1
|
Zimbru RI, Zimbru EL, Bojin FM, Haidar L, Andor M, Harich OO, Tănasie G, Tatu C, Mailat DE, Zbîrcea IM, Hirtie B, Uța C, Bănărescu CF, Panaitescu C. Connecting the Dots: How MicroRNAs Link Asthma and Atherosclerosis. Int J Mol Sci 2025; 26:3570. [PMID: 40332077 PMCID: PMC12026532 DOI: 10.3390/ijms26083570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 05/08/2025] Open
Abstract
Asthma and atherosclerosis are chronic conditions with distinct pathophysiologies, but overlapping inflammatory mechanisms that suggest a potential common regulatory framework. MicroRNAs (miRNAs), small non-coding RNA molecules that modulate gene expression post-transcriptionally, could be key players in linking these disorders. This review outlines how miRNAs contribute to the complex interplay between asthma and atherosclerosis, focusing on key miRNAs involved in inflammatory pathways, immune cell regulation and vascular remodeling. We discuss specific miRNAs, such as miR-155, miR-21 and miR-146a, which have been shown to modulate inflammatory cytokine production and T cell differentiation, impacting respiratory and cardiovascular health. The common miRNAs found in both asthma and atherosclerosis emphasize their role as potential biomarkers, but also as therapeutic targets. Understanding these molecular connections may unlock novel approaches for innovative, integrated treatment strategies that address both conditions and may significantly improve patient outcomes. Further research is needed to explore mechanistic pathways and validate the translational potential of miRNA-based interventions in preclinical and clinical settings.
Collapse
Affiliation(s)
- Răzvan-Ionuț Zimbru
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.-I.Z.)
- Research Center for Gene and Cellular Therapies in the Treatment of Cancer—OncoGen, Timis County Emergency Clinical Hospital “Pius Brinzeu”, 156 Liviu Rebreanu Bd., 300723 Timisoara, Romania
| | - Elena-Larisa Zimbru
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.-I.Z.)
- Research Center for Gene and Cellular Therapies in the Treatment of Cancer—OncoGen, Timis County Emergency Clinical Hospital “Pius Brinzeu”, 156 Liviu Rebreanu Bd., 300723 Timisoara, Romania
- Multidisciplinary Heart Research Center, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Florina-Maria Bojin
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.-I.Z.)
- Research Center for Gene and Cellular Therapies in the Treatment of Cancer—OncoGen, Timis County Emergency Clinical Hospital “Pius Brinzeu”, 156 Liviu Rebreanu Bd., 300723 Timisoara, Romania
- Timis County Emergency Clinical Hospital “Pius Brinzeu”, 156 Liviu Rebreanu Bd., 300723 Timisoara, Romania
| | - Laura Haidar
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.-I.Z.)
| | - Minodora Andor
- Multidisciplinary Heart Research Center, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Cardiology Clinic, Timisoara Municipal Clinical Emergency Hospital, 12 Revoluției din 1989 Bd., 300040 Timisoara, Romania
| | - Octavia Oana Harich
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.-I.Z.)
| | - Gabriela Tănasie
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.-I.Z.)
- Research Center for Gene and Cellular Therapies in the Treatment of Cancer—OncoGen, Timis County Emergency Clinical Hospital “Pius Brinzeu”, 156 Liviu Rebreanu Bd., 300723 Timisoara, Romania
- Timis County Emergency Clinical Hospital “Pius Brinzeu”, 156 Liviu Rebreanu Bd., 300723 Timisoara, Romania
| | - Carmen Tatu
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.-I.Z.)
- Research Center for Gene and Cellular Therapies in the Treatment of Cancer—OncoGen, Timis County Emergency Clinical Hospital “Pius Brinzeu”, 156 Liviu Rebreanu Bd., 300723 Timisoara, Romania
- Timis County Emergency Clinical Hospital “Pius Brinzeu”, 156 Liviu Rebreanu Bd., 300723 Timisoara, Romania
| | - Diana-Evelyne Mailat
- Multidisciplinary Heart Research Center, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Cardiology Clinic, Timisoara Municipal Clinical Emergency Hospital, 12 Revoluției din 1989 Bd., 300040 Timisoara, Romania
| | - Iulia-Maria Zbîrcea
- Department of Automation and Applied Informatics, “Politehnica” University of Timisoara, 300006 Timișoara, Romania
| | - Bogdan Hirtie
- ENT Department, “Victor Babes” University of Medicine and Pharmacy, 300042 Timișoara, Romania
| | - Cristina Uța
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.-I.Z.)
- Timis County Emergency Clinical Hospital “Pius Brinzeu”, 156 Liviu Rebreanu Bd., 300723 Timisoara, Romania
| | - Camelia-Felicia Bănărescu
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.-I.Z.)
- Timis County Emergency Clinical Hospital “Pius Brinzeu”, 156 Liviu Rebreanu Bd., 300723 Timisoara, Romania
| | - Carmen Panaitescu
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.-I.Z.)
