1
|
Nakamura N, Ikunari R, Tanaka Y, Tsunemine H, Takeda J, Arima N. Pathogenic TNFRSF13B Variant in an Adult Japanese Patient with Common Variable Immunodeficiency. Intern Med 2025; 64:753-757. [PMID: 38987180 PMCID: PMC11949678 DOI: 10.2169/internalmedicine.4057-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 05/22/2024] [Indexed: 07/12/2024] Open
Abstract
Common variable immunodeficiency (CVID) is a primary B cell immunodeficiency disorder. Symptoms do not develop immediately after birth, and patients are often diagnosed in childhood and adulthood. These patients often develop autoimmune diseases and malignant tumors. We herein report a 50-year-old woman with severe hypogammaglobulinemia and recurrent respiratory tract infections who was diagnosed with CVID. Target sequencing showed a TNFRSF13B heterozygous frameshift variant. The patient had many comorbidities, probably caused by a CVID-induced immune imbalance. Physicians who treat adult patients are often unaware of CVID. CVID should be recognized as a differential diagnosis in hypogammaglobulinemia and recurrent infections.
Collapse
Affiliation(s)
- Naokazu Nakamura
- Department of Hematology, Shinko Hospital, Japan
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Japan
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Japan
| | - Ryo Ikunari
- Department of Hematology, Shinko Hospital, Japan
- Division of Hematology, Department of Internal Medicine, Hyogo College of Medicine, Japan
| | | | | | - June Takeda
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Japan
| | | |
Collapse
|
2
|
von Beck T, Patel M, Patel NC, Jacob J. Analysis of rare genetic variants in All of Us cohort patients with common variable immunodeficiency. Front Genet 2024; 15:1409754. [PMID: 39415980 PMCID: PMC11479952 DOI: 10.3389/fgene.2024.1409754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 08/27/2024] [Indexed: 10/19/2024] Open
Abstract
Common variable immunodeficiency (CVID) is a group of genetic disorders involving more than a dozen genetic loci and characterized by a deficiency in specific antibody isotypes leading to poor immune responses and recurrent infection. CVID affects approximately 1 in 10,000 to 1 in 50,000 people worldwide with substantial heterogeneity in disease severity, including asymptomatic individuals designated as hypogammaglobulinemia of undetermined significance (HGUS). As expected of humoral immunodeficiency, the molecular causes of CVID primarily affect the maturation, activation, or survival of B cells and plasma cells. In this retrospective analysis, we defined a cohort of 21 patients with a primary CVID or HGUS diagnosis in the v7 release of the All of Us Research Program database and performed gene annotation and variant effect prediction. Our analysis identified both known disease-causing variants and rare genetic variants overlapping with other immunodeficiency syndromes.
Collapse
Affiliation(s)
- Troy von Beck
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC, United States
| | - Meera Patel
- Department of Pediatrics, Division of Allergy and Immunology, Duke University, Durham, NC, United States
| | - Niraj C. Patel
- Department of Pediatrics, Division of Allergy and Immunology, Duke University, Durham, NC, United States
| | - Joshy Jacob
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA, United States
| |
Collapse
|
3
|
Bizaki-Vallaskangas A, Rämö J, Sliz E, Kivekäs I, Willberg T, Saarentaus E, Toppila-Salmi S, Dietz A, Haapaniemi T, Hytönen VP, Toivola S, Palotie A, Mäkitie A, Kettunen J. Genome-wide association study indicates novel associations of annexin A13 to secretory and GAS2L2 with mucous otitis media. Sci Rep 2024; 14:18344. [PMID: 39112560 PMCID: PMC11306868 DOI: 10.1038/s41598-024-68781-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
To evaluate the genetics of chronic nonsuppurative otitis media (OM). We performed a genome-wide association study of 429,599 individuals included in the FinnGen study using three different case definitions: combined chronic nonsuppurative OM (7034 cases) (included serous and mucous chronic OM), mucous chronic OM (5953 cases), and secretory chronic OM (1689 cases). Individuals without otitis media were used as controls (417,745 controls). We used immunohistochemistry (IHC) of the murine middle ear to evaluate the expression of annexin A13. Four loci were significantly associated (p < 1.7 × 10-8) with nonsuppurative OM. Three out of the four association signals included missense variants in genes that may play a role in otitis media pathobiology. According to our subtype-specific analyses, one novel locus, located near ANXA13, was associated with secretory OM. Three loci (near TNFRSF13B, GAS2L2, and TBX1) were associated with mucous OM. Immunohistochemistry of murine middle ear samples revealed annexin A13 expression at the apical pole of the Eustachian tube epithelium as well as variable intensity of the secretory cells of the glandular structure in proximity to the Eustachian tube. We demonstrated that secretory and mucous OM have distinct and shared genetic associations. The association of GAS2L2 with ciliary epithelium function and the pathogenesis of dysfunctional mucosa in mucous OM is suggested. The abundant expression of annexin A13 in the Eustachian tube epithelium, along with its role in apical transport for the binding and transfer of phospholipids, indicates the role of annexin A13 and phospholipids in Eustachian tube dysfunction.
Collapse
Affiliation(s)
- Argyro Bizaki-Vallaskangas
- Department of Otolaryngology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| | - Joel Rämö
- Institute for Molecular Medicine Finland and the Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Eeva Sliz
- Biocenter Oulu and the Research Unit of Population Health, University of Oulu, Oulu, Finland
| | - Ilkka Kivekäs
- Department of Otolaryngology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Tytti Willberg
- Department of Otolaryngology, Turku University Hospital, Turku, Finland
| | - Elmo Saarentaus
- Institute for Molecular Medicine Finland and the Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Sanna Toppila-Salmi
- Department of Otolaryngology, University of Eastern Finland, Kuopio, Finland
| | - Aarno Dietz
- Department of Otolaryngology, University of Eastern Finland, Kuopio, Finland
| | - Teppo Haapaniemi
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
| | - Vesa P Hytönen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
| | - Sari Toivola
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Aarno Palotie
- Institute for Molecular Medicine Finland and the Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- The Stanley Center for Psychiatric Research and Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Department of Neurology, and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Antti Mäkitie
- Department of Otorhinolaryngology - Head and Neck Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Faculty of Medicine, Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Johannes Kettunen
- Biocenter Oulu and the Research Unit of Population Health, University of Oulu, Oulu, Finland
| |
Collapse
|
4
|
Balasubramaniam M, Mokhtar AMA. Past and present discovery of the BAFF/APRIL system - A bibliometric study from 1999 to 2023. Cell Signal 2024; 120:111201. [PMID: 38714287 DOI: 10.1016/j.cellsig.2024.111201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024]
Abstract
Cytokines from the Tumour Necrosis Factor (TNF) family are important regulators of both physiological and pathological processes. The discovery of novel TNF ligands and receptors, BAFF and APRIL, have opened up new possibilities for scientists to explore the effect of these cytokines on the human immune system. The role of BAFF/APRIL system in B lymphocytes is particularly important for survival and maintenance of homeostasis. Aberrant expression of the system is associated with various immunological disorders. Hence, this study provides a comprehensive overview of the past and present BAFF/APRIL system research development in a bibliometric perspective. To our best knowledge, this is the first ever bibliometric analysis conducted focusing on the BAFF/APRIL system. A total of 1055 relevant documents were retrieved from WoSCC. Microsoft Excel, VOSviewer, and Biblioshiny of R studio were bibliometric tools used to analyse the scientific literature. From 1999, the annual publications showed an upward trend, with Journal of Immunology being the most productive journal. USA leads the race for BAFF/APRIL system research developments. Pascal Schneider, a senior researcher affiliated with University of Lausanne, Switzerland was recognised as the most productive author and institution in the BAFF/APRIL system research field. The research focus transitioned from focusing on the role of the system in B cell biology, to immunological disorders and finally to development of BAFF/APRIL targeting drugs. Despite several studies elucidating briefly the pathway mechanism of BAFF/APRIL system in B-cell selection, substantial research on the mechanism of action in disease models and T cell activation and development of immunomodulating drugs from natural origins remains largely unexplored. Therefore, future research focusing on these areas are crucial for the deeper understanding of the system in disease manifestations and progression allowing a better treatment management for various immunological disorders.
Collapse
Affiliation(s)
- Muggunna Balasubramaniam
- Small G protein Research Group, Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia; Green Biopolymer Coating and Packaging Centre, School of Industrial Technology, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia
| | - Ana Masara Ahmad Mokhtar
- Small G protein Research Group, Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia; Green Biopolymer Coating and Packaging Centre, School of Industrial Technology, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia.
| |
Collapse
|
5
|
Kishore E, Gyabaah F, Deoker A. Common Variable Immunodeficiency and Hodgkin Lymphoma in a 50-Year-Old Male. Cureus 2024; 16:e58989. [PMID: 38800171 PMCID: PMC11127610 DOI: 10.7759/cureus.58989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
Common variable immunodeficiency (CVID) is a primary immunodeficiency with the involvement of B cells, T cells, and antigen-presenting cells. Patients with CVID are more susceptible to malignancies and bacterial infections in the gastrointestinal and respiratory tracts. We discuss a case of a 50-year-old male who presented to the emergency department with a history of intermittent abdominal pain, diarrhea, night sweats, fever, nausea, and weight loss of 40 pounds over six months. A CT of the abdomen revealed splenomegaly with several infiltrated solid nodules as well as enlarged mediastinal, hilar, periesophageal, cervical, and left supraclavicular lymph nodes, findings suggestive of lymphoma. The diagnosis of nodular lymphocyte-predominant Hodgkin lymphoma was confirmed by immunohistology, which revealed that CD20 and CD3 were both positive in small lymphocytes. Immunoglobulin (Ig) levels were low for IgG and IgM, findings highly suggestive of CVID. We want to shed light on the importance of performing the clinical workup for CVID when Hodgkin lymphoma and recurrent infections are present, as the immunodeficiency remains underdiagnosed and underreported.
Collapse
Affiliation(s)
- Eshani Kishore
- Internal Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, USA
| | - Frederick Gyabaah
- Internal Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, USA
| | - Abhizith Deoker
- Internal Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, USA
| |
Collapse
|
6
|
Frkatović-Hodžić A, Mijakovac A, Miškec K, Nostaeva A, Sharapov SZ, Landini A, Haller T, van den Akker E, Sharma S, Cuadrat RRC, Mangino M, Li Y, Keser T, Rudman N, Štambuk T, Pučić-Baković M, Trbojević-Akmačić I, Gudelj I, Štambuk J, Pribić T, Radovani B, Tominac P, Fischer K, Beekman M, Wuhrer M, Gieger C, Schulze MB, Wittenbecher C, Polasek O, Hayward C, Wilson JF, Spector TD, Köttgen A, Vučković F, Aulchenko YS, Vojta A, Krištić J, Klarić L, Zoldoš V, Lauc G. Mapping of the gene network that regulates glycan clock of ageing. Aging (Albany NY) 2023; 15:14509-14552. [PMID: 38149987 PMCID: PMC10781487 DOI: 10.18632/aging.205106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/06/2023] [Indexed: 12/28/2023]
Abstract
Glycans are an essential structural component of immunoglobulin G (IgG) that modulate its structure and function. However, regulatory mechanisms behind this complex posttranslational modification are not well known. Previous genome-wide association studies (GWAS) identified 29 genomic regions involved in regulation of IgG glycosylation, but only a few were functionally validated. One of the key functional features of IgG glycosylation is the addition of galactose (galactosylation), a trait which was shown to be associated with ageing. We performed GWAS of IgG galactosylation (N=13,705) and identified 16 significantly associated loci, indicating that IgG galactosylation is regulated by a complex network of genes that extends beyond the galactosyltransferase enzyme that adds galactose to IgG glycans. Gene prioritization identified 37 candidate genes. Using a recently developed CRISPR/dCas9 system we manipulated gene expression of candidate genes in the in vitro IgG expression system. Upregulation of three genes, EEF1A1, MANBA and TNFRSF13B, changed the IgG glycome composition, which confirmed that these three genes are involved in IgG galactosylation in this in vitro expression system.
Collapse
Affiliation(s)
| | - Anika Mijakovac
- Department of Biology, Division of Molecular Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Karlo Miškec
- Department of Biology, Division of Molecular Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Arina Nostaeva
- Laboratory of Theoretical and Applied Functional Genomics, Novosibirsk State University, Novosibirsk, Russia
| | - Sodbo Z. Sharapov
- MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, Moscow, Russia
| | - Arianna Landini
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Toomas Haller
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Erik van den Akker
- Department of Biomedical Data Sciences, Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Pattern Recognition and Bioinformatics, Delft University of Technology, Delft, The Netherlands
| | - Sapna Sharma
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Rafael R. C. Cuadrat
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München –Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
- NIHR Biomedical Research Centre at Guy’s and St Thomas’ Foundation Trust, London, UK
| | - Yong Li
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Toma Keser
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Najda Rudman
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | | | | | | | - Ivan Gudelj
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Jerko Štambuk
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Tea Pribić
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Barbara Radovani
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Petra Tominac
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Krista Fischer
- Institute of Genomics, University of Tartu, Tartu, Estonia
- Institute of Mathematics and Statistics, University of Tartu, Tartu, Estonia
| | - Marian Beekman
- Department of Biomedical Data Sciences, Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München –Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Matthias B. Schulze
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Clemens Wittenbecher
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- SciLifeLab, Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Ozren Polasek
- University of Split School of Medicine, Split, Croatia
- Algebra University College, Zagreb, Croatia
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - James F. Wilson
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Tim D. Spector
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | - Yurii S. Aulchenko
- MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, Moscow, Russia
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Aleksandar Vojta
- Department of Biology, Division of Molecular Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | | | - Lucija Klarić
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Vlatka Zoldoš
- Department of Biology, Division of Molecular Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
7
|
Yang JH, Scanlon N, Woo W, LaBuzetta JN, Gonzalez C, Broderick L, Doherty T, Riedl M, Dunn-Pirio A. Refractory Status Epilepticus Associated With a Pathogenic Variant in TNFRSF13B. Cureus 2023; 15:e48222. [PMID: 38054159 PMCID: PMC10694393 DOI: 10.7759/cureus.48222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2023] [Indexed: 12/07/2023] Open
Abstract
Febrile infection-related epilepsy syndrome (FIRES) is a rare epileptic syndrome characterized by new-onset refractory status epilepticus preceded by a febrile illness. Limited literature exists regarding the relationship between primary immunodeficiencies and immune-mediated epilepsy, and the relationship between new-onset refractory status epilepticus and common variable immunodeficiency (CVID) is not well-understood. We present a case of a 21-year-old female with a history of recurrent sinus infections, asthma, thrombocytopenia, atrioventricular nodal reentrant tachycardia, and neonatal seizures who presented with fever and new-onset status epilepticus. She was ultimately diagnosed with a heterozygous variant in TNFRSF13B c.311G>A (p.Cys104Tyr), which encodes for a tumor necrosis factor receptor implicated in CVID.
Collapse
Affiliation(s)
- Jennifer H Yang
- Neurosciences, University of California San Diego, San Diego, USA
- Pediatric Neurology, Rady Children's Hospital San Diego, San Diego, USA
| | - Nicholas Scanlon
- Allergy and Immunology, University of California San Diego, San Diego, USA
| | - Wonhee Woo
- Allergy and Immunology, Kaiser Permanente San Jose Medical Center, San Jose, USA
| | | | - Cynthia Gonzalez
- Neurosciences, University of California San Diego, San Diego, USA
| | - Lori Broderick
- Allergy and Immunology, University of California San Diego, San Diego, USA
| | - Taylor Doherty
- Allergy and Immunology, University of California San Diego, San Diego, USA
| | - Marc Riedl
- Allergy and Immunology, University of California San Diego, San Diego, USA
| | | |
Collapse
|
8
|
Oster C, Stolte B, Asan L, Pul R, Klebe S, Köhrmann M, Breuckmann K, Rischpler C, Deuschl C, Dolff S, Kleinschnitz C, Hagenacker T. Brainstem Infarction in Immunodeficiency Identified as Adenosine Deaminase 2 Deficiency: Case Report. J Clin Immunol 2023; 43:1597-1602. [PMID: 37306896 PMCID: PMC10258773 DOI: 10.1007/s10875-023-01526-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/24/2023] [Indexed: 06/13/2023]
Abstract
PURPOSE We present the case of a 24-year-old male with CNS granulomatosis due to an immunodeficiency syndrome which was identified as deficiency of adenosine deaminase 2 (DADA2) as a cause of brainstem infarction. METHODS Case report and detailed description of the clinical course of diagnosis and treatment. CASE The patient's medical history consisted of an unknown immunodeficiency syndrome. Based on former findings, common variable immunodeficiency (CVID) was diagnosed. The patient suffered from three consecutive brainstem strokes of unknown etiology within 3 years. An MRI scan detected gadolinium-enhancing, granulomatous-suspect lesions in the interpeduncular cistern, temporal lobe, and tegmentum. Laboratory analysis was compatible with CVID, with leukopenia and immunoglobulin deficiency. Because granulomatous CNS inflammation was suspected, the patient received methylprednisolone immunosuppressive therapy, which led to partially regressive MRI lesions. However, in contrast to imaging, the patient showed a progressive cerebellar syndrome, indicating plasma exchange therapy and immunoglobulin treatment, which led to rapid symptom amelioration. After a relapse and a further stroke, expanded analysis confirmed DADA2 (and not CVID) as the inflammatory cause for recurrent stroke. After starting the therapy with immunoglobulins and adalimumab, no further strokes occurred. CONCLUSION We present the case of a young adult with diagnosis of DADA2 as a cause for recurrent strokes due to vasculitis. This stroke etiology is rare but should be considered as a cause of recurrent stroke of unknown origin in young patients to avoid a disabling disease course by disease-specific treatment options.
Collapse
Affiliation(s)
- Christoph Oster
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Benjamin Stolte
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Livia Asan
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Refik Pul
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Stephan Klebe
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Martin Köhrmann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Katharina Breuckmann
- Institute for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Christoph Rischpler
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Cornelius Deuschl
- Institute for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sebastian Dolff
- Department of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Christoph Kleinschnitz
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Tim Hagenacker
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
9
|
Coimbra MT, Silvano J, Martins LS. Medical Challenges of a Common Variable Immunodeficiency With a TNFRSF13B Gene Mutation in a Simultaneous Kidney and Pancreas Transplant Recipient. Cureus 2023; 15:e44211. [PMID: 37767270 PMCID: PMC10521941 DOI: 10.7759/cureus.44211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2023] [Indexed: 09/29/2023] Open
Abstract
Common variable immune deficiency (CVID) is a primary immunodeficiency disorder, with hypogammaglobulinemia and increased susceptibility to recurrent infections, autoimmune disorders, granulomatous diseases and malignancy. Among the solid organ transplant (SOT) recipient population, those with primary immunodeficiency disorders under chronic immunosuppression therapy can theoretically be at higher risk of atypical infections, autoimmune complications and disease recurrence with suboptimal long term graft survival, but literature is scarce. Here, we report a 27-year-old female with type 1 diabetes mellitus, complicated with nephropathy that progressed to end-stage renal disease (ESRD), who had a history of a chronic inflammatory response dysregulation, with chronic monoarthritis, persistent elevation of inflammation markers, recurrent infections, low immunoglobulin G (IgG) and A (IgA) serum levels, a slightly decreased population of memory B cells at flow cytometric immunophenotyping, and a confirmed pathological heterozygous mutation in the tumor necrosis factor receptor superfamily 13B (TNFRSF13B), with a suspected diagnosis of CVID. Whilst on hemodialysis, she received a simultaneous kidney and pancreas transplant from a standard criteria donor (SCD), and our induction and maintenance immunosuppression protocol and prophylaxis regimen allowed for a successful transplant with immediate pancreatic function, with no evidence of renal graft rejection upon biopsy in the early post-transplant period, and no novel episodes of serious infectious complications were recorded during a follow-up period of six months.
Collapse
Affiliation(s)
| | - José Silvano
- Nephrology, Centro Hospitalar Universitário do Porto, Porto, PRT
| | | |
Collapse
|
10
|
Ramirez N, Posadas-Cantera S, Langer N, de Oteyza ACG, Proietti M, Keller B, Zhao F, Gernedl V, Pecoraro M, Eibel H, Warnatz K, Ballestar E, Geiger R, Bossen C, Grimbacher B. Multi-omics analysis of naïve B cells of patients harboring the C104R mutation in TACI. Front Immunol 2022; 13:938240. [PMID: 36072607 PMCID: PMC9443529 DOI: 10.3389/fimmu.2022.938240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Common variable immunodeficiency (CVID) is the most prevalent form of symptomatic primary immunodeficiency in humans. The genetic cause of CVID is still unknown in about 70% of cases. Ten percent of CVID patients carry heterozygous mutations in the tumor necrosis factor receptor superfamily member 13B gene (TNFRSF13B), encoding TACI. Mutations in TNFRSF13B alone may not be sufficient for the development of CVID, as 1% of the healthy population carry these mutations. The common hypothesis is that TACI mutations are not fully penetrant and additional factors contribute to the development of CVID. To determine these additional factors, we investigated the perturbations of transcription factor (TF) binding and the transcriptome profiles in unstimulated and CD40L/IL21-stimulated naïve B cells from CVID patients harboring the C104R mutation in TNFRSF13B and compared them to their healthy relatives with the same mutation. In addition, the proteome of stimulated naïve B cells was investigated. For functional validation, intracellular protein concentrations were measured by flow cytometry. Our analysis revealed 8% less accessible chromatin in unstimulated naïve B cells and 25% less accessible chromatin in class-switched memory B cells from affected and unaffected TACI mutation carriers compared to healthy donors. The most enriched TF binding motifs in TACI mutation carriers involved members from the ETS, IRF, and NF-κB TF families. Validation experiments supported dysregulation of the NF-κB and MAPK pathways. In steady state, naïve B cells had increased cell death pathways and reduced cell metabolism pathways, while after stimulation, enhanced immune responses and decreased cell survival were detected. Using a multi-omics approach, our findings provide valuable insights into the impaired biology of naïve B cells from TACI mutation carriers.
Collapse
Affiliation(s)
- Neftali Ramirez
- Institute for Immunodeficiency, Center for Chronic Immunodeficiencies, Medical Center – University Hospital Freiburg, Faculty of Medicine, Albert-Ludwigs-University, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - Sara Posadas-Cantera
- Institute for Immunodeficiency, Center for Chronic Immunodeficiencies, Medical Center – University Hospital Freiburg, Faculty of Medicine, Albert-Ludwigs-University, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - Niko Langer
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - Andres Caballero Garcia de Oteyza
- Institute for Immunodeficiency, Center for Chronic Immunodeficiencies, Medical Center – University Hospital Freiburg, Faculty of Medicine, Albert-Ludwigs-University, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - Michele Proietti
- Institute for Immunodeficiency, Center for Chronic Immunodeficiencies, Medical Center – University Hospital Freiburg, Faculty of Medicine, Albert-Ludwigs-University, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Hannover Medical University, Hannover, Germany
- Resolving Infection Susceptibility (RESIST) – Cluster of Excellence 2155, Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
| | - Baerbel Keller
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Fangwen Zhao
- Medical Epigenomics & Genome Technology, Research Center for Molecular Medicine(CeMM) of the Austrian Academy of Sciences, Vienna, Austria
| | - Victoria Gernedl
- Medical Epigenomics & Genome Technology, Research Center for Molecular Medicine(CeMM) of the Austrian Academy of Sciences, Vienna, Austria
| | - Matteo Pecoraro
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Hermann Eibel
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Klaus Warnatz
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Roger Geiger
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
- Institute of Oncology Research, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Claudia Bossen
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiencies, Medical Center – University Hospital Freiburg, Faculty of Medicine, Albert-Ludwigs-University, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
- Resolving Infection Susceptibility (RESIST) – Cluster of Excellence 2155, Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF) – German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany
- Centre for Integrative Biological Signalling Studies (CIBSS), Albert-Ludwigs University, Freiburg, Germany
- *Correspondence: Bodo Grimbacher,
| |
Collapse
|
11
|
Kermode W, De Santis D, Truong L, Della Mina E, Salman S, Thompson G, Nolan D, Loh R, Mallon D, Mclean-Tooke A, John M, Tangye SG, O'Sullivan M, D'Orsogna LJ. A Novel Targeted Amplicon Next-Generation Sequencing Gene Panel for the Diagnosis of Common Variable Immunodeficiency Has a High Diagnostic Yield: Results from the Perth CVID Cohort Study. J Mol Diagn 2022; 24:586-599. [PMID: 35570134 DOI: 10.1016/j.jmoldx.2022.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 12/23/2021] [Accepted: 02/09/2022] [Indexed: 11/18/2022] Open
Abstract
With the advent of next-generation sequencing (NGS), monogenic forms of common variable immunodeficiency (CVID) have been increasingly described. Our study aimed to identify disease-causing variants in a Western Australian CVID cohort using a novel targeted NGS panel. Targeted amplicon NGS was performed on 22 unrelated subjects who met the formal European Society for Immunodeficiencies-Pan-American Group for Immunodeficiency diagnostic criteria for CVID and had at least one of the following additional criteria: disease onset at age <18 years, autoimmunity, low memory B lymphocytes, family history, and/or history of lymphoproliferation. Candidate variants were assessed by in silico predictions of deleteriousness, comparison to the literature, and classified according to the American College of Medical Genetics and Genomics-Association for Molecular Pathology criteria. All detected genetic variants were verified independently by an external laboratory, and additional functional studies were performed if required. Pathogenic or likely pathogenic variants were detected in 6 of 22 (27%) patients. Monoallelic variants of uncertain significance were also identified in a further 4 of 22 patients (18%). Pathogenic variants, likely pathogenic variants, or variants of uncertain significance were found in TNFRSF13B, TNFRSF13C, ICOS, AICDA, IL21R, NFKB2, and CD40LG, including novel variants and variants with unexpected inheritance pattern. Targeted amplicon NGS is an effective tool to identify monogenic disease-causing variants in CVID, and is comparable or superior to other NGS methods. Moreover, targeted amplicon NGS identified patients who may benefit from targeted therapeutic strategies and had important implications for family members.
Collapse
Affiliation(s)
- William Kermode
- School of Medicine, University of Western Australia, Perth, Western Australia, Australia
| | - Dianne De Santis
- School of Medicine, University of Western Australia, Perth, Western Australia, Australia; Department of Clinical Immunology and PathWest, Fiona Stanley Hospital, Perth, Western Australia, Australia
| | - Linh Truong
- Department of Clinical Immunology and PathWest, Fiona Stanley Hospital, Perth, Western Australia, Australia
| | - Erika Della Mina
- Immunology and Immunodeficiency Laboratory, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Kensington, New South Wales, Australia
| | - Sam Salman
- Department of Clinical Immunology and PathWest, Queen Elizabeth II Medical Centre, Perth, Western Australia, Australia
| | - Grace Thompson
- Department of Clinical Immunology and PathWest, Queen Elizabeth II Medical Centre, Perth, Western Australia, Australia
| | - David Nolan
- Department of Clinical Immunology, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Richard Loh
- Department of Immunology, Perth Children's Hospital, Perth, Western Australia, Australia
| | - Dominic Mallon
- Department of Clinical Immunology and PathWest, Fiona Stanley Hospital, Perth, Western Australia, Australia
| | - Andrew Mclean-Tooke
- Department of Clinical Immunology and PathWest, Queen Elizabeth II Medical Centre, Perth, Western Australia, Australia
| | - Mina John
- Department of Clinical Immunology, Royal Perth Hospital, Perth, Western Australia, Australia; Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
| | - Stuart G Tangye
- Immunology and Immunodeficiency Laboratory, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Kensington, New South Wales, Australia
| | - Michael O'Sullivan
- Department of Clinical Immunology and PathWest, Fiona Stanley Hospital, Perth, Western Australia, Australia; Department of Immunology, Perth Children's Hospital, Perth, Western Australia, Australia
| | - Lloyd J D'Orsogna
- School of Medicine, University of Western Australia, Perth, Western Australia, Australia; Department of Clinical Immunology and PathWest, Fiona Stanley Hospital, Perth, Western Australia, Australia.
| |
Collapse
|
12
|
Benazzo A, Bozzini S, Auner S, Berezhinskiy HO, Watzenboeck ML, Schwarz S, Schweiger T, Klepetko W, Wekerle T, Hoetzenecker K, Meloni F, Jaksch P. Differential expression of circulating miRNAs after alemtuzumab induction therapy in lung transplantation. Sci Rep 2022; 12:7072. [PMID: 35490174 PMCID: PMC9056512 DOI: 10.1038/s41598-022-10866-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 04/13/2022] [Indexed: 11/17/2022] Open
Abstract
Alemtuzumab is a monoclonal antibody targeting CD52, used as induction therapy after lung transplantation (LTx). Its engagement produces a long-lasting immunodepletion; however, the mechanisms driving cell reconstitution are poorly defined. We hypothesized that miRNAs are involved in this process. The expression of a set of miRNAs, cytokines and co-signaling molecules was measured with RT-qPCR and flow cytometry in prospectively collected serum samples of LTx recipients, after alemtuzumab or no induction therapy. Twenty-six LTx recipients who received alemtuzumab and twenty-seven matched LTx recipients without induction therapy were included in the analysis. One year after transplantation four miRNAs were differentially regulated: miR-23b (p = 0.05) miR-146 (p = 0.04), miR-155 (p < 0.001) and miR-486 (p < 0.001). Expression of 3 miRNAs changed within the alemtuzumab group: miR-146 (p < 0.001), miR-155 (p < 0.001) and miR-31 (p < 0.001). Levels of IL-13, IL-4, IFN-γ, BAFF, IL-5, IL-9, IL-17F, IL-17A and IL-22 were different one year after transplantation compared to baseline. In no-induction group, concentration of sCD27, sB7.2 and sPD-L1 increased overtime. Expression of miR-23b, miR-146, miR-486, miR-155 and miR-31 was different in LTx recipients who received alemtuzumab compared to recipients without induction therapy. The observed cytokine pattern suggested proliferation of specific B cell subsets in alemtuzumab group and co-stimulation of T-cells in no-induction group.
Collapse
Affiliation(s)
- A Benazzo
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria.
- Department of Thoracic Surgery, Lung Transplantation Research Lab, Medical University of Vienna, Vienna, Austria.
- Division of Thoracic Surgery, Medical University of Vienna, Währinger Guertel 18-20, 1090, Vienna, Austria.
| | - S Bozzini
- Department of Internal Medicine, Unit of Respiratory Diseases, Laboratory of Cell Biology and Immunology, University of Pavia and IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - S Auner
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
- Department of Thoracic Surgery, Lung Transplantation Research Lab, Medical University of Vienna, Vienna, Austria
| | - H Oya Berezhinskiy
- Department of Thoracic Surgery, Lung Transplantation Research Lab, Medical University of Vienna, Vienna, Austria
| | - M L Watzenboeck
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - S Schwarz
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - T Schweiger
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - W Klepetko
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - T Wekerle
- Section of Transplantation Immunology, Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - K Hoetzenecker
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - F Meloni
- Department of Internal Medicine, Unit of Respiratory Diseases, Laboratory of Cell Biology and Immunology, University of Pavia and IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - P Jaksch
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Stathopoulos P, Dalakas MC. Evolution of Anti-B Cell Therapeutics in Autoimmune Neurological Diseases. Neurotherapeutics 2022; 19:691-710. [PMID: 35182380 PMCID: PMC9294112 DOI: 10.1007/s13311-022-01196-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2022] [Indexed: 02/08/2023] Open
Abstract
B cells have an ever-increasing role in the etiopathology of a number of autoimmune neurological disorders, acting as antigen-presenting cells facilitating antibody production but also as sensors, coordinators, and regulators of the immune response. In particular, B cells can regulate the T cell activation process through their participation in antigen presentation, production of proinflammatory cytokines (bystander activation or suppression), and contribution to ectopic lymphoid aggregates. Such an important interplay between B and T cells makes therapeutic depletion of B cells an attractive treatment strategy. The last decade, anti-B cell therapies using monoclonal antibodies against B cell surface molecules have evolved into a rational approach for successfully treating autoimmune neurological disorders, even when T cells seem to be the main effector cells. The paper summarizes basic aspects of B cell biology, discusses the roles of B cells in neurological autoimmunities, and highlights how the currently available or under development anti-B cell therapeutics exert their action in the wide spectrum and immunologically diverse neurological disorders. The efficacy of the various anti-B cell therapies and practical issues on induction and maintenance therapy is specifically detailed for the treatment of patients with multiple sclerosis, neuromyelitis-spectrum disorders, autoimmune encephalitis and hyperexcitability CNS disorders, autoimmune neuropathies, myasthenia gravis, and inflammatory myopathies. The success of anti-B cell therapies in inducing long-term remission in IgG4 neuroautoimmunities is also highlighted pointing out potential biomarkers for follow-up infusions.
Collapse
Affiliation(s)
- Panos Stathopoulos
- 1st Department of Neurology, National and Kapodistrian University of Athens, Athens, Greece
| | - Marinos C Dalakas
- Thomas Jefferson University, Philadelphia, PA, USA.
- Neuroimmunology Unit, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
14
|
Smulski CR, Zhang L, Burek M, Teixidó Rubio A, Briem JS, Sica MP, Sevdali E, Vigolo M, Willen L, Odermatt P, Istanbullu D, Herr S, Cavallari M, Hess H, Rizzi M, Eibel H, Schneider P. Ligand-independent oligomerization of TACI is controlled by the transmembrane domain and regulates proliferation of activated B cells. Cell Rep 2022; 38:110583. [PMID: 35354034 DOI: 10.1016/j.celrep.2022.110583] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 11/03/2021] [Accepted: 03/07/2022] [Indexed: 12/23/2022] Open
Abstract
In mature B cells, TACI controls class-switch recombination and differentiation into plasma cells during T cell-independent antibody responses. TACI binds the ligands BAFF and APRIL. Approximately 10% of patients with common variable immunodeficiency (CVID) carry TACI mutations, of which A181E and C172Y are in the transmembrane domain. Residues A181 and C172 are located on distinct sides of the transmembrane helix, which is predicted by molecular modeling to spontaneously assemble into trimers and dimers. In human B cells, these mutations impair ligand-dependent (C172Y) and -independent (A181E) TACI multimerization and signaling, as well as TACI-enhanced proliferation and/or IgA production. Genetic inactivation of TACI in primary human B cells impaired survival of CpG-activated cells in the absence of ligand. These results identify the transmembrane region of TACI as an active interface for TACI multimerization in signal transduction, in particular for ligand-independent signals. These functions are perturbed by CVID-associated mutations.
Collapse
Affiliation(s)
- Cristian R Smulski
- Department of Biochemistry, University of Lausanne, Ch. des Boveresses 155, 1066 Epalinges, Switzerland; Faculty of Medicine and Medical Center, University of Freiburg, Department of Rheumatology and Center for Chronic Immunodeficiency, Breisacherstr. 115, 79106 Freiburg, Germany; Medical Physics Department, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica (CNEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida E- Bustillo 9500, R8402AGP Río Negro, San Carlos de Bariloche, Argentina.
| | - Luyao Zhang
- Faculty of Medicine and Medical Center, University of Freiburg, Department of Rheumatology and Center for Chronic Immunodeficiency, Breisacherstr. 115, 79106 Freiburg, Germany
| | - Malte Burek
- Faculty of Medicine and Medical Center, University of Freiburg, Department of Rheumatology and Center for Chronic Immunodeficiency, Breisacherstr. 115, 79106 Freiburg, Germany
| | - Ariadna Teixidó Rubio
- Faculty of Medicine and Medical Center, University of Freiburg, Department of Rheumatology and Center for Chronic Immunodeficiency, Breisacherstr. 115, 79106 Freiburg, Germany
| | - Jana-Susann Briem
- Faculty of Medicine and Medical Center, University of Freiburg, Department of Rheumatology and Center for Chronic Immunodeficiency, Breisacherstr. 115, 79106 Freiburg, Germany
| | - Mauricio P Sica
- Medical Physics Department, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica (CNEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida E- Bustillo 9500, R8402AGP Río Negro, San Carlos de Bariloche, Argentina; Instituto de Energía y Desarrollo Sustentable, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica (CNEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida E- Bustillo 9500, R8402AGP Río Negro, San Carlos de Bariloche, Argentina
| | - Eirini Sevdali
- Faculty of Medicine and Medical Center, University of Freiburg, Department of Rheumatology and Center for Chronic Immunodeficiency, Breisacherstr. 115, 79106 Freiburg, Germany
| | - Michele Vigolo
- Department of Biochemistry, University of Lausanne, Ch. des Boveresses 155, 1066 Epalinges, Switzerland
| | - Laure Willen
- Department of Biochemistry, University of Lausanne, Ch. des Boveresses 155, 1066 Epalinges, Switzerland
| | - Patricia Odermatt
- Faculty of Medicine and Medical Center, University of Freiburg, Department of Rheumatology and Center for Chronic Immunodeficiency, Breisacherstr. 115, 79106 Freiburg, Germany
| | - Duygu Istanbullu
- Faculty of Medicine and Medical Center, University of Freiburg, Department of Rheumatology and Center for Chronic Immunodeficiency, Breisacherstr. 115, 79106 Freiburg, Germany
| | - Stephanie Herr
- Faculty of Medicine and Medical Center, University of Freiburg, Department of Rheumatology and Center for Chronic Immunodeficiency, Breisacherstr. 115, 79106 Freiburg, Germany
| | - Marco Cavallari
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestr. 18, 79104 Freiburg, Germany
| | | | - Marta Rizzi
- Faculty of Medicine and Medical Center, University of Freiburg, Department of Rheumatology and Center for Chronic Immunodeficiency, Breisacherstr. 115, 79106 Freiburg, Germany
| | - Hermann Eibel
- Faculty of Medicine and Medical Center, University of Freiburg, Department of Rheumatology and Center for Chronic Immunodeficiency, Breisacherstr. 115, 79106 Freiburg, Germany
| | - Pascal Schneider
- Department of Biochemistry, University of Lausanne, Ch. des Boveresses 155, 1066 Epalinges, Switzerland.
| |
Collapse
|
15
|
Rojas-Restrepo J, Caballero-Oteyza A, Huebscher K, Haberstroh H, Fliegauf M, Keller B, Kobbe R, Warnatz K, Ehl S, Proietti M, Grimbacher B. Establishing the Molecular Diagnoses in a Cohort of 291 Patients With Predominantly Antibody Deficiency by Targeted Next-Generation Sequencing: Experience From a Monocentric Study. Front Immunol 2021; 12:786516. [PMID: 34975878 PMCID: PMC8718408 DOI: 10.3389/fimmu.2021.786516] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Predominantly antibody deficiencies (PAD) are a heterogeneous group of disorders characterized by dysfunctional antibody production, low immunoglobulin levels in serum and impaired vaccine responses. The clinical picture is variable, ranging from mild symptoms to severe complications, which may include autoimmunity, gastrointestinal disease, allergy, and malignancies. If left untreated, PAD patients are at risk of enduring disease progression, irreversible organ damage, and reduced life expectancy. A timely diagnosis has been shown to significantly improve disease prognosis. Here, we report on our experience using targeted gene panel sequencing by employing Agilent's HaloPlex or SureSelect and Illumina's MiSeq technologies in a cohort of 291 individuals who presented with low or absent immunoglobulin levels in combination with or without other clinical features. In total, we have detected over 57 novel or previously reported relevant mutations in ADA, ADA2, BTK, CTLA4, LRBA, NFKB1, NFKB2, PIK3CD, STAT3, and TNFRSF13B. Overall, a genetic diagnosis could be made in 24.7% of the investigated patients. The percentage of coverage for the targeted regions ranged from 90% to 98% in this study. Moreover, functional assays were performed on a defined group of the patients carrying candidate variants in CTLA4, LRBA, NFKB1 and BTK, which confirmed their deleterious effect on protein expression and/or function. This study reiterates that the immunological heterogeneity of predominantly antibody deficiencies may have a diverse genetic origin, although certain clinical features may hint towards a specific group of defects. Employing targeted sequencing panels proves to be a very time- and cost-efficient, yet reliable, method for the establishment of a genetic diagnosis in individuals with PAD. However, in case of negative panel results, or if functional testing reveals inconspicuous observations in patients with a clear indication for genetic testing, further work-up including whole exome or whole genome sequencing should be considered.
Collapse
Affiliation(s)
- Jessica Rojas-Restrepo
- Institute for Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Andrés Caballero-Oteyza
- Institute for Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
- Resolving Infection Susceptibility (RESIST) – Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
| | - Katrin Huebscher
- Institute for Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - Hanna Haberstroh
- Institute for Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - Manfred Fliegauf
- Institute for Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
- Center for Integrative Biological Signaling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| | - Baerbel Keller
- Institute for Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Freiburg, Germany
| | - Robin Kobbe
- First Department of Medicine, Division of Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Warnatz
- Institute for Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Freiburg, Germany
| | - Stephan Ehl
- Institute for Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - Michele Proietti
- Institute for Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Freiburg, Germany
- Department of Rheumatology and Immunology, Hannover Medical University, Hannover, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
- Resolving Infection Susceptibility (RESIST) – Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
- Center for Integrative Biological Signaling Studies (CIBSS), University of Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Freiburg, Germany
- German Center for Infection Research (DZIF), Satellite Center Freiburg, Freiburg, Germany
| |
Collapse
|
16
|
Perazzio SF, Palmeira P, Moraes-Vasconcelos D, Rangel-Santos A, de Oliveira JB, Andrade LEC, Carneiro-Sampaio M. A Critical Review on the Standardization and Quality Assessment of Nonfunctional Laboratory Tests Frequently Used to Identify Inborn Errors of Immunity. Front Immunol 2021; 12:721289. [PMID: 34858394 PMCID: PMC8630704 DOI: 10.3389/fimmu.2021.721289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 10/05/2021] [Indexed: 12/24/2022] Open
Abstract
Inborn errors of immunity (IEI), which were previously termed primary immunodeficiency diseases, represent a large and growing heterogeneous group of diseases that are mostly monogenic. In addition to increased susceptibility to infections, other clinical phenotypes have recently been associated with IEI, such as autoimmune disorders, severe allergies, autoinflammatory disorders, benign lymphoproliferative diseases, and malignant manifestations. The IUIS 2019 classification comprises 430 distinct defects that, although rare individually, represent a group affecting a significant number of patients, with an overall prevalence of 1:1,200-2,000 in the general population. Early IEI diagnosis is critical for appropriate therapy and genetic counseling, however, this process is deeply dependent on accurate laboratory tests. Despite the striking importance of laboratory data for clinical immunologists, several IEI-relevant immunoassays still lack standardization, including standardized protocols, reference materials, and external quality assessment programs. Moreover, well-established reference values mostly remain to be determined, especially for early ages, when the most severe conditions manifest and diagnosis is critical for patient survival. In this article, we intend to approach the issue of standardization and quality control of the nonfunctional diagnostic tests used for IEI, focusing on those frequently utilized in clinical practice. Herein, we will focus on discussing the issues of nonfunctional immunoassays (flow cytometry, enzyme-linked immunosorbent assays, and turbidimetry/nephelometry, among others), as defined by the pure quantification of proteins or cell subsets without cell activation or cell culture-based methods.
Collapse
Affiliation(s)
- Sandro Félix Perazzio
- Division of Rheumatology, Universidade Federal de São Paulo, Sao Paulo, Brazil
- Immunology Division, Fleury Medicine and Health Laboratory, Sao Paulo, Brazil
| | - Patricia Palmeira
- Laboratório de Investigação Médica (LIM-36), Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
| | - Dewton Moraes-Vasconcelos
- Laboratório de Investigação Médica (LIM-56), Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
| | - Andréia Rangel-Santos
- Laboratório de Investigação Médica (LIM-36), Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
| | | | - Luis Eduardo Coelho Andrade
- Division of Rheumatology, Universidade Federal de São Paulo, Sao Paulo, Brazil
- Immunology Division, Fleury Medicine and Health Laboratory, Sao Paulo, Brazil
| | - Magda Carneiro-Sampaio
- Laboratório de Investigação Médica (LIM-36), Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
| |
Collapse
|
17
|
Targeted NGS Yields Plentiful Ultra-Rare Variants in Inborn Errors of Immunity Patients. Genes (Basel) 2021; 12:genes12091299. [PMID: 34573280 PMCID: PMC8469131 DOI: 10.3390/genes12091299] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 12/14/2022] Open
Abstract
Inborn errors of immunity (IEI) include a large group of inherited diseases sharing either poor, dysregulated, or absent and/or acquired function in one or more components of the immune system. Next-generation sequencing (NGS) has driven a rapid increase in the recognition of such defects, though the wide heterogeneity of genetically diverse but phenotypically overlapping diseases has often prevented the molecular characterization of the most complex patients. Two hundred and seventy-two patients were submitted to three successive NGS-based gene panels composed of 58, 146, and 312 genes. Along with pathogenic and likely pathogenic causative gene variants, accounting for the corresponding disorders (37/272 patients, 13.6%), a number of either rare (probably) damaging variants in genes unrelated to patients’ phenotype, variants of unknown significance (VUS) in genes consistent with their clinics, or apparently inconsistent benign, likely benign, or VUS variants were also detected. Finally, a remarkable amount of yet unreported variants of unknown significance were also found, often recurring in our dataset. The NGS approach demonstrated an expected IEI diagnostic rate. However, defining the appropriate list of genes for these panels may not be straightforward, and the application of unbiased approaches should be taken into consideration, especially when patients show atypical clinical pictures.
Collapse
|
18
|
Kakkas I, Tsinti G, Kalala F, Farmaki E, Kourakli A, Kapousouzi A, Dimou M, Kalaitzidou V, Sevdali E, Peristeri AM, Tsiouma G, Patiou P, Papadimitriou E, Vassilakopoulos TP, Panayiotidis P, Kioumi A, Symeonidis A, Speletas M. TACI Mutations in Primary Antibody Deficiencies: A Nationwide Study in Greece. ACTA ACUST UNITED AC 2021; 57:medicina57080827. [PMID: 34441032 PMCID: PMC8401742 DOI: 10.3390/medicina57080827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 11/16/2022]
Abstract
Background and objectives: Monoallelic (heterozygous) or biallelic (homozygous or compound heterozygous) TACI mutations have been reported as the most common genetic defects in patients with common variable immunodeficiency (CVID), which is the most common clinically significant primary immunodeficiency in humans. The aim of our study was to evaluate the prevalence and any correlations of TACI defects in Greek patients with primary antibody deficiencies. Materials and Methods: 117 patients (male/female: 53/64) with CVID (110) and a combined IgA and IgG subclass deficiency (7) with a CVID-like clinical phenotype were enrolled in the study. Genomic DNA was extracted from peripheral blood and the molecular analysis of the TACI gene was performed by PCR (Polymerase Chain Reaction) and sequencing of all 5 exons, including exon–intron boundaries. Results: Seventeen patients (14.5%) displayed TACI defects, four (23.5%) carried combined heterozygous mutations and 13 (76.5%) carried single heterozygous mutations. The most frequently detected mutation was C104R (58.8%), followed by I87N (23.5%) and A181E (11.8%), while R20C, C62Y, P151L, K188M and E236X mutations were present in only one patient each. Patients with TACI defects were more frequently male (p = 0.011) and displayed a benign lymphoproliferation (splenomegaly and lymph node enlargement, p = 0.047 and p = 0.002, respectively), had a history of tonsillectomy (p = 0.015) and adenoidectomy (p = 0.031) and more frequently exhibited autoimmune cytopenias (p = 0.046). Conclusions: Considering that accumulating evidence suggests several CVID patients have a complex rather than a monogenic inheritance, our data further support the notion that TACI mutations, particularly as monoallelic defects, should be primarily considered as susceptibility co-factors and/or modifiers of primary antibody deficiencies.
Collapse
Affiliation(s)
- Ioannis Kakkas
- Immunology and Histocompatibility Department, “Evaggelismos” General Hospital, 106 76 Athens, Greece;
| | - Gerasimina Tsinti
- Department of Immunology & Histocompatibility, Faculty of Medicine, University of Thessaly, 415 00 Larissa, Greece; (G.T.); (A.K.); (E.S.); (A.-M.P.)
| | - Fani Kalala
- Hematology Department, Henry Dunant Hospital, 115 26 Athens, Greece;
| | - Evangelia Farmaki
- Pediatric Immunology and Rheumatology Referral Center, First Department of Pediatrics, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (E.F.); (E.P.)
| | - Alexandra Kourakli
- Department of Internal Medicine, Hematology Division, Medical School—University Hospital, University of Patras, 265 04 Patras, Greece; (A.K.); (P.P.); (A.S.)
| | - Androniki Kapousouzi
- Department of Immunology & Histocompatibility, Faculty of Medicine, University of Thessaly, 415 00 Larissa, Greece; (G.T.); (A.K.); (E.S.); (A.-M.P.)
| | - Maria Dimou
- Hematology Section, First Department of Propedeutic Internal Medicine, “Laikon” General Hospital, National and Kapodistrian University of Athens, 157 72 Athens, Greece; (M.D.); (P.P.)
| | - Vassiliki Kalaitzidou
- Department of Hematology, Papageorgiou General Hospital, 564 29 Thessaloniki, Greece; (V.K.); (A.K.)
| | - Eirini Sevdali
- Department of Immunology & Histocompatibility, Faculty of Medicine, University of Thessaly, 415 00 Larissa, Greece; (G.T.); (A.K.); (E.S.); (A.-M.P.)
| | - Athanasia-Marina Peristeri
- Department of Immunology & Histocompatibility, Faculty of Medicine, University of Thessaly, 415 00 Larissa, Greece; (G.T.); (A.K.); (E.S.); (A.-M.P.)
| | - Georgia Tsiouma
- ENT Department, “Achillopoulion” General Hospital of Volos, 382 21 Volos, Greece;
| | - Peristera Patiou
- Department of Internal Medicine, Hematology Division, Medical School—University Hospital, University of Patras, 265 04 Patras, Greece; (A.K.); (P.P.); (A.S.)
| | - Eleni Papadimitriou
- Pediatric Immunology and Rheumatology Referral Center, First Department of Pediatrics, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (E.F.); (E.P.)
| | - Theodoros P. Vassilakopoulos
- Department of Haematology and Bone Marrow Transplantation, “Laikon” General Hospital, National and Kapodistrian University of Athens, 157 72 Athens, Greece;
| | - Panayiotis Panayiotidis
- Hematology Section, First Department of Propedeutic Internal Medicine, “Laikon” General Hospital, National and Kapodistrian University of Athens, 157 72 Athens, Greece; (M.D.); (P.P.)
| | - Anna Kioumi
- Department of Hematology, Papageorgiou General Hospital, 564 29 Thessaloniki, Greece; (V.K.); (A.K.)
| | - Argiris Symeonidis
- Department of Internal Medicine, Hematology Division, Medical School—University Hospital, University of Patras, 265 04 Patras, Greece; (A.K.); (P.P.); (A.S.)
| | - Matthaios Speletas
- Department of Immunology & Histocompatibility, Faculty of Medicine, University of Thessaly, 415 00 Larissa, Greece; (G.T.); (A.K.); (E.S.); (A.-M.P.)
- Correspondence: ; Tel.: +30-241-350-2173; Fax: +30-241-068-5687
| |
Collapse
|
19
|
Salzer U, Grimbacher B. TACI deficiency - a complex system out of balance. Curr Opin Immunol 2021; 71:81-88. [PMID: 34247095 DOI: 10.1016/j.coi.2021.06.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/25/2021] [Accepted: 06/06/2021] [Indexed: 12/29/2022]
Abstract
TACI promotes T-cell independent antibody responses and plasma cell differentiation and counteracts BAFF driven B-cell activation. Mutations in TNFRSF13B (encoding TACI) are associated with common variable immunodeficiency (CVID) but are also found in 1-2% of the general population. Although not diseases causing, certain TNFRSF13B mutations predispose CVID patients to autoimmunity and lymphoproliferation. Recently, studies of TACI-deficient humans and murine models revealed novel aspects of TACI, especially its crosstalk with the TLR pathways, differential expression of TACI isoforms, and its role in the generation of autoreactive B-cells. Vice versa, these studies are instrumental for a better understanding of TACI deficiency in humans and suggest that gene dosage, mutation type, and additional clinical or laboratory abnormalities influence the relevance of TNFRSF13B variants in individual CVID patients. TACI is embedded in a complex and well-balanced system, which is vulnerable to genetic and possibly also environmental hits.
Collapse
Affiliation(s)
- Ulrich Salzer
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiencies, Medical Center - University Hospital Freiburg, Faculty of Medicine, Albert-Ludwigs-University, Freiburg, Germany; DZIF - German Center for Infection Research, Satellite Center Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany; RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Germany
| |
Collapse
|
20
|
Schmidt A, Peters S, Knaus A, Sabir H, Hamsen F, Maj C, Fazaal J, Sivalingam S, Savchenko O, Mantri A, Holzinger D, Neudorf U, Müller A, Ludwig KU, Krawitz PM, Engels H, Nöthen MM, Bagci S. TBK1 and TNFRSF13B mutations and an autoinflammatory disease in a child with lethal COVID-19. NPJ Genom Med 2021; 6:55. [PMID: 34210994 PMCID: PMC8249618 DOI: 10.1038/s41525-021-00220-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/09/2021] [Indexed: 12/16/2022] Open
Abstract
Among children, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections are typically mild. Here, we describe the case of a 3.5-year-old girl with an unusually severe presentation of coronavirus disease (COVID-19). The child had an autoinflammatory disorder of unknown etiology, which had been treated using prednisolone and methotrexate, and her parents were half cousins of Turkish descent. After 5 days of nonspecific viral infection symptoms, tonic-clonic seizures occurred followed by acute cardiac insufficiency, multi-organ insufficiency, and ultimate death. Trio exome sequencing identified a homozygous splice-variant in the gene TBK1, and a homozygous missense variant in the gene TNFRSF13B. Heterozygous deleterious variants in the TBK1 gene have been associated with severe COVID-19, and the variant in the TNFRSF13B gene has been associated with common variable immunodeficiency (CVID). We suggest that the identified variants, the autoinflammatory disorder and its treatment, or a combination of these factors probably predisposed to lethal COVID-19 in the present case.
Collapse
Affiliation(s)
- Axel Schmidt
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Sophia Peters
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Alexej Knaus
- Institute of Genomic Statistics and Bioinformatics, University of Bonn, Bonn, Germany
| | - Hemmen Sabir
- Neonatology and Pediatric Intensive Care, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Frauke Hamsen
- Department of Pediatric Hematology-Oncology, University of Duisburg-Essen, Essen, Germany
| | - Carlo Maj
- Institute of Genomic Statistics and Bioinformatics, University of Bonn, Bonn, Germany
| | - Julia Fazaal
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Sugirthan Sivalingam
- Institute of Genomic Statistics and Bioinformatics, University of Bonn, Bonn, Germany
- Institute for Medical Biometry, Informatics and Epidemiology, Medical Faculty, University of Bonn, Bonn, Germany
- Core Unit for Bioinformatics Data Analysis, Medical Faculty, University of Bonn, Bonn, Germany
| | - Oleksandr Savchenko
- Department of Diagnostic and Interventional Radiology, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Aakash Mantri
- Institute of Genomic Statistics and Bioinformatics, University of Bonn, Bonn, Germany
| | - Dirk Holzinger
- Department of Pediatric Hematology-Oncology, University of Duisburg-Essen, Essen, Germany
| | - Ulrich Neudorf
- Department of Pediatric Hematology-Oncology, University of Duisburg-Essen, Essen, Germany
| | - Andreas Müller
- Neonatology and Pediatric Intensive Care, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Kerstin U Ludwig
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Peter M Krawitz
- Institute of Genomic Statistics and Bioinformatics, University of Bonn, Bonn, Germany
| | - Hartmut Engels
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany.
| | - Soyhan Bagci
- Neonatology and Pediatric Intensive Care, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| |
Collapse
|
21
|
Robust Antibody and T Cell Responses to SARS-CoV-2 in Patients with Antibody Deficiency. J Clin Immunol 2021; 41:1146-1153. [PMID: 33983545 PMCID: PMC8117127 DOI: 10.1007/s10875-021-01046-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/15/2021] [Indexed: 12/18/2022]
Abstract
Immunocompromised patients, including those with inborn errors of immunity (IEI), may be at increased risk for severe or prolonged infections with SARS-CoV-2 (Zhu et al. N Engl J Med. 382:727-33, 2020; Guan et al. 2020; Minotti et al. J Infect. 81:e61-6, 2020). While antibody and T cell responses to SARS-CoV-2 structural proteins are well described in healthy convalescent donors, adaptive humoral and cellular immunity has not yet been characterized in patients with antibody deficiency (Grifoni et al. Cell. 181:1489-1501 e1415, 2020; Burbelo et al. 2020; Long et al. Nat Med. 26:845-8, 2020; Braun et al. 2020). Herein, we describe the clinical course, antibody, and T cell responses to SARS-CoV-2 structural proteins in a cohort of adult and pediatric patients with antibody deficiencies (n = 5) and controls (related and unrelated) infected with SARS-CoV-2. Five patients within the same family (3 with antibody deficiency, 2 immunocompetent controls) showed antibody responses to nucleocapsid and spike proteins, as well as SARS-CoV-2 specific T cell immunity at days 65-84 from onset of symptoms. No significant difference was identified between immunocompromised patients and controls. Two additional unrelated, adult patients with common variable immune deficiency were assessed. One did not show antibody response, but both demonstrated SARS-CoV-2-specific T cell immunity when evaluated 33 and 76 days, respectively, following SARS-CoV-2 diagnosis. This report is the first to show robust T cell activity and humoral immunity against SARS-CoV-2 structural proteins in some patients with antibody deficiency. Given the reliance on spike protein in most candidate vaccines (Folegatti et al. Lancet. 396:467-78, 2020; Jackson et al. N Engl J Med. 383:1920-31, 2020), the responses are encouraging. Additional studies will be needed to further define the timing of onset of immunity, longevity of the immune response, and variability of response in immunocompromised patients.
Collapse
|
22
|
The impact of rare and low-frequency genetic variants in common variable immunodeficiency (CVID). Sci Rep 2021; 11:8308. [PMID: 33859323 PMCID: PMC8050305 DOI: 10.1038/s41598-021-87898-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 04/01/2021] [Indexed: 02/07/2023] Open
Abstract
Next Generation Sequencing (NGS) has uncovered hundreds of common and rare genetic variants involved in complex and rare diseases including immune deficiencies in both an autosomal recessive and autosomal dominant pattern. These rare variants however, cannot be classified clinically, and common variants only marginally contribute to disease susceptibility. In this study, we evaluated the multi-gene panel results of Common Variable Immunodeficiency (CVID) patients and argue that rare variants located in different genes play a more prominent role in disease susceptibility and/or etiology. We performed NGS on DNA extracted from the peripheral blood leukocytes from 103 patients using a panel of 19 CVID-related genes: CARD11, CD19, CD81, ICOS, CTLA4, CXCR4, GATA2, CR2, IRF2BP2, MOGS, MS4A1, NFKB1, NFKB2, PLCG2, TNFRSF13B, TNFRSF13C, TNFSF12, TRNT1 and TTC37. Detected variants were evaluated and classified based on their impact, pathogenicity classification and population frequency as well as the frequency within our study group. NGS revealed 112 different (a total of 227) variants with under 10% population frequency in 103 patients of which 22(19.6%) were classified as benign, 29(25.9%) were classified as likely benign, 4(3.6%) were classified as likely pathogenic and 2(1.8%) were classified as pathogenic. Moreover, 55(49.1%) of the variants were classified as variants of uncertain significance. We also observed different variant frequencies when compared to population frequency databases. Case-control data is not sufficient to unravel the genetic etiology of immune deficiencies. Thus, it is important to understand the incidence of co-occurrence of two or more rare variants to aid in illuminating their potential roles in the pathogenesis of immune deficiencies.
Collapse
|
23
|
Batchu S, Yu S. Age-associated Ligand-receptor Interactions Imputed from Nasopharyngeal Transcriptomes of COVID-19 Patients. Immunol Invest 2021; 51:851-858. [PMID: 33533266 DOI: 10.1080/08820139.2021.1882484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has exhibited different clinical manifestations amongst various age cohorts. As the immune microenvironment may play a role in clinical progression, it is crucial to examine molecular interactions to gain insight into host response. Therefore, to elucidate any differences in host response related to age, the present study imputed ligand-receptor interactions within the nasopharyngeal immune microenvironment in patients affected with SARS-COV-2. Tissue purities, the proportion of non-immune cells in the tissue sample, of 467 nasopharyngeal transcriptome profiles were estimated using known mRNA expression signatures of stromal/immune cells. Using the purity estimates and bulk tissue expression values, non-negative linear regression was used to estimate average expression of each gene in the stromal/tumor compartments. The inferred expression profiles were annotated with a curated database of ligand-receptor interactions and assumed as reasonable proxies for the law of mass action, allowing for quantification of directional ligand-receptor complex concentrations under equilibrium. It was found that older patients (>60 years) exhibited decreased interactions with receptors selectin L receptor SELL and increased interactions with pro-inflammatory chemokine receptors CXCR2 and CCR1. Younger patients showed increased interactions with various members of the TNF receptor super family (TNFRSF). The interactions were further related to immune cell subtypes, with older patients predicted to have less CD8+ and CD4+ resting T cells but increased neutrophil proportions. Collectively, the results suggest certain ligand-receptor interactions of the nasopharyngeal immune microenvironment are age-associated in response to SARS-CoV-2.
Collapse
Affiliation(s)
- Sai Batchu
- Cooper Medical School at Rowan University, Camden, New Jersey, USA
| | - Siyuan Yu
- Cooper Medical School at Rowan University, Camden, New Jersey, USA
| |
Collapse
|
24
|
Fernando SL, Jang HSI, Li J. The Immune Dysregulation of Common Variable Immunodeficiency Disorders. Immunol Lett 2021; 230:21-26. [DOI: 10.1016/j.imlet.2020.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/27/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022]
|
25
|
Deenick EK, Lau A, Bier J, Kane A. Molecular and cellular mechanisms underlying defective antibody responses. Immunol Cell Biol 2020; 98:467-479. [PMID: 32348596 DOI: 10.1111/imcb.12345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 12/18/2022]
Abstract
Primary immune deficiency is caused by genetic mutations that result in immune dysfunction and subsequent susceptibility to infection. Over the last decade there has been a dramatic increase in the number of genetically defined causes of immune deficiency including those which affect B-cell function. This has not only identified critical nonredundant pathways that control the generation of protective antibody responses but also revealed that immunodeficiency and autoimmunity are often closely linked. Here we explore the molecular and cellular mechanisms of these rare monogenic conditions that disrupt antibody production, which also have implications for understanding the causes of more common polygenic immune dysfunction.
Collapse
Affiliation(s)
- Elissa K Deenick
- Immunity and Inflammatory Diseases, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.,Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Anthony Lau
- Immunity and Inflammatory Diseases, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Julia Bier
- Immunity and Inflammatory Diseases, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Alisa Kane
- Immunity and Inflammatory Diseases, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.,South Western Sydney Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia.,Department of Immunology and HIV, St Vincent's Hospital, Darlinghurst, NSW, Australia.,Department of Immunology, Allergy and HIV, Liverpool Hospital, Liverpool, NSW, Australia
| |
Collapse
|
26
|
Ho HE, Cunningham-Rundles C. Non-infectious Complications of Common Variable Immunodeficiency: Updated Clinical Spectrum, Sequelae, and Insights to Pathogenesis. Front Immunol 2020; 11:149. [PMID: 32117289 PMCID: PMC7025475 DOI: 10.3389/fimmu.2020.00149] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/20/2020] [Indexed: 12/12/2022] Open
Abstract
Non-infectious complications in common variable immunodeficiency (CVID) have emerged as a major clinical challenge. Detailed clinical spectrum, organ-specific pathologies and associated sequelae from 623 CVID patients followed in New York since 1974 were analyzed, and recent insights to pathogenesis were reviewed. Non-infectious manifestations were present in 68.1% of patients, and they do not tend to be present in isolation. They include autoimmunity (33.2%), chronic lung disease (30.3%), lymphoid hyperplasia/splenomegaly (20.9%), liver disease (12.7%), granulomas (9.3%), gastrointestinal disease (7.3%), lymphoma (6.7%), and other malignancies (6.4%). In the lungs, interstitial disease and bronchiectasis were the most common findings, with lymphoma at this site being a rare (n = 6), but serious, manifestation. Bronchiectasis was not a prerequisite for the development of interstitial disease. In the liver, granulomas and nodular regenerative hyperplasia were the most common. Gastrointestinal disease may affect any segment of the intestinal tract, with lymphoid infiltrations and villous blunting being the leading histologic findings. With progression of organ-specific diseases, a wide spectrum of associated sequelae was observed. Lymphoma was more common in females (P = 0.036)—all B cell types except in one subject. Solid organ transplantations (liver, n = 5; lung, n = 4; combined lung and heart, n = 2) and hematopoietic stem cell transplantations (for B cell lymphoma, n = 1) have rarely been performed in this cohort, with mixed outcomes. Recent identification of monogenic defects, in ~10–30% of various CVID cohorts, has highlighted the molecular pathways that can affect both antibody production and broader immune regulation. In addition, cellular defects in both innate and adaptive immune systems are increasingly recognized in this syndrome.
Collapse
Affiliation(s)
- Hsi-En Ho
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Charlotte Cunningham-Rundles
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
27
|
Ma J, Fu L, Gu H, Chen Z, Zhang J, Zhao S, Zhu X, Liu H, Wu R. Screening for Genetic Mutations for the Early Diagnosis of Common Variable Immunodeficiency in Children With Refractory Immune Thrombocytopenia: A Retrospective Data Analysis From a Tertiary Children's Center. Front Pediatr 2020; 8:595135. [PMID: 33425813 PMCID: PMC7793988 DOI: 10.3389/fped.2020.595135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 11/12/2020] [Indexed: 12/19/2022] Open
Abstract
Aim: This study aimed to identify common variable immunodeficiency (CVID) by high-throughput next-generation sequencing (NGS) in children with refractory immune thrombocytopenia (RITP) to facilitate early diagnosis. Methods: CVID-related genetic mutations were explored in patients with RITP during 2016-2019. They were tested consecutively through NGS by the ITP team of the tertiary children hospital in China. An evaluation system was devised based on the phenotype, genetic rule, and serum immunoglobulins (Igs) of all patients with RITP. The patients were divided into highly suspicious, suspicious, and negative groups using the evaluation system. Results: Among 176 patients with RITP, 16 (9.1%) harbored CVID-related genetic mutations: 8 (4.5%) were highly suspicious of CVIDs. Five had mutations in tumor necrosis factor receptor superfamily 13B (TNFRSF13B), one in lipopolysaccharide responsive beige-like anchor protein (LRBA), one in nuclear factor kappa-B2 (NF-κB2), and one in caspase recruitment domain11 (CARD11). Others were classified into the suspicious group because the clinical phenotype and pedigree were suggestive, yet insufficient, for diagnosis. Repeated infection existed in all patients. Two had an allergic disease. Positive autoimmune serologies were noted in 62.5%. Five had a definite positive family history. The median serum immunoglobulin (Ig)A, IgG, and IgM levels were 0.3875, 6.14, and 0.522 g/L, respectively. Nearly 85.7% of patients had insufficient serum IgA levels, while 37.5% had low IgG and IgM levels. Conclusions: High-throughput NGS and a thorough review of the medical history are beneficial for the early diagnosis of patients without any significant clinical characteristics, distinguishing them from those with primary pediatric ITP. The cases suspicious of CVID need further investigation and follow-up to avoid deterioration.
Collapse
Affiliation(s)
- Jingyao Ma
- Beijing Key Laboratory of Pediatric Hematology Oncology, Hematology Oncology Center, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China.,National Key Discipline of Pediatrics, Capital Medical University, Beijing, China.,Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| | - Lingling Fu
- Beijing Key Laboratory of Pediatric Hematology Oncology, Hematology Oncology Center, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China.,National Key Discipline of Pediatrics, Capital Medical University, Beijing, China.,Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| | - Hao Gu
- Beijing Key Laboratory of Pediatric Hematology Oncology, Hematology Oncology Center, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China.,National Key Discipline of Pediatrics, Capital Medical University, Beijing, China.,Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| | - Zhenping Chen
- Beijing Key Laboratory of Pediatric Hematology Oncology, Hematology Oncology Center, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China.,National Key Discipline of Pediatrics, Capital Medical University, Beijing, China.,Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| | - Jialu Zhang
- Beijing Key Laboratory of Pediatric Hematology Oncology, Hematology Oncology Center, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China.,National Key Discipline of Pediatrics, Capital Medical University, Beijing, China.,Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| | - Shasha Zhao
- Beijing Key Laboratory of Pediatric Hematology Oncology, Hematology Oncology Center, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China.,National Key Discipline of Pediatrics, Capital Medical University, Beijing, China.,Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| | - Xiaojing Zhu
- Beijing Key Laboratory of Pediatric Hematology Oncology, Hematology Oncology Center, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China.,National Key Discipline of Pediatrics, Capital Medical University, Beijing, China.,Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| | - Huiqing Liu
- Beijing Key Laboratory of Pediatric Hematology Oncology, Hematology Oncology Center, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China.,National Key Discipline of Pediatrics, Capital Medical University, Beijing, China.,Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| | - Runhui Wu
- Beijing Key Laboratory of Pediatric Hematology Oncology, Hematology Oncology Center, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China.,National Key Discipline of Pediatrics, Capital Medical University, Beijing, China.,Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| |
Collapse
|
28
|
Gereige JD, Maglione PJ. Current Understanding and Recent Developments in Common Variable Immunodeficiency Associated Autoimmunity. Front Immunol 2019; 10:2753. [PMID: 31921101 PMCID: PMC6914703 DOI: 10.3389/fimmu.2019.02753] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/11/2019] [Indexed: 12/14/2022] Open
Abstract
Common variable immunodeficiency (CVID) is the most prevalent symptomatic primary immunodeficiency and comprises a group of disorders with similar antibody deficiency but a myriad of different etiologies, most of which remain undefined. The variable aspect of CVID refers to the approximately half of patients who develop non-infectious complications in addition to heightened susceptibility to infection. The pathogenesis of these complications is poorly understood and somewhat counterintuitive because these patients that are defined by their immune futility simultaneously have elevated propensity for autoimmune disease. There are numerous aspects of immune dysregulation associated with autoimmunity in CVID that have only begun to be studied. These findings include elevations of T helper type 1 and follicular helper T cells and B cells expressing low levels of CD21 as well as reciprocal decreases in regulatory T cells and isotype-switched memory B cells. Recently, advances in genomics have furthered our understanding of the fundamental biology underlying autoimmunity in CVID and led to precision therapeutic approaches. However, these genetic etiologies are also associated with clinical heterogeneity and incomplete penetrance, highlighting the fact that continued research efforts remain necessary to optimize treatment. Additional factors, such as commensal microbial dysbiosis, remain to be better elucidated. Thus, while recent advances in our understanding of CVID-associated autoimmunity have been exciting and substantial, these current scientific advances must now serve as building blocks for the next stages of discovery.
Collapse
Affiliation(s)
- Jessica D Gereige
- Department of Pulmonary, Allergy, Sleep & Critical Care Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA, United States
| | - Paul J Maglione
- Department of Pulmonary, Allergy, Sleep & Critical Care Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
29
|
Chinn IK, Chan AY, Chen K, Chou J, Dorsey MJ, Hajjar J, Jongco AM, Keller MD, Kobrynski LJ, Kumanovics A, Lawrence MG, Leiding JW, Lugar PL, Orange JS, Patel K, Platt CD, Puck JM, Raje N, Romberg N, Slack MA, Sullivan KE, Tarrant TK, Torgerson TR, Walter JE. Diagnostic interpretation of genetic studies in patients with primary immunodeficiency diseases: A working group report of the Primary Immunodeficiency Diseases Committee of the American Academy of Allergy, Asthma & Immunology. J Allergy Clin Immunol 2019; 145:46-69. [PMID: 31568798 DOI: 10.1016/j.jaci.2019.09.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 09/02/2019] [Accepted: 09/20/2019] [Indexed: 12/19/2022]
Abstract
Genetic testing has become an integral component of the diagnostic evaluation of patients with suspected primary immunodeficiency diseases. Results of genetic testing can have a profound effect on clinical management decisions. Therefore clinical providers must demonstrate proficiency in interpreting genetic data. Because of the need for increased knowledge regarding this practice, the American Academy of Allergy, Asthma & Immunology Primary Immunodeficiency Diseases Committee established a work group that reviewed and summarized information concerning appropriate methods, tools, and resources for evaluating variants identified by genetic testing. Strengths and limitations of tests frequently ordered by clinicians were examined. Summary statements and tables were then developed to guide the interpretation process. Finally, the need for research and collaboration was emphasized. Greater understanding of these important concepts will improve the diagnosis and management of patients with suspected primary immunodeficiency diseases.
Collapse
Affiliation(s)
- Ivan K Chinn
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Section of Immunology, Allergy, and Rheumatology, Texas Children's Hospital, Houston, Tex.
| | - Alice Y Chan
- Department of Pediatrics, Division of Allergy, Immunology, and Bone Marrow Transplantation, University of California at San Francisco, San Francisco, Calif
| | - Karin Chen
- Division of Allergy and Immunology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah
| | - Janet Chou
- Department of Pediatrics, Harvard Medical School, Boston, Mass; Division of Allergy and Immunology, Boston Children's Hospital, Boston, Mass
| | - Morna J Dorsey
- Department of Pediatrics, Division of Allergy, Immunology, and Bone Marrow Transplantation, University of California at San Francisco, San Francisco, Calif
| | - Joud Hajjar
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Section of Immunology, Allergy, and Rheumatology, Texas Children's Hospital, Houston, Tex
| | - Artemio M Jongco
- Departments of Medicine and Pediatrics, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Great Neck, NY; Center for Health Innovations and Outcomes Research, Feinstein Institute for Medical Research, Great Neck, NY; Division of Allergy & Immunology, Cohen Children's Medical Center of New York, Great Neck, NY
| | - Michael D Keller
- Department of Allergy and Immunology, Children's National Hospital, Washington, DC
| | - Lisa J Kobrynski
- Department of Pediatrics, Division of Allergy and Immunology, Emory University School of Medicine, Atlanta, Ga
| | - Attila Kumanovics
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minn
| | - Monica G Lawrence
- Department of Medicine, Division of Asthma, Allergy and Immunology, University of Virginia Health System, Charlottesville, Va
| | - Jennifer W Leiding
- Departments of Pediatrics and Medicine, University of South Florida, St Petersburg, Fla; Division of Pediatric Allergy/Immunology, Johns Hopkins-All Children's Hospital, St Petersburg, Fla; Cancer and Blood Disorders Institute, Johns Hopkins-All Children's Hospital, St Petersburg, Fla
| | - Patricia L Lugar
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, NC
| | - Jordan S Orange
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, NY; New York Presbyterian Morgan Stanley Children's Hospital, New York, NY
| | - Kiran Patel
- Department of Pediatrics, Division of Allergy and Immunology, Emory University School of Medicine, Atlanta, Ga
| | - Craig D Platt
- Department of Pediatrics, Harvard Medical School, Boston, Mass; Division of Allergy and Immunology, Boston Children's Hospital, Boston, Mass
| | - Jennifer M Puck
- Department of Pediatrics, Division of Allergy, Immunology, and Bone Marrow Transplantation, University of California at San Francisco, San Francisco, Calif
| | - Nikita Raje
- Department of Pediatrics, University of Missouri-Kansas City, Kansas City, Mo; Division of Allergy/Asthma/Immunology, Children's Mercy Hospital, Kansas City, Mo
| | - Neil Romberg
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa; Division of Allergy/Immunology, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Maria A Slack
- Department of Medicine, Division of Allergy, Immunology, and Rheumatology, University of Rochester Medical Center, Rochester, NY; Department of Pediatrics, Division of Pediatric Allergy and Immunology, University of Rochester Medical Center, Rochester, NY
| | - Kathleen E Sullivan
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa; Division of Allergy/Immunology, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Teresa K Tarrant
- Department of Medicine, Division of Rheumatology and Immunology, Duke University Medical Center, Durham, NC
| | - Troy R Torgerson
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Wash; Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Wash
| | - Jolan E Walter
- Departments of Pediatrics and Medicine, University of South Florida, St Petersburg, Fla; Division of Pediatric Allergy/Immunology, Johns Hopkins-All Children's Hospital, St Petersburg, Fla; Division of Pediatric Allergy Immunology, Massachusetts General Hospital, Boston, Mass
| |
Collapse
|
30
|
Khoenkhoen S, Erikson E, Ádori M, Stark JM, Scholz JL, Cancro MP, Pedersen GK, Karlsson Hedestam GB. TACI expression and plasma cell differentiation are impaired in the absence of functional IκBNS. Immunol Cell Biol 2019; 97:485-497. [PMID: 30597621 PMCID: PMC6850186 DOI: 10.1111/imcb.12228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 12/17/2018] [Accepted: 12/27/2018] [Indexed: 12/15/2022]
Abstract
Impaired classical NF‐κB pathway signaling causes reduced antibody responses to T‐independent (TI) antigens. We investigated the potential reasons for defective TI responses in mice lacking the atypical inhibitory kappa B (IκB) protein of the NF‐κB pathway, IκBNS. Analyses of the plasma cell compartment in vitro and in vivo after challenge with lipopolysaccharide (LPS) showed significant decreases in the frequencies of plasma cells in the absence of IκBNS. In vitro activation of B cells via the B cell receptor or via Toll‐like receptor 4 revealed that early activation events were unaffected in IκBNS‐deficient B cells, while proliferation was reduced compared to in similarly stimulated wildtype (wt) B cells. IκBNS‐deficient B cells also displayed impaired upregulation of the transmembrane activator and calcium modulator cyclophilin ligand interactor (TACI), which is essential for TI responses, and decreased sensitivity to TACI ligands upon stimulation. Furthermore, IκBNS‐deficient B cells, in contrast to wt B cells, displayed altered expression of IRF4, Blimp‐1 and Pax5 upon LPS‐induced differentiation, indicating impaired transcriptional regulation of plasma cell generation.
Collapse
Affiliation(s)
- Sharesta Khoenkhoen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Elina Erikson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Monika Ádori
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Julian M Stark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jean L Scholz
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael P Cancro
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gabriel K Pedersen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
31
|
Cunningham-Rundles C. Common variable immune deficiency: Dissection of the variable. Immunol Rev 2019; 287:145-161. [PMID: 30565247 PMCID: PMC6435035 DOI: 10.1111/imr.12728] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/16/2018] [Indexed: 12/28/2022]
Abstract
Starting about 60 years ago, a number of reports appeared that outlined the severe clinical course of a few adult subjects with profound hypogammaglobinemia. Puzzled by the lack of family history and adult onset of symptoms in most, the name "acquired" hypogammaglobinemia was given, but later altered to the current name common variable immune deficiency. Pathology reports remarked on the loss of lymph node architecture and paucity of plasma cells in lymphoid tissues in these subjects. While characterized by reduced serum IgG and IgA and often IgM, and thus classified among the B-cell defects, an increasing number of cellular defects in these patients have been recognized over time. In the early years, severe respiratory tract infections commonly led to a shortened life span, but the wide spread availability of immune globulin concentrates for the last 25 years has improved survival. However, chronic non-infectious inflammatory and autoimmune conditions have now emerged as challenging clinical problems; these require further immunologic understanding and additional therapeutic measures. Recent study of this phenotypic syndrome have provided an increasingly fertile ground for the identification of autosomal recessive and now more commonly, autosomal dominant gene defects which lead to the loss of B-cell development in this syndrome.
Collapse
|
32
|
Gardulf A, Abolhassani H, Gustafson R, Eriksson LE, Hammarström L. Predictive markers for humoral influenza vaccine response in patients with common variable immunodeficiency. J Allergy Clin Immunol 2018; 142:1922-1931.e2. [DOI: 10.1016/j.jaci.2018.02.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/17/2018] [Accepted: 02/12/2018] [Indexed: 10/17/2022]
|
33
|
Smith T, Cunningham-Rundles C. Primary B-cell immunodeficiencies. Hum Immunol 2018; 80:351-362. [PMID: 30359632 DOI: 10.1016/j.humimm.2018.10.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/05/2018] [Accepted: 10/21/2018] [Indexed: 12/13/2022]
Abstract
Primary B-cell immunodeficiencies refer to diseases resulting from impaired antibody production due to either molecular defects intrinsic to B-cells or a failure of interaction between B-cells and T-cells. Patients typically have recurrent infections and can vary with presentation and complications depending upon where the defect has occurred in B-cell development or the degree of functional impairment. In this review, we describe B-cell specific immune defects categorized by presence or absence of peripheral B-cells, immunoglobulins isotypes and evidence of antibody impairment.
Collapse
Affiliation(s)
- Tukisa Smith
- Division of Allergy and Clinical Immunology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029-6574, United States; The Rockefeller University, Laboratory of Biochemical Genetics and Metabolism, 1230 York Avenue, Box 179, New York, NY 10065, United States.
| | - Charlotte Cunningham-Rundles
- Division of Allergy and Clinical Immunology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029-6574, United States.
| |
Collapse
|
34
|
Garcia-Carmona Y, Ting AT, Radigan L, Athuluri Divakar SK, Chavez J, Meffre E, Cerutti A, Cunningham-Rundles C. TACI Isoforms Regulate Ligand Binding and Receptor Function. Front Immunol 2018; 9:2125. [PMID: 30333819 PMCID: PMC6176016 DOI: 10.3389/fimmu.2018.02125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/29/2018] [Indexed: 12/12/2022] Open
Abstract
TACI signals activate B cell proliferation, isotype switch and antibody production in both normal immunity and autoimmune states. In contrast to murine TACI, the human TACI gene undergoes alternative splicing to produce short and long isoforms (TACI-S and TACI-L). In previous studies, we showed that transduction of the short, but not long isoform, into murine B cells or human pre-B cells lacking TACI, caused them to become transcriptional and morphologically identical to plasma cells. These data suggest that the expression of different isoforms in humans provides unique controls on B cell maturation. In these studies we show that TACI-S and TACI-L form complexes in a ligand-independent manner, not dependent on a single extracellular domain. Both TACI isoforms are detectable in the endosomal cellular compartment where they co-localize with MyD88, TRAF6, and the activated 65 kDa form of TLR9, depending on a conserved intracellular TACI sequence. In contrast to TACI-L expressing cells, or cells bearing both isoforms, TACI-S binds ligands BAFF and APRIL with substantially greater affinity and promotes enhanced NF-kB activation. Using isoform-specific monoclonal antibodies, we show that while TACI-L is predominant as a surface receptor surface on human B cells, significantly more TACI-S is noted in the intracellular compartment and also in marginal zone, isotype switched and plasmablast in resting B cells. TACI-S is increased in tonsillar B cells and also in the intracellular compartment of activated peripheral B cells. These data shows that alternative splicing of the human TACI gene leads to two isoforms both of which intersect with MyD88 and TRAF6 and form complexes with TLR9, but the two isoforms have different ligand binding capacities, subcellular locations and activation capabilities.
Collapse
Affiliation(s)
- Yolanda Garcia-Carmona
- Department of Clinical Immunology, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Adrian T Ting
- Department of Clinical Immunology, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Lin Radigan
- Department of Clinical Immunology, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Jose Chavez
- Department of Clinical Immunology, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Eric Meffre
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, United States
| | - Andrea Cerutti
- Department of Clinical Immunology, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Catalan Institute for Research and Advance Studies (ICREA), Barcelona, Spain.,Program for Inflammatory and Cardiovascular Disorders, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Charlotte Cunningham-Rundles
- Department of Clinical Immunology, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Medicine and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
35
|
Lendak DF, Mihajlović DM, Novakov-Mikić AS, Mitić IM, Boban JM, Brkić SV. The role of TNF-α superfamily members in immunopathogenesis of sepsis. Cytokine 2018; 111:125-130. [PMID: 30142533 DOI: 10.1016/j.cyto.2018.08.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 08/11/2018] [Accepted: 08/13/2018] [Indexed: 01/08/2023]
Abstract
BACKGROUND Members of TNFα superfamily, A proliferation inducing ligand (APRIL), B-cell activating factor (BAFF) and Transmembrane activator and calcium cyclophylin interactor (TACI) are main regulators of B-cell function. The aim of this study was to evaluate concentrations of APRIL, BAFF and soluble TACI (sTACI) receptor in septic patients compared to healthy controls and compare concentrations of these biomarkers depending on sepsis severity and outcome. MATERIALS AND METHODS A total of 115 septic patients and 30 healthy volunteers were included and concentrations of APRIL, BAFF and sTACI were determined in all subjects at the admission (ELISA R&D Systems tests). Concentrations of these biomarkers in function of sepsis severity (sepsis n = 94 and septic shock n = 21) and outcome (lethal n = 40, recovery n = 75) were tested, as well as correlations with APACHE II and SOFA scores, immunoglobulins, complement, PCT and CRP concentrations. RESULTS Concentrations of all three biomarkers were significantly increased in septic patients compared to controls (AUCAPRIL = 0.982, AUCBAFF = 0.873, AUCsTACI = 0.683). Higher concentrations of APRIL and sTACI (p = 0.033, p = 0.037), and lower concentrations of BAFF (p = 0.005) were observed in patients with septic shock compared to sepsis. BAFF concentrations correlated positively with IgM, C3 and C4 levels. sTACI and APRIL were shown to be predictors of lethal outcome (p = 0.003, p = 0.049). CONCLUSIONS Concentrations of observedTNFα superfamily members are significantly increased in septic patients, confirming their role in sepsis pathogenesis.Higher concentrations of anti-inflammatory sTACI receptor correlated with severity of sepsis and poorer prognosis, thus potentially indicating domination of anti-inflammatory response in septic patients with worse outcome.
Collapse
Affiliation(s)
- Dajana F Lendak
- Department of Infectious Diseases, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia; Clinical Centre of Vojvodina, Novi Sad, Serbia.
| | - Dunja M Mihajlović
- Clinical Centre of Vojvodina, Novi Sad, Serbia; Department of Anestesiology and Perioerative Medicine, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Aleksandra S Novakov-Mikić
- Department of Gynaecology and Obstetrics, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia; Department of Internal Medicine (Immunology), Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Igor M Mitić
- Clinical Centre of Vojvodina, Novi Sad, Serbia; Department of Internal Medicine (Immunology), Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Jasmina M Boban
- Department for Radiology, Faculty of Medicine, University of Novi Sad, Vojvodina, Serbia; Center for Imaging Diagnostics, Institute of Oncology, Sremska Kamenica, Serbia
| | - Snežana V Brkić
- Department of Infectious Diseases, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia; Clinical Centre of Vojvodina, Novi Sad, Serbia
| |
Collapse
|
36
|
de Valles-Ibáñez G, Esteve-Solé A, Piquer M, González-Navarro EA, Hernandez-Rodriguez J, Laayouni H, González-Roca E, Plaza-Martin AM, Deyà-Martínez Á, Martín-Nalda A, Martínez-Gallo M, García-Prat M, Del Pino-Molina L, Cuscó I, Codina-Solà M, Batlle-Masó L, Solís-Moruno M, Marquès-Bonet T, Bosch E, López-Granados E, Aróstegui JI, Soler-Palacín P, Colobran R, Yagüe J, Alsina L, Juan M, Casals F. Evaluating the Genetics of Common Variable Immunodeficiency: Monogenetic Model and Beyond. Front Immunol 2018; 9:636. [PMID: 29867916 PMCID: PMC5960686 DOI: 10.3389/fimmu.2018.00636] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/14/2018] [Indexed: 12/16/2022] Open
Abstract
Common variable immunodeficiency (CVID) is the most frequent symptomatic primary immunodeficiency characterized by recurrent infections, hypogammaglobulinemia and poor response to vaccines. Its diagnosis is made based on clinical and immunological criteria, after exclusion of other diseases that can cause similar phenotypes. Currently, less than 20% of cases of CVID have a known underlying genetic cause. We have analyzed whole-exome sequencing and copy number variants data of 36 children and adolescents diagnosed with CVID and healthy relatives to estimate the proportion of monogenic cases. We have replicated an association of CVID to p.C104R in TNFRSF13B and reported the second case of homozygous patient to date. Our results also identify five causative genetic variants in LRBA, CTLA4, NFKB1, and PIK3R1, as well as other very likely causative variants in PRKCD, MAPK8, or DOCK8 among others. We experimentally validate the effect of the LRBA stop-gain mutation which abolishes protein production and downregulates the expression of CTLA4, and of the frameshift indel in CTLA4 producing expression downregulation of the protein. Our results indicate a monogenic origin of at least 15–24% of the CVID cases included in the study. The proportion of monogenic patients seems to be lower in CVID than in other PID that have also been analyzed by whole exome or targeted gene panels sequencing. Regardless of the exact proportion of CVID monogenic cases, other genetic models have to be considered for CVID. We propose that because of its prevalence and other features as intermediate penetrancies and phenotypic variation within families, CVID could fit with other more complex genetic scenarios. In particular, in this work, we explore the possibility of CVID being originated by an oligogenic model with the presence of heterozygous mutations in interacting proteins or by the accumulation of detrimental variants in particular immunological pathways, as well as perform association tests to detect association with rare genetic functional variation in the CVID cohort compared to healthy controls.
Collapse
Affiliation(s)
- Guillem de Valles-Ibáñez
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
| | - Ana Esteve-Solé
- Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, Barcelona, Spain.,Functional Unit of Clinical Immunology Hospital Sant Joan de Déu-Hospital Clinic, Barcelona, Spain
| | - Mònica Piquer
- Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, Barcelona, Spain.,Functional Unit of Clinical Immunology Hospital Sant Joan de Déu-Hospital Clinic, Barcelona, Spain
| | - E Azucena González-Navarro
- Functional Unit of Clinical Immunology Hospital Sant Joan de Déu-Hospital Clinic, Barcelona, Spain.,Servei d'Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clinic-IDIBAPS, Barcelona, Spain
| | - Jessica Hernandez-Rodriguez
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
| | - Hafid Laayouni
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain.,Bioinformatics Studies, ESCI-UPF, Barcelona, Spain
| | - Eva González-Roca
- Functional Unit of Clinical Immunology Hospital Sant Joan de Déu-Hospital Clinic, Barcelona, Spain.,Servei d'Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clinic-IDIBAPS, Barcelona, Spain
| | - Ana María Plaza-Martin
- Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, Barcelona, Spain.,Functional Unit of Clinical Immunology Hospital Sant Joan de Déu-Hospital Clinic, Barcelona, Spain
| | - Ángela Deyà-Martínez
- Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, Barcelona, Spain.,Functional Unit of Clinical Immunology Hospital Sant Joan de Déu-Hospital Clinic, Barcelona, Spain
| | - Andrea Martín-Nalda
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
| | - Mónica Martínez-Gallo
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain.,Immunology Division, Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marina García-Prat
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
| | - Lucía Del Pino-Molina
- Clinical Immunology Department, University Hospital La Paz and Physiopathology of Lymphocytes in Immunodeficiencies Group, IdiPAZ Institute for Health Research, Madrid, Spain
| | - Ivón Cuscó
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), Madrid, Spain
| | - Marta Codina-Solà
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), Madrid, Spain
| | - Laura Batlle-Masó
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain.,Servei de Genòmica, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
| | - Manuel Solís-Moruno
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain.,Servei de Genòmica, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
| | - Tomàs Marquès-Bonet
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain.,Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain.,CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Elena Bosch
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
| | - Eduardo López-Granados
- Clinical Immunology Department, University Hospital La Paz and Physiopathology of Lymphocytes in Immunodeficiencies Group, IdiPAZ Institute for Health Research, Madrid, Spain
| | - Juan Ignacio Aróstegui
- Functional Unit of Clinical Immunology Hospital Sant Joan de Déu-Hospital Clinic, Barcelona, Spain.,Servei d'Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clinic-IDIBAPS, Barcelona, Spain
| | - Pere Soler-Palacín
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
| | - Roger Colobran
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain.,Immunology Division, Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jordi Yagüe
- Functional Unit of Clinical Immunology Hospital Sant Joan de Déu-Hospital Clinic, Barcelona, Spain.,Servei d'Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clinic-IDIBAPS, Barcelona, Spain
| | - Laia Alsina
- Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, Barcelona, Spain.,Functional Unit of Clinical Immunology Hospital Sant Joan de Déu-Hospital Clinic, Barcelona, Spain
| | - Manel Juan
- Functional Unit of Clinical Immunology Hospital Sant Joan de Déu-Hospital Clinic, Barcelona, Spain.,Servei d'Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clinic-IDIBAPS, Barcelona, Spain
| | - Ferran Casals
- Servei de Genòmica, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
| |
Collapse
|
37
|
Ameratunga R, Woon ST, Bryant VL, Steele R, Slade C, Leung EY, Lehnert K. Clinical Implications of Digenic Inheritance and Epistasis in Primary Immunodeficiency Disorders. Front Immunol 2018; 8:1965. [PMID: 29434582 PMCID: PMC5790765 DOI: 10.3389/fimmu.2017.01965] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/19/2017] [Indexed: 12/16/2022] Open
Abstract
The existence of epistasis in humans was first predicted by Bateson in 1909. Epistasis describes the non-linear, synergistic interaction of two or more genetic loci, which can substantially modify disease severity or result in entirely new phenotypes. The concept has remained controversial in human genetics because of the lack of well-characterized examples. In humans, it is only possible to demonstrate epistasis if two or more genes are mutated. In most cases of epistasis, the mutated gene products are likely to be constituents of the same physiological pathway leading to severe disruption of a cellular function such as antibody production. We have recently described a digenic family, who carry mutations of TNFRSF13B/TACI as well as TCF3 genes. Both genes lie in tandem along the immunoglobulin isotype switching and secretion pathway. We have shown they interact in an epistatic way causing severe immunodeficiency and autoimmunity in the digenic proband. With the advent of next generation sequencing, it is likely other families with digenic inheritance will be identified. Since digenic inheritance does not always cause epistasis, we propose an epistasis index which may help quantify the effects of the two mutations. We also discuss the clinical implications of digenic inheritance and epistasis in humans with primary immunodeficiency disorders.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Virology and Immunology, Auckland City Hospital, Auckland, New Zealand.,Department of Clinical Immunology, Auckland City Hospital, Auckland, New Zealand
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland City Hospital, Auckland, New Zealand
| | - Vanessa L Bryant
- Department of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Richard Steele
- Department of Virology and Immunology, Auckland City Hospital, Auckland, New Zealand
| | - Charlotte Slade
- Department of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Allergy and Clinical Immunology, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Euphemia Yee Leung
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Klaus Lehnert
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
38
|
Karaca NE, Severcan EU, Guven B, Azarsiz E, Aksu G, Kutukculer N. TNFRSF13B/TACI Alterations in Turkish Patients with Common Variable Immunodeficiency and IgA Deficiency. Avicenna J Med Biotechnol 2018; 10:192-195. [PMID: 30090215 PMCID: PMC6064010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The Transmembrane Activator and Calcium modulator ligand Interactor (TACI), encoded by TNFRSF13B/TACI gene, is mutated in some patients with Common Variable Immunodeficiency (CVID) and IgA Deficiency (IgAD). The purpose of the study was to investigate for the first time in Turkish patients the prevalence of TNFRSF13B alterations in CVID, selective and partial IgAD patients. METHODS Forty two CVID, 36 selective IgAD, 34 partial IgAD and 25 healthy controls were included. All patients were examined for TNFRSF13B gene mutations by PCR. RESULTS The percentages of TNFRSF13B mutations in CVID, selective and partial IgAD patients were 7.1, 2.7 and 2.9%, respectively. No disease causing TNFRSF13B mutation in healthy controls was found. Patients with TACI mutations had recurrent respiratory tract infections. None of them experienced autoimmunity, bronchiectasis or granulomatous disease. In conclusion, TNFRSF13B mutations were present not only in CVID patients, but also in IgAD cases. CONCLUSION Modifier genes as well as their combination with other genetic or environmental factors may play an important role in the development of the immunodeficiency phenotype.
Collapse
Affiliation(s)
- Neslihan Edeer Karaca
- Corresponding author: Neslihan Edeer Karaca, M.D., Faculty of Medicine, Children’s Hospital, Ege University, Bornova, Izmir, Turkey, Tel: + 90 232 3901437, Fax: + 90 232 3901036, E-mail:
| | | | | | | | | | | |
Collapse
|
39
|
Maglione PJ, Cols M, Cunningham-Rundles C. Dysregulation of Innate Lymphoid Cells in Common Variable Immunodeficiency. Curr Allergy Asthma Rep 2017; 17:77. [PMID: 28983810 DOI: 10.1007/s11882-017-0746-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Common variable immunodeficiency (CVID) is the most prevalent symptomatic primary immune deficiency. With widespread use of immunoglobulin replacement therapy, non-infectious complications, such as autoimmunity, chronic intestinal inflammation, and lung disease, have replaced infections as the major cause of morbidity and mortality in this immune deficiency. The pathogenic mechanisms that underlie the development of these complications in CVID are not known; however, there have been numerous associated laboratory findings. Among the most intriguing of these associations is elevation of interferon signature genes in CVID patients with inflammatory/autoimmune complications, as a similar gene expression profile is found in systemic lupus erythematosus and other chronic inflammatory diseases. Linked with this heightened interferon signature in CVID is an expansion of circulating IFN-γ-producing innate lymphoid cells. Innate lymphoid cells are key regulators of both protective and pathogenic immune responses that have been extensively studied in recent years. Further exploration of innate lymphoid cell biology in CVID may uncover key mechanisms underlying the development of inflammatory complications in these patients and may inspire much needed novel therapeutic approaches.
Collapse
Affiliation(s)
- Paul J Maglione
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1089, New York, NY, 10029, USA
| | - Montserrat Cols
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Charlotte Cunningham-Rundles
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1089, New York, NY, 10029, USA.
| |
Collapse
|
40
|
Neutropenia in Patients with Common Variable Immunodeficiency: a Rare Event Associated with Severe Outcome. J Clin Immunol 2017; 37:715-726. [PMID: 28842786 DOI: 10.1007/s10875-017-0434-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/15/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Common variable immunodeficiency (CVID) is characterized by infections and hypogammaglobulinemia. Neutropenia is rare during CVID. METHODS The French DEFI study enrolled patients with primary hypogammaglobulinemia. Patients with CVID and neutropenia were retrospectively analyzed. RESULTS Among 473 patients with CVID, 16 patients displayed neutropenia (lowest count [0-1400]*106/L). Sex ratio (M/F) was 10/6. Five patients died during the follow-up (11 years) with an increased percentage of deaths compared to the whole DEFI group (31.3 vs 3.4%, P < 0.05). Neutropenia was diagnosed for 10 patients before 22 years old. The most frequent symptoms, except infections, were autoimmune cytopenia, i.e., thrombopenia or anemia (11/16). Ten patients were affected with lymphoproliferative diseases. Two patients were in the infection only group and the others belonged to one or several other CVID groups. The median level of IgG was 2.6 g/L [0.35-4.4]. Most patients presented increased numbers of CD21low CD38low B cell, as already described in CVID autoimmune cytopenia group. Neutropenia was considered autoimmune in 11 cases. NGS for 52 genes of interest was performed on 8 patients. No deleterious mutations were found in LRBA, CTLA4, and PIK3. More than one potentially damaging variant in other genes associated with CVID were present in most patients arguing for a multigene process. CONCLUSION Neutropenia is generally associated with another cytopenia and presumably of autoimmune origin during CVID. In the DEFI study, neutropenia is coupled with more severe clinical outcomes. It appears as an "alarm bell" considering patients' presentation and the high rate of deaths. Whole exome sequencing diagnosis should improve management.
Collapse
|
41
|
Ansari M, Yazdani R, Sherkat R, Homayouni V, Ganjalikhani-Hakemi M, Rezaei A. Decreased Expression of B cell Maturation Antigen in Patients with Common Variable Immunodeficiency. PEDIATRIC ALLERGY, IMMUNOLOGY, AND PULMONOLOGY 2017; 30:7-13. [DOI: 10.1089/ped.2016.0715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Mahbubeh Ansari
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
- Molecular Immunology Interest Group (MIIG), Universal Scientific Education and Research Network (USERN), Isfahan, Iran
| | - Roya Sherkat
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Vida Homayouni
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Abbas Rezaei
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
42
|
Cunill V, Clemente A, Lanio N, Barceló C, Andreu V, Pons J, Ferrer JM. Follicular T Cells from smB - Common Variable Immunodeficiency Patients Are Skewed Toward a Th1 Phenotype. Front Immunol 2017; 8:174. [PMID: 28289412 PMCID: PMC5326800 DOI: 10.3389/fimmu.2017.00174] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 02/03/2017] [Indexed: 12/11/2022] Open
Abstract
Germinal center follicular T helper (GCTfh) cells are essential players in the differentiation of B cells. Circulating follicular T helper (cTfh) cells share phenotypic and functional properties with GCTfh cells. Distinct subpopulations of cTfh with different helper capabilities toward B cells can be identified: cTfh1 (CXCR3+CCR6−), cTfh2 (CXCR3−CCR6−), and cTfh17 (CXCR3−CCR6+). Alterations in cTfh function and/or distribution have been associated with autoimmunity, infectious diseases, and more recently, with several monogenic immunodeficiencies. Common variable immunodeficiency (CVID) disease is the commonest symptomatic primary immunodeficiency with a genetic cause identified in only 2–10% of patients. Although a heterogeneous disease, most patients show a characteristic defective B cell differentiation into memory B cells or antibody-secreting cells. We investigated if alterations in CVID cTfh cells frequency or distribution into cTfh1, cTfh2, and cTfh17 subpopulations and regulatory follicular T (Tfr) cells could be related to defects in CVID B cells. We found increased percentages of cTfh exhibiting higher programmed death-1 expression and altered subpopulations distribution in smB− CVID patients. In contrast to smB+ patients and controls, cTfh from smB− CVID patients show increased cTfh1 and decreased cTfh17 subpopulation percentages and increased CXCR3+CCR6+ cTfh, a population analogous to the recently described pathogenic Th17.1. Moreover, Tfr cells are remarkably decreased only in smB− CVID patients. In conclusion, increased cTfh17.1 and cTfh1/cTfh17 ratio in CVID patients could influence B cell fate in smB− CVID patients, with a more compromised B cell compartment, and the decrease in Tfr cells may lead to high risk of autoimmune conditions in CVID patients.
Collapse
Affiliation(s)
- Vanesa Cunill
- Immunology Department, Hospital Universitari Son Espases, Palma de Mallorca, Balearic Islands, Spain; Human Immunopathology Research Laboratory, Institut d'Investigació Sanitària de Palma (IdISPa), Palma de Mallorca, Balearic Islands, Spain
| | - Antonio Clemente
- Immunology Department, Hospital Universitari Son Espases, Palma de Mallorca, Balearic Islands, Spain; Human Immunopathology Research Laboratory, Institut d'Investigació Sanitària de Palma (IdISPa), Palma de Mallorca, Balearic Islands, Spain
| | - Nallibe Lanio
- Immunology Department, Hospital Universitari Son Espases, Palma de Mallorca, Balearic Islands, Spain; Human Immunopathology Research Laboratory, Institut d'Investigació Sanitària de Palma (IdISPa), Palma de Mallorca, Balearic Islands, Spain
| | - Carla Barceló
- Immunology Department, Hospital Universitari Son Espases , Palma de Mallorca, Balearic Islands , Spain
| | - Valero Andreu
- Immunology Department, Hospital Universitari Son Espases, Palma de Mallorca, Balearic Islands, Spain; Human Immunopathology Research Laboratory, Institut d'Investigació Sanitària de Palma (IdISPa), Palma de Mallorca, Balearic Islands, Spain
| | - Jaume Pons
- Immunology Department, Hospital Universitari Son Espases, Palma de Mallorca, Balearic Islands, Spain; Human Immunopathology Research Laboratory, Institut d'Investigació Sanitària de Palma (IdISPa), Palma de Mallorca, Balearic Islands, Spain
| | - Joana M Ferrer
- Immunology Department, Hospital Universitari Son Espases, Palma de Mallorca, Balearic Islands, Spain; Human Immunopathology Research Laboratory, Institut d'Investigació Sanitària de Palma (IdISPa), Palma de Mallorca, Balearic Islands, Spain
| |
Collapse
|
43
|
|
44
|
Jabara HH, Lee JJ, Janssen E, Ullas S, Liadaki K, Garibyan L, Benson H, Sannikova T, Bram R, Hammarstrom L, Cruz AC, Siegel R, Manis J, Malley R, Geha RS. Heterozygosity for transmembrane activator and calcium modulator ligand interactor A144E causes haploinsufficiency and pneumococcal susceptibility in mice. J Allergy Clin Immunol 2016; 139:1293-1301.e4. [PMID: 27609654 DOI: 10.1016/j.jaci.2016.07.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 07/18/2016] [Accepted: 07/26/2016] [Indexed: 01/22/2023]
Abstract
BACKGROUND The B-cell receptor transmembrane activator and calcium modulator ligand interactor (TACI) is important for T-independent antibody responses. One in 200 blood donors are heterozygous for the TACI A181E mutation. OBJECTIVE We sought to investigate the effect on B-cell function of TACI A181E heterozygosity in reportedly healthy subjects and of the corresponding TACI A144E mutation in mice. METHODS Nuclear factor κB (NF-κB) activation was measured by using the luciferase assay in 293T cells cotransfected with wild-type and mutant TACI. TACI-driven proliferation, isotype switching, and antibody responses were measured in B cells from heterozygous TACI A144E knock-in mice. Mouse mortality was monitored after intranasal pneumococcal challenge. RESULTS Levels of natural antibodies to the pneumococcal polysaccharide component phosphocholine were significantly lower in A181E-heterozygous than TACI-sufficient Swedish blood donors never immunized with pneumococcal antigens. Although overexpressed hTACI A181E and mTACI A144E acted as dominant-negative mutations in transfectants, homozygosity for A144E in mice resulted in absent TACI expression in B cells, indicating that the mutant protein is unstable when naturally expressed. A144E heterozygous mice, such as TACI+/- mice, expressed half the normal level of TACI on their B cells and exhibited similar defects in a proliferation-inducing ligand-driven B-cell activation, antibody responses to TNP-Ficoll, production of natural antibodies to phosphocholine, and survival after intranasal pneumococcal challenge. CONCLUSION These results suggest that TACI A181E heterozygosity results in TACI haploinsufficiency with increased susceptibility to pneumococcal infection. This has important implications for asymptomatic TACI A181E carriers.
Collapse
Affiliation(s)
- Haifa H Jabara
- Division of Immunology, Boston Children's Hospital, Boston Children's Hospital, and Harvard Medical School, Boston, Mass
| | - John J Lee
- Division of Immunology, Boston Children's Hospital, Boston Children's Hospital, and Harvard Medical School, Boston, Mass
| | - Erin Janssen
- Division of Immunology, Boston Children's Hospital, Boston Children's Hospital, and Harvard Medical School, Boston, Mass
| | - Sumana Ullas
- Division of Immunology, Boston Children's Hospital, Boston Children's Hospital, and Harvard Medical School, Boston, Mass
| | - Kyriaki Liadaki
- Division of Immunology, Boston Children's Hospital, Boston Children's Hospital, and Harvard Medical School, Boston, Mass
| | - Lilit Garibyan
- Division of Immunology, Boston Children's Hospital, Boston Children's Hospital, and Harvard Medical School, Boston, Mass
| | - Halli Benson
- Division of Immunology, Boston Children's Hospital, Boston Children's Hospital, and Harvard Medical School, Boston, Mass
| | - Tatyana Sannikova
- Division of Immunology, Boston Children's Hospital, Boston Children's Hospital, and Harvard Medical School, Boston, Mass
| | - Richard Bram
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, Minn
| | | | - Anthony C Cruz
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Md
| | - Richard Siegel
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Md
| | - John Manis
- Division of Transfusion Medicine, Boston Children's Hospital, Boston Children's Hospital, and Harvard Medical School, Boston, Mass
| | - Richard Malley
- Division of Infectious Diseases, Boston Children's Hospital, Boston Children's Hospital, and Harvard Medical School, Boston, Mass
| | - Raif S Geha
- Division of Immunology, Boston Children's Hospital, Boston Children's Hospital, and Harvard Medical School, Boston, Mass.
| |
Collapse
|
45
|
Arays R, Goyal S, Jordan KM. Common variable immunodeficiency, immune thrombocytopenia, rituximab and splenectomy: important considerations. Postgrad Med 2016; 128:567-72. [DOI: 10.1080/00325481.2016.1199250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
46
|
Bogaert DJA, Dullaers M, Lambrecht BN, Vermaelen KY, De Baere E, Haerynck F. Genes associated with common variable immunodeficiency: one diagnosis to rule them all? J Med Genet 2016; 53:575-90. [PMID: 27250108 DOI: 10.1136/jmedgenet-2015-103690] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/10/2016] [Indexed: 12/15/2022]
Abstract
Common variable immunodeficiency (CVID) is a primary antibody deficiency characterised by hypogammaglobulinaemia, impaired production of specific antibodies after immunisation and increased susceptibility to infections. CVID shows a considerable phenotypical and genetic heterogeneity. In contrast to many other primary immunodeficiencies, monogenic forms count for only 2-10% of patients with CVID. Genes that have been implicated in monogenic CVID include ICOS, TNFRSF13B (TACI), TNFRSF13C (BAFF-R), TNFSF12 (TWEAK), CD19, CD81, CR2 (CD21), MS4A1 (CD20), TNFRSF7 (CD27), IL21, IL21R, LRBA, CTLA4, PRKCD, PLCG2, NFKB1, NFKB2, PIK3CD, PIK3R1, VAV1, RAC2, BLK, IKZF1 (IKAROS) and IRF2BP2 With the increasing number of disease genes identified in CVID, it has become clear that CVID is an umbrella diagnosis and that many of these genetic defects cause distinct disease entities. Moreover, there is accumulating evidence that at least a subgroup of patients with CVID has a complex rather than a monogenic inheritance. This review aims to discuss current knowledge regarding the molecular genetic basis of CVID with an emphasis on the relationship with the clinical and immunological phenotype.
Collapse
Affiliation(s)
- Delfien J A Bogaert
- Clinical Immunology Research Lab, Department of Pulmonary Medicine, Ghent University Hospital, Ghent, Belgium Department of Pediatric Immunology and Pulmonology, Centre for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium Laboratory of Immunoregulation, VIB Inflammation Research Center, Ghent, Belgium
| | - Melissa Dullaers
- Clinical Immunology Research Lab, Department of Pulmonary Medicine, Ghent University Hospital, Ghent, Belgium Laboratory of Immunoregulation, VIB Inflammation Research Center, Ghent, Belgium Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- Laboratory of Immunoregulation, VIB Inflammation Research Center, Ghent, Belgium Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Karim Y Vermaelen
- Clinical Immunology Research Lab, Department of Pulmonary Medicine, Ghent University Hospital, Ghent, Belgium Department of Internal Medicine, Ghent University, Ghent, Belgium Tumor Immunology Laboratory, Department of Pulmonary Medicine, Ghent University Hospital, Ghent, Belgium
| | - Elfride De Baere
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Filomeen Haerynck
- Clinical Immunology Research Lab, Department of Pulmonary Medicine, Ghent University Hospital, Ghent, Belgium Department of Pediatric Immunology and Pulmonology, Centre for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
47
|
Alexopoulos H, Biba A, Dalakas MC. Anti-B-Cell Therapies in Autoimmune Neurological Diseases: Rationale and Efficacy Trials. Neurotherapeutics 2016; 13:20-33. [PMID: 26566961 PMCID: PMC4720683 DOI: 10.1007/s13311-015-0402-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
B cells have an ever-increasing role in the etiopathology of a number of autoimmune neurological disorders, acting as antibody-producing cells and, most importantly, as sensors, coordinators, and regulators of the immune response. B cells, among other functions, regulate the T-cell activation process through their participation in antigen presentation and production of cytokines. The availability of monoclonal antibodies or fusion proteins against B-cell surface molecules or B-cell trophic factors bestows a rational approach for treating autoimmune neurological disorders, even when T cells are the main effector cells. This review summarizes basic aspects of B-cell biology, discusses the role(s) of B cells in neurological autoimmunity, and presents anti-B-cell drugs that are either currently on the market or are expected to be available in the near future for treating neurological autoimmune disorders.
Collapse
Affiliation(s)
- Harry Alexopoulos
- Neuroimmunology Unit, Department of Pathophysiology, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Angie Biba
- Neuroimmunology Unit, Department of Pathophysiology, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Marinos C Dalakas
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
48
|
Yong PF, Dziadzio M, Grimbacher B. Defects in B Cell Survival and Activation. ENCYCLOPEDIA OF IMMUNOBIOLOGY 2016:466-478. [DOI: 10.1016/b978-0-12-374279-7.18014-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
49
|
Frans G, Meyts I, Devriendt K, Liston A, Vermeulen F, Bossuyt X. Mild humoral immunodeficiency in a patient with X-linked Kabuki syndrome. Am J Med Genet A 2015; 170:801-3. [DOI: 10.1002/ajmg.a.37499] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/26/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Glynis Frans
- Department of Microbiology and Immunology; Experimental Laboratory Immunology; KU Leuven; Leuven Belgium
| | - Isabelle Meyts
- Department of Microbiology and Immunology; Childhood Immunology; KU Leuven; Leuven Belgium
- Department of Pediatrics; University Hospitals Leuven; Leuven Belgium
| | - Koen Devriendt
- Department of Human Genetics; University Hospitals Leuven; Leuven Belgium
| | - Adrian Liston
- Department of Microbiology and Immunology; Autoimmune Genetics; KU Leuven and VIB; Leuven Belgium
| | | | - Xavier Bossuyt
- Department of Microbiology and Immunology; Experimental Laboratory Immunology; KU Leuven; Leuven Belgium
- Department of Laboratory Medicine; University Hospitals Leuven; Leuven Belgium
| |
Collapse
|
50
|
Increased STAT3 phosphorylation on CD27 + B-cells from common variable immunodeficiency disease patients. Clin Immunol 2015; 161:77-88. [DOI: 10.1016/j.clim.2015.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 06/19/2015] [Accepted: 09/04/2015] [Indexed: 01/03/2023]
|