic body function with a negligible effect on the carotid bodies. However, caution is needed when interpreting the results of the HR response to hypoxia in our study due to the small sample size (N = 10).
Collapse
Affiliation(s)
- Maksym Jura
- Department of Physiology and Pathophysiology, Wroclaw Medical University, Chałubińskiego 10, 50-368 Wroclaw, Poland; (M.J.); (R.S.); (B.P.)
| | - Stanisław Tubek
- Institute of Heart Diseases, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland; (S.T.); (J.R.); (P.N.); (M.P.)
| | - Jędrzej Reczuch
- Institute of Heart Diseases, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland; (S.T.); (J.R.); (P.N.); (M.P.)
| | - Rafał Seredyński
- Department of Physiology and Pathophysiology, Wroclaw Medical University, Chałubińskiego 10, 50-368 Wroclaw, Poland; (M.J.); (R.S.); (B.P.)
| | - Piotr Niewiński
- Institute of Heart Diseases, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland; (S.T.); (J.R.); (P.N.); (M.P.)
| | - Marcin Protasiewicz
- Institute of Heart Diseases, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland; (S.T.); (J.R.); (P.N.); (M.P.)
| | - Beata Ponikowska
- Department of Physiology and Pathophysiology, Wroclaw Medical University, Chałubińskiego 10, 50-368 Wroclaw, Poland; (M.J.); (R.S.); (B.P.)
| | - Bartłomiej Paleczny
- Department of Physiology and Pathophysiology, Wroclaw Medical University, Chałubińskiego 10, 50-368 Wroclaw, Poland; (M.J.); (R.S.); (B.P.)
| |
Collapse
|
3
|
Conde SV, Martins FO, Sacramento JF. Carotid body interoception in health and disease. Auton Neurosci 2024; 255:103207. [PMID: 39121687 DOI: 10.1016/j.autneu.2024.103207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/15/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
Interoception entails perceiving or being aware of the internal state of the body, playing a pivotal role in regulating processes such as heartbeat, digestion, glucose metabolism, and respiration. The carotid body (CB) serves as an interoceptive organ, transmitting information to the brain via its sensitive nerve, the carotid sinus nerve, to maintain homeostasis. While traditionally known for sensing oxygen, carbon dioxide, and pH levels, the CB is now recognized to possess additional interoceptive properties, detecting various mediators involved in blood pressure regulation, inflammation, and glucose homeostasis, among other physiological functions. Furthermore, in the last decades CB dysfunction has been linked to diseases like sleep apnea, essential hypertension, and diabetes. In this review manuscript, we make a concise overview of the traditional interoceptive functions of the CB, acting as a sensor for oxygen levels, carbon dioxide levels, and pH, and introduce the novel interoceptive properties of the CB related to vascular, glucose and energy regulation. Additionally, we revise the contribution of the CB to the onset and progression of metabolic diseases, delving into the potential dysfunction of its interoceptive metabolic functions as a contributing factor to pathophysiology. Finally, we postulate the use of therapeutic interventions targeting the metabolic interoceptive properties of the CB as a potential avenue for addressing metabolic diseases.
Collapse
Affiliation(s)
- Silvia V Conde
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal.
| | - Fatima O Martins
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Joana F Sacramento
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| |
Collapse
|
4
|
Méndez-Flores OG, Hernández-Kelly LC, Olivares-Bañuelos TN, López-Ramírez G, Ortega A. Brain energetics and glucose transport in metabolic diseases: role in neurodegeneration. Nutr Neurosci 2024; 27:1199-1210. [PMID: 38294500 DOI: 10.1080/1028415x.2024.2306427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
OBJECTIVES Neurons and glial cells are the main functional and structural elements of the brain, and the former depends on the latter for their nutritional, functional and structural organization, as well as for their energy maintenance. METHODS Glucose is the main metabolic source that fulfills energetic demands, either by direct anaplerosis or through its conversion to metabolic intermediates. Development of some neurodegenerative diseases have been related with modifications in the expression and/or function of glial glucose transporters, which might cause physiological and/or pathological disturbances of brain metabolism. In the present contribution, we summarized the experimental findings that describe the exquisite adjustment in expression and function of glial glucose transporters from physiologic to pathologic metabolism, and its relevance to neurodegenerative diseases. RESULTS A exhaustive literature review was done in order to gain insight into the role of brain energetics in neurodegenerative disease. This study made evident a critical involvement of glucose transporters and thus brain energetics in the development of neurodegenerative diseases. DISCUSSION An exquisite adjustment in the expression and function of glial glucose transporters from physiologic to pathologic metabolism is a biochemical signature of neurodegenerative diseases.
Collapse
Affiliation(s)
- Orquídea G Méndez-Flores
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco (UJAT), Villahermosa, México
| | - Luisa C Hernández-Kelly
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | | | - Gabriel López-Ramírez
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco (UJAT), Villahermosa, México
| | - Arturo Ortega
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
5
|
Lopes TR, de Oliveira DM, Amoroso de Lima LA, Silva BM. Breathing variability during running in athletes: The role of sex, exercise intensity and breathing reserve. Respir Physiol Neurobiol 2024; 331:104350. [PMID: 39270950 DOI: 10.1016/j.resp.2024.104350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Highly trained aerobic athletes progressively use most of their breathing reserve with increased exercise intensity during whole-body exercise. Additionally, females typically present proportionally smaller lungs than males. Therefore, sex, exercise intensity, and breathing reserve use likely influence the volume and time in which respiratory parameters vary between consecutive breaths during whole-body exercise. However, breath-by-breath variability has been scarcely investigated during exercise. Accordingly, we sought to investigate breath-by-breath pulmonary ventilation (V̇E), tidal volume (VT), and respiratory frequency (fR) variability during a maximal treadmill incremental exercise test in 17 females and 18 males highly trained professional endurance runners. The breath-by-breath variability was analyzed by root mean square of successive differences (RMSSD) within 1-minute windows. Females had lower absolute and percent predicted forced expiratory volume in one second (FEV1) and forced vital capacity (FVC) than males, as well as lower height-adjusted absolute FVC than males. V̇E and VT reserve use were similar between the sexes at peak exercise. While RMSSDV̇E and RMSSDfR did not change over exercise (P > 0.05), RMSSDVT progressively decreased (P < 0.001). RMSSDVT was negatively correlated with VT reserve use only in males. Females showed lower RMSSDV̇E than males during the entire exercise test (P < 0.001). At iso-V̇E reserve use, between-sex differences in RMSSDV̇E persisted (P = 0.003). Our findings indicate that exercise intensity decreases VT variability in professional runners, which is linked to VT reserve use in males but not females. Additionally, the female sex lowers V̇E variability regardless of exercise intensity and V̇E reserve use.
Collapse
Affiliation(s)
- Thiago Ribeiro Lopes
- Laboratory of Exercise Physiology at Olympic Center of Training and Research, Department of Physiology, Federal University of São Paulo, São Paulo, SP, Brazil; São Paulo Association for Medicine Development, São Paulo, Sp, Brazil; Post-graduate Program in Translational Medicine, Department of Medicine, Paulista School of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Diogo Machado de Oliveira
- Laboratory of Exercise Physiology at Olympic Center of Training and Research, Department of Physiology, Federal University of São Paulo, São Paulo, SP, Brazil; Post-graduate Program in Translational Medicine, Department of Medicine, Paulista School of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Luís Adriano Amoroso de Lima
- Laboratory of Exercise Physiology at Olympic Center of Training and Research, Department of Physiology, Federal University of São Paulo, São Paulo, SP, Brazil; Post-graduate Program in Translational Medicine, Department of Medicine, Paulista School of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Bruno Moreira Silva
- Laboratory of Exercise Physiology at Olympic Center of Training and Research, Department of Physiology, Federal University of São Paulo, São Paulo, SP, Brazil; Post-graduate Program in Translational Medicine, Department of Medicine, Paulista School of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
6
|
Thompson AJ, Wright MD, Mann LM, Pulford-Thorpe AE, Dominelli PB. Ventilatory response of peripheral chemoreceptors to hypercapnia during exercise above the respiratory compensation point. J Appl Physiol (1985) 2024; 137:125-135. [PMID: 38813610 DOI: 10.1152/japplphysiol.00002.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024] Open
Abstract
Peripheral hypercapnic chemosensitivity (PHC) is assessed as the change in ventilation in response to a rapid change in carbon dioxide pressures (Pco2). The increase in chemoresponse from rest to subrespiratory compensation point (RCP) exercise intensities is well-defined but less clear at intensities above the RCP when changes in known ventilatory stimulants occur. Twenty healthy subjects (n = 10 females) completed a maximal exercise test on 1 day, and on a subsequent day, transient hypercapnia was used to test PHC at multiple exercise stages. The transient hypercapnia involved two breaths of 10% CO2 repeated five times during each of the following: sitting at rest on the cycle ergometer, cycling at 40% wmax, cycling at 85% Wmax, at rest on the cycle ergometer immediately following the 85% stage, and cycling at 40% Wmax again following the postexercise rest. The PHC was not different across exercise intensities (0.98 ± 0.37 vs. 0.91 ± 0.39 vs. 0.92 ± 0.42 L·min-1·mmHg-1 for first 40% wmax, 85% wmax and second 40% Wmax, respectively (P = 0.45). There were no differences in PHC between presupra-RCP exercise rest and postsupra-RCP exercise rest (0.52 ± 0.23 vs. 0.53 ± 0.24 L·min-1·mmHg-1, P = 0.8003). Using a repeated-measures correlation to account for within-participant changes, there was a significant relationship between the end-tidal Pco2 and PHC for the 85% intensity (r = 0.5, P < 0.0001) when end-tidal Pco2 was dynamic between the trials. We conclude that the physiological changes (e.g., metabolic milieu and temperature) produced with supra-RCP exercise do not further augment PHC, and that the prestimulus end-tidal Pco2 modulates the PHC.NEW & NOTEWORTHY Exercise at intensities above the respiratory compensation point did not further augment peripheral hypercapnic chemosensitivity (PHC). Moreover, the PHC was not different during a preexercise resting state compared with rest immediately after intense exercise. The lack of differences across both comparisons suggests that exercise itself appears to sensitize the PHC.
Collapse
Affiliation(s)
- Aaron J Thompson
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Madeline D Wright
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Leah M Mann
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | | | - Paolo B Dominelli
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
7
|
Alvarez-Araos P, Jiménez S, Salazar-Ardiles C, Núñez-Espinosa C, Paez V, Rodriguez-Fernandez M, Raberin A, Millet GP, Iturriaga R, Andrade DC. Baroreflex and chemoreflex interaction in high-altitude exposure: possible role on exercise performance. Front Physiol 2024; 15:1422927. [PMID: 38895516 PMCID: PMC11184637 DOI: 10.3389/fphys.2024.1422927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
The hypoxic chemoreflex and the arterial baroreflex are implicated in the ventilatory response to exercise. It is well known that long-term exercise training increases parasympathetic and decreases sympathetic tone, both processes influenced by the arterial baroreflex and hypoxic chemoreflex function. Hypobaric hypoxia (i.e., high altitude [HA]) markedly reduces exercise capacity associated with autonomic reflexes. Indeed, a reduced exercise capacity has been found, paralleled by a baroreflex-related parasympathetic withdrawal and a pronounced chemoreflex potentiation. Additionally, it is well known that the baroreflex and chemoreflex interact, and during activation by hypoxia, the chemoreflex is predominant over the baroreflex. Thus, the baroreflex function impairment may likely facilitate the exercise deterioration through the reduction of parasympathetic tone following acute HA exposure, secondary to the chemoreflex activation. Therefore, the main goal of this review is to describe the main physiological mechanisms controlling baro- and chemoreflex function and their role in exercise capacity during HA exposure.
Collapse
Affiliation(s)
- Pablo Alvarez-Araos
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura, Departamento Biomedico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
- Departamento de Kinesiología, Facultad de Ciencias de la Salud, Universidad de Atacama, Copiapó, Chile
| | - Sergio Jiménez
- Departamento de Kinesiología, Facultad de Ciencias de la Salud, Universidad de Atacama, Copiapó, Chile
| | - Camila Salazar-Ardiles
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura, Departamento Biomedico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Cristian Núñez-Espinosa
- Escuela de Medicina de la Universidad de Magallanes, Punta Arenas, Chile
- Centro Asistencial de Docencia e Investigación (CADI-UMAG), Santiago, Chile
| | - Valeria Paez
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura, Departamento Biomedico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Maria Rodriguez-Fernandez
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Antoine Raberin
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Gregoire P. Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Rodrigo Iturriaga
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura, Departamento Biomedico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - David C. Andrade
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura, Departamento Biomedico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| |
Collapse
|
8
|
Kataoka Y, Sales ARK, Rodrigues AG, Goes-Santos BR, Azevedo LF, Groehs RV, Silva EO, Santos LS, Oliveira PA, Jordão CP, Andrade ACM, Lobo DML, Rondon E, Toschi-Dias E, Alves MJNN, Almeida DR, Negrão CE. Abnormal neurovascular control during central and peripheral chemoreceptors stimulation in heart failure patients with preserved ejection fraction. Clin Auton Res 2024; 34:363-374. [PMID: 38878143 DOI: 10.1007/s10286-024-01041-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/20/2024] [Indexed: 07/19/2024]
Abstract
PURPOSE Central and peripheral chemoreceptors are hypersensitized in patients with heart failure with reduced ejection fraction. Whether this autonomic alteration occurs in patients with heart failure with preserved ejection fraction (HFpEF) remains little known. We test the hypothesis that the central and peripheral chemoreflex control of muscle sympathetic nerve activity (MSNA) is altered in HFpEF. METHODS Patients aged 55-80 years with symptoms of heart failure, body mass index ≤ 35 kg/m2, left ventricular ejection fraction > 50%, left atrial volume index > 34 mL/m2, left ventricular early diastolic filling velocity and early diastolic tissue velocity of mitral annulus ratio (E/e' index) ≥ 13, and BNP levels > 35 pg/mL were included in the study (HFpEF, n = 9). Patients without heart failure with preserved ejection fraction (non-HFpEF, n = 9), aged-paired, were also included in the study. Peripheral chemoreceptors stimulation (10% O2 and 90% N2, with CO2 titrated) and central chemoreceptors stimulation (7% CO2 and 93% O2) were conducted for 3 min. MSNA was evaluated by microneurography technique, and forearm blood flow (FBF) by venous occlusion plethysmography. RESULTS During hypoxia, MSNA responses were greater (p < 0.001) and FBF responses were lower in patients with HFpEF (p = 0.006). Likewise, MSNA responses during hypercapnia were higher (p < 0.001) and forearm vascular conductance (FVC) levels were lower (p = 0.030) in patients with HFpEF. CONCLUSIONS Peripheral and central chemoreflex controls of MSNA are hypersensitized in patients with HFpEF, which seems to contribute to the increase in MSNA in these patients. In addition, peripheral and central chemoreceptors stimulation in patients with HFpEF causes muscle vasoconstriction.
Collapse
Affiliation(s)
- Yufuko Kataoka
- Faculdade de Medicina, Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 44, Cerqueira César, São Paulo, CEP 05403-904, Brazil
| | - Allan R K Sales
- Faculdade de Medicina, Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 44, Cerqueira César, São Paulo, CEP 05403-904, Brazil
- D'Or Institute for Research and Education (IDOR), São Paulo, Brazil
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Amanda G Rodrigues
- Faculdade de Medicina, Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 44, Cerqueira César, São Paulo, CEP 05403-904, Brazil
- Research and Education Institute, Hospital Sirio Libanes, São Paulo, Brazil
| | - Beatriz R Goes-Santos
- School of Physical Education, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Luciene F Azevedo
- Faculdade de Medicina, Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 44, Cerqueira César, São Paulo, CEP 05403-904, Brazil
| | - Raphaela V Groehs
- Faculdade de Medicina, Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 44, Cerqueira César, São Paulo, CEP 05403-904, Brazil
| | - Edna O Silva
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Luciana S Santos
- Faculdade de Medicina, Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 44, Cerqueira César, São Paulo, CEP 05403-904, Brazil
| | - Patricia A Oliveira
- Faculdade de Medicina, Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 44, Cerqueira César, São Paulo, CEP 05403-904, Brazil
| | - Camila P Jordão
- Faculdade de Medicina, Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 44, Cerqueira César, São Paulo, CEP 05403-904, Brazil
| | - Ana C M Andrade
- Faculdade de Medicina, Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 44, Cerqueira César, São Paulo, CEP 05403-904, Brazil
| | - Denise M L Lobo
- Physiotherapy Unit, Fametro University Center (Unifametro), Fortaleza, Ceará, Brazil
| | - Eduardo Rondon
- Faculdade de Medicina, Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 44, Cerqueira César, São Paulo, CEP 05403-904, Brazil
| | - Edgar Toschi-Dias
- Psychology, Development and Public Policy Program, Catholic University of Santos, São Paulo, Brazil
| | - Maria Janieire N N Alves
- Faculdade de Medicina, Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 44, Cerqueira César, São Paulo, CEP 05403-904, Brazil
| | - Dirceu R Almeida
- Division of Cardiology, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Carlos E Negrão
- Faculdade de Medicina, Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 44, Cerqueira César, São Paulo, CEP 05403-904, Brazil.
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
9
|
Lataro RM, Brognara F, Iturriaga R, Paton JFR. Inflammation of some visceral sensory systems and autonomic dysfunction in cardiovascular disease. Auton Neurosci 2024; 251:103137. [PMID: 38104365 DOI: 10.1016/j.autneu.2023.103137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/15/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
The sensitization and hypertonicity of visceral afferents are highly relevant to the development and progression of cardiovascular and respiratory disease states. In this review, we described the evidence that the inflammatory process regulates visceral afferent sensitivity and tonicity, affecting the control of the cardiovascular and respiratory system. Some inflammatory mediators like nitric oxide, angiotensin II, endothelin-1, and arginine vasopressin may inhibit baroreceptor afferents and contribute to the baroreflex impairment observed in cardiovascular diseases. Cytokines may act directly on peripheral afferent terminals that transmit information to the central nervous system (CNS). TLR-4 receptors, which recognize lipopolysaccharide, were identified in the nodose and petrosal ganglion and have been implicated in disrupting the blood-brain barrier, which can potentiate the inflammatory process. For example, cytokines may cross the blood-brain barrier to access the CNS. Additionally, pro-inflammatory cytokines such as IL-1β, IL-6, TNF-α and some of their receptors have been identified in the nodose ganglion and carotid body. These pro-inflammatory cytokines also sensitize the dorsal root ganglion or are released in the nucleus of the solitary tract. In cardiovascular disease, pro-inflammatory mediators increase in the brain, heart, vessels, and plasma and may act locally or systemically to activate/sensitize afferent nervous terminals. Recent evidence demonstrated that the carotid body chemoreceptor cells might sense systemic pro-inflammatory molecules, supporting the novel proposal that the carotid body is part of the afferent pathway in the central anti-inflammatory reflexes. The exact mechanisms of how pro-inflammatory mediators affects visceral afferent signals and contribute to the pathophysiology of cardiovascular diseases awaits future research.
Collapse
Affiliation(s)
- R M Lataro
- Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| | - F Brognara
- Department of Nursing, General and Specialized, Nursing School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - R Iturriaga
- Facultad de Ciencias Biológicas, Pontificia Universidad Catolica de Chile, Santiago, Chile; Centro de Investigación en Fisiología y Medicina en Altura - FIMEDALT, Universidad de Antofagasta, Antofagasta, Chile
| | - J F R Paton
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland, Grafton, Auckland, New Zealand
| |
Collapse
|
10
|
Felippe ISA, Río RD, Schultz H, Machado BH, Paton JFR. Commonalities and differences in carotid body dysfunction in hypertension and heart failure. J Physiol 2023; 601:5527-5551. [PMID: 37747109 PMCID: PMC10873039 DOI: 10.1113/jp284114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023] Open
Abstract
Carotid body pathophysiology is associated with many cardiovascular-respiratory-metabolic diseases. This pathophysiology reflects both hyper-sensitivity and hyper-tonicity. From both animal models and human patients, evidence indicates that amelioration of this pathophysiological signalling improves disease states such as a lowering of blood pressure in hypertension, a reduction of breathing disturbances with improved cardiac function in heart failure (HF) and a re-balancing of autonomic activity with lowered sympathetic discharge. Given this, we have reviewed the mechanisms of carotid body hyper-sensitivity and hyper-tonicity across disease models asking whether there is uniqueness related to specific disease states. Our analysis indicates some commonalities and some potential differences, although not all mechanisms have been fully explored across all disease models. One potential commonality is that of hypoperfusion of the carotid body across hypertension and HF, where the excessive sympathetic drive may reduce blood flow in both models and, in addition, lowered cardiac output in HF may potentiate the hypoperfusion state of the carotid body. Other mechanisms are explored that focus on neurotransmitter and signalling pathways intrinsic to the carotid body (e.g. ATP, carbon monoxide) as well as extrinsic molecules carried in the blood (e.g. leptin); there are also transcription factors found in the carotid body endothelium that modulate its activity (Krüppel-like factor 2). The evidence to date fully supports that a better understanding of the mechanisms of carotid body pathophysiology is a fruitful strategy for informing potential new treatment strategies for many cardiovascular, respiratory and metabolic diseases, and this is highly relevant clinically.
Collapse
Affiliation(s)
- Igor S. A. Felippe
- Manaaki Manawa – The Centre for Heart Research, Department of Physiology, Faculty of Health & Medical Sciences, University of Auckland, Grafton, Auckland, 1023, New Zealand
| | - Rodrigo Del Río
- Department of Physiology, Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
- Mechanisms of Myelin Formation and Repair Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
- Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Harold Schultz
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Benedito H. Machado
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Julian F. R. Paton
- Manaaki Manawa – The Centre for Heart Research, Department of Physiology, Faculty of Health & Medical Sciences, University of Auckland, Grafton, Auckland, 1023, New Zealand
| |
Collapse
|
11
|
Giannoni A, Borrelli C, Gentile F, Sciarrone P, Spießhöfer J, Piepoli M, Richerson GB, Floras JS, Coats AJS, Javaheri S, Emdin M, Passino C. Autonomic and respiratory consequences of altered chemoreflex function: clinical and therapeutic implications in cardiovascular diseases. Eur J Heart Fail 2023; 25:642-656. [PMID: 36907827 PMCID: PMC10989193 DOI: 10.1002/ejhf.2819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/10/2023] [Accepted: 02/26/2023] [Indexed: 03/14/2023] Open
Abstract
The importance of chemoreflex function for cardiovascular health is increasingly recognized in clinical practice. The physiological function of the chemoreflex is to constantly adjust ventilation and circulatory control to match respiratory gases to metabolism. This is achieved in a highly integrated fashion with the baroreflex and the ergoreflex. The functionality of chemoreceptors is altered in cardiovascular diseases, causing unstable ventilation and apnoeas and promoting sympathovagal imbalance, and it is associated with arrhythmias and fatal cardiorespiratory events. In the last few years, opportunities to desensitize hyperactive chemoreceptors have emerged as potential options for treatment of hypertension and heart failure. This review summarizes up to date evidence of chemoreflex physiology/pathophysiology, highlighting the clinical significance of chemoreflex dysfunction, and lists the latest proof of concept studies based on modulation of the chemoreflex as a novel target in cardiovascular diseases.
Collapse
Affiliation(s)
- Alberto Giannoni
- Health Science Interdisciplinary Center, Scuola Superiore Sant’Anna, Pisa, Italy
- Fondazione Toscana G. Monasterio, Pisa, Italy
| | | | - Francesco Gentile
- Health Science Interdisciplinary Center, Scuola Superiore Sant’Anna, Pisa, Italy
| | | | - Jens Spießhöfer
- Health Science Interdisciplinary Center, Scuola Superiore Sant’Anna, Pisa, Italy
- University of Aachen, Aachen, Germany
| | | | | | - John S Floras
- Division of Cardiology, Mount Sinai Hospital, University of Toronto, Ontario, Canada
| | | | - Shahrokh Javaheri
- Division of Pulmonary and Sleep Medicine, Bethesda North Hospital, Cincinnati, Ohio, Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati, Cincinnati, Ohio, and Division of Cardiology, The Ohio State University, Columbus, Ohio USA
| | - Michele Emdin
- Health Science Interdisciplinary Center, Scuola Superiore Sant’Anna, Pisa, Italy
- Fondazione Toscana G. Monasterio, Pisa, Italy
| | - Claudio Passino
- Health Science Interdisciplinary Center, Scuola Superiore Sant’Anna, Pisa, Italy
- Fondazione Toscana G. Monasterio, Pisa, Italy
| |
Collapse
|
12
|
Gee MM, Lenhoff AM, Schwaber JS, Ogunnaike BA, Vadigepalli R. Closed-loop modeling of central and intrinsic cardiac nervous system circuits underlying cardiovascular control. AIChE J 2023; 69:e18033. [PMID: 37250861 PMCID: PMC10211393 DOI: 10.1002/aic.18033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/02/2023] [Indexed: 01/16/2023]
Abstract
The baroreflex is a multi-input, multi-output control physiological system that regulates blood pressure by modulating nerve activity between the brainstem and the heart. Existing computational models of the baroreflex do not explictly incorporate the intrinsic cardiac nervous system (ICN), which mediates central control of the heart function. We developed a computational model of closed-loop cardiovascular control by integrating a network representation of the ICN within central control reflex circuits. We examined central and local contributions to the control of heart rate, ventricular functions, and respiratory sinus arrhythmia (RSA). Our simulations match the experimentally observed relationship between RSA and lung tidal volume. Our simulations predicted the relative contributions of the sensory and the motor neuron pathways to the experimentally observed changes in the heart rate. Our closed-loop cardiovascular control model is primed for evaluating bioelectronic interventions to treat heart failure and renormalize cardiovascular physiology.
Collapse
Affiliation(s)
- Michelle M Gee
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
- Daniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Abraham M Lenhoff
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
| | - James S Schwaber
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
- Daniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Babatunde A Ogunnaike
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
| | - Rajanikanth Vadigepalli
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
- Daniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| |
Collapse
|
13
|
Lataro RM, Moraes DJA, Gava FN, Omoto ACM, Silva CAA, Brognara F, Alflen L, Brazão V, Colato RP, do Prado JC, Ford AP, Salgado HC, Paton JFR. P2X3 receptor antagonism attenuates the progression of heart failure. Nat Commun 2023; 14:1725. [PMID: 36977675 PMCID: PMC10050083 DOI: 10.1038/s41467-023-37077-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/02/2023] [Indexed: 03/30/2023] Open
Abstract
Despite advances in the treatment of heart failure, prognosis is poor, mortality high and there remains no cure. Heart failure is associated with reduced cardiac pump function, autonomic dysregulation, systemic inflammation and sleep-disordered breathing; these morbidities are exacerbated by peripheral chemoreceptor dysfunction. We reveal that in heart failure the carotid body generates spontaneous, episodic burst discharges coincident with the onset of disordered breathing in male rats. Purinergic (P2X3) receptors were upregulated two-fold in peripheral chemosensory afferents in heart failure, and when antagonized abolished these episodic discharges, normalized both peripheral chemoreceptor sensitivity and the breathing pattern, reinstated autonomic balance, improved cardiac function, and reduced both inflammation and biomarkers of cardiac failure. Aberrant ATP transmission in the carotid body triggers episodic discharges that via P2X3 receptors play a crucial role in the progression of heart failure and as such offer a distinct therapeutic angle to reverse multiple components of its pathogenesis.
Collapse
Affiliation(s)
- Renata M Lataro
- Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Davi J A Moraes
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Fabio N Gava
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Department of Clinical Veterinary, Agrarian Sciences Center, Londrina State University, Londrina, Brazil
| | - Ana C M Omoto
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Carlos A A Silva
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Fernanda Brognara
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Lais Alflen
- Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Vânia Brazão
- College of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Rafaela Pravato Colato
- College of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - José Clóvis do Prado
- College of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Helio C Salgado
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Julian F R Paton
- Manaaki Manawa-The Centre for Heart Research, Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
14
|
Caballero-Eraso C, Colinas O, Sobrino V, González-Montelongo R, Cabeza JM, Gao L, Pardal R, López-Barneo J, Ortega-Sáenz P. Rearrangement of cell types in the rat carotid body neurogenic niche induced by chronic intermittent hypoxia. J Physiol 2023; 601:1017-1036. [PMID: 36647759 DOI: 10.1113/jp283897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
The carotid body (CB) is a prototypical acute oxygen (O2 )-sensing organ that mediates reflex hyperventilation and increased cardiac output in response to hypoxaemia. CB overactivation, secondary to the repeated stimulation produced by the recurrent episodes of intermittent hypoxia, is believed to contribute to the pathogenesis of sympathetic hyperactivity present in sleep apnoea patients. Although CB functional plasticity induced by chronic intermittent hypoxia (CIH) has been demonstrated, the underlying mechanisms are not fully elucidated. Here, we show that CIH induces a small increase in CB volume and rearrangement of cell types in the CB, characterized by a mobilization of immature quiescent neuroblasts, which enter a process of differentiation into mature, O2 -sensing and neuron-like, chemoreceptor glomus cells. Prospective isolation of individual cell classes has allowed us to show that maturation of CB neuroblasts is paralleled by an upregulation in the expression of specific glomus cell genes involved in acute O2 -sensing. CIH enhances mitochondrial responsiveness to hypoxia in maturing neuroblasts as well as in glomus cells. These data provide novel perspectives on the pathogenesis of CB-mediated sympathetic overflow that may lead to the development of new pharmacological strategies of potential applicability in sleep apnoea patients. KEY POINTS: Obstructive sleep apnoea is a frequent condition in the human population that predisposes to severe cardiovascular and metabolic alterations. Activation of the carotid body, the main arterial oxygen-sensing chemoreceptor, by repeated episodes of hypoxaemia induces exacerbation of the carotid body-mediated chemoreflex and contributes to sympathetic overflow characteristic of sleep apnoea patients. In rats, chronic intermittent hypoxaemia induces fast neurogenesis in the carotid body with rapid activation of neuroblasts, which enter a process of proliferation and maturation into O2 -sensing chemoreceptor glomus cells. Maturing carotid body neuroblasts and glomus cells exposed to chronic intermittent hypoxia upregulate genes involved in acute O2 sensing and enhance mitochondrial responsiveness to hypoxia. These findings provide novel perspectives on the pathogenesis of carotid body-mediated sympathetic hyperactivation. Pharmacological modulation of carotid body fast neurogenesis could help to ameliorate the deleterious effects of chronic intermittent hypoxaemia in sleep apnoea patients.
Collapse
Affiliation(s)
- Candela Caballero-Eraso
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Unidad Médico Quirúrgica de Enfermedades Respiratorias, Hospital Universitario Virgen del Rocío/IBIS, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Olaia Colinas
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - Verónica Sobrino
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Rafaela González-Montelongo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - José María Cabeza
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Lin Gao
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - Ricardo Pardal
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - Patricia Ortega-Sáenz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
15
|
Zucker IH, Xia Z, Wang HJ. Potential Neuromodulation of the Cardio-Renal Syndrome. J Clin Med 2023; 12:803. [PMID: 36769450 PMCID: PMC9917464 DOI: 10.3390/jcm12030803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
The cardio-renal syndrome (CRS) type 2 is defined as a progressive loss of renal function following a primary insult to the myocardium that may be either acute or chronic but is accompanied by a decline in myocardial pump performance. The treatment of patients with CRS is difficult, and the disease often progresses to end-stage renal disease that is refractory to conventional therapy. While a good deal of information is known concerning renal injury in the CRS, less is understood about how reflex control of renal sympathetic nerve activity affects this syndrome. In this review, we provide insight into the role of the renal nerves, both from the afferent or sensory side and from the efferent side, in mediating renal dysfunction in CRS. We discuss how interventions such as renal denervation and abrogation of systemic reflexes may be used to alleviate renal dysfunction in the setting of chronic heart failure. We specifically focus on a novel cardiac sensory reflex that is sensitized in heart failure and activates the sympathetic nervous system, especially outflow to the kidney. This so-called Cardiac Sympathetic Afferent Reflex (CSAR) can be ablated using the potent neurotoxin resinferitoxin due to the high expression of Transient Receptor Potential Vanilloid 1 (TRPV1) receptors. Following ablation of the CSAR, several markers of renal dysfunction are reversed in the post-myocardial infarction heart failure state. This review puts forth the novel idea of neuromodulation at the cardiac level in the treatment of CRS Type 2.
Collapse
Affiliation(s)
- Irving H. Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Zhiqiu Xia
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Han-Jun Wang
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
16
|
Manabe K, D’Souza AW, Washio T, Takeda R, Hissen SL, Akins JD, Fu Q. Sympathetic and hemodynamic responses to exercise in heart failure with preserved ejection fraction. Front Cardiovasc Med 2023; 10:1148324. [PMID: 37139124 PMCID: PMC10150451 DOI: 10.3389/fcvm.2023.1148324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
Excessive sympathetic activity during exercise causes heightened peripheral vasoconstriction, which can reduce oxygen delivery to active muscles, resulting in exercise intolerance. Although both patients suffering from heart failure with preserved and reduced ejection fraction (HFpEF and HFrEF, respectively) exhibit reduced exercise capacity, accumulating evidence suggests that the underlying pathophysiology may be different between these two conditions. Unlike HFrEF, which is characterized by cardiac dysfunction with lower peak oxygen uptake, exercise intolerance in HFpEF appears to be predominantly attributed to peripheral limitations involving inadequate vasoconstriction rather than cardiac limitations. However, the relationship between systemic hemodynamics and the sympathetic neural response during exercise in HFpEF is less clear. This mini review summarizes the current knowledge on the sympathetic (i.e., muscle sympathetic nerve activity, plasma norepinephrine concentration) and hemodynamic (i.e., blood pressure, limb blood flow) responses to dynamic and static exercise in HFpEF compared to HFrEF, as well as non-HF controls. We also discuss the potential of a relationship between sympathetic over-activation and vasoconstriction leading to exercise intolerance in HFpEF. The limited body of literature indicates that higher peripheral vascular resistance, perhaps secondary to excessive sympathetically mediated vasoconstrictor discharge compared to non-HF and HFrEF, drives exercise in HFpEF. Excessive vasoconstriction also may primarily account for over elevations in blood pressure and concomitant limitations in skeletal muscle blood flow during dynamic exercise, resulting in exercise intolerance. Conversely, during static exercise, HFpEF exhibit relatively normal sympathetic neural reactivity compared to non-HF, suggesting that other mechanisms beyond sympathetic vasoconstriction dictate exercise intolerance in HFpEF.
Collapse
Affiliation(s)
- Kazumasa Manabe
- Women’s Heart Health Laboratory, Institute for Exercise and Environmental Medicine at Texas Health Presbyterian Hospital, Dallas, TX, United States
- Cardiology Division, Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Andrew W. D’Souza
- Women’s Heart Health Laboratory, Institute for Exercise and Environmental Medicine at Texas Health Presbyterian Hospital, Dallas, TX, United States
- Cardiology Division, Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, United States
- Neurovascular Research Laboratory, School of Kinesiology, Western University, London, ON, Canada
| | - Takuro Washio
- Women’s Heart Health Laboratory, Institute for Exercise and Environmental Medicine at Texas Health Presbyterian Hospital, Dallas, TX, United States
- Cardiology Division, Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Ryosuke Takeda
- Women’s Heart Health Laboratory, Institute for Exercise and Environmental Medicine at Texas Health Presbyterian Hospital, Dallas, TX, United States
- Cardiology Division, Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Sarah L. Hissen
- Women’s Heart Health Laboratory, Institute for Exercise and Environmental Medicine at Texas Health Presbyterian Hospital, Dallas, TX, United States
- Cardiology Division, Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - John D. Akins
- Women’s Heart Health Laboratory, Institute for Exercise and Environmental Medicine at Texas Health Presbyterian Hospital, Dallas, TX, United States
- Cardiology Division, Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Qi Fu
- Women’s Heart Health Laboratory, Institute for Exercise and Environmental Medicine at Texas Health Presbyterian Hospital, Dallas, TX, United States
- Cardiology Division, Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, United States
- Correspondence: Qi Fu
| |
Collapse
|
17
|
Schwarz KG, Flores M, Voituron N, Del Rio R. Contribution of Carotid Bodies on Pulmonary Function During Normoxia and Acute Hypoxia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1427:127-134. [PMID: 37322343 DOI: 10.1007/978-3-031-32371-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Carotid bodies (CBs) are main peripheral chemoreceptors involved in breathing regulation. Despite the well-known role played by CBs on breathing control, the precise contribution of CBs on the regulation of lung mechanics remains controversial. Accordingly, we study changes in lung mechanics in normoxia (FiO2 21%) and hypoxia (FiO2 8%) in mice with or without functional CBs. For this, we used adult male mice that underwent sham or CB denervation (CBD) surgery. Compared to sham-operated mice, we found that CBD induced an increase in lung resistance (RL) while breathing normoxic air (sham vs. CBD, p < 0.05). Importantly, changes in RL were accompanied by an approximately threefold reduction in dynamic compliance (Cdyn). Additionally, end-expiratory work (EEW) was increased in normoxia in the CBD group. Contrarily, we found that CBD has no effect on lung mechanics during hypoxic stimulation. Indeed, RL, Cdyn, and EEW values in CBD mice were undistinguishable from the ones obtained in sham mice. Finally, we found that CBD induces lung parenchyma morphological alterations characterized by reduced alveoli space. Together our results showed that CBD progressively increases lung resistance at normoxic conditions and suggest that CB tonic afferent discharges are needed for the proper regulation of lung mechanics at rest.
Collapse
Affiliation(s)
- Karla G Schwarz
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Maríajose Flores
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolas Voituron
- Laboratoire Hypoxie & Poumon UMR INSERM U1272, Universite Sorbonne Paris Nord, Paris, France
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
18
|
Bravo L, Pereyra KV, Diaz HS, Flores M, Schwarz KG, Toledo C, Díaz-Jara E, González L, Andia ME, Del Rio R. Enhanced Peripheral Chemoreflex Drive Is Associated with Cardiorespiratory Disorders in Mice with Coronary Heart Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1427:99-106. [PMID: 37322340 DOI: 10.1007/978-3-031-32371-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Coronary heart disease (CHD) is a prevalent cardiovascular disease characterized by coronary artery blood flow reductions caused by lipid deposition and oxidation within the coronary arteries. Dyslipidemia is associated with local tissue damage by oxidative stress/inflammation and carotid bodies (CB) peripheral chemoreceptors are heavily modulated by both reactive oxygen species and pro-inflammatory molecules (i.e., cytokines). Despite this, it is not know whether CB-mediated chemoreflex drive may be affected in CHD. In the present study, we evaluated peripheral CB-mediated chemoreflex drive, cardiac autonomic function, and the incidence of breathing disorders in a murine model of CHD. Compared to age-matched control mice, CHD mice showed enhanced CB-chemoreflex drive (twofold increase in the hypoxic ventilatory response), cardiac sympathoexcitation, and irregular breathing disorders. Remarkably, all these were closely linked to the enhanced CB-mediated chemoreflex drive. Our results showed that mice with CHD displayed an enhanced CB chemoreflex, sympathoexcitation, and disordered breathing and suggest that CBs may be involved in chronic cardiorespiratory alterations in the setting of CHD.
Collapse
Affiliation(s)
- Liena Bravo
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Katherin V Pereyra
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Hugo S Diaz
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mariajosé Flores
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Karla G Schwarz
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Camilo Toledo
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Esteban Díaz-Jara
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Leticia González
- Radiology Department & ANID - Millennium Institute for Intelligent Healthcare Engineering - iHEALTH, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marcelo E Andia
- Radiology Department & ANID - Millennium Institute for Intelligent Healthcare Engineering - iHEALTH, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
19
|
Lazarov NE, Atanasova DY. Carotid Body Dysfunction and Mechanisms of Disease. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2023; 237:123-138. [PMID: 37946080 DOI: 10.1007/978-3-031-44757-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Emerging evidence shows that the carotid body (CB) dysfunction is implicated in various physiological and pathophysiological conditions. It has been revealed that the CB structure and neurochemical profile alter in certain human sympathetic-related and cardiometabolic diseases. Specifically, a tiny CB with a decrease of glomus cells and their dense-cored vesicles has been seen in subjects with sleep disordered breathing such as sudden infant death syndrome and obstructive sleep apnea patients and people with congenital central hypoventilation syndrome. Moreover, the CB degranulation is accompanied by significantly elevated levels of catecholamines and proinflammatory cytokines in such patients. The intermittent hypoxia stimulates the CB, eliciting augmented chemoreflex drive and enhanced cardiorespiratory and sympathetic responses. High CB excitability due to blood flow restrictions, oxidative stress, alterations in neurotransmitter gases and disruptions of local mediators is also observed in congestive heart failure conditions. On the other hand, the morpho-chemical changes in hypertension include an increase in the CB volume due to vasodilation, altered transmitter phenotype of chemoreceptor cells and elevated production of neurotrophic factors. Accordingly, in both humans and animal models CB denervation prevents the breathing instability and lowers blood pressure. Knowledge of the morphofunctional aspects of the CB, a better understanding of its role in disease and recent advances in human CB translational research would contribute to the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Nikolai E Lazarov
- Department of Anatomy and Histology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria.
| | | |
Collapse
|
20
|
Pardal R. The Adult Carotid Body: A Germinal Niche at the Service of Physiology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1427:13-22. [PMID: 37322331 DOI: 10.1007/978-3-031-32371-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The carotid body is the most relevant oxygen sensor in mammalian organisms. This organ helps to detect acute changes in PO2, but it is also crucial for the organismal adaptation to a maintained hypoxemia. Profound angiogenic and neurogenic processes take place in the carotid body to facilitate this adaptation process. We have described a plethora of multipotent stem cells and restricted progenitors, from both vascular and neuronal lineages, existing in the quiescent normoxic carotid body, ready to contribute to organ growth and adaptation upon the arrival of the hypoxic stimulus. Our deep understanding of the functioning of this stunning germinal niche will very likely facilitate the management and treatment of an important group of diseases that course with carotid body over-activation and malfunction.
Collapse
Affiliation(s)
- Ricardo Pardal
- Dpto. de Fisiología Médica y Biofísica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain.
| |
Collapse
|
21
|
A Methodological Perspective on the Function and Assessment of Peripheral Chemoreceptors in Heart Failure: A Review of Data from Clinical Trials. Biomolecules 2022; 12:biom12121758. [PMID: 36551186 PMCID: PMC9775522 DOI: 10.3390/biom12121758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Augmented peripheral chemoreceptor sensitivity (PChS) is a common feature of many sympathetically mediated diseases, among others, and it is an important mechanism of the pathophysiology of heart failure (HF). It is related not only to the greater severity of symptoms, especially to dyspnea and lower exercise tolerance but also to a greater prevalence of complications and poor prognosis. The causes, mechanisms, and impact of the enhanced activity of peripheral chemoreceptors (PChR) in the HF population are subject to intense research. Several methodologies have been established and utilized to assess the PChR function. Each of them presents certain advantages and limitations. Furthermore, numerous factors could influence and modulate the response from PChR in studied subjects. Nevertheless, even with the impressive number of studies conducted in this field, there are still some gaps in knowledge that require further research. We performed a review of all clinical trials in HF human patients, in which the function of PChR was evaluated. This review provides an extensive synthesis of studies evaluating PChR function in the HF human population, including methods used, factors potentially influencing the results, and predictors of increased PChS.
Collapse
|
22
|
Toledo C, Andrade DC, Diaz-Jara E, Ortolani D, Bernal-Santander I, Schwarz KG, Ortiz FC, Marcus NJ, Oliveira LM, Takakura AC, Moreira TS, Del Rio R. Cardiorespiratory alterations following intermittent photostimulation of RVLM C1 neurons: Implications for long-term blood pressure, breathing and sleep regulation in freely moving rats. Acta Physiol (Oxf) 2022; 236:e13864. [PMID: 35959519 DOI: 10.1111/apha.13864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 01/29/2023]
Abstract
AIM Sympathoexcitation and sleep-disordered breathing are common contributors for disease progression. Catecholaminergic neurons from the rostral ventrolateral medulla (RVLM-C1) modulate sympathetic outflow and have anatomical projections to respiratory neurons; however, the contribution of highly selective activation of RVLM-C1 neurons on long-term autonomic and breathing (dys)regulation remains to be understood. METHODS To explore this relationship, a lentiviral vector carrying the light-sensitive cation channel channelrhodopsin-2 (LVV-PRSX8-ChR2-YFP) was unilaterally injected into the RVLM of healthy rats. On the contralateral side, LVV-PRSX8-ChR2-YFP was co-injected with a specific immunotoxin (DβH-SAP) targeted to eliminate C1 neurons. RESULTS Intermittent photostimulation of RVLM-C1 in vivo, in unrestrained freely moving rats, elicited long-term facilitation of the sympathetic drive, a rise in blood pressure and sympatho-respiratory coupling. In addition, photoactivation of RVLM-C1 induced long-lasting ventilatory instability, characterized by oscillations in tidal volume and increased breathing variability, but only during non-rapid eye movement sleep. These effects were not observed when photostimulation of the RVLM was performed in the presence of DβH-SAP toxin. CONCLUSIONS The finding that intermittent activation of RVLM-C1 neurons induces autonomic and breathing dysfunction suggest that episodic stimulation of RVLM-C1 may serve as a pathological substrate for the long-term development of cardiorespiratory disorders.
Collapse
Affiliation(s)
- Camilo Toledo
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - David C Andrade
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Fisiología y Medicina de Altura, Departamento Biomedico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Esteban Diaz-Jara
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Domiziana Ortolani
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ignacio Bernal-Santander
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Karla G Schwarz
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fernando C Ortiz
- Mechanisms of Myelin Formation and Repair Laboratory, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad, Autónoma de Chile, Santiago, Chile
| | - Noah J Marcus
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, Iowa, USA
| | - Luiz M Oliveira
- Department of Pharmacology, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Ana C Takakura
- Department of Pharmacology, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
23
|
Neder JA, Phillips DB, O'Donnell DE, Dempsey JA. Excess ventilation and exertional dyspnoea in heart failure and pulmonary hypertension. Eur Respir J 2022; 60:13993003.00144-2022. [PMID: 35618273 DOI: 10.1183/13993003.00144-2022] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/05/2022] [Indexed: 01/11/2023]
Abstract
Increased ventilation relative to metabolic demands, indicating alveolar hyperventilation and/or increased physiological dead space (excess ventilation), is a key cause of exertional dyspnoea. Excess ventilation has assumed a prominent role in the functional assessment of patients with heart failure (HF) with reduced (HFrEF) or preserved (HFpEF) ejection fraction, pulmonary arterial hypertension (PAH) and chronic thromboembolic pulmonary hypertension (CTEPH). We herein provide the key pieces of information to the caring physician to 1) gain unique insights into the seeds of patients' shortness of breath and 2) develop a rationale for therapeutically lessening excess ventilation to mitigate this distressing symptom. Reduced bulk oxygen transfer induced by cardiac output limitation and/or right ventricle-pulmonary arterial uncoupling increase neurochemical afferent stimulation and (largely chemo-) receptor sensitivity, leading to alveolar hyperventilation in HFrEF, PAH and small-vessel, distal CTEPH. As such, interventions geared to improve central haemodynamics and/or reduce chemosensitivity have been particularly effective in lessening their excess ventilation. In contrast, 1) high filling pressures in HFpEF and 2) impaired lung perfusion leading to ventilation/perfusion mismatch in proximal CTEPH conspire to increase physiological dead space. Accordingly, 1) decreasing pulmonary capillary pressures and 2) mechanically unclogging larger pulmonary vessels (pulmonary endarterectomy and balloon pulmonary angioplasty) have been associated with larger decrements in excess ventilation. Exercise training has a strong beneficial effect across diseases. Addressing some major unanswered questions on the link of excess ventilation with exertional dyspnoea under the modulating influence of pharmacological and nonpharmacological interventions might prove instrumental to alleviate the devastating consequences of these prevalent diseases.
Collapse
Affiliation(s)
- J Alberto Neder
- Clinical Exercise Physiology and Respiratory Investigation Unit, Division of Respiratory and Critical Care Medicine, Dept of Medicine, Queen's University and Kingston Health Sciences Centre, Kingston, ON, Canada
| | - Devin B Phillips
- Clinical Exercise Physiology and Respiratory Investigation Unit, Division of Respiratory and Critical Care Medicine, Dept of Medicine, Queen's University and Kingston Health Sciences Centre, Kingston, ON, Canada
| | - Denis E O'Donnell
- Clinical Exercise Physiology and Respiratory Investigation Unit, Division of Respiratory and Critical Care Medicine, Dept of Medicine, Queen's University and Kingston Health Sciences Centre, Kingston, ON, Canada
| | - Jerome A Dempsey
- John Rankin Laboratory of Pulmonary Medicine, Dept of Population Health Sciences, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
24
|
Timón-Gómez A, Scharr AL, Wong NY, Ni E, Roy A, Liu M, Chau J, Lampert JL, Hireed H, Kim NS, Jan M, Gupta AR, Day RW, Gardner JM, Wilson RJA, Barrientos A, Chang AJ. Tissue-specific mitochondrial HIGD1C promotes oxygen sensitivity in carotid body chemoreceptors. eLife 2022; 11:e78915. [PMID: 36255054 PMCID: PMC9635879 DOI: 10.7554/elife.78915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022] Open
Abstract
Mammalian carotid body arterial chemoreceptors function as an early warning system for hypoxia, triggering acute life-saving arousal and cardiorespiratory reflexes. To serve this role, carotid body glomus cells are highly sensitive to decreases in oxygen availability. While the mitochondria and plasma membrane signaling proteins have been implicated in oxygen sensing by glomus cells, the mechanism underlying their mitochondrial sensitivity to hypoxia compared to other cells is unknown. Here, we identify HIGD1C, a novel hypoxia-inducible gene domain factor isoform, as an electron transport chain complex IV-interacting protein that is almost exclusively expressed in the carotid body and is therefore not generally necessary for mitochondrial function. Importantly, HIGD1C is required for carotid body oxygen sensing and enhances complex IV sensitivity to hypoxia. Thus, we propose that HIGD1C promotes exquisite oxygen sensing by the carotid body, illustrating how specialized mitochondria can be used as sentinels of metabolic stress to elicit essential adaptive behaviors.
Collapse
Affiliation(s)
| | - Alexandra L Scharr
- Department of Physiology and Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States
| | - Nicholas Y Wong
- Department of Physiology and Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States
| | - Erwin Ni
- Department of Physiology and Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States
| | - Arijit Roy
- Department of Physiology and Pharmacology, University of CalgaryCalgaryCanada
- Hotchkiss Brain Institute, University of CalgaryCalgaryCanada
- Alberta Children's Hospital Research Institute, University of CalgaryCalgaryCanada
| | - Min Liu
- Department of Physiology and Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States
| | - Julisia Chau
- Department of Physiology and Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States
| | - Jack L Lampert
- Department of Physiology and Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States
| | - Homza Hireed
- Department of Physiology and Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States
| | - Noah S Kim
- Department of Physiology and Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States
| | - Masood Jan
- Department of Physiology and Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States
| | - Alexander R Gupta
- Department of Surgery, University of California, San FranciscoSan FranciscoUnited States
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
| | - Ryan W Day
- Department of Surgery, University of California, San FranciscoSan FranciscoUnited States
| | - James M Gardner
- Department of Surgery, University of California, San FranciscoSan FranciscoUnited States
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
| | - Richard JA Wilson
- Department of Physiology and Pharmacology, University of CalgaryCalgaryCanada
- Hotchkiss Brain Institute, University of CalgaryCalgaryCanada
- Alberta Children's Hospital Research Institute, University of CalgaryCalgaryCanada
| | | | - Andy J Chang
- Department of Physiology and Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
25
|
Ge Y, van Roon L, van Gils JM, Geestman T, van Munsteren CJ, Smits AM, Goumans MJTH, DeRuiter MC, Jongbloed MRM. Acute myocardial infarction induces remodeling of the murine superior cervical ganglia and the carotid body. Front Cardiovasc Med 2022; 9:758265. [PMID: 36277772 PMCID: PMC9582601 DOI: 10.3389/fcvm.2022.758265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
A role for cardiac sympathetic hyperinnervation in arrhythmogenesis after myocardial infarction (MI) has increasingly been recognized. In humans and mice, the heart receives cervical as well as thoracic sympathetic contributions. In mice, superior cervical ganglia (SCG) have been shown to contribute significantly to myocardial sympathetic innervation of the left ventricular anterior wall. Of interest, the SCG is situated adjacent to the carotid body (CB), a small organ involved in oxygen and metabolic sensing. We investigated the remodeling of murine SCG and CB over time after MI. Murine SCG were isolated from control mice, as well as 24 h, 3 days, 7 days and 6 weeks after MI. SCG and CBs were stained for the autonomic nervous system markers β3-tubulin, tyrosine hydroxylase (TH) and choline acetyltransferase (ChAT), as well as for the neurotrophic factors brain derived neurotropic factor (BDNF), nerve growth factor (NGF) and their tyrosine receptor kinase (pan TRK). Results show that after MI a significant increase in neuron size occurs, especially in the region bordering the CB. Co-expression of TH and ChAT is observed in SCG neuronal cells, but not in the CB. After MI, a significant decrease in ChAT intensity occurs, which negatively correlated with the increased cell size. In addition, an increase of BDNF and NGF at protein and mRNA levels was observed in both the CB and SCG. This upregulation of neurotropic factors coincides with the upregulation of their receptor within the SCG. These findings were concomitant with an increase in GAP43 expression in the SCG, which is known to contribute to axonal outgrowth and elongation. In conclusion, neuronal remodeling toward an increased adrenergic phenotype occurs in the SCG, which is possibly mediated by the CB and might contribute to pathological hyperinnervation after MI.
Collapse
Affiliation(s)
- Yang Ge
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands,Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Lieke van Roon
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands,Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Janine M. van Gils
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands,Department of Nephrology, Leiden University Medical Center, Leiden, Netherlands
| | - Tom Geestman
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands
| | - Conny J. van Munsteren
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands
| | - Anke M. Smits
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Marco C. DeRuiter
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands
| | - Monique R. M. Jongbloed
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands,Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands,*Correspondence: Monique R. M. Jongbloed, ; orcid.org/0000-0002-9132-0418
| |
Collapse
|
26
|
Fernandes MVS, Müller PDT, Santos MCD, da Silva WA, Güntzel Chiappa AM, Chiappa GR. Ventilatory variability during cardiopulmonary exercise test is higher in heart failure and chronic obstructive pulmonary disease plus heart failure than in chronic obstructive pulmonary disease patients. J Cardiovasc Med (Hagerstown) 2022; 23:694-696. [PMID: 36099077 DOI: 10.2459/jcm.0000000000001327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Marcos V S Fernandes
- Graduate Program in Human Movement and Rehabilitation of Evangelical University of Goiás
| | - Paulo de Tarso Müller
- Federal University of Mato Grosso do Sul (UFMS)/Maria Aparecida Pedrossian Hospital (HUMAP), Laboratory of Respiratory Pathophysiology (LAFIR), Campo Grande, Mato Grosso do Sul, MS
| | | | - Weder Alves da Silva
- Graduate Program in Human Movement and Rehabilitation of Evangelical University of Goiás
| | | | - Gaspar R Chiappa
- Graduate Program in Human Movement and Rehabilitation of Evangelical University of Goiás
| |
Collapse
|
27
|
Kious KW, Philipose A, Smith LJ, Kemble JP, Twohey SCE, Savage K, Díaz HS, Del Rio R, Marcus NJ. Peripheral chemoreflex modulation of renal hemodynamics and renal tissue PO2 in chronic heart failure with reduced ejection fraction. Front Physiol 2022; 13:955538. [PMID: 36091359 PMCID: PMC9459040 DOI: 10.3389/fphys.2022.955538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Aberrant carotid body chemoreceptor (CBC) function contributes to increased sympathetic nerve activity (SNA) and reduced renal blood flow (RBF) in chronic heart failure (CHF). Intermittent asphyxia (IA) mimicking sleep apnea is associated with additional increases in SNA and may worsen reductions in RBF and renal PO2 (RPO2) in CHF. The combined effects of decreased RBF and RPO2 may contribute to biochemical changes precipitating renal injury. This study sought to determine the role of CBC activity on glomerular filtration rate (GFR), RBF and RPO2 in CHF, and to assess the additive effects of IA. Furthermore, we sought to identify changes in gene expression that might contribute to renal injury. We hypothesized that GFR, RBF, and RPO2 would be reduced in CHF, that decreases in RBF and RPO2 would be worsened by IA, and that these changes would be ameliorated by CBC ablation (CBD). Finally, we hypothesized that CHF would be associated with pro-oxidative pro-fibrotic changes in renal gene expression that would be ameliorated by CBD. CHF was induced in adult male Sprague Dawley rats using coronary artery ligation (CAL). Carotid body denervation was performed by cryogenic ablation. GFR was assessed in conscious animals at the beginning and end of the experimental period. At 8-weeks post-CAL, cardiac function was assessed via echocardiography, and GFR, baseline and IA RBF and RPO2 were measured. Renal gene expression was measured using qRT-PCR. GFR was lower in CHF compared to sham (p < 0.05) but CBD had no salutary effect. RBF and RPO2 were decreased in CHF compared to sham (p < 0.05), and this effect was attenuated by CBD (p < 0.05). RBF and RPO2 were reduced to a greater extent in CHF vs. sham during exposure to IA (p < 0.05), and this effect was attenuated by CBD for RBF (p < 0.05). Downregulation of antioxidant defense and fibrosis-suppressing genes was observed in CHF vs. sham however CBD had no salutary effect. These results suggest that aberrant CBC function in CHF has a clear modulatory effect on RBF during normoxia and during IA simulating central sleep apnea.
Collapse
Affiliation(s)
- Kiefer W. Kious
- Department of Physiology and Pharmacology, Des Moines University Medicine and Health Sciences, Des Moines, IA, United States
| | - Andrew Philipose
- Department of Physiology and Pharmacology, Des Moines University Medicine and Health Sciences, Des Moines, IA, United States
| | - Luke J. Smith
- Department of Physiology and Pharmacology, Des Moines University Medicine and Health Sciences, Des Moines, IA, United States
| | - Jayson P. Kemble
- Department of Physiology and Pharmacology, Des Moines University Medicine and Health Sciences, Des Moines, IA, United States
| | - Stephanie C. E. Twohey
- Department of Physiology and Pharmacology, Des Moines University Medicine and Health Sciences, Des Moines, IA, United States
- Department of Biology, Simpson College, Indianola, IA, United States
| | - Kalie Savage
- Department of Physiology and Pharmacology, Des Moines University Medicine and Health Sciences, Des Moines, IA, United States
| | - Hugo S. Díaz
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Noah J. Marcus
- Department of Physiology and Pharmacology, Des Moines University Medicine and Health Sciences, Des Moines, IA, United States
| |
Collapse
|
28
|
Gao L, Ortega-Sáenz P, Moreno-Domínguez A, López-Barneo J. Mitochondrial Redox Signaling in O 2-Sensing Chemoreceptor Cells. Antioxid Redox Signal 2022; 37:274-289. [PMID: 35044243 DOI: 10.1089/ars.2021.0255] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Acute responses to hypoxia are essential for the survival of mammals. The carotid body (CB), the main arterial chemoreceptor, contains glomus cells with oxygen (O2)-sensitive K+ channels, which are inhibited during hypoxia to trigger adaptive cardiorespiratory reflexes. Recent Advances: In this review, recent advances in molecular mechanisms of acute O2 sensing in CB glomus cells are discussed, with a special focus on the signaling role of mitochondria through regulating cellular redox status. These advances have been achieved thanks to the use of genetically engineered redox-sensitive green fluorescent protein (roGFP) probes, which allowed us to monitor rapid changes in ROS production in real time in different subcellular compartments during hypoxia. This methodology was used in combination with conditional knockout mice models, pharmacological approaches, and transcriptomic studies. We have proposed a mitochondria-to-membrane signaling model of acute O2 sensing in which H2O2 released in the mitochondrial intermembrane space serves as a signaling molecule to inhibit K+ channels on the plasma membrane. Critical Issues: Changes in mitochondrial reactive oxygen species (ROS) production during acute hypoxia are highly compartmentalized in the submitochondrial regions. The use of redox-sensitive probes targeted to specific compartments is essential to fully understand the role of mitochondrial ROS in acute O2 sensing. Future Directions: Further studies are needed to specify the ROS and to characterize the target(s) of ROS in chemoreceptor cells during acute hypoxia. These data may also contribute to a more complete understanding of the implication of ROS in acute responses to hypoxia in O2-sensing cells in other organs. Antioxid. Redox Signal. 37, 274-289.
Collapse
Affiliation(s)
- Lin Gao
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Patricia Ortega-Sáenz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Alejandro Moreno-Domínguez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
29
|
Sagalow ES, Ananth A, Alapati R, Fares E, Fast Z. Transvenous Phrenic Nerve Stimulation for Central Sleep Apnea. Am J Cardiol 2022; 180:155-162. [DOI: 10.1016/j.amjcard.2022.06.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 11/01/2022]
|
30
|
Langner-Hetmańczuk A, Tubek S, Niewiński P, Ponikowski P. The Role of Pharmacological Treatment in the Chemoreflex Modulation. Front Physiol 2022; 13:912616. [PMID: 35774285 PMCID: PMC9237514 DOI: 10.3389/fphys.2022.912616] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/19/2022] [Indexed: 12/20/2022] Open
Abstract
From a physiological point of view, peripheral chemoreceptors (PCh) are the main sensors of hypoxia in mammals and are responsible for adaptation to hypoxic conditions. Their stimulation causes hyperventilation—to increase oxygen uptake and increases sympathetic output in order to counteract hypoxia-induced vasodilatation and redistribute the oxygenated blood to critical organs. While this reaction promotes survival in acute settings it may be devastating when long-lasting. The permanent overfunctionality of PCh is one of the etiologic factors and is responsible for the progression of sympathetically-mediated diseases. Thus, the deactivation of PCh has been proposed as a treatment method for these disorders. We review here physiological background and current knowledge regarding the influence of widely prescribed medications on PCh acute and tonic activities.
Collapse
Affiliation(s)
- Anna Langner-Hetmańczuk
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Institute of Heart Diseases, University Hospital, Wroclaw, Poland
| | - Stanisław Tubek
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Institute of Heart Diseases, University Hospital, Wroclaw, Poland
- *Correspondence: Stanisław Tubek,
| | - Piotr Niewiński
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Institute of Heart Diseases, University Hospital, Wroclaw, Poland
| | - Piotr Ponikowski
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Institute of Heart Diseases, University Hospital, Wroclaw, Poland
| |
Collapse
|
31
|
Kulej-Lyko K, Niewinski P, Tubek S, Ponikowski P. Contribution of Peripheral Chemoreceptors to Exercise Intolerance in Heart Failure. Front Physiol 2022; 13:878363. [PMID: 35492596 PMCID: PMC9046845 DOI: 10.3389/fphys.2022.878363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/29/2022] [Indexed: 01/08/2023] Open
Abstract
Peripheral chemoreceptors (PChRs), because of their strategic localization at the bifurcation of the common carotid artery and along the aortic arch, play an important protective role against hypoxia. Stimulation of PChRs evokes hyperventilation and hypertension to maintain adequate oxygenation of critical organs. A relationship between increased sensitivity of PChRs (hyperreflexia) and exercise intolerance (ExIn) in patients with heart failure (HF) has been previously reported. Moreover, some studies employing an acute blockade of PChRs (e.g., using oxygen or opioids) demonstrated improvement in exercise capacity, suggesting that hypertonicity is also involved in the development of ExIn in HF. Nonetheless, the precise mechanisms linking dysfunctional PChRs to ExIn remain unclear. From the clinical perspective, there are two main factors limiting exercise capacity in HF patients: subjective perception of dyspnoea and muscle fatigue. Both have many determinants that might be influenced by abnormal signalling from PChRs, including: exertional hyperventilation, oscillatory ventilation, ergoreceptor oversensitivity, and augmented sympathetic tone. The latter results in reduced muscle perfusion and altered muscle structure. In this review, we intend to present the milieu of abnormalities tied to malfunctioning PChRs and discuss their role in the complex relationships leading, ultimately, to ExIn.
Collapse
Affiliation(s)
- Katarzyna Kulej-Lyko
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Department of Cardiology, University Clinical Hospital, Wroclaw, Poland
- *Correspondence: Katarzyna Kulej-Lyko,
| | - Piotr Niewinski
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Department of Cardiology, University Clinical Hospital, Wroclaw, Poland
| | - Stanislaw Tubek
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Department of Cardiology, University Clinical Hospital, Wroclaw, Poland
| | - Piotr Ponikowski
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Department of Cardiology, University Clinical Hospital, Wroclaw, Poland
| |
Collapse
|
32
|
Toledo C, Ortolani D, Ortiz FC, Marcus NJ, Del Rio R. Potential Role of the Retrotrapezoid Nucleus in Mediating Cardio-Respiratory Dysfunction in Heart Failure With Preserved Ejection Fraction. Front Physiol 2022; 13:863963. [PMID: 35492622 PMCID: PMC9039230 DOI: 10.3389/fphys.2022.863963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/29/2022] [Indexed: 01/15/2023] Open
Abstract
A strong association between chemoreflex hypersensitivity, disordered breathing, and elevated sympathetic activity has been shown in experimental and human heart failure (HF). The contribution of chemoreflex hypersensitivity in HF pathophysiology is incompletely understood. There is ample evidence that increased peripheral chemoreflex drive in HF with reduced ejection fraction (HFrEF; EF<40%) leads to pathophysiological changes in autonomic and cardio-respiratory control, but less is known about the neural mechanisms mediating cardio-respiratory disturbances in HF with preserved EF (HFpEF; EF>50%). Importantly, it has been shown that activation of the central chemoreflex worsens autonomic dysfunction in experimental HFpEF, an effect mediated in part by the activation of C1 catecholaminergic neurons neighboring the retrotrapezoid nucleus (RTN), an important region for central chemoreflex control of respiratory and autonomic function. Accordingly, the main purpose of this brief review is to discuss the possible role played by activation of central chemoreflex pathways on autonomic function and its potential role in precipitating disordered breathing in HFpEF. Improving understanding of the contribution of the central chemoreflex to the pathophysiology of HFpEF may help in development of novel interventions intended to improve cardio-respiratory outcomes in HFpEF.
Collapse
Affiliation(s)
- Camilo Toledo
- Laboratory Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Domiziana Ortolani
- Laboratory Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fernando C. Ortiz
- Mechanisms of Myelin Formation and Repair Laboratory, Facultad de Ciencias de Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Noah J. Marcus
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA, United States
| | - Rodrigo Del Rio
- Laboratory Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
- Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile
- *Correspondence: Rodrigo Del Rio,
| |
Collapse
|
33
|
Zucker IH, Wang H, Schultz HD. GLP-1 (Glucagon-Like Peptide-1) Plays a Role in Carotid Chemoreceptor-Mediated Sympathoexcitation and Hypertension. Circ Res 2022; 130:708-710. [PMID: 35239402 PMCID: PMC8909667 DOI: 10.1161/circresaha.122.320799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Irving H. Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center
| | - Hanjun Wang
- Department of Anesthesiology, University of Nebraska Medical Center
| | - Harold D. Schultz
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center
| |
Collapse
|
34
|
Deep Singh T. Abnormal Sleep-Related Breathing Related to Heart Failure. Sleep Med Clin 2022; 17:87-98. [PMID: 35216764 DOI: 10.1016/j.jsmc.2021.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Sleep-disordered breathing (SDB) is highly prevalent in patients with heart failure (HF). Untreated obstructive sleep apnea (OSA) and central sleep apnea (CSA) in patients with HF are associated with worse outcomes. Detailed sleep history along with polysomnography (PSG) should be conducted if SDB is suspected in patients with HF. First line of treatment is the optimization of medical therapy for HF and if symptoms persist despite optimization of the treatment, positive airway pressure (PAP) therapy will be started to treat SDB. At present, there is limited evidence to prescribe any drugs for treating CSA in patients with HF. There is limited evidence for the efficacy of continuous positive airway pressure (CPAP) or adaptive servo-ventilation (ASV) in improving mortality in patients with heart failure with reduced ejection fraction (HFrEF). There is a need to perform well-designed studies to identify different phenotypes of CSA/OSA in patients with HF and to determine which phenotype responds to which therapy. Results of ongoing trials, ADVENT-HF, and LOFT-HF are eagerly awaited to shed more light on the management of CSA in patients with HF. Until then the management of SDB in patients with HF is limited due to the lack of evidence and guidance for treating SDB in patients with HF.
Collapse
Affiliation(s)
- Tripat Deep Singh
- Academy of Sleep Wake Science, #32 St.no-9 Guru Nanak Nagar, near Gurbax Colony, Patiala, Punjab, India 147003.
| |
Collapse
|
35
|
Conde SV, Sacramento JF, Melo BF, Fonseca-Pinto R, Romero-Ortega MI, Guarino MP. Blood Pressure Regulation by the Carotid Sinus Nerve: Clinical Implications for Carotid Body Neuromodulation. Front Neurosci 2022; 15:725751. [PMID: 35082593 PMCID: PMC8784865 DOI: 10.3389/fnins.2021.725751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
Chronic carotid sinus nerve (CSN) electrical modulation through kilohertz frequency alternating current improves metabolic control in rat models of type 2 diabetes, underpinning the potential of bioelectronic modulation of the CSN as a therapeutic modality for metabolic diseases in humans. The CSN carries sensory information from the carotid bodies, peripheral chemoreceptor organs that respond to changes in blood biochemical modifications such as hypoxia, hypercapnia, acidosis, and hyperinsulinemia. In addition, the CSN also delivers information from carotid sinus baroreceptors—mechanoreceptor sensory neurons directly involved in the control of blood pressure—to the central nervous system. The interaction between these powerful reflex systems—chemoreflex and baroreflex—whose sensory receptors are in anatomical proximity, may be regarded as a drawback to the development of selective bioelectronic tools to modulate the CSN. Herein we aimed to disclose CSN influence on cardiovascular regulation, particularly under hypoxic conditions, and we tested the hypothesis that neuromodulation of the CSN, either by electrical stimuli or surgical means, does not significantly impact blood pressure. Experiments were performed in Wistar rats aged 10–12 weeks. No significant effects of acute hypoxia were observed in systolic or diastolic blood pressure or heart rate although there was a significant activation of the cardiac sympathetic nervous system. We conclude that chemoreceptor activation by hypoxia leads to an expected increase in sympathetic activity accompanied by compensatory regional mechanisms that assure blood flow to regional beds and maintenance of hemodynamic homeostasis. Upon surgical denervation or electrical block of the CSN, the increase in cardiac sympathetic nervous system activity in response to hypoxia was lost, and there were no significant changes in blood pressure in comparison to control animals. We conclude that the responses to hypoxia and vasomotor control short-term regulation of blood pressure are dissociated in terms of hypoxic response but integrated to generate an effector response to a given change in arterial pressure.
Collapse
Affiliation(s)
- Silvia V. Conde
- Faculdade de Ciências Médicas, Chronic Disease Research Center (CEDOC), NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- *Correspondence: Silvia V. Conde,
| | - Joana F. Sacramento
- Faculdade de Ciências Médicas, Chronic Disease Research Center (CEDOC), NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Bernardete F. Melo
- Faculdade de Ciências Médicas, Chronic Disease Research Center (CEDOC), NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Rui Fonseca-Pinto
- ciTechCare, School of Health Sciences, Polytechnic of Leiria, Leiria, Portugal
| | | | - Maria P. Guarino
- Faculdade de Ciências Médicas, Chronic Disease Research Center (CEDOC), NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- ciTechCare, School of Health Sciences, Polytechnic of Leiria, Leiria, Portugal
- Maria P. Guarino,
| |
Collapse
|
36
|
Abstract
The carotid body (CB) is a bilateral arterial chemoreceptor located in the carotid artery bifurcation with an essential role in cardiorespiratory homeostasis. It is composed of highly perfused cell clusters, or glomeruli, innervated by sensory fibers. Glomus cells, the most abundant in each glomerulus, are neuron-like multimodal sensory elements able to detect and integrate changes in several physical and chemical parameters of the blood, in particular O2 tension, CO2 and pH, as well as glucose, lactate, or blood flow. Activation of glomus cells (e.g., during hypoxia or hypercapnia) stimulates the afferent fibers which impinge on brainstem neurons to elicit rapid compensatory responses (hyperventilation and sympathetic activation). This chapter presents an updated view of the structural organization of the CB and the mechanisms underlying the chemosensory responses of glomus cells, with special emphasis on the molecular processes responsible for acute O2 sensing. The properties of the glomus cell-sensory fiber synapse as well as the organization of CB output are discussed. The chapter includes the description of recently discovered CB stem cells and progenitor cells, and their role in CB growth during acclimatization to hypoxemia. Finally, the participation of the CB in the mechanisms of disease is briefly discussed.
Collapse
Affiliation(s)
- José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Sevilla, Seville, Spain; Biomedical Research Center for Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| |
Collapse
|
37
|
Abstract
Sleep disorders are prevalent in heart failure and include insomnia, poor sleep architecture, periodic limb movements and periodic breathing, and encompass both obstructive (OSA) and central sleep apnea (CSA). Polysomnographic studies show excess light sleep and poor sleep efficiency particularly in those with heart failure. Multiple studies of consecutive patients with heart failure show that about 50% of patients suffer from either OSA or CSA. While asleep, acute pathological consequences of apneas and hypopneas include altered blood gases, sleep fragmentation, and large negative swings in intrathoracic pressure. These pathological consequences are qualitatively similar in both types of sleep apnea, though worse in OSA than CSA. Sleep apnea results in oxidative stress, inflammation, and endothelial dysfunction, best documented in OSA. Multiple studies show that both OSA and CSA are associated with excess hospital readmissions and premature mortality. However, no randomized controlled trial (RCT) has been reported for OSA, but sensitivity analysis of two randomized controlled trials has concluded that use of positive airway pressure devices is associated with excess mortality in patients with heart failure and CSA. Phrenic nerve stimulation has shown improvement in sleep apnea events and daytime sleepiness; however, no randomized controlled trials have demonstrated improvement in survival in patients with heart failure. The correct identification and treatment of heart failure patients with sleep and breathing disorders could affect the long-term outcomes of these patients.
Collapse
Affiliation(s)
- Shahrokh Javaheri
- Division of Pulmonary and Sleep Medicine, Bethesda North Hospital, Cincinnati, OH, United States; Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Division of Cardiology, Ohio State University, Columbus, OH, United States.
| | - Robin Germany
- Division of Cardiovascular Disease, University of Oklahoma College of Medicine, Oklahoma City, OK, United States
| |
Collapse
|
38
|
Tubek S, Niewinski P, Paleczny B, Langner-Hetmanczuk A, Banasiak W, Ponikowski P. Acute hyperoxia reveals tonic influence of peripheral chemoreceptors on systemic vascular resistance in heart failure patients. Sci Rep 2021; 11:20823. [PMID: 34675332 PMCID: PMC8531381 DOI: 10.1038/s41598-021-99159-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 09/09/2021] [Indexed: 01/08/2023] Open
Abstract
Peripheral chemoreceptors’ (PCh) hyperactivity increases sympathetic tone. An augmented acute ventilatory response to hypoxia, being a marker of PCh oversensitivity, was also identified as a marker of poor prognosis in HF. However, not much is known about the tonic (chronic) influence of PCh on cardio-respiratory parameters. In our study 30 HF patients and 30 healthy individuals were exposed to 100% oxygen for 1 min during which minute ventilation and hemodynamic parameters were non-invasively recorded. Systemic vascular resistance (SVR) and mean arterial pressure (MAP) responses to acute hyperoxia differed substantially between HF and control. In HF hyperoxia caused a significant drop in SVR in early stages with subsequent normalization, while increase in SVR was observed in controls. MAP increased in controls, but remained unchanged in HF. Bilateral carotid bodies excision performed in two HF subjects changed the response to hyperoxia towards the course seen in healthy individuals. These differences may be explained by the domination of early vascular reaction to hyperoxia in HF by vasodilation due to the inhibition of augmented tonic activity of PCh. Otherwise, in healthy subjects the vasoconstrictive action of oxygen remains unopposed. The magnitude of SVR change during acute hyperoxia may be used as a novel method for tonic PCh activity assessment.
Collapse
Affiliation(s)
- Stanislaw Tubek
- Institute of Heart Diseases, Wroclaw Medical University, Borowska 213, 50-556, Wrocław, Poland. .,Institute of Heart Diseases, University Hospital, Wrocław, Poland.
| | - Piotr Niewinski
- Institute of Heart Diseases, Wroclaw Medical University, Borowska 213, 50-556, Wrocław, Poland.,Institute of Heart Diseases, University Hospital, Wrocław, Poland
| | | | - Anna Langner-Hetmanczuk
- Institute of Heart Diseases, Wroclaw Medical University, Borowska 213, 50-556, Wrocław, Poland.,Institute of Heart Diseases, University Hospital, Wrocław, Poland
| | - Waldemar Banasiak
- Department of Cardiology, Centre for Heart Diseases, 4th Military Hospital, Wrocław, Poland
| | - Piotr Ponikowski
- Institute of Heart Diseases, Wroclaw Medical University, Borowska 213, 50-556, Wrocław, Poland.,Institute of Heart Diseases, University Hospital, Wrocław, Poland
| |
Collapse
|
39
|
Csizmadia S, Fodor GH, Palkó A, Vörös E. Size of the Carotid Body in Patients with Cardiovascular and Respiratory Diseases Measured by Computed Tomography Angiography: A Case-Control Study. Radiol Res Pract 2021; 2021:9499420. [PMID: 34697571 PMCID: PMC8538397 DOI: 10.1155/2021/9499420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES Carotid bodies (CBs) play an important role in regulating sympathetic nervous system activity. Thus, they are likely to be enlarged in patients with certain cardiovascular and respiratory diseases. The aim of this case-control study was to verify this hypothesis using computed tomography angiography (CTA). METHODS We retrospectively analysed 141 CTAs including 16 controls, 96 patients with only hypertension (HT), 12 with HT and previous acute myocardial infarction (AMI), 9 with HT and heart failure (HF), and 8 with HT and chronic obstructive pulmonary disease (COPD). We assessed the data using analysis of variance, with p < 0.05 indicating significance. RESULTS CB average areas in the controls were 2.31 mm2 (right side (RS)) vs. 2.34 mm2 (left side (LS)). CB size was significantly enlarged in patients with HT: 3.07 mm2 (RS) (p=0.019) vs. 2.91 mm2 (LS) (p=0.002). If AMI (RS: 3.5 mm2; LS: 3.44 mm2) or HF (RS: 4.01 mm2; LS: 4.55 mm2) was associated with HT, the CB size was even more enlarged. COPD did not affect CB size (RS: 2.40 mm2; LS: 2.29 mm2). CONCLUSIONS Our data showed that certain diseases with increased activity of the sympathetic nervous system were associated with significantly enlarged CBs.
Collapse
Affiliation(s)
- Sándor Csizmadia
- Affidea Hungary Ltd. Budapest, 44-46 Bókay János Street, Budapest H-1083, Hungary
| | - Gergely H. Fodor
- Department of Medical Physics and Informatics, University of Szeged, Faculty of General Medicine, 9 Korányi Alley, Szeged H-6725, Hungary
| | - András Palkó
- Department of Radiology, University of Szeged, Faculty of General Medicine, 6 Semmelweis Street, Szeged H-6725, Hungary
| | - Erika Vörös
- Department of Radiology, University of Szeged, Faculty of General Medicine, 6 Semmelweis Street, Szeged H-6725, Hungary
| |
Collapse
|
40
|
Du X. Sympatho-adrenergic mechanisms in heart failure: new insights into pathophysiology. MEDICAL REVIEW (BERLIN, GERMANY) 2021; 1:47-77. [PMID: 37724075 PMCID: PMC10388789 DOI: 10.1515/mr-2021-0007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/02/2021] [Indexed: 09/20/2023]
Abstract
The sympathetic nervous system is activated in the setting of heart failure (HF) to compensate for hemodynamic instability. However, acute sympathetic surge or sustained high neuronal firing rates activates β-adrenergic receptor (βAR) signaling contributing to myocardial remodeling, dysfunction and electrical instability. Thus, sympatho-βAR activation is regarded as a hallmark of HF and forms pathophysiological basis for β-blocking therapy. Building upon earlier research findings, studies conducted in the recent decades have significantly advanced our understanding on the sympatho-adrenergic mechanism in HF, which forms the focus of this article. This review notes recent research progress regarding the roles of cardiac β2AR or α1AR in the failing heart, significance of β1AR-autoantibodies, and βAR signaling through G-protein independent signaling pathways. Sympatho-βAR regulation of immune cells or fibroblasts is specifically discussed. On the neuronal aspects, knowledge is assembled on the remodeling of sympathetic nerves of the failing heart, regulation by presynaptic α2AR of NE release, and findings on device-based neuromodulation of the sympathetic nervous system. The review ends with highlighting areas where significant knowledge gaps exist but hold promise for new breakthroughs.
Collapse
Affiliation(s)
- Xiaojun Du
- Faculty of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, 76 West Yanta Road, Xi’an710061, Shaanxi, China
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC3004, Australia
| |
Collapse
|
41
|
Biegus J, Niewinski P, Josiak K, Kulej K, Ponikowska B, Nowak K, Zymlinski R, Ponikowski P. Pathophysiology of Advanced Heart Failure: What Knowledge Is Needed for Clinical Management? Heart Fail Clin 2021; 17:519-531. [PMID: 34511202 DOI: 10.1016/j.hfc.2021.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Understanding of heart failure (HF) has evolved from a simple hemodynamic problem through a neurohormonally and proinflammatory-driven syndrome to a complex multiorgan dysfunction accompanied by inadequate energy handling. This article discusses the most important clinical aspects of advanced HF pathophysiology. It presents the concept of neurohormonal activation and its deleterious effect on cardiovascular system and reflex control. The current theories regarding the role of inflammation, cytokine activation, and myocardial remodeling in HF progression are presented. Advanced HF is a multiorgan syndrome with interplay between cardiovascular system and other organs. The role of iron deficiency is also discussed.
Collapse
Affiliation(s)
- Jan Biegus
- Department of Heart Diseases, Wrocław Medical University, ul. Borowska 213, 50-556 Wrocław, Poland; Centre for Heart Diseases, Wrocław University Hospital, ul. Borowska 213, 50-556 Wrocław, Poland
| | - Piotr Niewinski
- Department of Heart Diseases, Wrocław Medical University, ul. Borowska 213, 50-556 Wrocław, Poland; Centre for Heart Diseases, Wrocław University Hospital, ul. Borowska 213, 50-556 Wrocław, Poland
| | - Krystian Josiak
- Department of Heart Diseases, Wrocław Medical University, ul. Borowska 213, 50-556 Wrocław, Poland; Centre for Heart Diseases, Wrocław University Hospital, ul. Borowska 213, 50-556 Wrocław, Poland
| | - Katarzyna Kulej
- Department of Heart Diseases, Wrocław Medical University, ul. Borowska 213, 50-556 Wrocław, Poland; Centre for Heart Diseases, Wrocław University Hospital, ul. Borowska 213, 50-556 Wrocław, Poland
| | - Barbara Ponikowska
- Student Scientific Organization, Department of Heart Diseases, Wroclaw Medical University, ul. Borowska 213, 50-556 Wrocław, Poland
| | - Krzysztof Nowak
- Department of Heart Diseases, Wrocław Medical University, ul. Borowska 213, 50-556 Wrocław, Poland; Centre for Heart Diseases, Wrocław University Hospital, ul. Borowska 213, 50-556 Wrocław, Poland
| | - Robert Zymlinski
- Department of Heart Diseases, Wrocław Medical University, ul. Borowska 213, 50-556 Wrocław, Poland; Centre for Heart Diseases, Wrocław University Hospital, ul. Borowska 213, 50-556 Wrocław, Poland
| | - Piotr Ponikowski
- Department of Heart Diseases, Wrocław Medical University, ul. Borowska 213, 50-556 Wrocław, Poland; Centre for Heart Diseases, Wrocław University Hospital, ul. Borowska 213, 50-556 Wrocław, Poland.
| |
Collapse
|
42
|
Andrade DC, Díaz-Jara E, Toledo C, Schwarz KG, Pereyra KV, Díaz HS, Marcus NJ, Ortiz FC, Ríos-Gallardo AP, Ortolani D, Del Rio R. Exercise intolerance in volume overload heart failure is associated with low carotid body mediated chemoreflex drive. Sci Rep 2021; 11:14458. [PMID: 34262072 PMCID: PMC8280104 DOI: 10.1038/s41598-021-93791-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/28/2021] [Indexed: 11/10/2022] Open
Abstract
Mounting an appropriate ventilatory response to exercise is crucial to meeting metabolic demands, and abnormal ventilatory responses may contribute to exercise-intolerance (EX-inT) in heart failure (HF) patients. We sought to determine if abnormal ventilatory chemoreflex control contributes to EX-inT in volume-overload HF rats. Cardiac function, hypercapnic (HCVR) and hypoxic (HVR) ventilatory responses, and exercise tolerance were assessed at the end of a 6 week exercise training program. At the conclusion of the training program, exercise tolerant HF rats (HF + EX-T) exhibited improvements in cardiac systolic function and reductions in HCVR, sympathetic tone, and arrhythmias. In contrast, HF rats that were exercise intolerant (HF + EX-inT) exhibited worse diastolic dysfunction, and showed no improvements in cardiac systolic function, HCVR, sympathetic tone, or arrhythmias at the conclusion of the training program. In addition, HF + EX-inT rats had impaired HVR which was associated with increased arrhythmia susceptibility and mortality during hypoxic challenges (~ 60% survival). Finally, we observed that exercise tolerance in HF rats was related to carotid body (CB) function as CB ablation resulted in impaired exercise capacity in HF + EX-T rats. Our results indicate that: (i) exercise may have detrimental effects on cardiac function in HF-EX-inT, and (ii) loss of CB chemoreflex sensitivity contributes to EX-inT in HF.
Collapse
Affiliation(s)
- David C Andrade
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Fisiología y Medicina de Altura, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Esteban Díaz-Jara
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Camilo Toledo
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Karla G Schwarz
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Katherin V Pereyra
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Hugo S Díaz
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Noah J Marcus
- Dept. of Physiology and Pharmacology, Des Moines University, Des Moines, IA, USA
| | - Fernando C Ortiz
- Mechanism of Myelin Formation and Repair Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Angélica P Ríos-Gallardo
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Domiziana Ortolani
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile.
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
43
|
Szczuko P, Kurowski A, Odya P, Czyżewski A, Kostek B, Graff B, Narkiewicz K. Mining Knowledge of Respiratory Rate Quantification and Abnormal Pattern Prediction. Cognit Comput 2021; 14:2120-2140. [PMID: 34276830 PMCID: PMC8272620 DOI: 10.1007/s12559-021-09908-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 06/23/2021] [Indexed: 12/02/2022]
Abstract
The described application of granular computing is motivated because cardiovascular disease (CVD) remains a major killer globally. There is increasing evidence that abnormal respiratory patterns might contribute to the development and progression of CVD. Consequently, a method that would support a physician in respiratory pattern evaluation should be developed. Group decision-making, tri-way reasoning, and rough set–based analysis were applied to granular computing. Signal attributes and anthropomorphic parameters were explored to develop prediction models to determine the percentage contribution of periodic-like, intermediate, and normal breathing patterns in the analyzed signals. The proposed methodology was validated employing k-nearest neighbor (k-NN) and UMAP (uniform manifold approximation and projection). The presented approach applied to respiratory pattern evaluation shows that median accuracies in a considerable number of cases exceeded 0.75. Overall, parameters related to signal analysis are indicated as more important than anthropomorphic features. It was also found that obesity characterized by a high WHR (waist-to-hip ratio) and male sex were predisposing factors for the occurrence of periodic-like or intermediate patterns of respiration. It may be among the essential findings derived from this study. Based on classification measures, it may be observed that a physician may use such a methodology as a respiratory pattern evaluation-aided method.
Collapse
Affiliation(s)
- Piotr Szczuko
- Multimedia System Department, Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Adam Kurowski
- Multimedia System Department, Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, 80-233 Gdańsk, Poland.,Audio Acoustics Department, Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Piotr Odya
- Multimedia System Department, Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Andrzej Czyżewski
- Multimedia System Department, Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Bożena Kostek
- Audio Acoustics Department, Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Beata Graff
- Department of Hypertension and Diabetology, Medical University of Gdansk, 80-210 Gdańsk, Poland
| | - Krzysztof Narkiewicz
- Department of Hypertension and Diabetology, Medical University of Gdansk, 80-210 Gdańsk, Poland
| |
Collapse
|
44
|
Capalonga L, de Araujo CLP, Hentschke VS, Rossato DD, Quagliotto E, Becker T, Rigatto K, Ferraresi C, Parizotto NA, Dal Lago P. Neuromuscular electrical stimulation but not photobiomodulation therapy improves cardiovascular parameters of rats with heart failure. Can J Physiol Pharmacol 2021; 99:720-728. [PMID: 33211546 DOI: 10.1139/cjpp-2020-0339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of the present study was to analyze the effect of neuromuscular electrical stimulation (NMES) and photobiomodulation (PBMT) on the cardiovascular parameters, hemodynamic function, arterial baroreflex sensitivity (BRS), and autonomic balance (ANS) of rats with heart failure (HF). Male Wistar rats (220-290 g) were organized into five groups: Sham (n = 6), Control-HF (n = 5), NMES-HF (n = 6), PBMT-HF (n = 6), and NMES + PBMT-HF (n = 6). Myocardial infarction (MI) was induced by left coronary artery ligation. Animals were subjected to an eight-week NMES and PBMT protocol. Statistical analysis included the General Linear Model (GLM) followed by a Bonferroni post-hoc test. Rats of the NMES-HF group showed a higher MI area than the Control-HF (P = 0.003), PBMT-HF (P = 0.002), and NMES + PBMT-HF (P = 0.012) groups. NMES-HF and NMES + PBMT-HF showed higher pulmonary congestion (P = 0.004 and P = 0.02) and lower systolic pressure (P = 0.019 and P = 0.002) than the Sham group. NMES + PBMT-HF showed lower mean arterial pressure (P = 0.02) than the Sham group. Control-HF showed a higher heart rate than the NMES-HF and NMES + PBMT-HF (P = 0.017 and P = 0.013) groups. There was no difference in the BRS and ANS variables between groups. In conclusion, eight-week NMES isolated or associated with PBMT protocol reduced basal heart rate, systolic and mean arterial pressure, without influence on baroreflex sensibility and autonomic control, and no effect of PBMT was seen in rats with HF.
Collapse
Affiliation(s)
- Lucas Capalonga
- Laboratory of Experimental Physiology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Cintia Laura Pereira de Araujo
- Laboratory of Experimental Physiology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Ciências da Reabilitação, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | | | | | - Edson Quagliotto
- Universidade de Santa Cruz do Sul (UNISC), Santa Cruz do Sul, RS, Brazil
| | - Tiago Becker
- Departamento de Engenharia Mecânica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Katya Rigatto
- Laboratório de Fisiologia Translacional, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Cleber Ferraresi
- Biomedical Engineering, Universidade do Brasil, São Paulo, Brazil
| | - Nivaldo Antonio Parizotto
- Biomedical Engineering, Universidade do Brasil, São Paulo, Brazil
- Biotechnology in Regenerative Medicine and Medical Chemistry, Universidade de Araraquara, Araraquara, Brazil
- Physical Therapy Department, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Pedro Dal Lago
- Laboratory of Experimental Physiology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Ciências da Reabilitação, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| |
Collapse
|
45
|
Iturriaga R, Alcayaga J, Chapleau MW, Somers VK. Carotid body chemoreceptors: physiology, pathology, and implications for health and disease. Physiol Rev 2021; 101:1177-1235. [PMID: 33570461 PMCID: PMC8526340 DOI: 10.1152/physrev.00039.2019] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The carotid body (CB) is the main peripheral chemoreceptor for arterial respiratory gases O2 and CO2 and pH, eliciting reflex ventilatory, cardiovascular, and humoral responses to maintain homeostasis. This review examines the fundamental biology underlying CB chemoreceptor function, its contribution to integrated physiological responses, and its role in maintaining health and potentiating disease. Emphasis is placed on 1) transduction mechanisms in chemoreceptor (type I) cells, highlighting the role played by the hypoxic inhibition of O2-dependent K+ channels and mitochondrial oxidative metabolism, and their modification by intracellular molecules and other ion channels; 2) synaptic mechanisms linking type I cells and petrosal nerve terminals, focusing on the role played by the main proposed transmitters and modulatory gases, and the participation of glial cells in regulation of the chemosensory process; 3) integrated reflex responses to CB activation, emphasizing that the responses differ dramatically depending on the nature of the physiological, pathological, or environmental challenges, and the interactions of the chemoreceptor reflex with other reflexes in optimizing oxygen delivery to the tissues; and 4) the contribution of enhanced CB chemosensory discharge to autonomic and cardiorespiratory pathophysiology in obstructive sleep apnea, congestive heart failure, resistant hypertension, and metabolic diseases and how modulation of enhanced CB reactivity in disease conditions may attenuate pathophysiology.
Collapse
Affiliation(s)
- Rodrigo Iturriaga
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile, and Centro de Excelencia en Biomedicina de Magallanes, Universidad de Magallanes, Punta Arenas, Chile
| | - Julio Alcayaga
- Laboratorio de Fisiología Celular, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Mark W Chapleau
- Department of Internal Medicine, University of Iowa and Department of Veterans Affairs Medical Center, Iowa City, Iowa
| | - Virend K Somers
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
46
|
Bardsley EN, Pen DK, McBryde FD, Ford AP, Paton JFR. The inevitability of ATP as a transmitter in the carotid body. Auton Neurosci 2021; 234:102815. [PMID: 33993068 DOI: 10.1016/j.autneu.2021.102815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/10/2021] [Accepted: 05/05/2021] [Indexed: 12/13/2022]
Abstract
Atmospheric oxygen concentrations rose markedly at several points in evolutionary history. Each of these increases was followed by an evolutionary leap in organismal complexity, and thus the cellular adaptions we see today have been shaped by the levels of oxygen within our atmosphere. In eukaryotic cells, oxygen is essential for the production of adenosine 5'-triphosphate (ATP) which is the 'Universal Energy Currency' of life. Aerobic organisms survived by evolving precise mechanisms for converting oxygen within the environment into energy. Higher mammals developed specialised organs for detecting and responding to changes in oxygen content to maintain gaseous homeostasis for survival. Hypoxia is sensed by the carotid bodies, the primary chemoreceptor organs which utilise multiple neurotransmitters one of which is ATP to evoke compensatory reflexes. Yet, a paradox is presented in oxygen sensing cells of the carotid body when during periods of low oxygen, ATP is seemingly released in abundance to transmit this signal although the synthesis of ATP is theoretically halted because of its dependence on oxygen. We propose potential mechanisms to maintain ATP production in hypoxia and summarise recent data revealing elevated sensitivity of purinergic signalling within the carotid body during conditions of sympathetic overactivity and hypertension. We propose the carotid body is hypoxic in numerous chronic cardiovascular and respiratory diseases and highlight the therapeutic potential for modulating purinergic transmission.
Collapse
Affiliation(s)
- Emma N Bardsley
- Auckland University, Department of Physiology, Faculty of Health and Medical Sciences, 85 Park Road, Grafton 1023, New Zealand
| | - Dylan K Pen
- Auckland University, Department of Physiology, Faculty of Health and Medical Sciences, 85 Park Road, Grafton 1023, New Zealand
| | - Fiona D McBryde
- Auckland University, Department of Physiology, Faculty of Health and Medical Sciences, 85 Park Road, Grafton 1023, New Zealand
| | - Anthony P Ford
- CuraSen, 930 Brittan Avenue #306, San Carlos, CA 94070, USA
| | - Julian F R Paton
- Auckland University, Department of Physiology, Faculty of Health and Medical Sciences, 85 Park Road, Grafton 1023, New Zealand.
| |
Collapse
|
47
|
Niewinski P, Tubek S, Paton JFR, Banasiak W, Ponikowski P. Oxygenation pattern and compensatory responses to hypoxia and hypercapnia following bilateral carotid body resection in humans. J Physiol 2021; 599:2323-2340. [DOI: 10.1113/jp281319] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/12/2021] [Indexed: 11/08/2022] Open
Affiliation(s)
- Piotr Niewinski
- Department of Heart Diseases Wroclaw Medical University Wroclaw Poland
| | - Stanislaw Tubek
- Department of Heart Diseases Wroclaw Medical University Wroclaw Poland
| | - Julian F. R. Paton
- Department of Physiology Faculty of Medical & Health Sciences University of Auckland Park Road Grafton Auckland New Zealand
| | | | - Piotr Ponikowski
- Department of Heart Diseases Wroclaw Medical University Wroclaw Poland
| |
Collapse
|
48
|
Morelli MS, Vanello N, Callara AL, Hartwig V, Maestri M, Bonanni E, Emdin M, Passino C, Giannoni A. Breath-hold task induces temporal heterogeneity in electroencephalographic regional field power in healthy subjects. J Appl Physiol (1985) 2021; 130:298-307. [PMID: 33300854 DOI: 10.1152/japplphysiol.00232.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We demonstrated that changes in CO2 values cause oscillations in the cortical activity in δ-and α-bands. The analysis of the regional field power (RFP) showed evidence that different cortical areas respond with different time delays to CO2 challenges. An opposite behavior was found for the end-tidal O2. We suppose that the different cortical time delays likely expresse specific ascending pathways to the cortex, generated by chemoreceptor nuclei in the brain stem. Although the brain stem is in charge of the automatic control of ventilation, the cortex is involved in the voluntary control of breathing but also receives inputs from the brain stem, which influences the perception of breathing, the arousal state and sleep architecture in conditions of hypoxia/hypercapnia. We evaluated in 11 healthy subjects the effects of breath hold (BH; 30 s of apneas and 30 s of normal breathing) and BH-related CO2/O2 changes on electroencephalogram (EEG) global field power (GFP) and RFP in nine different areas (3 rostrocaudal sections: anterior, central, and posterior; and 3 sagittal sections: left, middle, and right) in the δ- and α-bands by cross correlation analysis. No significant differences were observed in GFP or RFP when comparing free breathing (FB) with the BH task. Within the BH task, the shift from apnea to normal ventilation was accompanied by an increase in the δ-power and a decrease in the α-power. The end-tidal pressure of CO2 ([Formula: see text]) was positively correlated with the δ-band and negatively with the α- band with a positive time shift, whereas an opposite behavior was found for the end-tidal pressure of O2 ([Formula: see text]). Notably, the time shift between [Formula: see text] / [Formula: see text] signals and cortical activity at RFP was heterogenous and seemed to follow a hierarchical activation, with the δ-band responding earlier than the α-band. Overall, these findings suggest that the effect of BH on the cortex may follow specific ascending pathways from the brain stem and be related to chemoreflex stimulation.NEW & NOTEWORTHY We demonstrated that the end tidal CO2 oscillation causes oscillations of delta and alpha bands. The analysis of the regional field power showed that different cortical areas respond with different time delays to CO2 challenges. An opposite behavior was found for the end-tidal O2. We can suppose that the different cortical time delay response likely expresses specific ascending pathways to the cortex generated by chemoreceptor nuclei in the brainstem.
Collapse
Affiliation(s)
- Maria Sole Morelli
- Scuola Superiore Sant'Anna, Pisa, Italy.,Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Nicola Vanello
- Department of Information Engineering, University of Pisa, Pisa, Italy
| | | | - Valentina Hartwig
- Institute of Clinical Physiology, National Council of Research, Pisa, Italy
| | | | - Enrica Bonanni
- Departement of Neuroscience, University of Pisa, Pisa, Italy
| | - Michele Emdin
- Scuola Superiore Sant'Anna, Pisa, Italy.,Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Claudio Passino
- Scuola Superiore Sant'Anna, Pisa, Italy.,Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Alberto Giannoni
- Scuola Superiore Sant'Anna, Pisa, Italy.,Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| |
Collapse
|
49
|
Giannoni A, Borrelli C, Mirizzi G, Richerson GB, Emdin M, Passino C. Benefit of buspirone on chemoreflex and central apnoeas in heart failure: a randomized controlled crossover trial. Eur J Heart Fail 2021; 23:312-320. [PMID: 32441857 DOI: 10.1002/ejhf.1854] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 12/18/2022] Open
Abstract
AIMS Increased chemosensitivity to carbon dioxide (CO2 ) is an important trigger of central apnoeas (CA) in heart failure (HF), with negative impact on outcome. We hypothesized that buspirone, a 5HT1A receptor agonist that inhibits serotonergic chemoreceptor neuron firing in animals, can decrease CO2 chemosensitivity and CA in HF. METHODS AND RESULTS The BREATH study was a randomized, double-blind, placebo-controlled, crossover study (EudraCT-code 2015-005383-42). Outpatients with systolic HF (left ventricular ejection fraction <50%) and moderate-severe CA [nocturnal apnoea-hypopnoea index (AHI) ≥15 events/h] were randomly assigned to either oral buspirone (15 mg thrice daily) or placebo for 1 week, with a crossover design (1 week of wash-out). The primary effectiveness endpoint was a decrease in CO2 chemosensitivity >0.5 L/min/mmHg. The primary safety endpoint was freedom from serious adverse events. Sixteen patients (age 71.3 ± 5.8 years, all males, left ventricular ejection fraction 29.8 ± 7.8%) were enrolled. In the intention-to-treat analysis, more patients treated with buspirone (8/16, 50%) had a CO2 chemosensitivity reduction >0.5 L/min/mmHg from baseline than those treated with placebo (1/16, 6.7%) (difference between groups 43%, 95% confidence interval 14-73%, P = 0.016). Buspirone compared to baseline led to a 41% reduction in CO2 chemosensitivity (P = 0.001) and to a reduction in the AHI, central apnoea index and oxygen desaturation index of 42%, 79%, 77% at nighttime and 50%, 78%, 86% at daytime (all P < 0.01); no difference was observed after placebo administration (all P > 0.05). No patient reported buspirone-related serious adverse events. CONCLUSIONS Buspirone reduces CO2 chemosensitivity and improves CA and oxygen saturation across the 24 h in patients with HF.
Collapse
Affiliation(s)
- Alberto Giannoni
- Fondazione Toscana G. Monasterio, Pisa, Italy
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | | | - Gianluca Mirizzi
- Fondazione Toscana G. Monasterio, Pisa, Italy
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | | | - Michele Emdin
- Fondazione Toscana G. Monasterio, Pisa, Italy
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Claudio Passino
- Fondazione Toscana G. Monasterio, Pisa, Italy
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| |
Collapse
|
50
|
Keir DA, Duffin J, Floras JS. Measuring Peripheral Chemoreflex Hypersensitivity in Heart Failure. Front Physiol 2020; 11:595486. [PMID: 33447244 PMCID: PMC7802759 DOI: 10.3389/fphys.2020.595486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 11/30/2020] [Indexed: 01/08/2023] Open
Abstract
Heart failure with reduced ejection fraction (HFrEF) induces chronic sympathetic activation. This disturbance is a consequence of both compensatory reflex disinhibition in response to lower cardiac output and patient-specific activation of one or more excitatory stimuli. The result is the net adrenergic output that exceeds homeostatic need, which compromises cardiac, renal, and vascular function and foreshortens lifespan. One such sympatho-excitatory mechanism, evident in ~40-45% of those with HFrEF, is the augmentation of carotid (peripheral) chemoreflex ventilatory and sympathetic responsiveness to reductions in arterial oxygen tension and acidosis. Recognition of the contribution of increased chemoreflex gain to the pathophysiology of HFrEF and to patients' prognosis has focused attention on targeting the carotid body to attenuate sympathetic drive, alleviate heart failure symptoms, and prolong life. The current challenge is to identify those patients most likely to benefit from such interventions. Two assumptions underlying contemporary test protocols are that the ventilatory response to acute hypoxic exposure quantifies accurately peripheral chemoreflex sensitivity and that the unmeasured sympathetic response mirrors the determined ventilatory response. This Perspective questions both assumptions, illustrates the limitations of conventional transient hypoxic tests for assessing peripheral chemoreflex sensitivity and demonstrates how a modified rebreathing test capable of comprehensively quantifying both the ventilatory and sympathoneural efferent responses to peripheral chemoreflex perturbation, including their sensitivities and recruitment thresholds, can better identify individuals most likely to benefit from carotid body intervention.
Collapse
Affiliation(s)
- Daniel A. Keir
- University Health Network and Mount Sinai Hospital Division of Cardiology and Department of Medicine, University of Toronto, Toronto General Research Institute, Toronto, ON, Canada
- School of Kinesiology, The University of Western Ontario, London, ON, Canada
| | - James Duffin
- Department of Anesthesia and Pain Management, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Thornhill Research Inc., Toronto, ON, Canada
| | - John S. Floras
- University Health Network and Mount Sinai Hospital Division of Cardiology and Department of Medicine, University of Toronto, Toronto General Research Institute, Toronto, ON, Canada
| |
Collapse
|