- Research Center for Gene and Cellular Therapies in the Treatment of Cancer—OncoGen, Timis County Emergency Clinical Hospital “Pius Brinzeu”, 156 Liviu Rebreanu Bd., 300723 Timisoara, Romania
- Timis County Emergency Clinical Hospital “Pius Brinzeu”, 156 Liviu Rebreanu Bd., 300723 Timisoara, Romania
| |
Collapse
|
2
|
Loperfido A, Cavaliere C, Fionda B, Masieri S, Bellocchi G, Re M, Tomasetti M. The Emerging Role of MicroRNAs in Nasal Inflammatory Diseases and Tumors: From Bench to Bedside. Genes (Basel) 2025; 16:295. [PMID: 40149447 PMCID: PMC11942466 DOI: 10.3390/genes16030295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 02/20/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES MicroRNAs (miRNAs) play a crucial role in regulating immune responses and have been implicated in the pathogenesis of various nasal diseases, including chronic rhinosinusitis (CRS), allergic rhinitis (AR), and sinonasal tumors. This review comprehensively explores the emerging role of miRNAs in inflammatory and oncological nasal diseases, highlighting their diagnostic, prognostic, and therapeutic potential. METHODS A comprehensive review of the literature was conducted to summarize current findings on miRNA expression in nasal inflammatory conditions and tumors. Key studies evaluating miRNA-mediated regulatory mechanisms, potential biomarker applications, and therapeutic approaches were analyzed. RESULTS Altered miRNA expression profiles contribute to the pathogenesis of CRS, AR, and sinonasal tumors. Specific miRNAs, such as miR-125b and miR-155 are upregulated in CRS and AR, promoting inflammation and tissue remodeling. In sinonasal tumors, dysregulated miRNAs, including miR-126 and miR-34/miR-449 clusters, influence tumor progression and therapeutic response. Exosome-mediated miRNA delivery emerges as a promising avenue for precision medicine, offering novel strategies for miRNA-based diagnostics and therapies. CONCLUSIONS miRNAs are key regulators of nasal diseases, with potential applications in non-invasive diagnostics and targeted therapies. Further research into miRNA-based interventions may improve treatment outcomes and contribute to the development of personalized medicine approaches for nasal inflammatory disorders and malignancies.
Collapse
Affiliation(s)
- Antonella Loperfido
- Otolaryngology Unit, San Camillo Forlanini Hospital, Circonvallazione Gianicolense 87, 00152 Rome, Italy
| | - Carlo Cavaliere
- Department of Sense Organs, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Bruno Fionda
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Simonetta Masieri
- Department of Oral and Maxillofacial Sciences, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Gianluca Bellocchi
- Otolaryngology Unit, San Camillo Forlanini Hospital, Circonvallazione Gianicolense 87, 00152 Rome, Italy
| | - Massimo Re
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Via Tronto 10/a, 60020 Ancona, Italy
| | - Marco Tomasetti
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Via Tronto 10/a, 60020 Ancona, Italy
| |
Collapse
|
3
|
Ritzmann F, Brand M, Bals R, Wegmann M, Beisswenger C. Role of Epigenetics in Chronic Lung Disease. Cells 2025; 14:251. [PMID: 39996724 PMCID: PMC11853132 DOI: 10.3390/cells14040251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025] Open
Abstract
Epigenetics regulates gene expression and thus cellular processes that underlie the pathogenesis of chronic lung diseases such as chronic obstructive pulmonary disease (COPD), asthma, and idiopathic pulmonary fibrosis (IPF). Environmental factors (e.g., air pollution, smoking, infections, poverty), but also conditions such as gastroesophageal reflux, induce epigenetic changes long before lung disease is diagnosed. Therefore, epigenetic signatures have the potential to serve as biomarkers that can be used to identify younger patients who are at risk for premature loss of lung function or diseases such as IPF. Epigenetic analyses also contribute to a better understanding of chronic lung disease. This can be used directly to improve therapies, as well as for the development of innovative drugs. Here, we highlight the role of epigenetics in the development and progression of chronic lung disease, with a focus on DNA methylation.
Collapse
Affiliation(s)
- Felix Ritzmann
- Department of Internal Medicine V—Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, 66421 Homburg, Germany; (F.R.); (M.B.); (R.B.)
| | - Michelle Brand
- Department of Internal Medicine V—Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, 66421 Homburg, Germany; (F.R.); (M.B.); (R.B.)
- Helmholtz Institute for Pharmaceutical Research, 66123 Saarbrücken, Germany
| | - Robert Bals
- Department of Internal Medicine V—Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, 66421 Homburg, Germany; (F.R.); (M.B.); (R.B.)
- Helmholtz Institute for Pharmaceutical Research, 66123 Saarbrücken, Germany
| | - Michael Wegmann
- Division of Lung Immunology, Priority Area Asthma and Allergy, Research Center Borstel—Leibniz Lung Center, 23845 Borstel, Germany;
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), 23845 Borstel, Germany
| | - Christoph Beisswenger
- Department of Internal Medicine V—Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, 66421 Homburg, Germany; (F.R.); (M.B.); (R.B.)
| |
Collapse
|
4
|
Klein M, Gagnon PA, Salem M, Rouabhia M, Chakir J. MicroRNA-155-5p Differentially Regulates IL-13Rα1 and IL-13Rα2 Expression and Signaling Driving Abnormal Lung Epithelial Cell Phenotype in Severe Asthma. Am J Respir Cell Mol Biol 2024; 71:603-616. [PMID: 39051933 DOI: 10.1165/rcmb.2024-0089oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/25/2024] [Indexed: 07/27/2024] Open
Abstract
MicroRNA (miR)-155-5p increases in innate and adaptive immune cells in response to IL-13 and is associated with the severity of asthma. However, little is known about its role in airway structural cells. Bronchial epithelial cells (BECs) isolated from healthy donors and patients with severe asthma were stimulated with IL-13. miR-155-5p expression and release were measured by real-time (RT)-PCR in BECs and in their derived exosomes. Modulation of miR-155-5p in BECs was performed using transfection of miR-155-5p inhibitor and mimic. IL-13 receptor α1 (IL-13Rα1), IL-13Rα2, MUC5AC, IL-8, and eotaxin-1 expression was measured by RT-PCR and Western blot analysis. The BEC repair process was assessed by a wound-healing assay. IL-13Rα1 and IL-13Rα2 expression and downstream pathways were evaluated by Western blot analysis. A dual luciferase assay was used to identify miR-155-5p target genes associated with IL-13R signaling. BECs from patients with severe asthma showed increased expression and exosomal release of miR-155-5p at baseline with amplification by IL-13 stimulation. BECs from patients with asthma expressed more IL-13Rα1 and less IL-13Rα2 than those from healthy donors, and IL-13Rα1 but not IL-13Rα2 induced miR-155-5p expression under IL-13 stimulation. miR-155-5p overexpression favored MUC5AC, IL-8, and Eotaxin-1 through the IL-13Rα1/SOCS1/STAT6 pathway while delaying the repair process by downregulating IL-13Rα2/MAPK14/c-Jun/c-fos signaling. The dual luciferase assay confirmed that miR-155-5p modulates both IL-13R pathways by directly targeting SOCS1, c-fos, and MAPK14. miR-155-5p is overexpressed in BECs from patients with severe asthma and regulates IL-13Rα1 and IL-13Rα2 expression and signaling, favoring expression of mucin- and eosinophil-related genes to the detriment of airway repair. These results show that miR-155-5p may contribute to airway epithelial cell dysfunction in patients with severe asthma.
Collapse
Affiliation(s)
- Martin Klein
- Institut Universitaire de Cardiologie et de Pneumologie de Québec; and
| | | | - Mabrouka Salem
- Institut Universitaire de Cardiologie et de Pneumologie de Québec; and
| | - Mahmoud Rouabhia
- Groupe de Recherche en Ecologie Buccale, Faculté de médecine dentaire, Université Laval, Québec City, Québec, Canada
| | - Jamila Chakir
- Institut Universitaire de Cardiologie et de Pneumologie de Québec; and
| |
Collapse
|
5
|
Li S, Cui H, Lu H, Zheng S, Yuan C. Advances in noncoding RNA in children allergic rhinitis. Int Forum Allergy Rhinol 2024; 14:1350-1362. [PMID: 38946149 DOI: 10.1002/alr.23393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/02/2024] [Accepted: 06/08/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND A chronic condition that significantly reduces a child's quality of life is allergic rhinitis (AR). The environment and allergens that the body is regularly exposed to can cause inflammatory and immunological reactions, which can change the expression of certain genes Epigenetic changes are closely linked to the onset and severity of allergy disorders according to mounting amounts of data. Noncoding RNAs (ncRNAs) are a group of RNA molecules that cannot be converted into polypeptides. The three main categories of ncRNAs include microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs). NcRNAs play a crucial role in controlling gene expression and contribute to the development of numerous human diseases. METHODS Articles are selected based on Pubmed's literature review and the author's personal knowledge. The largest and highest quality studies were included. The search selection is not standardized. RESULTS Recent findings indicate that various categories of ncRNAs play distinct yet interconnected roles and actively contribute to intricate gene regulatory networks. CONCLUSION This article demonstrates the significance and progress of ncRNAs in children's AR. The database covers three key areas: miRNAs, lncRNAs, and circRNAs. Additionally, potential avenues for future research to facilitate the practical application of ncRNAs as therapeutic targets and biomarkers will be explore.
Collapse
Affiliation(s)
- Shuman Li
- Chongqing Medical University, Chongqing, China
| | - Hongtao Cui
- Department of Pediatrics, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Huina Lu
- Department of Pediatrics, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Shan Zheng
- Department of Pediatrics, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Chao Yuan
- Department of Pediatrics, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| |
Collapse
|
6
|
Jin S, Wan S, Xiong R, Li Y, Dong T, Guan C. The role of regulatory T cells in vitiligo and therapeutic advances: a mini-review. Inflamm Res 2024; 73:1311-1332. [PMID: 38839628 DOI: 10.1007/s00011-024-01900-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Regulatory T cells (Tregs) play vital roles in controlling immune reactions and maintaining immune tolerance in the body. The targeted destruction of epidermal melanocytes by activated CD8+T cells is a key event in the development of vitiligo. However, Tregs may exert immunosuppressive effects on CD8+T cells, which could be beneficial in treating vitiligo. METHODS A comprehensive search of PubMed and Web of Science was conducted to gather information on Tregs and vitiligo. RESULTS In vitiligo, there is a decrease in Treg numbers and impaired Treg functions, along with potential damage to Treg-related signaling pathways. Increasing Treg numbers and enhancing Treg function could lead to immunosuppressive effects on CD8+T cells. Recent research progress on Tregs in vitiligo has been summarized, highlighting various Treg-related therapies being investigated for clinical use. The current status of Treg-related therapeutic strategies and potential future directions for vitiligo treatment are also discussed. CONCLUSIONS A deeper understanding of Tregs will be crucial for advancing Treg-related drug discovery and treatment development in vitiligo.
Collapse
Affiliation(s)
- Shiyu Jin
- Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
| | - Sheng Wan
- Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, 310009, China
| | - Renxue Xiong
- Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, 310009, China
| | - Yujie Li
- Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
| | - Tingru Dong
- Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
| | - Cuiping Guan
- Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China.
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, 310009, China.
| |
Collapse
|
7
|
Yao Y, Yang Y, Ji M, Qin Q, Xu K, Xia Z, Liu H, Yuan L, Yuan Y, Qin L, Du X, Wang L, Zhou K, Wu X, Wang W, Qing B, Xiang Y, Qu X, Yang M, Qin X, Liu C. Airway epithelial-derived exosomes induce acute asthma exacerbation after respiratory syncytial virus infection. MedComm (Beijing) 2024; 5:e621. [PMID: 38938285 PMCID: PMC11208743 DOI: 10.1002/mco2.621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/29/2024] Open
Abstract
Acute asthma exacerbation refers to the progressive deterioration of asthma symptoms that is always triggered by virus infection represented by respiratory syncytial virus (RSV). After RSV infection, exaggerated Th2-mediated pulmonary inflammation is the critical pathological response of asthmatic patients with acute exacerbation. Significantly, airway epithelial cells, being the primary targets of RSV infection, play a crucial role in controlling the pulmonary inflammatory response by releasing airway epithelial cell-derived exosomes (AEC-Exos), which potentially influence the development of asthma. However, the specific role of AEC-Exos in acute asthma exacerbation after RSV infection remains obscure. The purpose of this study was to determine the distinct function of AEC-Exos in exacerbating acute asthma following RSV infection. Blockade of exosomes by GW reduce the enhanced pulmonary inflammation significantly. Specifically, the enhanced Th2 inflammation was induced by AEC-Exos thorough transportation of hsa-miR-155-5p-Sirtuin 1 (SIRT1) pathway during acute asthma exacerbation. Targeted inhibition of hsa-miR-155-5p blocks the exaggerated Th2 inflammation effectively in mice with acute asthma exacerbation. In summary, our study showed that during acute asthma exacerbation after RSV infection, AEC-Exos promote the enhanced Th2 inflammation through transportation of increased hsa-miR-155-5p, which was mediated partly through SIRT1-mediated pathway. hsa-miR-155-5p is a potential biomarker for early prediction of acute asthma exacerbation.
Collapse
Affiliation(s)
- Ye Yao
- Department of Respiratory MedicineNational Clinical Research Center for Respiratory DiseasesXiangya HospitalCentral South UniversityChangshaChina
- Department of PhysiologySchool of Basic Medicine ScienceCentral South UniversityChangshaHunanChina
| | - Yu Yang
- Department of Respiratory MedicineNational Clinical Research Center for Respiratory DiseasesXiangya HospitalCentral South UniversityChangshaChina
- Department of PhysiologySchool of Basic Medicine ScienceCentral South UniversityChangshaHunanChina
| | - Ming Ji
- Department of PhysiologySchool of Basic Medicine ScienceCentral South UniversityChangshaHunanChina
| | - Qingwu Qin
- Department of Pulmonary and Critical Care Medicinethe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Kun Xu
- Department of preventive medicine, School of MedicineHunan Normal UniversityChangshaChina
| | - Zhenkun Xia
- Department of Thoracic Surgerythe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Huijun Liu
- Department of PhysiologySchool of Basic Medicine ScienceCentral South UniversityChangshaHunanChina
| | - Lin Yuan
- Department of PhysiologySchool of Basic Medicine ScienceCentral South UniversityChangshaHunanChina
| | - Yunchang Yuan
- Department of Thoracic Surgerythe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Ling Qin
- Department of PhysiologySchool of Basic Medicine ScienceCentral South UniversityChangshaHunanChina
- Basic and Clinical Research Laboratory of Major Respiratory DiseasesCentral South UniversityChangshaHunanChina
| | - Xizi Du
- Department of PhysiologySchool of Basic Medicine ScienceCentral South UniversityChangshaHunanChina
| | - Leyuan Wang
- Department of PhysiologySchool of Basic Medicine ScienceCentral South UniversityChangshaHunanChina
| | - Kai Zhou
- Department of PhysiologySchool of Basic Medicine ScienceCentral South UniversityChangshaHunanChina
| | - Xinyu Wu
- Department of PhysiologySchool of Basic Medicine ScienceCentral South UniversityChangshaHunanChina
| | - Weijie Wang
- Department of PhysiologySchool of Basic Medicine ScienceCentral South UniversityChangshaHunanChina
| | - Bei Qing
- Department of Thoracic Surgerythe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Yang Xiang
- Department of PhysiologySchool of Basic Medicine ScienceCentral South UniversityChangshaHunanChina
| | - Xiangping Qu
- Department of PhysiologySchool of Basic Medicine ScienceCentral South UniversityChangshaHunanChina
| | - Ming Yang
- Centre for Asthma and Respiratory DiseaseSchool of Biomedical Sciences and PharmacyFaculty of Health and MedicineUniversity of Newcastle and Hunter Medical Research InstituteCallaghanNew South WalesAustralia
| | - Xiaoqun Qin
- Department of PhysiologySchool of Basic Medicine ScienceCentral South UniversityChangshaHunanChina
| | - Chi Liu
- Department of Respiratory MedicineNational Clinical Research Center for Respiratory DiseasesXiangya HospitalCentral South UniversityChangshaChina
- Department of PhysiologySchool of Basic Medicine ScienceCentral South UniversityChangshaHunanChina
- Basic and Clinical Research Laboratory of Major Respiratory DiseasesCentral South UniversityChangshaHunanChina
| |
Collapse
|
8
|
Zeng Y, Zeng Q, Wen Y, Li J, Xiao H, Yang C, Luo R, Liu W. Apolipoprotein A-I inhibited group II innate lymphoid cell response mediated by microRNA-155 in allergic rhinitis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2024; 3:100212. [PMID: 38371899 PMCID: PMC10869247 DOI: 10.1016/j.jacig.2024.100212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/18/2023] [Accepted: 12/04/2023] [Indexed: 02/20/2024]
Abstract
Background Group 2 innate lymphoid cells (ILC2s) have been found to take part in type 2 inflammation by secreting TH2 cytokines. Apolipoprotein A-I (Apo-AI), a major structural and functional protein of high-density lipoproteins, has anti-inflammatory effects on neutrophils, monocytes, macrophages, and eosinophils. However, its effects on ILC2s are not well characterized. Objective We aimed to investigate the effect of Apo-AI on the proliferation and function of ILC2s as well as its possible mechanism. Methods The protein expression of Apo-AI and the percentage of ILC2s in peripheral blood between 20 allergic rhinitis patients and 20 controls were detected by ELISA and flow cytometry. The effect of Apo-AI and miR-155 on ILC2 proliferation and function was detected by tritiated thymidine incorporation and ELISA. Anima models were adopted to verify the effect of Apo-AI in vivo. Results Elevated expression of Apo-AI was observed in allergic rhinitis patients. Apo-AI promotes ABCA1 expression by ILC2s, which can be inhibited by anti-Apo-AI. Apo-AI decreased ILC2 proliferation and the microRNA levels of GATA3 and RORα from ILC2s. The miR-155 overexpression promoted the upregulation of GATA3 and type II cytokines from ILC2s, while the addition of Apo-AI or miR-155 inhibitor significantly inhibited expression of GATA3 and type II cytokines by ILC2s. Apo-AI-/- mice showed as enhanced allergen-induced airway inflammation. The miR-155 inhibitor can reverse the enhanced allergen-induced airway inflammation in Apo-AI-/- mice, while miR-155 mimics can reverse the decreased allergen-induced airway inflammation in Apo-AI-treated mice. Conclusion Apo-AI suppressed the proliferation and function of ILC2s through miR-155 in allergic rhinitis. Our data provide new insights into the mechanism of allergen-induced airway inflammation.
Collapse
Affiliation(s)
- Yinhui Zeng
- Department of Otolaryngology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Qingxiang Zeng
- Department of Otolaryngology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Yueqiang Wen
- Department of Nephrology, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jinyuan Li
- Department of Otolaryngology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Haiqing Xiao
- Department of Otolaryngology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Chao Yang
- Department of Otolaryngology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Renzhong Luo
- Department of Otolaryngology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Wenlong Liu
- Department of Otolaryngology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| |
Collapse
|
9
|
Liu J, Jiang X, Liu K, Deng J, Qiu Y, Wei W, Yang C. Role of LINC00240 on T-helper 9 differentiation in allergic rhinitis through influencing DNMT1-dependent methylation of PU.1. Immunol Res 2024; 72:197-211. [PMID: 37966708 DOI: 10.1007/s12026-023-09435-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/06/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND Allergic rhinitis (AR) is a common allergic disease with increasing prevalence globally. However, the molecular mechanism underlying AR pathogenesis remains largely undefined. METHODS Peripheral blood and nasal mucosa samples obtained from patients with AR (n = 22), and ovalbumin-induced AR mouse model (n = 8 per group) were prepared for subsequent detection. qRT-PCR and western blot were used to detect the expression of LINC00240, miR-155-5p, PU.1 and other key molecules. ELISA assay and flow cytometry were employed to evaluate the secretion of IL-9 and T-helper 9 (Th9) cell ratio, respectively. Bioinformatics analysis, RNA immunoprecipitation (RIP), chromatin immunoprecipitation (ChIP) and luciferase reporter assays were employed to further elucidate the regulatory network of LINC00240/miR-155-5p/DNMT1. The methylation of PU.1 promoter was assessed by methylation-specific PCR (MSP). This signaling axis was further validated in the mouse model of AR. RESULTS LINC00240 was downregulated, while miR-155-5p and PU.1 were upregulated in the peripheral blood and nasal mucosa of AR patients, as well as in AR mice. This was accompanied with the increased ratio of Th9 cells and elevated IL-9 secretion. Mechanistically, LINC00240 served as a miR-155-5p sponge, and DNMT1 was a target of miR-155-5p. In addition, DNMT1 mediated the methylation of PU.1 promoter. In vivo studies verified that LINC00240 mitigated AR progression, possibly via miR-155-5p/DNMT1/PU.1-dependent Th9 differentiation. CONCLUSION The involvement of LINC00240 in AR pathogenesis is closely associated with Th9 differentiation through modulating DNMT1-dependent methylation of PU.1 by sponging miR-155-5p.
Collapse
Affiliation(s)
- JianGuo Liu
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, P.R. China
| | - XunShuo Jiang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, P.R. China
| | - Ke Liu
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, P.R. China
| | - JianJian Deng
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, P.R. China
| | - Yi Qiu
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, P.R. China
| | - Wan Wei
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, P.R. China
| | - ChunPing Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, P.R. China.
| |
Collapse
|
10
|
Ahmad S, Zhang XL, Ahmad A. Epigenetic regulation of pulmonary inflammation. Semin Cell Dev Biol 2024; 154:346-354. [PMID: 37230854 PMCID: PMC10592630 DOI: 10.1016/j.semcdb.2023.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023]
Abstract
Pulmonary disease such as chronic obstructive pulmonary disease (COPD), asthma, pulmonary fibrosis and pulmonary hypertension are the leading cause of deaths. More importantly, lung diseases are on the rise and environmental factors induced epigenetic modifications are major players on this increased prevalence. It has been reported that dysregulation of genes involved in epigenetic regulation such as the histone deacetylase (HDACs) and histone acetyltransferase (HATs) play important role in lung health and pulmonary disease pathogenesis. Inflammation is an essential component of respiratory diseases. Injury and inflammation trigger release of extracellular vesicles that can act as epigenetic modifiers through transfer of epigenetic regulators such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), proteins and lipids, from one cell to another. The immune dysregulations caused by the cargo contents are important contributors of respiratory disease pathogenesis. N6 methylation of RNA is also emerging to be a critical mechanism of epigenetic alteration and upregulation of immune responses to environmental stressors. Epigenetic changes such as DNA methylation are stable and often long term and cause onset of chronic lung conditions. These epigenetic pathways are also being utilized for therapeutic intervention in several lung conditions.
Collapse
Affiliation(s)
- Shama Ahmad
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Xiao Lu Zhang
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Aftab Ahmad
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
11
|
Hernández-Díazcouder A, Romero-Nava R, Del-Río-Navarro BE, Sánchez-Muñoz F, Guzmán-Martín CA, Reyes-Noriega N, Rodríguez-Cortés O, Leija-Martínez JJ, Vélez-Reséndiz JM, Villafaña S, Hong E, Huang F. The Roles of MicroRNAs in Asthma and Emerging Insights into the Effects of Vitamin D 3 Supplementation. Nutrients 2024; 16:341. [PMID: 38337625 PMCID: PMC10856766 DOI: 10.3390/nu16030341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/11/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Asthma is one of the most common chronic non-communicable diseases worldwide, characterized by variable airflow limitation secondary to airway narrowing, airway wall thickening, and increased mucus resulting from chronic inflammation and airway remodeling. Current epidemiological studies reported that hypovitaminosis D is frequent in patients with asthma and is associated with worsening the disease and that supplementation with vitamin D3 improves asthma symptoms. However, despite several advances in the field, the molecular mechanisms of asthma have yet to be comprehensively understood. MicroRNAs play an important role in controlling several biological processes and their deregulation is implicated in diverse diseases, including asthma. Evidence supports that the dysregulation of miR-21, miR-27b, miR-145, miR-146a, and miR-155 leads to disbalance of Th1/Th2 cells, inflammation, and airway remodeling, resulting in exacerbation of asthma. This review addresses how these molecular mechanisms explain the development of asthma and its exacerbation and how vitamin D3 may modulate these microRNAs to improve asthma symptoms.
Collapse
Affiliation(s)
- Adrián Hernández-Díazcouder
- Laboratorio de Investigación de Obesidad y Asma, Hospital Infantil de México Federico Gómez, Ciudad de Mexico 06720, Mexico; (A.H.-D.); (N.R.-N.)
- Instituto Mexicano del Seguro Social, Hospital de Especialidades “Dr. Bernardo Sepúlveda Gutiérrez”, Unidad de Investigación Médica en Bioquímica, Ciudad de Mexico 06720, Mexico
| | - Rodrigo Romero-Nava
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico; (R.R.-N.); (S.V.)
| | - Blanca E. Del-Río-Navarro
- Servicio de Alergia e Inmunología, Hospital Infantil de México Federico Gómez, Ciudad de Mexico 06720, Mexico;
| | - Fausto Sánchez-Muñoz
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de Mexico 14080, Mexico; (F.S.-M.); (C.A.G.-M.)
| | - Carlos A. Guzmán-Martín
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de Mexico 14080, Mexico; (F.S.-M.); (C.A.G.-M.)
| | - Nayely Reyes-Noriega
- Laboratorio de Investigación de Obesidad y Asma, Hospital Infantil de México Federico Gómez, Ciudad de Mexico 06720, Mexico; (A.H.-D.); (N.R.-N.)
- Servicio de Alergia e Inmunología, Hospital Infantil de México Federico Gómez, Ciudad de Mexico 06720, Mexico;
| | - Octavio Rodríguez-Cortés
- Laboratorio de Inflamación y Obesidad, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico;
| | - José J. Leija-Martínez
- Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78290, Mexico;
| | - Juan Manuel Vélez-Reséndiz
- Laboratorio Multidisciplinario de Nanomedicina y de Farmacología Cardiovascular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico;
| | - Santiago Villafaña
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico; (R.R.-N.); (S.V.)
| | - Enrique Hong
- Departamento de Farmacobiología, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico 14330, Mexico;
| | - Fengyang Huang
- Laboratorio de Investigación de Obesidad y Asma, Hospital Infantil de México Federico Gómez, Ciudad de Mexico 06720, Mexico; (A.H.-D.); (N.R.-N.)
| |
Collapse
|
12
|
Markey GE, Ryan S, Furuta GT, Menard-Katcher C, McNamee EN, Masterson JC. Hypoxia-inducible microRNA-155 negatively regulates epithelial barrier in eosinophilic esophagitis by suppressing tight junction claudin-7. FASEB J 2024; 38:e23358. [PMID: 38050671 PMCID: PMC10699209 DOI: 10.1096/fj.202301934r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/06/2023]
Abstract
MicroRNA (miRNA)-mediated mRNA regulation directs many homeostatic and pathological processes, but how miRNAs coordinate aberrant esophageal inflammation during eosinophilic esophagitis (EoE) is poorly understood. Here, we report a deregulatory axis where microRNA-155 (miR-155) regulates epithelial barrier dysfunction by selectively constraining tight junction CLDN7 (claudin-7). MiR-155 is elevated in the esophageal epithelium of biopsies from patients with active EoE and in cell culture models. MiR-155 localization using in situ hybridization (ISH) in patient biopsies and intra-epithelial compartmentalization of miR-155 show expression predominantly within the basal epithelia. Epithelial miR-155 activity was evident through diminished target gene expression in 3D organotypic cultures, particularly in relatively undifferentiated basal cell states. Mechanistically, generation of a novel cell line with enhanced epithelial miR-155 stable overexpression induced a functionally deficient epithelial barrier in 3D air-liquid interface epithelial cultures measured by transepithelial electrical resistance (TEER). Histological assessment of 3D esophageal organoid cultures overexpressing miR-155 showed notable dilated intra-epithelial spaces. Unbiased RNA-sequencing analysis and immunofluorescence determined a defect in epithelial barrier tight junctions and revealed a selective reduction in the expression of critical esophageal tight junction molecule, claudin-7. Together, our data reveal a previously unappreciated role for miR-155 in mediating epithelial barrier dysfunction in esophageal inflammation.
Collapse
Affiliation(s)
- Gary E Markey
- Allergy, Inflammation & Remodelling Research Laboratory, Kathleen Lonsdale Institute for Human Health Research, Department of Biology, National University of Ireland Maynooth, Co. Kildare, Ireland
| | - Sinéad Ryan
- Allergy, Inflammation & Remodelling Research Laboratory, Kathleen Lonsdale Institute for Human Health Research, Department of Biology, National University of Ireland Maynooth, Co. Kildare, Ireland
| | - Glenn T Furuta
- Gastrointestinal Eosinophilic Diseases Program, Digestive Health Institute, Children’s Hospital Colorado, Department of Pediatrics, University of Colorado School of Medicine, CO, USA
| | - Calies Menard-Katcher
- Gastrointestinal Eosinophilic Diseases Program, Digestive Health Institute, Children’s Hospital Colorado, Department of Pediatrics, University of Colorado School of Medicine, CO, USA
| | - Eoin N McNamee
- Mucosal Immunology Research Laboratory, Kathleen Lonsdale Institute for Human Health Research, Department of Biology, National University of Ireland Maynooth, Co. Kildare, Ireland
| | - Joanne C Masterson
- Allergy, Inflammation & Remodelling Research Laboratory, Kathleen Lonsdale Institute for Human Health Research, Department of Biology, National University of Ireland Maynooth, Co. Kildare, Ireland
- Gastrointestinal Eosinophilic Diseases Program, Digestive Health Institute, Children’s Hospital Colorado, Department of Pediatrics, University of Colorado School of Medicine, CO, USA
| |
Collapse
|
13
|
Peng L, Chen S, Lin H, Wan C, Li X, Xu S, Li S. Bisphenol A exposure exacerbates tracheal inflammatory injury in selenium-deficient chickens by regulating the miR-155/TRAF3/ROS pathway. Int J Biol Macromol 2023; 253:127501. [PMID: 37866585 DOI: 10.1016/j.ijbiomac.2023.127501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/24/2023]
Abstract
Bisphenol A (BPA) is an endocrine disruptor. Excessive BPA intake can damage the structure and function of the respiratory tract. Dietary selenium (Se) deficiency may also cause immune tissue damage. To investigate the potential mechanism of BPA on tracheal damage in selenium-deficient chickens and the role of microRNAs (miRNAs) in this process, we established in vitro and in vivo Se deficiency and BPA exposure models and screened out miR-155 for follow-up experiments. We further predicted and confirmed the targeting relationship between miR-155 and TRAF3 using TargetScan and dual luciferase assays and found that miR-155 was highly expressed and caused inflammatory damage. Further studies showed that BPA exposure increased airway oxidative stress, activated the NF-κB pathway, and caused inflammation and immune damage in selenium-deficient chickens, but down-regulating miR-155 and NAC treatment could reverse this phenomenon. This suggested that these pathways are regulated by the miR-155/TRAF3/ROS axis. In conclusion, BPA exposure aggravates airway inflammation in selenium-deficient chickens by regulating miR-155/TRAF3/ROS. This study revealed the mechanism of BPA exposure combined with Se deficiency in tracheal inflammatory injury in chickens and enriched the theoretical basis of BPA injury in poultry.
Collapse
Affiliation(s)
- Lin Peng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shasha Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Chunyan Wan
- National Selenium-rich Product Quality Supervision and Inspection Center, Enshi 445000, PR China
| | - Xiang Li
- National Selenium-rich Product Quality Supervision and Inspection Center, Enshi 445000, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
14
|
Wang Y, Zou M, Zhao Y, Kabir MA, Peng X. Exosomal microRNA/miRNA Dysregulation in Respiratory Diseases: From Mycoplasma-Induced Respiratory Disease to COVID-19 and Beyond. Cells 2023; 12:2421. [PMID: 37830635 PMCID: PMC10571955 DOI: 10.3390/cells12192421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023] Open
Abstract
Respiratory diseases represent a significant economic and health burden worldwide, affecting millions of individuals each year in both human and animal populations. MicroRNAs (miRNAs) play crucial roles in gene expression regulation and are involved in various physiological and pathological processes. Exosomal miRNAs and cellular miRNAs have been identified as key regulators of several immune respiratory diseases, such as chronic respiratory diseases (CRD) caused by Mycoplasma gallisepticum (MG), Mycoplasma pneumoniae pneumonia (MMP) caused by the bacterium Mycoplasma pneumoniae, coronavirus disease 2019 (COVID-19), chronic obstructive pulmonary disease (COPD), asthma, and acute lung injury/acute respiratory distress syndrome (ALI/ARDS). Consequently, miRNAs seem to have the potential to serve as diagnostic biomarkers and therapeutic targets in respiratory diseases. In this review, we summarize the current understanding of the functional roles of miRNAs in the above several respiratory diseases and discuss the potential use of miRNAs as stable diagnostic biomarkers and therapeutic targets for several immune respiratory diseases, focusing on the identification of differentially expressed miRNAs and their targeting of various signaling pathways implicated in disease pathogenesis. Despite the progress made, unanswered questions and future research directions are discussed to facilitate personalized and targeted therapies for patients with these debilitating conditions.
Collapse
Affiliation(s)
| | | | | | | | - Xiuli Peng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.W.); (M.Z.); (Y.Z.); (M.A.K.)
| |
Collapse
|
15
|
Duan W, Huang J, Wasti B, Chen Z, Yuan Y, He Y, Li D, Jia J, Liu S, Liu Y, Ma L, Zeng Q, Zhu L, Li J, Zhang X, Xiang X. miR-146a-3p as a potential novel therapeutic by targeting MBD2 to mediate Th17 differentiation in Th17 predominant neutrophilic severe asthma. Clin Exp Med 2023; 23:2839-2854. [PMID: 36961677 PMCID: PMC10543568 DOI: 10.1007/s10238-023-01033-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/25/2023] [Indexed: 03/25/2023]
Abstract
Th17 (T-helper 17) cells subtype of non-T2 (non-type 2) asthma is related to neutrophilic infiltration and resistance to inhaled corticosteroids (ICS), so is also known as severe asthma. Methyl-CpG binding domain protein 2 (MBD2) regulates the differentiation of the Th17 cells, tending to show a therapeutic target in severe asthma. miR-146a-3p is associated with anti-inflammatory characteristics and immunity. Moreover, bioinformatic analysis showed that MBD2 may be a target gene of miR-146a-3p. However, the role of miR-146a-3p in the differentiation of Th17 cells via MBD2 in severe asthma remains unknown. Here, we aimed to explore how miR-146a-3p interacts with MBD2 and affects the differentiation of Th17 cells in severe asthma. First, we recruited 30 eligible healthy people and 30 patients with severe asthma to detect the expression of miR-146a-3p in peripheral blood mononuclear cells (PBMCs) by qRT-PCR. Then, we established a HDM/LPS (house dust mite/lipopolysaccharide) exposure model of bronchial epithelial cells (BECs) to evaluate the expression of miR-146a-3p, the interaction between miR-146a-3p and MBD2 using western blot and luciferase reporter analysis and the effect of miR-146a-3p regulated Th17 cells differentiation by flow cytometry in BECs in vitro. Finally, we constructed a mouse model of Th17 predominant neutrophilic severe asthma to assess the therapeutic potential of miR-146a-3p in severe asthma and the effect of miR-146a-3p regulated Th17 cells differentiation via MBD2 in vivo. Decreased miR-146a-3p expression was noted in severe asthma patients, in the BECs and in the animal severe asthma models. Moreover, we demonstrated that miR-146a-3p suppressed Th17 cells differentiation by targeting the MBD2. miR-146a-3p overexpression significantly reduced airway hyperresponsiveness, airway inflammation and airway mucus secretion, while also inhibiting Th17 cells response in vivo, which relieved severe asthma. By targeting MBD2 to suppress Th17 cells differentiation, miR-146a-3p provides a potential novel therapeutic for Th17 predominant neutrophilic severe asthma.
Collapse
Affiliation(s)
- Wentao Duan
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Jin Huang
- Changsha Social Work College, Changsha, 410004, China
| | - Binaya Wasti
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Zhifeng Chen
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yu Yuan
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yi He
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Danhong Li
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Jingsi Jia
- Department of Emergency, The Second Xiangya Hospital, Central South University, 139 Middle RenminRoad, 410011, Changsha, China
| | - Shaokun Liu
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yi Liu
- Department of Respiratory and Critical Care Medicine, Zhuzhou City Central Hospital, Zhuzhou, 412007, China
| | - Libing Ma
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guilin Medical College, Guilin, 541001, China
| | - Qingping Zeng
- Department of Respiratory and Critical Care Medicine, Longshan County People's Hospital, Longshan, 416800, China
| | - Liming Zhu
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Guhan Road No. 89, Changsha, 410016, China.
| | - Jianmin Li
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Guhan Road No. 89, Changsha, 410016, China.
| | - Xiufeng Zhang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Hainan Medical College University, 570000, Haikou, China.
| | - Xudong Xiang
- Department of Emergency, The Second Xiangya Hospital, Central South University, 139 Middle RenminRoad, 410011, Changsha, China.
| |
Collapse
|
16
|
Shen K, Zhang M, Zhao R, Li Y, Li C, Hou X, Sun B, Liu B, Xiang M, Lin J. Eosinophil extracellular traps in asthma: implications for pathogenesis and therapy. Respir Res 2023; 24:231. [PMID: 37752512 PMCID: PMC10523707 DOI: 10.1186/s12931-023-02504-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/04/2023] [Indexed: 09/28/2023] Open
Abstract
Asthma is a common, chronic inflammatory disease of the airways that affects millions of people worldwide and is associated with significant healthcare costs. Eosinophils, a type of immune cell, play a critical role in the development and progression of asthma. Eosinophil extracellular traps (EETs) are reticular structures composed of DNA, histones, and granulins that eosinophils form and release into the extracellular space as part of the innate immune response. EETs have a protective effect by limiting the migration of pathogens and antimicrobial activity to a controlled range. However, chronic inflammation can lead to the overproduction of EETs, which can trigger and exacerbate allergic asthma. In this review, we examine the role of EETs in asthma.
Collapse
Affiliation(s)
- Kunlu Shen
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, Friendship Hospital, No.2, East Yinghua Road, Chaoyang District, 100029, Beijing, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Mengyuan Zhang
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, Friendship Hospital, No.2, East Yinghua Road, Chaoyang District, 100029, Beijing, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ruiheng Zhao
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, Friendship Hospital, No.2, East Yinghua Road, Chaoyang District, 100029, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Yun Li
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, Friendship Hospital, No.2, East Yinghua Road, Chaoyang District, 100029, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Chunxiao Li
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, Friendship Hospital, No.2, East Yinghua Road, Chaoyang District, 100029, Beijing, China
- Peking University Health Science Center, Beijing, China
| | - Xin Hou
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, Friendship Hospital, No.2, East Yinghua Road, Chaoyang District, 100029, Beijing, China
- Peking University Health Science Center, Beijing, China
| | - Bingqing Sun
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, Friendship Hospital, No.2, East Yinghua Road, Chaoyang District, 100029, Beijing, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Bowen Liu
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, Friendship Hospital, No.2, East Yinghua Road, Chaoyang District, 100029, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Min Xiang
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, Friendship Hospital, No.2, East Yinghua Road, Chaoyang District, 100029, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Jiangtao Lin
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, Friendship Hospital, No.2, East Yinghua Road, Chaoyang District, 100029, Beijing, China.
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
- Beijing University of Chinese Medicine, Beijing, China.
- Peking University Health Science Center, Beijing, China.
| |
Collapse
|
17
|
Romero-Tapia SDJ, Becerril-Negrete JR, Castro-Rodriguez JA, Del-Río-Navarro BE. Early Prediction of Asthma. J Clin Med 2023; 12:5404. [PMID: 37629446 PMCID: PMC10455492 DOI: 10.3390/jcm12165404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
The clinical manifestations of asthma in children are highly variable, are associated with different molecular and cellular mechanisms, and are characterized by common symptoms that may diversify in frequency and intensity throughout life. It is a disease that generally begins in the first five years of life, and it is essential to promptly identify patients at high risk of developing asthma by using different prediction models. The aim of this review regarding the early prediction of asthma is to summarize predictive factors for the course of asthma, including lung function, allergic comorbidity, and relevant data from the patient's medical history, among other factors. This review also highlights the epigenetic factors that are involved, such as DNA methylation and asthma risk, microRNA expression, and histone modification. The different tools that have been developed in recent years for use in asthma prediction, including machine learning approaches, are presented and compared. In this review, emphasis is placed on molecular mechanisms and biomarkers that can be used as predictors of asthma in children.
Collapse
Affiliation(s)
- Sergio de Jesus Romero-Tapia
- Health Sciences Academic Division (DACS), Juarez Autonomous University of Tabasco (UJAT), Villahermosa 86040, Mexico
| | - José Raúl Becerril-Negrete
- Department of Clinical Immunopathology, Universidad Autónoma del Estado de México, Toluca 50000, Mexico;
| | - Jose A. Castro-Rodriguez
- Department of Pediatric Pulmonology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile;
| | | |
Collapse
|
18
|
Chimenti C, Magnocavallo M, Vetta G, Alfarano M, