1
|
Säfholm J, Abma W, Bankova LG, Boyce JA, Al-Ameri M, Orre AC, Wheelock CE, Dahlén SE, Adner M. Cysteinyl-maresin 3 inhibits IL-13 induced airway hyperresponsiveness through alternative activation of the CysLT 1 receptor. Eur J Pharmacol 2022; 934:175257. [PMID: 36116518 DOI: 10.1016/j.ejphar.2022.175257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/25/2022] [Accepted: 09/05/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Cysteinyl-maresins, also known as maresin-conjugates in tissue regeneration (MCTRs), are recently discovered lipid mediators proposed to reduce airway inflammation. OBJECTIVE To investigate the influence of MCTRs on IL-13-induced airway hyperresponsiveness in isolated human and mice airways. METHODS Before responsiveness to contractile agonists were assessed in myographs, human small bronchi were cultured for 2 days and mouse tracheas were cultured for 1-4 days. During the culture procedure airways were exposed to interleukin (IL)-13 in the presence or absence of MCTRs. Signalling mechanisms were explored using pharmacologic agonists and antagonists, and genetically modified mice. RESULTS IL-13 treatment increased contractions to histamine, carbachol and leukotriene D4 (LTD4) in human small bronchi, and to 5-hydroxytryptamine (5-HT) in mouse trachea. In both preparations, co-incubation of the explanted tissues with MCTR3 reduced the IL-13 induced enhancement of contractions. In mouse trachea, this inhibitory effect of MCTR3 was blocked by three different CysLT1 receptor antagonists (montelukast, zafirlukast and pobilukast) during IL-13 exposure. Likewise, MCTR3 failed to reduce the IL-13-induced 5-HT responsiveness in mice deficient of the CysLT1 receptor. However, co-incubation with the classical CysLT1 receptor agonist LTD4 did not alter the IL-13-induced 5-HT hyperreactivity. CONCLUSIONS MCTR3, but not LTD4, decreased the IL-13-induced airway hyperresponsiveness by activation of the CysLT1 receptor. The distinct actions of the two lipid mediators on the CysLT1 receptor suggest an alternative signalling pathway appearing under inflammatory conditions, where this new action of MCTR3 implicates potential to inhibit airway hyperresponsiveness in asthma.
Collapse
Affiliation(s)
- Jesper Säfholm
- Institute of Environmental Medicine, Karolinska Institutet, Biomedicum 5B, Solnavägen 9, SE-171 65, Solna, Sweden; Centre for Allergy Research, Karolinska Institutet, Biomedicum 5B, Solnavägen 9, SE-171 65, Solna, Sweden
| | - Willem Abma
- Institute of Environmental Medicine, Karolinska Institutet, Biomedicum 5B, Solnavägen 9, SE-171 65, Solna, Sweden; Centre for Allergy Research, Karolinska Institutet, Biomedicum 5B, Solnavägen 9, SE-171 65, Solna, Sweden
| | - Lora G Bankova
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Joshua A Boyce
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Mamdoh Al-Ameri
- Department of Molecular Medicine and Surgery (MMK), Karolinska Institutet, Stockholm, Sweden; Department of Cardiothoracic Surgery and Anesthesiology, Karolinska University Hospital, Stockholm, Sweden
| | - Ann-Charlotte Orre
- Department of Cardiothoracic Surgery and Anesthesiology, Karolinska University Hospital, Stockholm, Sweden
| | - Craig E Wheelock
- Unit of Integrative Metabolomics, Institute of Environmental Medicine (IMM), Karolinska Institutet, Stockholm, Sweden; Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Sven-Erik Dahlén
- Institute of Environmental Medicine, Karolinska Institutet, Biomedicum 5B, Solnavägen 9, SE-171 65, Solna, Sweden; Centre for Allergy Research, Karolinska Institutet, Biomedicum 5B, Solnavägen 9, SE-171 65, Solna, Sweden; Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Mikael Adner
- Institute of Environmental Medicine, Karolinska Institutet, Biomedicum 5B, Solnavägen 9, SE-171 65, Solna, Sweden; Centre for Allergy Research, Karolinska Institutet, Biomedicum 5B, Solnavägen 9, SE-171 65, Solna, Sweden.
| |
Collapse
|
2
|
Lv J, Xiong Y, Li W, Cui X, Cheng X, Leng Q, He R. IL-37 inhibits IL-4/IL-13-induced CCL11 production and lung eosinophilia in murine allergic asthma. Allergy 2018; 73:1642-1652. [PMID: 29319845 DOI: 10.1111/all.13395] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2017] [Indexed: 01/10/2023]
Abstract
BACKGROUND IL-37 is emerging as an anti-inflammatory cytokine, particularly in innate inflammation. However, the role of IL-37 in Th2-mediated allergic lung inflammation remains uncertain. We sought to determine the role and the underlying mechanisms of IL-37 in the development of house dust mites (HDM)-induced murine asthma model. METHODS We examined the effect of IL-37 administration during the sensitization or challenge phase on Th2-mediated allergic asthma induced by inhaled HDM. Cellular source of CCL11 and distribution of IL-37 receptors, IL-18Rα and IL-1R8, were determined in HDM-exposed lungs. Finally, we examined the effect of IL-37 on CCL11 production and STAT6 activation in different primary lung structural cell types upon IL-4/IL-13 stimulation. RESULTS IL-37 had no effect on HDM sensitization, but when administrated during the challenge phase, significantly attenuated pulmonary eosinophilia, CCL11 production, and airway hyper-reactivity (AHR). Interestingly, IL-37 treatment had no significant effects on lung infiltrating T cells and Th2 cytokine production. Intranasal co-administration of CCL11 reversed the inhibiting effect of IL-37 on HDM-induced pulmonary eosinophilia and AHR. Furthermore, we demonstrated that CCL11 was primarily expressed by fibroblasts and airway smooth muscle cells (AMSC), while IL-37 receptors by tracheobronchial epithelial cells (TEC). In vitro study showed that IL-37 inhibited IL-4/IL-13-induced STAT6 activation and CCL11 production by fibroblasts and AMSC, which was dependent on its direct action on TEC. Moreover, cell contact was required for the inhibitory effect of IL-37-treated TEC. CONCLUSIONS IL-37 attenuates HDM-induced asthma, possibly by inhibiting IL-4/IL-13-induced CCL11 production by fibroblasts and AMSC via its direct act on TEC.
Collapse
Affiliation(s)
- J. Lv
- Department of Immunology; School of Basic Medical Sciences; Fudan University; Shanghai China
- Institute for Immunology; Tsinghua University-Peking University Joint Center for Life Sciences; Tsinghua University School of Medicine; Beijing China
| | - Y. Xiong
- Department of Immunology; School of Basic Medical Sciences; Fudan University; Shanghai China
| | - W. Li
- Department of Immunology; School of Basic Medical Sciences; Fudan University; Shanghai China
| | - X. Cui
- Department of Immunology; School of Basic Medical Sciences; Fudan University; Shanghai China
| | - X. Cheng
- Department of Medical Microbiology and Parasitology; School of Basic Medical Sciences; Fudan University; Shanghai China
| | - Q. Leng
- CAS Key Laboratory of Molecular Virology & Immunology; Institute Pasteur of Shanghai; Chinese Academy of Sciences; Shanghai China
| | - R. He
- Department of Immunology; School of Basic Medical Sciences; Fudan University; Shanghai China
- Department of Laboratory Animal Science; Fudan University; Shanghai China
- State Key Laboratory of Medical Neurobiology; Institutes of Brain Science; Fudan University; Shanghai China
| |
Collapse
|
3
|
Dilek F, Ozkaya E, Kocyigit A, Yazici M, Guler EM, Dundaroz MR. Plasma total thiol pool in children with asthma: Modulation during montelukast monotherapy. Int J Immunopathol Pharmacol 2015; 29:84-9. [PMID: 26684630 DOI: 10.1177/0394632015621563] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/09/2015] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Inflammation, which is a hallmark of asthma, is one of the main sources of oxidative stress in the human body. Thiols are powerful antioxidants that protect cells against the consequences of oxidative stress. We aimed to investigate whether asthma and montelukast monotherapy affect the total plasma thiol pool in children. METHODS A total of 60 children with asthma and 35 healthy controls participated in the study. Group I consisted of newly diagnosed asthmatics who did not have regular anti-asthmatic therapy previously. Group II consisted of patients who had been undertaking montelukast monotherapy regularly for at least 4 months. Plasma total antioxidant status (TAS) and plasma total thiol (PTT) were measured using spectrophotometric methods. RESULTS Bronchial asthma patients in both groups I and II had decreased median TAS levels compared with the control group (1.59 [interquartile range, 1.04-1.70] and 1.67 [1.50-1.75] vs. 2.98 [2.76-3.16] Trolox equiv./L, respectively; P<0.001). Group I had decreased PTT concentrations compared with the control group (0.18 [0.16-0.20] vs. 0.21 [0.19-0.22] mmol/L; P<0.001), and group II had similar PTT levels to the control group (0.20 [0.17-0.22] mmol/L; P>0.05). In addition, the median TAS and PTT levels for groups I and II were not statistically different (P>0.05). There was a positive correlation between TAS and PTT levels (rho=0.38, P<0.05) in group I. CONCLUSION In order to balance the oxidative stress, both TAS and PTT which are markers of the antioxidant system are reduced in children with asthma. Montelukast monotherapy can limit oxidative stress and thus restore PTT levels but not TAS levels in asthmatic children.
Collapse
Affiliation(s)
- Fatih Dilek
- Bezmialem Vakif University Medical Faculty, Department of Pediatrics, Division of Pediatric Allergy and Immunology, Fatih, Istanbul, Turkey
| | - Emin Ozkaya
- Bezmialem Vakif University Medical Faculty, Department of Pediatrics, Division of Pediatric Allergy and Immunology, Fatih, Istanbul, Turkey
| | - Abdurrahim Kocyigit
- Bezmialem Vakif University Medical Faculty, Department of Clinical Biochemistry, Fatih, Istanbul, Turkey
| | - Mebrure Yazici
- Bezmialem Vakif University Medical Faculty, Department of Pediatrics, Division of Pediatric Allergy and Immunology, Fatih, Istanbul, Turkey
| | - Eray Metin Guler
- Bezmialem Vakif University Medical Faculty, Department of Pediatrics, Division of Pediatric Allergy and Immunology, Fatih, Istanbul, Turkey
| | - Mehmet Rusen Dundaroz
- Bezmialem Vakif University Medical Faculty, Department of Pediatrics, Division of Pediatric Allergy and Immunology, Fatih, Istanbul, Turkey
| |
Collapse
|
4
|
Cysteinyl leukotriene receptor-1 antagonists as modulators of innate immune cell function. J Immunol Res 2014; 2014:608930. [PMID: 24971371 PMCID: PMC4058211 DOI: 10.1155/2014/608930] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 05/09/2014] [Accepted: 05/12/2014] [Indexed: 12/20/2022] Open
Abstract
Cysteinyl leukotrienes (cysLTs) are produced predominantly by cells of the innate immune system, especially basophils, eosinophils, mast cells, and monocytes/macrophages. Notwithstanding potent bronchoconstrictor activity, cysLTs are also proinflammatory consequent to their autocrine and paracrine interactions with G-protein-coupled receptors expressed not only on the aforementioned cell types, but also on Th2 lymphocytes, as well as structural cells, and to a lesser extent neutrophils and CD8+ cells. Recognition of the involvement of cysLTs in the immunopathogenesis of various types of acute and chronic inflammatory disorders, especially bronchial asthma, prompted the development of selective cysLT receptor-1 (cysLTR1) antagonists, specifically montelukast, pranlukast, and zafirlukast. More recently these agents have also been reported to possess secondary anti-inflammatory activities, distinct from cysLTR1 antagonism, which appear to be particularly effective in targeting neutrophils and monocytes/macrophages. Underlying mechanisms include interference with cyclic nucleotide phosphodiesterases, 5′-lipoxygenase, and the proinflammatory transcription factor, nuclear factor kappa B. These and other secondary anti-inflammatory mechanisms of the commonly used cysLTR1 antagonists are the major focus of the current review, which also includes a comparison of the anti-inflammatory effects of montelukast, pranlukast, and zafirlukast on human neutrophils in vitro, as well as an overview of both the current clinical applications of these agents and potential future applications based on preclinical and early clinical studies.
Collapse
|
5
|
Singh RK, Tandon R, Dastidar SG, Ray A. A review on leukotrienes and their receptors with reference to asthma. J Asthma 2013; 50:922-31. [PMID: 23859232 DOI: 10.3109/02770903.2013.823447] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE AND METHODS Leukotrienes (LTs) including cysteinyl leukotrienes (CysLTs) and LTB4 are the most potent inflammatory lipid mediators and play a central role in the pathophysiology of asthma and other inflammatory diseases. These biological molecules mediate a plethora of contractile and inflammatory responses through specific interaction with distinct G protein-coupled receptors (GPCRs). The main objective of this review is to present an overview of the biological effects of CysLTs and their receptors, along with the current knowledge of mechanisms and role of LTs in the pathogenesis of asthma. RESULTS CysLTs including LTC4, LTD4 and LTE4 are ligands for CysLT1 and CysLT2 receptors, and LTB4 is the agonist for BLT1 and BLT2 receptors. The role of CysLT1 receptor is well established, and most of the pathophysiological effects of CysLTs in asthma are mediated by CysLT1 receptor. Several CysLT1 antagonists have been developed to date and are currently in clinical practice. Most common among them are classical CysLT1 receptor antagonists such as montelukast, zafirlukast, pranlukast, pobilukast, iralukast, cinalukast and MK571. The pharmacological role of CysLT2 receptor, however, is less defined and there is no specific antagonist available so far. The recent demonstration that mice lacking both known CysLT receptors exhibit full/augmented response to CysLT points to the existence of additional subtypes of CysLT receptors. LTB4, on the other hand, is another potent inflammatory leukotriene, which acts as a strong chemoattractant for neutrophils, but weaker for eosinophils. LTB4 is known to play an important role in the development of airway hyper-responsiveness in severe asthma. However there is no LTB4 antagonist available in clinic to date. CONCLUSION This review gives a recent update on the LTs including their biosynthesis, biological effects and the role of anti-LTs in the treatment of asthma. It also discusses about the possible existence of additional subtypes of CysLT receptors.
Collapse
Affiliation(s)
- Rakesh Kumar Singh
- Department of Pharmacology, Daiichi Sankyo Life Science Research Centre, Daiichi Sankyo India Pharma Private Limited, Udyog Vihar, Gurgaon , Haryana , India
| | | | | | | |
Collapse
|
6
|
Pacheco Y, Freymond N, Devouassoux G. Impact of montelukast on asthma associated with rhinitis, and other triggers and co-morbidities. J Asthma 2013; 51:1-17. [PMID: 23834429 DOI: 10.3109/02770903.2013.822081] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
INTRODUCTION Rhinitis and other specific triggers or co-morbidities (tobacco exposure, excess weight, aspirin sensitivity or heredity factors) are frequently associated with uncontrolled asthma. Asthma associated with these exacerbating factors appears to be related to an increase in leukotriene-mediated inflammation. METHODS We reviewed the role of montelukast, a leukotriene receptor antagonist, in the treatment of asthma associated with these factors by using the PubMed database to search the English and French biomedical literature for articles describing randomized-controlled trials, large observational studies and reviews (published up to May 2012, inclusive). RESULTS Montelukast, either alone or in combination with other drugs, is an effective treatment against rhinitis-associated asthma. Montelukast also offers therapeutic benefits against exercise-induced asthma or in cases of asthma linked to tobacco exposure, excess weight or aspirin hypersensitivity. Thus, for some patients, montelukast may constitute an alternative to the gold-standard treatment of inhaled corticosteroids. Polymorphisms in several genes encoding proteins of the leukotriene signaling pathway may contribute to the variability in response to montelukast. CONCLUSIONS In conclusion, we have shown that montelukast treatment could be of particular benefit to subgroups of patients with asthma associated with rhinitis, exercise, tobacco exposure, being overweight or aspirin hypersensitivity.
Collapse
Affiliation(s)
- Yves Pacheco
- Department of Respiratory Diseases, Centre Hospitalier Lyon Sud , and
| | | | | |
Collapse
|
7
|
Mickleborough TD, Vaughn CL, Shei RJ, Davis EM, Wilhite DP. Marine lipid fraction PCSO-524 (lyprinol/omega XL) of the New Zealand green lipped mussel attenuates hyperpnea-induced bronchoconstriction in asthma. Respir Med 2013; 107:1152-63. [PMID: 23660397 DOI: 10.1016/j.rmed.2013.04.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 04/09/2013] [Accepted: 04/10/2013] [Indexed: 02/06/2023]
Abstract
PURPOSE Evaluate the effect of the marine lipid fraction of the New Zealand green-lipped mussel (Perna canaliculus) PCSO-524 (Lyprinol/Omega XL), rich in omega-3 fatty acids, on airway inflammation and the bronchoconstrictor response to eucapnic voluntary hyperpnea (EVH) in asthmatics. METHODS Twenty asthmatic subjects, with documented HIB, participated in a placebo controlled double-blind randomized crossover trial. Subjects entered the study on their usual diet and were then placed on 3 weeks of PCSO-524 or placebo supplementation, followed by a 2 week washout period, before crossing over to the alternative diet. Pre- and post-eucapnic voluntary hyperpnea (EVH) pulmonary function, fraction of exhaled nitric oxide (FENO), asthma symptom scores, medication use, exhaled breath condensate (EBC) pH, cysteinyl leukotrienes (cyst-LT), 8-isoprostane and urinary 9α, 11β-prostaglandin (PG)F2 and Clara (CC16) protein concentrations were assessed at the beginning of the trial and at the end of each treatment period. RESULTS The PCSO-524 diet significantly reduced (p < 0.05) the maximum fall in post-EVH FEV1 (-8.4 ± 3.2%) compared to usual (-19.3 ± 5.4%) and placebo diet (-22.5 ± 13.7%). Pre- and post- EVH EBC cyst-LT and 8-isoprostane, and urinary 9α, 11β-PGF2 and CC16 concentrations were significantly reduced (p < 0.05) on the PCSO-524 diet compared to the usual and placebo diet. EBC pH and asthma symptom scores were significantly improved (p < 0.05) and rescue medication use significantly reduced (p < 0.05) on the PCSO-524 diet compared to the usual and placebo diet. CONCLUSION PCSO-524 (Lyprinol)/Omega XL) may have beneficial effects in HIB and asthma by serving as a pro-resolving agonist and/or inflammatory antagonist.
Collapse
Affiliation(s)
- Timothy D Mickleborough
- School of Public Health-Bloomington, Department of Kinesiology, Human Performance and Exercise Biochemistry Laboratory, 1025 E. 7th St. SPH 112, Bloomington, IN 47404, USA.
| | | | | | | | | |
Collapse
|
8
|
Hanney SR, Watt A, Jones TH, Metcalf L. Conducting retrospective impact analysis to inform a medical research charity's funding strategies: the case of Asthma UK. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2013; 9:17. [PMID: 23651523 PMCID: PMC3660238 DOI: 10.1186/1710-1492-9-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 04/22/2013] [Indexed: 01/07/2023]
Abstract
BACKGROUND Debate is intensifying about how to assess the full range of impacts from medical research. Complexity increases when assessing the diverse funding streams of funders such as Asthma UK, a charitable patient organisation supporting medical research to benefit people with asthma. This paper aims to describe the various impacts identified from a range of Asthma UK research, and explore how Asthma UK utilised the characteristics of successful funding approaches to inform future research strategies. METHODS We adapted the Payback Framework, using it both in a survey and to help structure interviews, documentary analysis, and case studies. We sent surveys to 153 lead researchers of projects, plus 10 past research fellows, and also conducted 14 detailed case studies. These covered nine projects and two fellowships, in addition to the innovative case studies on the professorial chairs (funded since 1988) and the MRC-Asthma UK Centre in Allergic Mechanisms of Asthma (the 'Centre') which together facilitated a comprehensive analysis of the whole funding portfolio. We organised each case study to capture whatever academic and wider societal impacts (or payback) might have arisen given the diverse timescales, size of funding involved, and extent to which Asthma UK funding contributed to the impacts. RESULTS Projects recorded an average of four peer-reviewed journal articles. Together the chairs reported over 500 papers. All streams of funding attracted follow-on funding. Each of the various categories of societal impacts arose from only a minority of individual projects and fellowships. Some of the research portfolio is influencing asthma-related clinical guidelines, and some contributing to product development. The latter includes potentially major breakthroughs in asthma therapies (in immunotherapy, and new inhaled drugs) trialled by university spin-out companies. Such research-informed guidelines and medicines can, in turn, contribute to health improvements. The role of the chairs and the pioneering collaborative Centre is shown as being particularly important. CONCLUSIONS We systematically demonstrate that all types of Asthma UK's research funding assessed are making impacts at different levels, but the main societal impacts from projects and fellowships come from a minority of those funded. Asthma UK used the study's findings, especially in relation to the Centre, to inform research funding strategies to promote the achievement of impact.
Collapse
Affiliation(s)
- Stephen R Hanney
- Health Economics Research Group, Brunel University, Uxbridge UB8 3PH, UK
| | - Amanda Watt
- RAND Europe, Westbrook Centre, Milton Road, Cambridge, CB4 1YG, UK
| | - Teresa H Jones
- Health Economics Research Group, Brunel University, Uxbridge UB8 3PH, UK
| | - Leanne Metcalf
- Asthma UK, Summit House, 70 Wilson Street, London, EC2A 2DB, UK
| |
Collapse
|
9
|
Ago H, Okimoto N, Kanaoka Y, Morimoto G, Ukita Y, Saino H, Taiji M, Miyano M. A leukotriene C4 synthase inhibitor with the backbone of 5-(5-methylene-4-oxo-4,5-dihydrothiazol-2-ylamino) isophthalic acid. J Biochem 2013; 153:421-9. [PMID: 23378248 DOI: 10.1093/jb/mvt007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The cysteinyl leukotrienes (cys-LTs), leukotriene C4 (LTC4) and its metabolites, LTD4 and LTE4, are proinflammatory lipid mediators in asthma and other inflammatory diseases. They are generated through the 5-lipoxygenase/LTC4 synthase (LTC4S) pathway and act via at least two distinct G protein-coupled receptors. The inhibition of human LTC4S will make a simple way to treat the cys-LT relevant inflammatory diseases. Here, we show that compounds having 5-(5-methylene-4-oxo-4,5-dihydrothiazol-2-ylamino) isophthalic acid moiety suppress LTC4 synthesis, glutathione conjugation to the precursor LTA4, in both an enzyme assay and a whole-cell assay. Hierarchical in silico screenings of 6 million compounds provided 300,000 dataset for docking, and after energy minimization based on the crystal structure of LTC4S, 111 compounds were selected as candidates for a competitive inhibitor to glutathione. One of those compounds showed significant inhibitory activity, and subsequently, its derivative 5-((Z)-5-((E)-2-methyl-3-phenylallylidene)-4-oxo-4,5-dihydrothiazol-2-ylamino) isophthalic acid (compound 1) was found to be the most potent inhibitor. The enzyme assay showed the IC50 was 1.9 µM and the corresponding 95% confidence interval was from 1.7 to 2.2 µM. The whole-cell assay showed that compound 1 was cell permeable and inhibited LTC4 synthesis in a concentration dependent manner.
Collapse
Affiliation(s)
- Hideo Ago
- Structural Biophysics Laboratory, RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan, USA.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Scaparrotta A, Di Pillo S, Attanasi M, Rapino D, Cingolani A, Consilvio NP, Verini M, Chiarelli F. Montelukast versus inhaled corticosteroids in the management of pediatric mild persistent asthma. Multidiscip Respir Med 2012; 7:13. [PMID: 22958412 PMCID: PMC3436659 DOI: 10.1186/2049-6958-7-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 07/05/2012] [Indexed: 11/16/2022] Open
Abstract
International guidelines recommend the use of inhaled corticosteroids (ICSs) as the preferred therapy, with leukotriene receptor antagonists (LTRAs) as an alternative, for the management of persistent asthma in children. Montelukast (MLK) is the first LTRA approved by the Food and Drug Administration for the use in young asthmatic children.Therefore, we performed an analysis of studies that compared the efficacy of MLK versus ICSs. We considered eligible for the inclusion randomized, controlled trials on pediatric populations with Jadad score > 3, with at least 4 weeks of treatment with MLK compared with ICS.Although it is important to recognize that ICSs use is currently the recommended first-line treatment for asthmatic children, MLK can have consistent benefits in controlling asthmatic symptoms and may be an alternative in children unable to use ICSs or suffering from poor growth. On the contrary, low pulmonary function and/or high allergic inflammatory markers require the corticosteroid use.
Collapse
Affiliation(s)
- Alessandra Scaparrotta
- Allergy and Respiratory Unit, Department of Pediatrics, G. D’Annunzio University of Chieti, Via Dei Vestini 5, Chieti, 66013, Italy
| | - Sabrina Di Pillo
- Allergy and Respiratory Unit, Department of Pediatrics, G. D’Annunzio University of Chieti, Via Dei Vestini 5, Chieti, 66013, Italy
| | - Marina Attanasi
- Allergy and Respiratory Unit, Department of Pediatrics, G. D’Annunzio University of Chieti, Via Dei Vestini 5, Chieti, 66013, Italy
| | - Daniele Rapino
- Allergy and Respiratory Unit, Department of Pediatrics, G. D’Annunzio University of Chieti, Via Dei Vestini 5, Chieti, 66013, Italy
| | - Anna Cingolani
- Allergy and Respiratory Unit, Department of Pediatrics, G. D’Annunzio University of Chieti, Via Dei Vestini 5, Chieti, 66013, Italy
| | - Nicola Pietro Consilvio
- Allergy and Respiratory Unit, Department of Pediatrics, G. D’Annunzio University of Chieti, Via Dei Vestini 5, Chieti, 66013, Italy
| | - Marcello Verini
- Allergy and Respiratory Unit, Department of Pediatrics, G. D’Annunzio University of Chieti, Via Dei Vestini 5, Chieti, 66013, Italy
| | - Francesco Chiarelli
- Department of Pediatrics, University of Chieti, G. D’Annunzio University of Chieti, Via Dei Vestini 5, Chieti, 66013, Italy
| |
Collapse
|
11
|
Interleukin-13, but not indomethacin, increases cysteinyl-leukotriene synthesis in human lung macrophages. J Allergy (Cairo) 2011; 2012:348741. [PMID: 22121385 PMCID: PMC3205618 DOI: 10.1155/2012/348741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 08/26/2011] [Indexed: 11/17/2022] Open
Abstract
Aspirin-exacerbated respiratory disease (AERD) is associated with constitutively elevated synthesis of bronchoconstrictor cysteinyl-leukotrienes, associated with increased expression of leukotriene (LT)C(4) synthase and Th2 cytokines and airway eosinophilia. We examined whether interleukin-13 can increase LTC(4) synthase gene transcription and cysteinyl-leukotriene synthesis in macrophages isolated from resected human lung tissue and whether an NSAID (indomethacin) can trigger further cysteinyl-leukotriene synthesis in these cells. Overnight culture of human lung macrophages with IL-13 (10 ng/mL) increased spontaneous and ionophore-stimulated production of cysteinyl-leukotrienes by 42% (P = 0.02) and 52% (P = 0.005), respectively, as quantified by enzyme immunoassays, but PCR gene transcription assays did not demonstrate an effect on LTC4S mRNA. The addition of indomethacin (100 μM) did not modulate cysteinyl-leukotriene production in either IL-13-treated or untreated macrophages. We conclude that while IL-13 enhances cysteinyl-leukotriene synthesis in human lung macrophages, it does not replicate the enhanced LTC(4) synthase expression observed in the AERD lung nor confer sensitivity to NSAIDs.
Collapse
|
12
|
Okunishi K, Peters-Golden M. Leukotrienes and airway inflammation. Biochim Biophys Acta Gen Subj 2011; 1810:1096-102. [PMID: 21352897 DOI: 10.1016/j.bbagen.2011.02.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 01/28/2011] [Accepted: 02/11/2011] [Indexed: 01/26/2023]
Abstract
BACKGROUND Asthma is a common chronic inflammatory disease of the airways characterized by airway obstruction and hyperresponsiveness. Leukotrienes (LTs) are lipid mediators that contribute to many aspects of asthma pathogenesis. As the LT pathway is relatively steroid-resistant, its blockade by alternative strategies is a desirable component of asthma management. Cysteinyl LT (cysLT) receptor 1 antagonists (LTRAs) have been utilized worldwide for more than 10years, and while their efficacy in asthma is well accepted, their limitations are also evident. SCOPE OF REVIEW In this review, we summarize the biological effects of LTs in asthma, review recent advances in LT receptors, and consider possible new therapeutic targets in the LT pathway that offer the potential to achieve better control of asthma in the future. MAJOR CONCLUSIONS CysLTs play pathogenetic roles in many aspects of asthma, and blockade of cysLT receptor 1 by currently available LTRAs is certainly beneficial in disease management. On the other hand, the limitations of LTRAs are also apparent. Recent studies have revealed new receptors for cysLTs other than classical cysLT receptors 1 and 2, as well as the potential importance of LTB(4) in asthma. GENERAL SIGNIFICANCE Recent findings provide clues to new approaches for targeting the LT pathway that may overcome the current limitations of LTRAs and achieve superior control of asthma. This article is part of a Special Issue entitled: Biochemistry of Asthma.
Collapse
Affiliation(s)
- Katsuhide Okunishi
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 4810--5642, USA
| | | |
Collapse
|
13
|
Orihara K, Dil N, Anaparti V, Moqbel R. What's new in asthma pathophysiology and immunopathology? Expert Rev Respir Med 2011; 4:605-29. [PMID: 20923340 DOI: 10.1586/ers.10.57] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Research on asthma pathophysiology over the past decade has expanded the complex repertoire involved in the pathophysiology of asthma to include inflammatory, immune and structural cells, as well as a wide range of mediators. Studies have identified a role for connective and other mesenchymal tissues involved in airway remodeling. Recent findings have implicated the innate immune response in asthma and have revealed interesting patterns of interaction between the innate and adaptive immune response and the associated complex chronic inflammatory reaction. New immune cell populations have also been added to this repertoire, including Tregs, natural killer T cells and Th17 cells. The role of the eosinophil, a prominent pathological feature in most asthma phenotypes, has also been expanding to include roles such as tissue modifiers and immune regulators via a number of fascinating and hitherto unexplored mechanistic pathways. In addition, new and significant roles have been proposed for airway smooth muscle cells, fibroblasts, epithelial and endothelial cells. Tissue remodeling is now considered an integral element of asthma pathophysiology. Finally, an intricate network of mediators, released from both immune and inflammatory cells, including thymus stromal lymphopoietin and matrix metalloproteinases, have added to the complex milieu of asthma immunity and inflammation. These findings have implications for therapy and the search for novel strategies towards better disease management. Sadly, and perhaps due to the complex nature of asthma, advances in therapeutic discoveries and developments have been limited. Thus, understanding the precise roles played by the numerous dramatis personae in this odyssey, both individually and collectively within the context of asthma pathophysiology, continues to pose new challenges. It is clear that the next stage in this saga is to embark on studies that transcend reductionist approaches to involve system analysis of the complex and multiple variables involved in asthma, including the need to narrow down the phenotypes of this condition based on careful analysis of the organs (lung and airways), cells, mediators and other factors involved in bronchial asthma.
Collapse
Affiliation(s)
- Kanami Orihara
- Department of Immunology, University of Manitoba, Winnipeg, Canada
| | | | | | | |
Collapse
|
14
|
Tecklenburg-Lund S, Mickleborough TD, Turner LA, Fly AD, Stager JM, Montgomery GS. Randomized controlled trial of fish oil and montelukast and their combination on airway inflammation and hyperpnea-induced bronchoconstriction. PLoS One 2010; 5:e13487. [PMID: 20976161 PMCID: PMC2956690 DOI: 10.1371/journal.pone.0013487] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 08/12/2010] [Indexed: 01/07/2023] Open
Abstract
Background Both fish oil and montelukast have been shown to reduce the severity of exercise-induced bronchoconstriction (EIB). The purpose of this study was to compare the effects of fish oil and montelukast, alone and in combination, on airway inflammation and bronchoconstriction induced by eucapnic voluntary hyperpnea (EVH) in asthmatics. Methods In this model of EIB, twenty asthmatic subjects with documented hyperpnea-induced bronchoconstriction (HIB) entered a randomized double-blind trial. All subjects entered on their usual diet (pre-treatment, n = 20) and then were randomly assigned to receive either one active 10 mg montelukast tablet and 10 placebo fish oil capsules (n = 10) or one placebo montelukast tablet and 10 active fish oil capsules totaling 3.2 g EPA and 2.0 g DHA (n = 10) taken daily for 3-wk. Thereafter, all subjects (combination treatment; n = 20) underwent another 3-wk treatment period consisting of a 10 mg active montelukast tablet or 10 active fish oil capsules taken daily. Results While HIB was significantly inhibited (p<0.05) by montelukast, fish oil and combination treatment compared to pre-treatment, there was no significant difference (p>0.017) between treatment groups; percent fall in forced expiratory volume in 1-sec was −18.4±2.1%, −9.3±2.8%, −11.6±2.8% and −10.8±1.7% on usual diet (pre-treatment), fish oil, montelukast and combination treatment respectively. All three treatments were associated with a significant reduction (p<0.05) in FENO, exhaled breathe condensate pH and cysteinyl-leukotrienes, while the fish oil and combination treatment significantly reduced (p<0.05) urinary 9α, 11β-prostaglandin F2 after EVH compared to the usual diet; however, there was no significant difference (p>0.017) in these biomarkers between treatments. Conclusion While fish oil and montelukast are both effective in attenuating airway inflammation and HIB, combining fish oil with montelukast did not confer a greater protective effect than either intervention alone. Fish oil supplementation should be considered as an alternative treatment for EIB. Trial Registration ClinicalTrials.gov NCT00676468
Collapse
Affiliation(s)
- Sandra Tecklenburg-Lund
- Human Performance and Exercise Biochemistry Laboratory, Department of Kinesiology, Indiana University, Bloomington, Indiana, United States of America
- Health and Human Performance, Nebraska Wesleyan University, Lincoln, Nebraska, United States of America
| | - Timothy D. Mickleborough
- Human Performance and Exercise Biochemistry Laboratory, Department of Kinesiology, Indiana University, Bloomington, Indiana, United States of America
- * E-mail:
| | - Louise A. Turner
- Human Performance and Exercise Biochemistry Laboratory, Department of Kinesiology, Indiana University, Bloomington, Indiana, United States of America
| | - Alyce D. Fly
- Department of Applied Health Science, Indiana University, Bloomington, Indiana, United States of America
| | - Joel M. Stager
- Human Performance and Exercise Biochemistry Laboratory, Department of Kinesiology, Indiana University, Bloomington, Indiana, United States of America
| | - Gregory S. Montgomery
- Indiana University School of Medicine, Indiana University, Indianapolis, Indiana, United States of America
| |
Collapse
|
15
|
Burioka N, Fukuoka Y, Koyanagi S, Miyata M, Takata M, Chikumi H, Takane H, Watanabe M, Endo M, Sako T, Suyama H, Ohdo S, Shimizu E. Asthma: Chronopharmacotherapy and the molecular clock. Adv Drug Deliv Rev 2010; 62:946-55. [PMID: 20359514 DOI: 10.1016/j.addr.2010.03.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 03/17/2010] [Accepted: 03/23/2010] [Indexed: 10/19/2022]
Abstract
Bronchial asthma is characterized by chronic airways inflammation and reversible airflow limitation. In patients with asthma, symptoms generally worsen during the early hours of the morning, and pulmonary function often deteriorates at the same time, suggesting a role for chronopharmacotherapy. Several drugs for asthma have been developed based on chronopharmacology. Most medications employed for the chronotherapy of asthma are administered once at night with the goal of preventing chronic airway inflammation or development of airflow limitation. In addition to bronchodilators, the inhaled glucocorticosteroid ciclesonide is now available with once-daily dosing, which also improves patients' compliance. Numerous investigations have demonstrated the usefulness of chronotherapy for asthma, especially for patients with nocturnal asthma. This review focuses on chronotherapy of asthma, and also provides a molecular biological explanation for the influence of asthma medications on the clock genes.
Collapse
|
16
|
Maekawa A, Xing W, Austen KF, Kanaoka Y. GPR17 regulates immune pulmonary inflammation induced by house dust mites. THE JOURNAL OF IMMUNOLOGY 2010; 185:1846-54. [PMID: 20574000 DOI: 10.4049/jimmunol.1001131] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Antagonists of the type 1 cysteinyl leukotriene receptor (CysLT(1)R) are efficacious for bronchoconstriction in humans with bronchial asthma; however, the clinical response to these drugs is heterogeneous. In particular, how CysLT(1)R expression and function are constitutively regulated in vivo is not known. In this study, we show that a seven-transmembrane receptor, GPR17, negatively regulates the CysLT(1)R-mediated inflammatory cell accumulation in the bronchoalveolar lavage fluid and lung, the levels of IgE and specific IgG1 in serum, and Th2/Th17 cytokine expression in the lung after intranasal sensitization and challenge with the house dust mite (extract of Dermatophagoides farinae [Df]) in mice. Sensitization of naive wild-type recipients with Df-pulsed bone marrow-derived dendritic cells of each genotype or sensitization of each genotype with Df-pulsed wild-type bone marrow-derived dendritic cells and Df challenge revealed markedly increased pulmonary inflammatory and serum IgE responses for GPR17-deficient mice as compared with wild-type mice and reduced responses in the genotypes lacking CysLT(1)R. These findings reveal a constitutive negative regulation of CysLT(1)R functions by GPR17 in both the Ag presentation and downstream phases of allergic pulmonary inflammation.
Collapse
Affiliation(s)
- Akiko Maekawa
- Department of Medicine, Harvard Medical School and Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
17
|
Szefler SJ. Advances in pediatric asthma in 2009: gaining control of childhood asthma. J Allergy Clin Immunol 2010; 125:69-78. [PMID: 20109738 DOI: 10.1016/j.jaci.2009.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 11/04/2009] [Indexed: 01/07/2023]
Abstract
This year's summary will focus on recent advances in pediatric asthma as reported in Journal of Allergy and Clinical Immunology publications in 2009. New National Asthma Education and Prevention Program asthma guidelines were released in 2007, with a particular emphasis on asthma control. Now that we have worked with the principals of the guidelines for 2 years, new insights are reported on how to implement the guidelines into clinical practice. This year's report will focus on gaps in management that need to be addressed, including health disparities, methods to improve asthma management through opportunities available in school-based asthma programs, and more information on the development of asthma in childhood. This information brings us closer to the point of managing children with controllable asthma and understanding reasons why asthma is not controlled in the remaining children. If we can close these gaps through better communication, improvements in the health care system, and new insights into treatment, we will move closer to better methods to intervene early in the course of the disease and induce clinical remission as quickly as possible in most children.
Collapse
Affiliation(s)
- Stanley J Szefler
- Divisions of Pediatric Clinical Pharmacology and Allergy and Immunology, Department of Pediatrics, National Jewish Health, 1400 Jackson St, Rm J304, Molly Blank Building, Denver, CO 80206, USA.
| |
Collapse
|