1
|
Young WJ, van der Most PJ, Bartz TM, Bos MM, Biino G, Duong T, Foco L, Lominchar JT, Müller‐Nurasyid M, Nardone GG, Pecori A, Ramirez J, Repetto L, Schramm K, Shen X, van Duijvenboden S, van Heemst D, Weiss S, Yao J, Benjamins J, Alonso A, Spedicati B, Biggs ML, Brody JA, Dörr M, Fuchsberger C, Gögele M, Guo X, Ikram MA, Jukema JW, Kääb S, Kanters JK, Lin HJ, Linneberg A, Nauck M, Nolte IM, Pianigiani G, Santin A, Soliman EZ, Tesolin P, Vaccargiu S, Waldenberger M, van der Harst P, Verweij N, Arking DE, Concas MP, De Grandi A, Girotto G, Grarup N, Kavousi M, Mook‐Kanamori DO, Navarro P, Orini M, Padmanabhan S, Pattaro C, Peters A, Pirastu M, Pramstaller PP, Heckbert SR, Sinner M, Snieder H, Völker U, Wilson JF, Gauderman WJ, Lambiase PD, Sotoodehnia N, Tinker A, Warren HR, Noordam R, Munroe PB. Genome-Wide Interaction Analyses of Serum Calcium on Ventricular Repolarization Time in 125 393 Participants. J Am Heart Assoc 2024; 13:e034760. [PMID: 39206732 PMCID: PMC11646519 DOI: 10.1161/jaha.123.034760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Ventricular repolarization time (ECG QT and JT intervals) is associated with malignant arrhythmia. Genome-wide association studies have identified 230 independent loci for QT and JT; however, 50% of their heritability remains unexplained. Previous work supports a causal effect of lower serum calcium concentrations on longer ventricular repolarization time. We hypothesized calcium interactions with QT and JT variant associations could explain a proportion of the missing heritability. METHODS AND RESULTS We performed genome-wide calcium interaction analyses for QT and JT intervals. Participants were stratified by their calcium level relative to the study distribution (top or bottom 20%). We performed a 2-stage analysis (genome-wide discovery [N=62 532] and replication [N=59 861] of lead variants) and a single-stage genome-wide meta-analysis (N=122 393, [European ancestry N=117 581, African ancestry N=4812]). We also calculated 2-degrees of freedom joint main and interaction and 1-degree of freedom interaction P values. In 2-stage and single-stage analyses, 50 and 98 independent loci, respectively, were associated with either QT or JT intervals (2-degrees of freedom joint main and interaction P value <5×10-8). No lead variant had a significant interaction result after correcting for multiple testing and sensitivity analyses provided similar findings. Two loci in the single-stage meta-analysis were not reported previously (SPPL2B and RFX6). CONCLUSIONS We have found limited support for an interaction effect of serum calcium on QT and JT variant associations despite sample sizes with suitable power to detect relevant effects. Therefore, such effects are unlikely to explain a meaningful proportion of the heritability of QT and JT, and factors including rare variation and other environmental interactions need to be considered.
Collapse
Affiliation(s)
- William J. Young
- Clinical Pharmacology and Precision MedicineWilliam Harvey Research Institute, Queen Mary University of LondonUnited Kingdom
- Barts Heart CentreSt Bartholomew’s Hospital, Barts Health NHS TrustLondonUnited Kingdom
| | - Peter J. van der Most
- Department of EpidemiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Traci M. Bartz
- Cardiovascular Health Research Unit, Department of Biostatistics and MedicineUniversity of WashingtonSeattleWAUSA
| | - Maxime M. Bos
- Department of EpidemiologyErasmus MC University Medical CenterRotterdamNetherlands
| | - Ginevra Biino
- Institute of Molecular Genetics, National Research Council of ItalyPaviaItaly
| | - ThuyVy Duong
- Department of Genetic MedicineMcKusick‐Nathans Institute, Johns Hopkins University School of MedicineBaltimoreMDUSA
| | - Luisa Foco
- Eurac ResearchInstitute for Biomedicine (Affiliated with the University of Lübeck)BolzanoItaly
| | - Jesus T. Lominchar
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical SciencesUniversity of CopenhagenDenmark
| | - Martina Müller‐Nurasyid
- German Research Center for Environmental HealthInstitute of Genetic Epidemiology, Helmholtz Zentrum MünchenNeuherbergGermany
- IBE, Faculty of Medicine, LMU MunichMunichGermany
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg UniversityMainzGermany
| | | | - Alessandro Pecori
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”TriesteItaly
| | - Julia Ramirez
- Clinical Pharmacology and Precision MedicineWilliam Harvey Research Institute, Queen Mary University of LondonUnited Kingdom
- Aragon Institute of Engineering Research, University of ZaragozaSpain
- Centro de Investigación Biomédica en Red—Bioingeniería, Biomateriales y NanomedicinaZaragozaSpain
| | - Linda Repetto
- Centre for Global Health ResearchUsher Institute, University of EdinburghScotland
| | - Katharina Schramm
- German Research Center for Environmental HealthInstitute of Genetic Epidemiology, Helmholtz Zentrum MünchenNeuherbergGermany
- IBE, Faculty of Medicine, LMU MunichMunichGermany
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg UniversityMainzGermany
| | - Xia Shen
- Centre for Global Health ResearchUsher Institute, University of EdinburghScotland
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
- Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan UniversityGuangzhouChina
| | - Stefan van Duijvenboden
- Clinical Pharmacology and Precision MedicineWilliam Harvey Research Institute, Queen Mary University of LondonUnited Kingdom
- Institute of Cardiovascular Sciences, University of College LondonLondonUnited Kingdom
- Nuffield Department of Population HealthUniversity of OxfordUnited Kingdom
| | - Diana van Heemst
- Department of Internal Medicine, Section of Gerontology and GeriatricsLeiden University Medical CenterLeidenThe Netherlands
| | - Stefan Weiss
- DZHK (German Centre for Cardiovascular Research), partner site GreifswaldGreifswaldGermany
- Interfaculty Institute for Genetics and Functional Genomics; Department of Functional GenomicsUniversity Medicine GreifswaldGreifswaldGermany
| | - Jie Yao
- Department of PediatricsThe Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor‐UCLA Medical CenterTorranceCAUSA
| | - Jan‐Walter Benjamins
- Department of CardiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Alvaro Alonso
- Department of EpidemiologyRollins School of Public Health, Emory UniversityAtlantaGAUSA
| | - Beatrice Spedicati
- Department of Medicine, Surgery and Health SciencesUniversity of TriesteItaly
| | - Mary L. Biggs
- Cardiovascular Health Research Unit, Department of MedicineUniversity of WashingtonSeattleWAUSA
- Department of BiostatisticsUniversity of WashingtonSeattleWAUSA
| | - Jennifer A. Brody
- Cardiovascular Health Research Unit, Department of MedicineUniversity of WashingtonSeattleWAUSA
| | - Marcus Dörr
- DZHK (German Centre for Cardiovascular Research), partner site GreifswaldGreifswaldGermany
- Department of Internal Medicine B—Cardiology, Pneumology, Infectious Diseases, Intensive Care MedicineUniversity Medicine GreifswaldGreifswaldGermany
| | - Christian Fuchsberger
- Eurac ResearchInstitute for Biomedicine (Affiliated with the University of Lübeck)BolzanoItaly
- Department of BiostatisticsUniversity of Michigan School of Public HealthAnn ArborMIUSA
- Center for Statistical GeneticsUniversity of Michigan School of Public HealthAnn ArborMIUSA
| | - Martin Gögele
- Eurac ResearchInstitute for Biomedicine (Affiliated with the University of Lübeck)BolzanoItaly
| | - Xiuqing Guo
- Institute for Translational Genomics and Population Sciences/The Lundquist Institute at Harbor‐UCLA Medical CenterTorranceCAUSA
- Department of PediatricsDavid Geffen School of Medicine at UCLALos AngelesCAUSA
| | - M. Arfan Ikram
- Department of EpidemiologyErasmus MC University Medical CenterRotterdamNetherlands
| | - J. Wouter Jukema
- Department of CardiologyLeiden University Medical CenterLeidenThe Netherlands
- Netherlands Heart InstituteUtrechtThe Netherlands
| | - Stefan Kääb
- Department of CardiologyUniversity Hospital, LMU MunichMunichGermany
- DZHK (German Centre for Cardiovascular Research), partner site: Munich Heart AllianceMunichGermany
| | - Jørgen K. Kanters
- Laboratory of Experimental Cardiology, Department of Biomedical SciencesUniversity of CopenhagenDenmark
| | | | - Henry J. Lin
- Department of PediatricsThe Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor‐UCLA Medical CenterTorranceCAUSA
- Department of PediatricsDavid Geffen School of Medicine at UCLALos AngelesCAUSA
- Department of Pediatrics/Harbor‐UCLA Medical CenterTorranceCAUSA
| | - Allan Linneberg
- Center for Clinical Research and PreventionBispebjerg and Frederiksberg Hospital, The Capital RegionCopenhagenDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenDenmark
| | - Matthias Nauck
- DZHK (German Centre for Cardiovascular Research), partner site GreifswaldGreifswaldGermany
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine GreifswaldGreifswaldGermany
| | - Ilja M. Nolte
- Department of EpidemiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Giulia Pianigiani
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”TriesteItaly
| | - Aurora Santin
- Department of Medicine, Surgery and Health SciencesUniversity of TriesteItaly
| | - Elsayed Z. Soliman
- Epidemiological Cardiology Research Center (EPICARE)Wake Forest School of MedicineWinston SalemUSA
| | - Paola Tesolin
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”TriesteItaly
| | - Simona Vaccargiu
- Institute for Genetic and Biomedical Research, National Research Council of ItalyCagliariItaly
| | - Melanie Waldenberger
- DZHK (German Centre for Cardiovascular Research), partner site: Munich Heart AllianceMunichGermany
- Research Unit Molecular EpidemiologyInstitute of Epidemiology, Helmholtz Zentrum München—German Research Center for Environmental HealthNeuherbergGermany
| | - Pim van der Harst
- Department of CardiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
- Department of Cardiology, Heart and Lung DivisionUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Niek Verweij
- Department of CardiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Dan E. Arking
- Department of Genetic MedicineMcKusick‐Nathans Institute, Johns Hopkins University School of MedicineBaltimoreMDUSA
| | - Maria Pina Concas
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”TriesteItaly
| | - Alessandro De Grandi
- Eurac ResearchInstitute for Biomedicine (Affiliated with the University of Lübeck)BolzanoItaly
| | - Giorgia Girotto
- Department of Medicine, Surgery and Health SciencesUniversity of TriesteItaly
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical SciencesUniversity of CopenhagenDenmark
| | - Maryam Kavousi
- Department of EpidemiologyErasmus MC University Medical CenterRotterdamNetherlands
| | - Dennis O. Mook‐Kanamori
- Department of Clinical EpidemiologyLeiden University Medical CenterLeidenThe Netherlands
- Department of Public Health and Primary CareLeiden University Medical CenterLeidenThe Netherlands
| | - Pau Navarro
- MRC Human Genetics UnitInstitute of Genetics and Cancer, University of EdinburghScotland
| | - Michele Orini
- Barts Heart CentreSt Bartholomew’s Hospital, Barts Health NHS TrustLondonUnited Kingdom
- Institute of Cardiovascular Sciences, University of College LondonLondonUnited Kingdom
| | | | - Cristian Pattaro
- Eurac ResearchInstitute for Biomedicine (Affiliated with the University of Lübeck)BolzanoItaly
| | - Annette Peters
- German Research Center for Environmental HealthInstitute of Genetic Epidemiology, Helmholtz Zentrum MünchenNeuherbergGermany
- IBE, Faculty of Medicine, LMU MunichMunichGermany
- DZHK (German Centre for Cardiovascular Research), partner site: Munich Heart AllianceMunichGermany
| | - Mario Pirastu
- Institute for Genetic and Biomedical Research, Sassari Unit, National Research Council of ItalySassariItaly
| | - Peter P. Pramstaller
- Eurac ResearchInstitute for Biomedicine (Affiliated with the University of Lübeck)BolzanoItaly
- Department of NeurologyUniversity of LübeckGermany
| | - Susan R. Heckbert
- Cardiovascular Health Research Unit, Department of MedicineUniversity of WashingtonSeattleWAUSA
- Department of EpidemiologyUniversity of WashingtonSeattleWAUSA
| | - Mortiz Sinner
- Department of CardiologyUniversity Hospital, LMU MunichMunichGermany
- DZHK (German Centre for Cardiovascular Research), partner site: Munich Heart AllianceMunichGermany
| | - Harold Snieder
- Department of EpidemiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Uwe Völker
- DZHK (German Centre for Cardiovascular Research), partner site GreifswaldGreifswaldGermany
- Interfaculty Institute for Genetics and Functional Genomics; Department of Functional GenomicsUniversity Medicine GreifswaldGreifswaldGermany
| | - James F. Wilson
- Centre for Global Health ResearchUsher Institute, University of EdinburghScotland
- MRC Human Genetics UnitInstitute of Genetics and Cancer, University of EdinburghScotland
| | - W. James Gauderman
- Department of population and public health sciencesUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Pier D. Lambiase
- Barts Heart CentreSt Bartholomew’s Hospital, Barts Health NHS TrustLondonUnited Kingdom
- Institute of Cardiovascular Sciences, University of College LondonLondonUnited Kingdom
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Division of Cardiology, Department of MedicineUniversity of WashingtonSeattleWAUSA
| | - Andrew Tinker
- Clinical Pharmacology and Precision MedicineWilliam Harvey Research Institute, Queen Mary University of LondonUnited Kingdom
- NIHR Barts Biomedical Research CentreBarts and The London Faculty of Medicine and Dentistry, Queen Mary University of LondonUnited Kingdom
| | - Helen R. Warren
- Clinical Pharmacology and Precision MedicineWilliam Harvey Research Institute, Queen Mary University of LondonUnited Kingdom
- NIHR Barts Biomedical Research CentreBarts and The London Faculty of Medicine and Dentistry, Queen Mary University of LondonUnited Kingdom
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and GeriatricsLeiden University Medical CenterLeidenThe Netherlands
| | - Patricia B. Munroe
- Clinical Pharmacology and Precision MedicineWilliam Harvey Research Institute, Queen Mary University of LondonUnited Kingdom
- NIHR Barts Biomedical Research CentreBarts and The London Faculty of Medicine and Dentistry, Queen Mary University of LondonUnited Kingdom
| |
Collapse
|
2
|
Sasaki S, Fujisaki K, Nishimura M, Nakano T, Abe M, Hanafusa N, Joki N. Association Between Disturbed Serum Phosphorus Levels and QT Interval Prolongation. Kidney Int Rep 2024; 9:1792-1801. [PMID: 38899225 PMCID: PMC11184388 DOI: 10.1016/j.ekir.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 02/09/2024] [Accepted: 03/04/2024] [Indexed: 06/21/2024] Open
Abstract
Introduction QT interval prolongation is a risk factor for fatal arrhythmias and other cardiovascular complications. QT interval prolongation in patients on hemodialysis (HD) is not well understood. Hypocalcemia is a suspected, but poorly verified etiology in these patients, and the association between serum phosphorus levels and QT interval prolongation is unknown. We sought to determine the prevalence of QT interval prolongation in patients on HD and to verify the association between predialysis serum calcium (Ca) and phosphate (P) levels and QT interval prolongation. Methods A cross-sectional study was conducted on adult patients on maintenance HD who were enrolled in the Japanese Society for Dialysis Therapy and Renal Data Registry 2019. After assessing patient characteristics, linear regression analysis was performed with predialysis serum Ca and P levels as exposures and a rate-corrected QT (QTc) interval as the outcome. Results A total of 204,530 patients were analyzed with a mean QTc of 451.2 (standard deviation, 36.9) ms. After multivariable analysis, estimated change in QTc (coefficients; 95% confidence interval) per 1 mg/dl increase in serum Ca and P was -2.02 (-3.00 to -1.04) and 5.50 (3.92-7.09), respectively. In the restricted cubic spline curve, estimated change in QTc increased with lower values of serum Ca. The correlation between serum P and QTc showed a U-shaped curve. Conclusion Decreased serum Ca levels and decreased and increased serum P levels may be associated with QT interval prolongation in patients on maintenance HD.
Collapse
Affiliation(s)
- Sho Sasaki
- Department of Healthcare Epidemiology, School of Public Health in the Graduate School of Medicine, Kyoto University, Kyoto City, Kyoto, Japan
- Center for Innovative Research for Communities and Clinical Excellence (CiRC2LE), Fukushima Medical University, Fukushima, Japan
| | | | | | - Toshiaki Nakano
- Department of Medical and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masanori Abe
- Division of Nephrology, Hypertension and Endocrinology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Norio Hanafusa
- Department of Blood Purification, Tokyo Women`s Medical University, Tokyo, Japan
| | - Nobuhiko Joki
- Division of Nephrology, Toho University Ohashi Medical Center, Tokyo, Japan
| |
Collapse
|
3
|
Wu Y, Kong XJ, Ji YY, Fan J, Ji CC, Chen XM, Ma YD, Tang AL, Cheng YJ, Wu SH. Serum electrolyte concentrations and risk of atrial fibrillation: an observational and mendelian randomization study. BMC Genomics 2024; 25:280. [PMID: 38493091 PMCID: PMC10944597 DOI: 10.1186/s12864-024-10197-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Atrial fibrillation (AF) is a prevalent arrhythmic condition resulting in increased stroke risk and is associated with high mortality. Electrolyte imbalance can increase the risk of AF, where the relationship between AF and serum electrolytes remains unclear. METHODS A total of 15,792 individuals were included in the observational study, with incident AF ascertainment in the Atherosclerosis Risk in Communities (ARIC) study. The Cox regression models were applied to calculate the hazard ratio (HR) and 95% confidence interval (CI) for AF based on different serum electrolyte levels. Mendelian randomization (MR) analyses were performed to examine the causal association. RESULTS In observational study, after a median 19.7 years of follow-up, a total of 2551 developed AF. After full adjustment, participants with serum potassium below the 5th percentile had a higher risk of AF relative to participants in the middle quintile. Serum magnesium was also inversely associated with the risk of AF. An increased incidence of AF was identified in individuals with higher serum phosphate percentiles. Serum calcium levels were not related to AF risk. Moreover, MR analysis indicated that genetically predicted serum electrolyte levels were not causally associated with AF risk. The odds ratio for AF were 0.999 for potassium, 1.044 for magnesium, 0.728 for phosphate, and 0.979 for calcium, respectively. CONCLUSIONS Serum electrolyte disorders such as hypokalemia, hypomagnesemia and hyperphosphatemia were associated with an increased risk of AF and may also serve to be prognostic factors. However, the present study did not support serum electrolytes as causal mediators for AF development.
Collapse
Affiliation(s)
- Yang Wu
- Department of Cardiology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangzhou, China
| | - Xiang-Jun Kong
- Department of Cardiology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangzhou, China
| | - Ying-Ying Ji
- Department of Cardiology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangzhou, China
| | - Jun Fan
- Department of Cardiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Cheng-Cheng Ji
- Department of Cardiology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangzhou, China
| | - Xu-Miao Chen
- Department of Cardiology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangzhou, China
| | - Yue-Dong Ma
- Department of Cardiology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangzhou, China
| | - An-Li Tang
- Department of Cardiology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangzhou, China
| | - Yun-Jiu Cheng
- Department of Cardiology, Guangdong Provincial People's Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Su-Hua Wu
- Department of Cardiology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
- NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
4
|
Bukhari HA, Sánchez C, Laguna P, Potse M, Pueyo E. Differences in ventricular wall composition may explain inter-patient variability in the ECG response to variations in serum potassium and calcium. Front Physiol 2023; 14:1060919. [PMID: 37885805 PMCID: PMC10598848 DOI: 10.3389/fphys.2023.1060919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 09/18/2023] [Indexed: 10/28/2023] Open
Abstract
Objective: Chronic kidney disease patients have a decreased ability to maintain normal electrolyte concentrations in their blood, which increases the risk for ventricular arrhythmias and sudden cardiac death. Non-invasive monitoring of serum potassium and calcium concentration, [K+] and [Ca2+], can help to prevent arrhythmias in these patients. Electrocardiogram (ECG) markers that significantly correlate with [K+] and [Ca2+] have been proposed, but these relations are highly variable between patients. We hypothesized that inter-individual differences in cell type distribution across the ventricular wall can help to explain this variability. Methods: A population of human heart-torso models were built with different proportions of endocardial, midmyocardial and epicardial cells. Propagation of ventricular electrical activity was described by a reaction-diffusion model, with modified Ten Tusscher-Panfilov dynamics. [K+] and [Ca2+] were varied individually and in combination. Twelve-lead ECGs were simulated and the width, amplitude and morphological variability of T waves and QRS complexes were quantified. Results were compared to measurements from 29 end-stage renal disease (ESRD) patients undergoing hemodialysis (HD). Results: Both simulations and patients data showed that most of the analyzed T wave and QRS complex markers correlated strongly with [K+] (absolute median Pearson correlation coefficients, r, ranging from 0.68 to 0.98) and [Ca2+] (ranging from 0.70 to 0.98). The same sign and similar magnitude of median r was observed in the simulations and the patients. Different cell type distributions in the ventricular wall led to variability in ECG markers that was accentuated at high [K+] and low [Ca2+], in agreement with the larger variability between patients measured at the onset of HD. The simulated ECG variability explained part of the measured inter-patient variability. Conclusion: Changes in ECG markers were similarly related to [K+] and [Ca2+] variations in our models and in the ESRD patients. The high inter-patient ECG variability may be explained by variations in cell type distribution across the ventricular wall, with high sensitivity to variations in the proportion of epicardial cells. Significance: Differences in ventricular wall composition help to explain inter-patient variability in ECG response to [K+] and [Ca2+]. This finding can be used to improve serum electrolyte monitoring in ESRD patients.
Collapse
Affiliation(s)
- Hassaan A. Bukhari
- BSICoS Group, I3A Institute, University of Zaragoza, IIS Aragón, Zaragoza, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, Spain
- Carmen Team, Inria Bordeaux—Sud-Ouest, Talence, France
- University of Bordeaux, IMB, UMR 5251, Talence, France
| | - Carlos Sánchez
- BSICoS Group, I3A Institute, University of Zaragoza, IIS Aragón, Zaragoza, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, Spain
| | - Pablo Laguna
- BSICoS Group, I3A Institute, University of Zaragoza, IIS Aragón, Zaragoza, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, Spain
| | - Mark Potse
- Carmen Team, Inria Bordeaux—Sud-Ouest, Talence, France
- University of Bordeaux, IMB, UMR 5251, Talence, France
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Bordeaux, France
| | - Esther Pueyo
- BSICoS Group, I3A Institute, University of Zaragoza, IIS Aragón, Zaragoza, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, Spain
| |
Collapse
|
5
|
Fan Y, Wu M, Ding L, Ji H, Zhao J, Li X, Li Z, Liu S, Jiang H, Shi J, Lei H, Wang M, Wang D, Ma L. Potassium status and the risk of type 2 diabetes, cardiovascular diseases, and mortality: a meta-analysis of prospective observational studies. Crit Rev Food Sci Nutr 2023; 64:13212-13224. [PMID: 37788131 DOI: 10.1080/10408398.2023.2262584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Epidemiological evidence on the association between potassium and cardiometabolic outcomes remains controversial. This study aimed to examine associations of dietary intake and blood and urinary levels of potassium with risk of type 2 diabetes, cardiovascular disease (CVD), and mortality. Relevant prospective studies were retrieved through a comprehensive search of four electronic databases up to July 1, 2023. Random-effects models were used to pool the study-specific relative risks (RRs) and 95% confidence intervals (CIs). Fifty-six studies were included in this meta-analysis. A higher intake of potassium was significantly associated with a 16% lower risk of CVD (RR: 0.84, 95% CI: 0.78-0.90). Similar inverse associations were also observed between potassium intake and mortality. Each 1.0 g/d increment in potassium intake was associated with a decreased risk of CVD (RR: 0.85, 95% CI: 0.80-0.91) and all-cause mortality (RR: 0.93, 95% CI: 0.88-0.99). For blood and urinary potassium levels, higher level of blood potassium increased the risk of all-cause mortality by 23% (RR: 1.23, 95% CI: 1.11-1.36). The association of blood potassium levels with mortality was nonlinear (Pnon-linearit<0.001). However, urinary potassium levels were inversely associated with the risk of all-cause mortality (RR: 0.84, 95% CI: 0.76-0.93). Our findings support the benefits of moderate potassium consumption for primary prevention of chronic diseases and premature death.
Collapse
Affiliation(s)
- Yahui Fan
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Min Wu
- The First Affiliated Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Lu Ding
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Huixin Ji
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Jinping Zhao
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xiaohui Li
- Department of Maternal and Child Health Management, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, China
| | - Zhaofang Li
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Sijiao Liu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Hong Jiang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Jia Shi
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Haoyuan Lei
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Mingxu Wang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, China
| | - Duolao Wang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Le Ma
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, China
| |
Collapse
|
6
|
Friars D, Walsh O, McNicholas F. Assessment and management of cardiovascular complications in eating disorders. J Eat Disord 2023; 11:13. [PMID: 36717950 PMCID: PMC9886215 DOI: 10.1186/s40337-022-00724-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/18/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Eating disorders (EDs) are serious conditions predominantly affecting adolescents and young adults (AYAs) and pose a considerable threat to their health and wellbeing. Much of this increased morbidity and mortality is linked to medical compromise, especially cardiovascular abnormalities. Rates of presentation to both community and inpatient medical settings have increased in all age groups following the Covid-19 pandemic and subsequent "lockdowns", with patients presentations being more medically compromised compared to previous years. This has implications for clinicians with regard to the performance of competent cardiovascular assessments and management of findings. AIMS This paper is a practical resource for clinicians working with AYAs in whom EDs may present. It will provide a brief summary of the physiological context in which cardiovascular complications develop, systematically outline these complications and suggest a pragmatic approach to their clinical evaluation. METHODS Relevant literature, guidelines and academic texts were critically reviewed. Conclusions were extracted and verified by a Child and Adolescent Psychiatrist and Adolescent Paediatrician, with suitable expertise in this clinical cohort. CONCLUSIONS The cardiovascular complications in EDs are primarily linked to malnutrition, and patients presenting with Anorexia Nervosa are most often at greatest risk of structural and functional cardiac abnormalities, including aberrations of heart rate and rhythm, haemodynamic changes and peripheral vascular abnormalities. Other cardiovascular abnormalities are secondary to electrolyte imbalances, as seen in patients with Bulimia Nervosa. More recently defined EDs including Avoidant/Restrictive Food Intake Disorder and Binge Eating Disorder are also likely associated with distinct cardiovascular complications though further research is required to clarify their nature and severity. Most cardiovascular abnormalities are fully reversible with nutritional restoration, and normalisation of eating behaviours, including the cessation of purging, though rare cases are linked to cardiac deaths. A detailed clinical enquiry accompanied by a thorough physical examination is imperative to ensure the medical safety of AYAs with EDs, and should be supported by an electrocardiogram and laboratory investigations. Consideration of cardiovascular issues, along with effective collaboration with acute medical teams allows community clinicians identify those at highest risk and minimise adverse outcomes in this cohort.
Collapse
Affiliation(s)
- Dara Friars
- Department of Psychiatry, School of Medicine, University College Dublin, Dublin, Ireland.
- , Mount Pleasant, Australia.
| | - Orla Walsh
- Department of Paediatrics, Children's Health Ireland (CHI), Temple Street University Hospital, Dublin, Ireland
| | - Fiona McNicholas
- Department of Psychiatry, School of Medicine, University College Dublin, Dublin, Ireland
- Lucena Child and Adolescent Mental Health Service (CAMHS), Dublin, Ireland
- Department of Psychiatry, Children's Health Ireland (CHI), Crumlin, Ireland
| |
Collapse
|
7
|
Hou X, Hu J, Liu Z, Wang E, Guo Q, Zhang Z, Song Z. L-shaped association of serum calcium with all-cause and CVD mortality in the US adults: A population-based prospective cohort study. Front Nutr 2023; 9:1097488. [PMID: 36687714 PMCID: PMC9849810 DOI: 10.3389/fnut.2022.1097488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023] Open
Abstract
Background Calcium is involved in many biological processes, but the impact of serum calcium levels on long-term mortality in general populations has been rarely investigated. Methods This prospective cohort study analyzed data from the National Health and Nutrition Examination Survey (1999-2018). All-cause mortality, cardiovascular disease (CVD) mortality, and cancer mortality were obtained through linkage to the National Death Index. Survey-weighted multivariate Cox regression was performed to compute hazard ratios (HRs) and 95% confidential intervals (CIs) for the associations of calcium levels with risks of mortality. Restricted cubic spline analyses were performed to examine the non-linear association of calcium levels with all-cause and disease-specific mortality. Results A total of 51,042 individuals were included in the current study. During an average of 9.7 years of follow-up, 7,592 all-cause deaths were identified, including 2,391 CVD deaths and 1,641 cancer deaths. Compared with participants in the first quartile (Q1) of serum calcium level [≤2.299 mmol/L], the risk of all-cause mortality was lower for participants in the second quartile (Q2) [2.300-2.349 mmol/L], the third quartile (Q3) [2.350-2.424 mmol/L] and the fourth quartile (Q4) [≥2.425 mmol/L] with multivariable-adjusted HRs of 0.81 (95% CI, 0.74-0.88), 0.78 (95% CI, 0.71-0.86), and 0.80 (95% CI, 0.73, 0.88). Similar associations were observed for CVD mortality, with HRs of 0.82 (95% CI, 0.71-0.95), 0.87 (95% CI, 0.74-1.02), and 0.83 (95% CI, 0.72, 0.97) in Q2-Q4 quartile. Furthermore, the L-shaped non-linear associations were detected for serum calcium with the risk of all-cause mortality. Below the median of 2.350 mmol/L, per 0.1 mmol/L higher serum calcium was associated with a 24% lower risk of all-cause mortality (HR: 0.76, 95% CI, 0.70-0.83), however, no significant changes were observed when serum calcium was above the median. Similar L-shaped associations were detected for serum calcium with the risk of CVD mortality with a 25% reduction in the risk of CVD death per 0.1 mmol/L higher serum calcium below the median (HR: 0.75, 95% CI, 0.65-0.86). Conclusion L-shaped associations of serum calcium with all-cause and CVD mortality were observed in US adults, and hypocalcemia was associated with a higher risk of all-cause mortality and CVD mortality.
Collapse
Affiliation(s)
- Xinran Hou
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Hu
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhuoyi Liu
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - E. Wang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhong Zhang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Zongbin Song
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Zongbin Song,
| |
Collapse
|
8
|
Kashou AH, Adedinsewo DA, Siontis KC, Noseworthy PA. Artificial Intelligence-Enabled ECG: Physiologic and Pathophysiologic Insights and Implications. Compr Physiol 2022; 12:3417-3424. [PMID: 35766831 PMCID: PMC9795459 DOI: 10.1002/cphy.c210001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Advancements in machine learning and computing methods have given new life and great excitement to one of the most essential diagnostic tools to date-the electrocardiogram (ECG). The application of artificial intelligence-enabled ECG (AI-ECG) has resulted in the ability to identify electrocardiographic signatures of conventional and unique variables and pathologies, giving way to tremendous clinical potential. However, what these AI-ECG models are detecting that the human eye is missing remains unclear. In this article, we highlight some of the recent developments in the field and their potential clinical implications, while also attempting to shed light on the physiologic and pathophysiologic features that enable these models to have such high diagnostic yield. © 2022 American Physiological Society. Compr Physiol 12:3417-3424, 2022.
Collapse
Affiliation(s)
- Anthony H Kashou
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Peter A Noseworthy
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
9
|
Kobylecki CJ, Nordestgaard BG, Afzal S. Low Plasma Ionized Calcium Is Associated With Increased Mortality: A Population-based Study of 106 768 Individuals. J Clin Endocrinol Metab 2022; 107:e3039-e3047. [PMID: 35276011 DOI: 10.1210/clinem/dgac146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Low circulating total calcium or albumin-adjusted calcium has been associated with higher mortality, especially in hospital settings; however, these measures tend to misclassify patients with derangements in calcium homeostasis. OBJECTIVE As the association of the biologically active ionized calcium with mortality is poorly elucidated, we tested the hypothesis that low plasma ionized calcium is associated with higher risk of all-cause and cause-specific mortality in the general population. METHODS We included 106 768 individuals from the Copenhagen General Population Study. Information on all-cause and cause-specific mortality was from registries and risks were calculated using Cox regression and competing-risks regression by the STATA command stcompet. RESULTS During a median follow-up period of 9.2 years, 11 269 individuals died. Each 0.1 mmol/L lower plasma ionized calcium below the median of 1.21 mmol/L was associated with a multivariable adjusted hazard ratio of 1.23 (95% CI, 1.10-1.38) for all-cause mortality. Corresponding hazard ratios for cancer and other mortality were 1.29 (1.06-1.57) and 1.24 (1.01-1.53), respectively. In contrast, for cardiovascular mortality, only high plasma ionized calcium was associated with mortality with a hazard ratio of 1.17 (1.02-1.35) per 0.1 mmol/L higher plasma ionized calcium above the median. We found no interactions between plasma ionized calcium and preexisting cardiovascular or renal disease on all-cause mortality. CONCLUSION In the general population, low plasma ionized calcium was associated with increased all-cause, cancer, and other mortality, while high levels were associated with increased cardiovascular mortality.
Collapse
Affiliation(s)
- Camilla J Kobylecki
- Department of Clinical Biochemistry, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital-Herlev and Gentofte Hospital, Herlev, Denmark
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Copenhagen University Hospital-Herlev and Gentofte Hospital, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Shoaib Afzal
- Department of Clinical Biochemistry, Copenhagen University Hospital-Herlev and Gentofte Hospital, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Effect of hyperglycaemia in combination with moxifloxacin on cardiac repolarization in male and female patients with type I diabetes. Clin Res Cardiol 2022; 111:1147-1160. [PMID: 35596784 PMCID: PMC9525410 DOI: 10.1007/s00392-022-02037-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/05/2022] [Indexed: 11/20/2022]
Abstract
Background Patients with Type 1 diabetes mellitus have been shown to be at a two to ten-fold higher risk of sudden cardiac death (SCD) (Svane et al., Curr Cardiol 2020; 22:112) than the general population, but the underlying mechanism is unclear. Hyperglycaemia is a recognised cause of QTc prolongation; a state patients with type 1 diabetes are more prone to, potentially increasing their risk of ventricular arrhythmia. Understanding the QTc prolongation effect of both hyperglycaemia and the concomitant additive risk of commonly prescribed QTc-prolonging drugs such as Moxifloxacin may help to elucidate the mechanism of sudden cardiac death in this cohort. This single-blinded, placebo-controlled study investigated the extent to which hyperglycaemia prolongs the QTc in controlled conditions, and the potential additive risk of QTc-prolonging medications. Methods 21 patients with type 1 diabetes mellitus were enrolled to a placebo-controlled crossover study at a single clinical trials unit. Patients underwent thorough QTc assessment throughout the study. A ‘hyperglycaemic clamp’ of oral and intravenous glucose was administered with a target blood glucose of > 25 mM and maintained for 2 h on day 1 and day 3, alongside placebo on day 1 and moxifloxacin on day 3. Day 2 served as a control day between the two active treatment days. Thorough QTc assessment was conducted at matched time points over 3 days, and regular blood sampling was undertaken at matched time intervals for glucose levels and moxifloxacin exposure. Results Concentration-effect modelling showed that acute hyperglycaemia prolonged the QTc interval in female and male volunteers with type 1 diabetes by a peak mean increase of 13 ms at 2 h. Peak mean QTc intervals after the administration of intravenous Moxifloxacin during the hyperglycaemic state were increased by a further 9 ms at 2 h, to 22 ms across the entire study population. Regression analysis suggested this additional increase was additive, not exponential. Hyperglycaemia was associated with a significantly greater mean QTc-prolonging effect in females, but the mean peak increase with the addition of moxifloxacin was the same for males and females. This apparent sex difference was likely due to the exclusive use of basal insulin in the male patients, which provided a low level of exogenous insulin during the study assessments thereby mitigating the effects of hyperglycaemia on QTc. This effect was partially overcome by Moxifloxacin administration, suggesting both hyperglycaemia and moxifloxacin prolong QTc by different mechanisms, based on subinterval analysis. Conclusions Hyperglycaemia was found to be a significant cause of QTc prolongation and the additional effect of a QTc-prolonging positive control (moxifloxacin) was found to be additive. Given the high risk of sudden cardiac death in type 1 diabetes mellitus, extra caution should be exercised when prescribing any medication in this cohort for QTc effects, and further research needs to be undertaken to elucidate the exact mechanism underlying this finding and explore the potential prescribing risk in diabetes. Trial Registration NCT number: NCT01984827. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s00392-022-02037-8.
Collapse
|
11
|
Bukhari HA, Sánchez C, Ruiz JE, Potse M, Laguna P, Pueyo E. Monitoring of Serum Potassium and Calcium Levels in End-Stage Renal Disease Patients by ECG Depolarization Morphology Analysis. SENSORS 2022; 22:s22082951. [PMID: 35458934 PMCID: PMC9027214 DOI: 10.3390/s22082951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/16/2022]
Abstract
Objective: Non-invasive estimation of serum potassium, [K+], and calcium, [Ca2+], can help to prevent life-threatening ventricular arrhythmias in patients with advanced renal disease, but current methods for estimation of electrolyte levels have limitations. We aimed to develop new markers based on the morphology of the QRS complex of the electrocardiogram (ECG). Methods: ECG recordings from 29 patients undergoing hemodialysis (HD) were processed. Mean warped QRS complexes were computed in two-minute windows at the start of an HD session, at the end of each HD hour and 48 h after it. We quantified QRS width, amplitude and the proposed QRS morphology-based markers that were computed by warping techniques. Reference [K+] and [Ca2+] were determined from blood samples acquired at the time points where the markers were estimated. Linear regression models were used to estimate electrolyte levels from the QRS markers individually and in combination with T wave morphology markers. Leave-one-out cross-validation was used to assess the performance of the estimators. Results: All markers, except for QRS width, strongly correlated with [K+] (median Pearson correlation coefficients, r, ranging from 0.81 to 0.87) and with [Ca2+] (r ranging from 0.61 to 0.76). QRS morphology markers showed very low sensitivity to heart rate (HR). Actual and estimated serum electrolyte levels differed, on average, by less than 0.035 mM (relative error of 0.018) for [K+] and 0.010 mM (relative error of 0.004) for [Ca2+] when patient-specific multivariable estimators combining QRS and T wave markers were used. Conclusion: QRS morphological markers allow non-invasive estimation of [K+] and [Ca2+] with low sensitivity to HR. The estimation performance is improved when multivariable models, including T wave markers, are considered. Significance: Markers based on the QRS complex of the ECG could contribute to non-invasive monitoring of serum electrolyte levels and arrhythmia risk prediction in patients with renal disease.
Collapse
Affiliation(s)
- Hassaan A. Bukhari
- BSICoS Group, I3A Institute, IIS Aragón, University of Zaragoza, 50018 Zaragoza, Spain; (C.S.); (P.L.); (E.P.)
- CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 50018 Zaragoza, Spain
- Carmen Team, Inria Bordeaux—Sud-Ouest, 33405 Talence, France;
- Université de Bordeaux, IMB, UMR 5251, 33400 Talence, France
- Correspondence:
| | - Carlos Sánchez
- BSICoS Group, I3A Institute, IIS Aragón, University of Zaragoza, 50018 Zaragoza, Spain; (C.S.); (P.L.); (E.P.)
- CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 50018 Zaragoza, Spain
| | - José Esteban Ruiz
- Nephrology Department, Hospital Clínico Universitario Lozano Blesa, 50009 Zaragoza, Spain;
| | - Mark Potse
- Carmen Team, Inria Bordeaux—Sud-Ouest, 33405 Talence, France;
- Université de Bordeaux, IMB, UMR 5251, 33400 Talence, France
| | - Pablo Laguna
- BSICoS Group, I3A Institute, IIS Aragón, University of Zaragoza, 50018 Zaragoza, Spain; (C.S.); (P.L.); (E.P.)
- CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 50018 Zaragoza, Spain
| | - Esther Pueyo
- BSICoS Group, I3A Institute, IIS Aragón, University of Zaragoza, 50018 Zaragoza, Spain; (C.S.); (P.L.); (E.P.)
- CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 50018 Zaragoza, Spain
| |
Collapse
|
12
|
Bukhari HA, Sánchez C, Srinivasan S, Palmieri F, Potse M, Laguna P, Pueyo E. Estimation of potassium levels in hemodialysis patients by T wave nonlinear dynamics and morphology markers. Comput Biol Med 2022; 143:105304. [PMID: 35168084 DOI: 10.1016/j.compbiomed.2022.105304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/01/2022] [Accepted: 02/05/2022] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Noninvasive screening of hypo- and hyperkalemia can prevent fatal arrhythmia in end-stage renal disease (ESRD) patients, but current methods for monitoring of serum potassium (K+) have important limitations. We investigated changes in nonlinear dynamics and morphology of the T wave in the electrocardiogram (ECG) of ESRD patients during hemodialysis (HD), assessing their relationship with K+ and designing a K+ estimator. METHODS ECG recordings from twenty-nine ESRD patients undergoing HD were processed. T waves in 2-min windows were extracted at each hour during an HD session as well as at 48 h after HD start. T wave nonlinear dynamics were characterized by two indices related to the maximum Lyapunov exponent (λt, λwt) and a divergence-related index (η). Morphological variability in the T wave was evaluated by three time warping-based indices (dw, reflecting morphological variability in the time domain, and da and daNL, in the amplitude domain). K+was measured from blood samples extracted during and after HD. Stage-specific and patient-specific K+ estimators were built based on the quantified indices and leave-one-out cross-validation was performed separately for each of the estimators. RESULTS The analyzed indices showed high inter-individual variability in their relationship with K+. Nevertheless, all of them had higher values at the HD start and 48 h after it, corresponding to the highest K+. The indices η and dw were the most strongly correlated with K+ (median Pearson correlation coefficient of 0.78 and 0.83, respectively) and were used in univariable and multivariable linear K+ estimators. Agreement between actual and estimated K+ was confirmed, with averaged errors over patients and time points being 0.000 ± 0.875 mM and 0.046 ± 0.690 mM for stage-specific and patient-specific multivariable K+ estimators, respectively. CONCLUSION ECG descriptors of T wave nonlinear dynamics and morphological variability allow noninvasive monitoring of K+ in ESRD patients. SIGNIFICANCE ECG markers have the potential to be used for hypo- and hyperkalemia screening in ESRD patients.
Collapse
Affiliation(s)
- Hassaan A Bukhari
- BSICoS group, I3A Institute, University of Zaragoza, IIS Aragón, Zaragoza, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, Spain; Carmen team, Inria Bordeaux - Sud-Ouest, Talence, France; University of Bordeaux, IMB, UMR 5251, Talence, France.
| | - Carlos Sánchez
- BSICoS group, I3A Institute, University of Zaragoza, IIS Aragón, Zaragoza, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, Spain
| | - Sabarathinam Srinivasan
- BSICoS group, I3A Institute, University of Zaragoza, IIS Aragón, Zaragoza, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, Spain
| | - Flavio Palmieri
- CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, Spain; Centre de Recerca en Enginyeria Biomèdica, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Mark Potse
- Carmen team, Inria Bordeaux - Sud-Ouest, Talence, France; University of Bordeaux, IMB, UMR 5251, Talence, France
| | - Pablo Laguna
- BSICoS group, I3A Institute, University of Zaragoza, IIS Aragón, Zaragoza, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, Spain
| | - Esther Pueyo
- BSICoS group, I3A Institute, University of Zaragoza, IIS Aragón, Zaragoza, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, Spain
| |
Collapse
|
13
|
Hou Y, Xiang J, Dai H, Wang T, Li M, Lin H, Wang S, Xu Y, Lu J, Chen Y, Wang W, Ning G, Zhao Z, Bi Y, Xu M. New clusters of serum electrolytes aid in stratification of diabetes and metabolic risk. J Diabetes 2022; 14:121-133. [PMID: 34963041 PMCID: PMC9060051 DOI: 10.1111/1753-0407.13244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/01/2021] [Accepted: 11/26/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Serum electrolytes were found to associate with type 2 diabetes. Our study aimed to stratify nondiabetes by clusters based on multiple serum electrolytes and evaluate their associations with risk of developing diabetes and longitudinal changes in glucose and lipid metabolic traits. METHODS We performed a data-driven cluster analysis in 4937 nondiabetes individuals aged ≥40 years at baseline from a cohort follow-up for an average of 4.4 years. Cluster analysis was based on seven commonly measured serum electrolytes (iron, chlorine, magnesium, sodium, potassium, calcium, and phosphorus) by using the k-means method. RESULTS A total of 4937 nondiabetes individuals were classified into three distinct clusters, with 1635 (33.1%) assigned to Cluster A, 1490 (30.2%) to Cluster B, and 1812 (36.7%) to Cluster C. Individuals in Cluster A had higher serum chlorine, were older, and more were women. Individuals in Cluster B had higher serum iron and body mass index (BMI). Individuals in Cluster C had higher serum phosphorus, were younger, and had lower BMI. Cluster B had 1.41-fold higher risk of developing diabetes and Cluster C's risk was 1.33-fold higher compared with Cluster A. Over an average follow-up of 4.4 years, Cluster A showed a moderate and stable BMI, Cluster B showed an accelerated deterioration in glucose metabolism, and Cluster C showed the most sharply increased serum low-density lipoprotein cholesterol level. CONCLUSIONS Clusters based on seven common serum electrolytes differed in diabetes risk and progression of glucose and lipid metabolic traits. Serum electrolytes clusters could provide a powerful tool to differentiate individuals into different risk stratification for developing type 2 diabetes.
Collapse
Affiliation(s)
- Yanan Hou
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jiali Xiang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Huajie Dai
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Tiange Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Mian Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Hong Lin
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shuangyuan Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yu Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jieli Lu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yuhong Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhiyun Zhao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yufang Bi
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Min Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
14
|
Ye M, Zhang JW, Liu J, Zhang M, Yao FJ, Cheng YJ. Association Between Dynamic Change of QT Interval and Long-Term Cardiovascular Outcomes: A Prospective Cohort Study. Front Cardiovasc Med 2021; 8:756213. [PMID: 34917661 PMCID: PMC8669365 DOI: 10.3389/fcvm.2021.756213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/20/2021] [Indexed: 11/24/2022] Open
Abstract
Background: The prolongation or shortening of heart rate-corrected QT (QTc) predisposes patients to fatal ventricular arrhythmias and sudden cardiac death (SCD), but the association of dynamic change of QTc interval with mortality in the general population remains unclear. Methods: A total of 11,798 middle-aged subjects from the prospective, population-based cohort were included in this analysis. The QTc interval corrected for heart rate was measured on two occasions around 3 years apart in the Atherosclerosis Risk in Communities (ARIC) study. The ΔQTc interval was calculated by evaluating a change in QTc interval from visit 1 to visit 2. Results: After a median follow-up of 19.5 years, the association between the dynamic change of QTc interval and endpoints of death was U-shaped. The multivariate-adjusted hazard ratios (HRs) comparing subjects above the 95th percentile of Framingham–corrected ΔQTc (ΔQTcF) (≥32 ms) with subjects in the middle quintile (0–8 ms) were 2.69 (95% CI, 1.68–4.30) for SCD, 2.51 (1.68–3.74) for coronary heart disease death, 2.10 (1.50–2.94) for cardiovascular death, and 1.30 (1.11–1.55) for death from any cause. The corresponding HRs comparing subjects with a ΔQTcF below the fifth percentile (<-23 ms) with those in the middle quintile were 1.82 (1.09–3.05) for SCD, 1.83 (1.19–2.81) for coronary heart disease death, 2.14 (1.51–2.96) for cardiovascular death, and 1.31 (1.11–1.56) for death from any cause. Less extreme deviations of ΔQTcF were also associated with an increased risk of death. Similar, albeit weaker associations also were observed with ΔQTc corrected with Bazett's formula. Conclusions: A dynamic change of QTc interval is associated with increased mortality risk in the general population, indicating that repeated measurements of the QTc interval may be available to provide additional prognostic information.
Collapse
Affiliation(s)
- Min Ye
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Assisted Circulation, National Health Commission (NHC), Guangzhou, China.,Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jing-Wei Zhang
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jia Liu
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ming Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Feng-Juan Yao
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yun-Jiu Cheng
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Assisted Circulation, National Health Commission (NHC), Guangzhou, China
| |
Collapse
|
15
|
Ngo Nkondjock VR, Cheteu Wabo TM, Kosgey JC, Zhang Y, Amporfro DA, Adnan H, Shah I, Li Y. Insulin Resistance, Serum Calcium and Hypertension: A Cross-Sectional Study of a Multiracial Population, and a Similarity Assessment of Results from a Single-Race Population's Study. Diabetes Metab Syndr Obes 2021; 14:3361-3373. [PMID: 34335037 PMCID: PMC8318711 DOI: 10.2147/dmso.s259409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/24/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Recent research suggests the need to assess more ethnic disparities in hypertension (HTN). On the other hand, studies reveal impressive mortality rates due to cardiovascular diseases for some race and ethnic groups compared to others. METHODS We referred to a recent study on serum calcium (SC) and insulin resistance associated with HTN incidence to compare different race groups in the latter found relationship. We compare the current study outcomes with those from the Wu et al study. RESULTS From 425 participants of the National Health and Nutrition Examination Survey (NHANES) data, we found a significant association between race and hypertension; Cramer's V (0.006) = 0.21 when adjusted with non-hypertensives and hypertensives. Mc Auley index (McA) was negatively related to hypertension, r (355) = -0.24, p < 0.0001. SC associated with HTN in all race groups significance persisted only in non-Hispanic Whites after multivariate adjustments R 2 of 74.1 (p = 0.03). McA was a mediator on SC-HTN in non-Hispanic Whites (NHW) (CoefIE = 13.25, [CI] = 1.42-32.13), and a moderator in other Hispanics interaction (0.04) = 0.27 and NHW interaction (0.001) = 0.028. CONCLUSION SC was associated with hypertension, similarly to the baseline study. SC and HTN association persisted in NHW compared to other race groups. Homeostasis model assessment (HOMA-IR) was not a mediator on SC-HTN, but with McA, this in NHW only. McA played a moderator role in OH and NHW. We suggest that race is a factor implicated in our findings, which may be investigated further in future research.
Collapse
Affiliation(s)
- Victorine Raïssa Ngo Nkondjock
- Department of Nutrition and Food Hygiene, The National Key Discipline, School of Public Health, Harbin Medical University, Harbin, People’s Republic of China
| | - Thérèse Martin Cheteu Wabo
- Department of Nutrition and Food Hygiene, The National Key Discipline, School of Public Health, Harbin Medical University, Harbin, People’s Republic of China
| | | | - Yunlong Zhang
- Department of Nutrition and Food Hygiene, The National Key Discipline, School of Public Health, Harbin Medical University, Harbin, People’s Republic of China
| | - Daniel Adjei Amporfro
- Department of Social Medicine and Health Services Management, School of Public Health, Harbin Medical University, Harbin, People’s Republic of China
| | - Humara Adnan
- Department of Biostatistics and Epidemiology, School of Public Health, Harbin Medical University, Harbin, People’s Republic of China
| | - Imran Shah
- Department of Nutrition and Food Hygiene, The National Key Discipline, School of Public Health, Harbin Medical University, Harbin, People’s Republic of China
| | - Ying Li
- Department of Nutrition and Food Hygiene, The National Key Discipline, School of Public Health, Harbin Medical University, Harbin, People’s Republic of China
| |
Collapse
|
16
|
Young WJ, Warren HR, Mook-Kanamori DO, Ramírez J, van Duijvenboden S, Orini M, Tinker A, van Heemst D, Lambiase PD, Jukema JW, Munroe PB, Noordam R. Genetically Determined Serum Calcium Levels and Markers of Ventricular Repolarization: A Mendelian Randomization Study in the UK Biobank. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2021; 14:e003231. [PMID: 33887147 PMCID: PMC8208093 DOI: 10.1161/circgen.120.003231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 04/02/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND ECG markers of ventricular depolarization and repolarization are associated with an increased risk of arrhythmia and sudden cardiac death. Our prior work indicated lower serum calcium concentrations are associated with longer QT and JT intervals in the general population. Here, we investigate whether serum calcium is a causal risk factor for changes in ECG measures using Mendelian randomization (MR). METHODS Independent lead variants from a newly performed genome-wide association study for serum calcium in >300 000 European-ancestry participants from UK Biobank were used as instrumental variables. Two-sample MR analyses were performed to approximate the causal effect of serum calcium on QT, JT, and QRS intervals using an inverse-weighted method in 76 226 participants not contributing to the serum calcium genome-wide association study. Sensitivity analyses including MR-Egger, weighted-median estimator, and MR pleiotropy residual sum and outlier were performed to test for the presence of horizontal pleiotropy. RESULTS Two hundred five independent lead calcium-associated variants were used as instrumental variables for MR. A decrease of 0.1 mmol/L serum calcium was associated with longer QT (3.01 ms [95% CI, 2.03 to 3.99]) and JT (2.89 ms [1.91 to 3.87]) intervals. A weak association was observed for QRS duration (secondary analyses only). Results were concordant in all sensitivity analyses. CONCLUSIONS These analyses support a causal effect of serum calcium levels on ventricular repolarization, in a middle-aged population of European-ancestry where serum calcium concentrations are likely stable and chronic. Modulation of calcium concentration may, therefore, directly influence cardiovascular disease risk.
Collapse
Affiliation(s)
- William J. Young
- Clinical Pharmacology Department, William Harvey Research Institute (W.J.Y., H.R.W., J.R., S.v.D., A.T., P.B.M.), Barts and the London School of Medicine and Dentistry, Queen Mary University of London
- Barts Heart Centre, St Bartholomew’s Hospital, Barts Health NHS trust (W.J.Y., M.O., P.D.L.)
| | - Helen R. Warren
- Clinical Pharmacology Department, William Harvey Research Institute (W.J.Y., H.R.W., J.R., S.v.D., A.T., P.B.M.), Barts and the London School of Medicine and Dentistry, Queen Mary University of London
- NIHR Barts Cardiovascular Biomedical Research Unit (H.R.W., A.T., P.B.M.), Barts and the London School of Medicine and Dentistry, Queen Mary University of London
| | - Dennis O. Mook-Kanamori
- Department of Clinical Epidemiology (D.O.M.-K.), Leiden University Medical Center, the Netherlands
- Department of Public Health and Primary Care (D.O.M.-K.), Leiden University Medical Center, the Netherlands
| | - Julia Ramírez
- Clinical Pharmacology Department, William Harvey Research Institute (W.J.Y., H.R.W., J.R., S.v.D., A.T., P.B.M.), Barts and the London School of Medicine and Dentistry, Queen Mary University of London
- Institute of Cardiovascular Sciences, University of College London, United Kingdom (J.R., S.v.D., M.O., P.D.L.)
| | - Stefan van Duijvenboden
- Clinical Pharmacology Department, William Harvey Research Institute (W.J.Y., H.R.W., J.R., S.v.D., A.T., P.B.M.), Barts and the London School of Medicine and Dentistry, Queen Mary University of London
- Institute of Cardiovascular Sciences, University of College London, United Kingdom (J.R., S.v.D., M.O., P.D.L.)
| | - Michele Orini
- Barts Heart Centre, St Bartholomew’s Hospital, Barts Health NHS trust (W.J.Y., M.O., P.D.L.)
- Institute of Cardiovascular Sciences, University of College London, United Kingdom (J.R., S.v.D., M.O., P.D.L.)
| | - Andrew Tinker
- Clinical Pharmacology Department, William Harvey Research Institute (W.J.Y., H.R.W., J.R., S.v.D., A.T., P.B.M.), Barts and the London School of Medicine and Dentistry, Queen Mary University of London
- NIHR Barts Cardiovascular Biomedical Research Unit (H.R.W., A.T., P.B.M.), Barts and the London School of Medicine and Dentistry, Queen Mary University of London
| | - Diana van Heemst
- Department of Internal Medicine (D.v.H., R.N.), Leiden University Medical Center, the Netherlands
| | - Pier D. Lambiase
- Barts Heart Centre, St Bartholomew’s Hospital, Barts Health NHS trust (W.J.Y., M.O., P.D.L.)
- Institute of Cardiovascular Sciences, University of College London, United Kingdom (J.R., S.v.D., M.O., P.D.L.)
| | - J. Wouter Jukema
- Department of Cardiology (J.W.J.), Leiden University Medical Center, the Netherlands
- Netherlands Heart Institute, Utrecht, the Netherlands (J.W.J.)
| | - Patricia B. Munroe
- Clinical Pharmacology Department, William Harvey Research Institute (W.J.Y., H.R.W., J.R., S.v.D., A.T., P.B.M.), Barts and the London School of Medicine and Dentistry, Queen Mary University of London
- NIHR Barts Cardiovascular Biomedical Research Unit (H.R.W., A.T., P.B.M.), Barts and the London School of Medicine and Dentistry, Queen Mary University of London
| | - Raymond Noordam
- Department of Internal Medicine (D.v.H., R.N.), Leiden University Medical Center, the Netherlands
| |
Collapse
|
17
|
The role of co-administration of magnesium sulfate with QTc-prolonging medications in the emergency department. Am J Emerg Med 2021; 52:232-234. [PMID: 33838936 DOI: 10.1016/j.ajem.2021.03.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 11/23/2022] Open
|
18
|
Bos MM, Goulding NJ, Lee MA, Hofman A, Bot M, Pool R, Vijfhuizen LS, Zhang X, Li C, Mustafa R, Neville MJ, Li-Gao R, Trompet S, Beekman M, Biermasz NR, Boomsma DI, de Boer I, Christodoulides C, Dehghan A, van Dijk KW, Ford I, Ghanbari M, Heijmans BT, Ikram MA, Jukema JW, Mook-Kanamori DO, Karpe F, Luik AI, Lumey LH, van den Maagdenberg AMJM, Mooijaart SP, de Mutsert R, Penninx BWJH, Rensen PCN, Richmond RC, Rosendaal FR, Sattar N, Schoevers RA, Slagboom PE, Terwindt GM, Thesing CS, Wade KH, Wijsman CA, Willemsen G, Zwinderman AH, van Heemst D, Noordam R, Lawlor DA. Investigating the relationships between unfavourable habitual sleep and metabolomic traits: evidence from multi-cohort multivariable regression and Mendelian randomization analyses. BMC Med 2021; 19:69. [PMID: 33731105 PMCID: PMC7971964 DOI: 10.1186/s12916-021-01939-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/11/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Sleep traits are associated with cardiometabolic disease risk, with evidence from Mendelian randomization (MR) suggesting that insomnia symptoms and shorter sleep duration increase coronary artery disease risk. We combined adjusted multivariable regression (AMV) and MR analyses of phenotypes of unfavourable sleep on 113 metabolomic traits to investigate possible biochemical mechanisms linking sleep to cardiovascular disease. METHODS We used AMV (N = 17,368) combined with two-sample MR (N = 38,618) to examine effects of self-reported insomnia symptoms, total habitual sleep duration, and chronotype on 113 metabolomic traits. The AMV analyses were conducted on data from 10 cohorts of mostly Europeans, adjusted for age, sex, and body mass index. For the MR analyses, we used summary results from published European-ancestry genome-wide association studies of self-reported sleep traits and of nuclear magnetic resonance (NMR) serum metabolites. We used the inverse-variance weighted (IVW) method and complemented this with sensitivity analyses to assess MR assumptions. RESULTS We found consistent evidence from AMV and MR analyses for associations of usual vs. sometimes/rare/never insomnia symptoms with lower citrate (- 0.08 standard deviation (SD)[95% confidence interval (CI) - 0.12, - 0.03] in AMV and - 0.03SD [- 0.07, - 0.003] in MR), higher glycoprotein acetyls (0.08SD [95% CI 0.03, 0.12] in AMV and 0.06SD [0.03, 0.10) in MR]), lower total very large HDL particles (- 0.04SD [- 0.08, 0.00] in AMV and - 0.05SD [- 0.09, - 0.02] in MR), and lower phospholipids in very large HDL particles (- 0.04SD [- 0.08, 0.002] in AMV and - 0.05SD [- 0.08, - 0.02] in MR). Longer total sleep duration associated with higher creatinine concentrations using both methods (0.02SD per 1 h [0.01, 0.03] in AMV and 0.15SD [0.02, 0.29] in MR) and with isoleucine in MR analyses (0.22SD [0.08, 0.35]). No consistent evidence was observed for effects of chronotype on metabolomic measures. CONCLUSIONS Whilst our results suggested that unfavourable sleep traits may not cause widespread metabolic disruption, some notable effects were observed. The evidence for possible effects of insomnia symptoms on glycoprotein acetyls and citrate and longer total sleep duration on creatinine and isoleucine might explain some of the effects, found in MR analyses of these sleep traits on coronary heart disease, which warrant further investigation.
Collapse
Affiliation(s)
- Maxime M Bos
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Neil J Goulding
- MRC Integrative Epidemiology Unit at the University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Matthew A Lee
- MRC Integrative Epidemiology Unit at the University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Amy Hofman
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Mariska Bot
- Amsterdam UMC, Vrije Universiteit, Psychiatry, Amsterdam Public Health research institute, Amsterdam, The Netherlands
| | - René Pool
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Lisanne S Vijfhuizen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Xiang Zhang
- Department of Experimental Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Chihua Li
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, USA
| | - Rima Mustafa
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Matt J Neville
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals Foundation Trust, Oxford, UK
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology, and Metabolism, University of Oxford, Oxford, UK
| | - Ruifang Li-Gao
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Stella Trompet
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Marian Beekman
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Nienke R Biermasz
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - Dorret I Boomsma
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Irene de Boer
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Constantinos Christodoulides
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology, and Metabolism, University of Oxford, Oxford, UK
| | - Abbas Dehghan
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Dementia Research Institute at Imperial College London, London, W2 1PG, UK
- MRC Centre for Environment and Health, School of Public Health, Imperial College, London, UK
| | - Ko Willems van Dijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Ian Ford
- Robertson Center for Biostatistics, University of Glasgow, Glasgow, UK
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Bastiaan T Heijmans
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, The Netherlands
| | - Fredrik Karpe
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals Foundation Trust, Oxford, UK
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology, and Metabolism, University of Oxford, Oxford, UK
| | - Annemarie I Luik
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - L H Lumey
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, USA
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Arn M J M van den Maagdenberg
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Simon P Mooijaart
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Brenda W J H Penninx
- Amsterdam UMC, Vrije Universiteit, Psychiatry, Amsterdam Public Health research institute, Amsterdam, The Netherlands
| | - Patrick C N Rensen
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Rebecca C Richmond
- MRC Integrative Epidemiology Unit at the University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Frits R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Naveed Sattar
- BHF Glasgow Cardiovascular Research Centre, Faculty of Medicine, Glasgow, UK
| | - Robert A Schoevers
- Department of Psychiatry, Groningen, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - P Eline Slagboom
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Gisela M Terwindt
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Carisha S Thesing
- Amsterdam UMC, Vrije Universiteit, Psychiatry, Amsterdam Public Health research institute, Amsterdam, The Netherlands
| | - Kaitlin H Wade
- MRC Integrative Epidemiology Unit at the University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Carolien A Wijsman
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Gonneke Willemsen
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Aeilko H Zwinderman
- Department of Clinical Epidemiology, Biostatistics, and Bioinformatics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Diana van Heemst
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands.
| | - Deborah A Lawlor
- MRC Integrative Epidemiology Unit at the University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK.
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
- NIHR Bristol Biomedical Research Centre, Bristol, UK.
| |
Collapse
|
19
|
Kwon JM, Jung MS, Kim KH, Jo YY, Shin JH, Cho YH, Lee YJ, Ban JH, Jeon KH, Lee SY, Park J, Oh BH. Artificial intelligence for detecting electrolyte imbalance using electrocardiography. Ann Noninvasive Electrocardiol 2021; 26:e12839. [PMID: 33719135 PMCID: PMC8164149 DOI: 10.1111/anec.12839] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/31/2021] [Accepted: 02/17/2021] [Indexed: 12/28/2022] Open
Abstract
Introduction The detection and monitoring of electrolyte imbalance is essential for appropriate management of many metabolic diseases; however, there is no tool that detects such imbalances reliably and noninvasively. In this study, we developed a deep learning model (DLM) using electrocardiography (ECG) for detecting electrolyte imbalance and validated its performance in a multicenter study. Methods and Results This retrospective cohort study included two hospitals: 92,140 patients who underwent a laboratory electrolyte examination and an ECG within 30 min were included in this study. A DLM was developed using 83,449 ECGs of 48,356 patients; the internal validation included 12,091 ECGs of 12,091 patients. We conducted an external validation with 31,693 ECGs of 31,693 patients from another hospital, and the result was electrolyte imbalance detection. During internal, the area under the receiving operating characteristic curve (AUC) of a DLM using a 12‐lead ECG for detecting hyperkalemia, hypokalemia, hypernatremia, hyponatremia, hypercalcemia, and hypocalcemia were 0.945, 0.866, 0.944, 0.885, 0.905, and 0.901, respectively. The values during external validation of the AUC of hyperkalemia, hypokalemia, hypernatremia, hyponatremia, hypercalcemia, and hypocalcemia were 0.873, 0.857, 0.839, 0.856, 0.831, and 0.813 respectively. The DLM helped to visualize the important ECG region for detecting each electrolyte imbalance, and it showed how the P wave, QRS complex, or T wave differs in importance in detecting each electrolyte imbalance. Conclusion The proposed DLM demonstrated high performance in detecting electrolyte imbalance. These results suggest that a DLM can be used for detecting and monitoring electrolyte imbalance using ECG on a daily basis.
Collapse
Affiliation(s)
- Joon-Myoung Kwon
- Medical Research Team, Medical AI Co. Ltd., Seoul, South Korea.,Artificial Intelligence and Big Data Research Center, Sejong Medical Research Institute, Bucheon, South Korea.,Department of Critical Care and Emergency Medicine, Mediplex Sejong Hospital, Incheon, South Korea.,Medical R&D Center, Bodyfriend Co. Ltd., Seoul, South Korea
| | - Min-Seung Jung
- Medical Research Team, Medical AI Co. Ltd., Seoul, South Korea
| | - Kyung-Hee Kim
- Artificial Intelligence and Big Data Research Center, Sejong Medical Research Institute, Bucheon, South Korea.,Division of Cardiology Cardiovascular Center, Mediplex Sejong Hospital, Incheon, South Korea
| | - Yong-Yeon Jo
- Medical Research Team, Medical AI Co. Ltd., Seoul, South Korea
| | - Jae-Hyun Shin
- Medical Research Team, Medical AI Co. Ltd., Seoul, South Korea
| | - Yong-Hyeon Cho
- Medical Research Team, Medical AI Co. Ltd., Seoul, South Korea
| | - Yoon-Ji Lee
- Medical Research Team, Medical AI Co. Ltd., Seoul, South Korea
| | - Jang-Hyeon Ban
- Medical R&D Center, Bodyfriend Co. Ltd., Seoul, South Korea
| | - Ki-Hyun Jeon
- Artificial Intelligence and Big Data Research Center, Sejong Medical Research Institute, Bucheon, South Korea.,Division of Cardiology Cardiovascular Center, Mediplex Sejong Hospital, Incheon, South Korea
| | - Soo Youn Lee
- Artificial Intelligence and Big Data Research Center, Sejong Medical Research Institute, Bucheon, South Korea.,Division of Cardiology Cardiovascular Center, Mediplex Sejong Hospital, Incheon, South Korea
| | - Jinsik Park
- Division of Cardiology Cardiovascular Center, Mediplex Sejong Hospital, Incheon, South Korea
| | - Byung-Hee Oh
- Division of Cardiology Cardiovascular Center, Mediplex Sejong Hospital, Incheon, South Korea
| |
Collapse
|
20
|
Bukhari HA, Palmieri F, Ramirez J, Laguna P, Ruiz JE, Ferreira D, Potse M, Sanchez C, Pueyo E. Characterization of T Wave Amplitude, Duration and Morphology Changes During Hemodialysis: Relationship With Serum Electrolyte Levels and Heart Rate. IEEE Trans Biomed Eng 2020; 68:2467-2478. [PMID: 33301399 DOI: 10.1109/tbme.2020.3043844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Chronic kidney disease affects more than 10% of the world population. Changes in serum ion concentrations increase the risk for ventricular arrhythmias and sudden cardiac death, particularly in end-stage renal disease (ESRD) patients. We characterized how T wave amplitude, duration and morphology descriptors change with variations in serum levels of potassium and calcium and in heart rate, both in ESRD patients and in simulated ventricular fibers. METHODS Electrocardiogram (ECG) recordings from twenty ESRD patients undergoing hemodialysis (HD) and pseudo-ECGs (pECGs) calculated from twenty-two simulated ventricular fibers at varying transmural heterogeneity levels were processed to quantify T wave width ( Tw), T wave slope-to-amplitude ratio ([Formula: see text]) and four indices of T wave morphological variability based on time warping ( dw, [Formula: see text], da and [Formula: see text]). Serum potassium and calcium levels and heart rate were measured along HD. RESULTS [Formula: see text] was the marker most strongly correlated with serum potassium, dw with calcium and da with heart rate, after correction for covariates. Median values of partial correlation coefficients were 0.75, -0.74 and -0.90, respectively. For all analyzed T wave descriptors, high inter-patient variability was observed in the pattern of such relationships. This variability, accentuated during the first HD time points, was reproduced in the simulations and shown to be influenced by differences in transmural heterogeneity. CONCLUSION Changes in serum potassium and calcium levels and in heart rate strongly affect T wave descriptors, particularly those quantifying morphological variability. SIGNIFICANCE ECG markers have the potential to be used for monitoring serum ion concentrations in ESRD patients.
Collapse
|
21
|
Pilia N, Severi S, Raimann JG, Genovesi S, Dössel O, Kotanko P, Corsi C, Loewe A. Quantification and classification of potassium and calcium disorders with the electrocardiogram: What do clinical studies, modeling, and reconstruction tell us? APL Bioeng 2020; 4:041501. [PMID: 33062908 PMCID: PMC7532940 DOI: 10.1063/5.0018504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/13/2020] [Indexed: 11/14/2022] Open
Abstract
Diseases caused by alterations of ionic concentrations are frequently observed challenges and play an important role in clinical practice. The clinically established method for the diagnosis of electrolyte concentration imbalance is blood tests. A rapid and non-invasive point-of-care method is yet needed. The electrocardiogram (ECG) could meet this need and becomes an established diagnostic tool allowing home monitoring of the electrolyte concentration also by wearable devices. In this review, we present the current state of potassium and calcium concentration monitoring using the ECG and summarize results from previous work. Selected clinical studies are presented, supporting or questioning the use of the ECG for the monitoring of electrolyte concentration imbalances. Differences in the findings from automatic monitoring studies are discussed, and current studies utilizing machine learning are presented demonstrating the potential of the deep learning approach. Furthermore, we demonstrate the potential of computational modeling approaches to gain insight into the mechanisms of relevant clinical findings and as a tool to obtain synthetic data for methodical improvements in monitoring approaches.
Collapse
Affiliation(s)
- N Pilia
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - S Severi
- Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi," University of Bologna, 47522 Cesena, Italy
| | - J G Raimann
- Renal Research Institute, New York, New York 10065, USA
| | - S Genovesi
- Department of Medicine and Surgery, University of Milan-Bicocca, 20100 Milan, Italy
| | - O Dössel
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | | | - C Corsi
- Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi," University of Bologna, 47522 Cesena, Italy
| | - A Loewe
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| |
Collapse
|
22
|
Dzikowicz DJ. Low voltage on the 12-lead ECG: A warning sign. Nurse Pract 2020; 45:33-40. [PMID: 32826538 DOI: 10.1097/01.npr.0000694724.36132.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A 12-lead ECG showing low voltage should be a red flag to providers; it can be caused by several serious conditions. This clinical case describes how an NP correctly treated a patient with low voltage on an ECG by discerning and managing the underlying causes.
Collapse
Affiliation(s)
- Dillon J Dzikowicz
- Dillon J. Dzikowicz is a doctoral candidate at the University of Rochester, School of Nursing, Rochester, N.Y
| |
Collapse
|
23
|
Umapathi KK, Lee S, Jacobson J, Jandeska S, Nguyen HH. Magnesium Supplementation Shortens Hemodialysis-Associated Prolonged QT. Cureus 2020; 12:e9132. [PMID: 32670733 PMCID: PMC7358902 DOI: 10.7759/cureus.9132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/11/2020] [Indexed: 01/01/2023] Open
Abstract
Hemodialysis affects myocardial depolarization and repolarization notably lengthening the QT interval. Prolonged QT, in turn, has been a reliable surrogate for higher risk of potentially lethal ventricular arrhythmias. We present an adolescent girl with end-stage kidney disease who consistently developed prolonged QT following hemodialysis sessions. Interestingly, her QT intervals were inversely correlated with her serum magnesium levels. Magnesium supplementation appeared to help reduce the QT prolongation after hemodialysis. Our case shows the potential utility of magnesium as a cardioprotective agent in hemodialysis patients. We recommend that patients undergoing hemodialysis receive frequent electrocardiograms and electrolytes monitoring for tailored electrolytes management to reduce the risk of developing potentially lethal cardiac arrhythmias.
Collapse
Affiliation(s)
| | - Sunah Lee
- Pediatrics, Childrens Hospital of Los Angeles, Los Angeles, USA
| | - Jessica Jacobson
- Pharmacology and Therapeutics, Rush University Medical Center, Chicago, USA
| | - Sara Jandeska
- Pediatric Nephrology, Rush University Medical Center, Chicago, USA
| | - Hoang H Nguyen
- Pediatrics, University of Texas Southwestern Medical Center, Dallas, USA
- Pediatrics, Rush University Medical Center, Chicago, USA
| |
Collapse
|
24
|
Electrolytes and electrophysiology: what's next? Aging (Albany NY) 2019; 11:7329-7330. [PMID: 31514169 PMCID: PMC6782000 DOI: 10.18632/aging.102267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 08/12/2019] [Indexed: 11/25/2022]
|
25
|
Olshansky B, Bhattacharya SK. Electrolytes and the ECG Intervals: Big Data and Little Insight. J Am Coll Cardiol 2019; 73:3132-3134. [PMID: 31221262 DOI: 10.1016/j.jacc.2019.04.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Brian Olshansky
- Division of Cardiology, Department of Medicine, University of Iowa Hospitals and Clinics, Iowa City, Iowa.
| | | |
Collapse
|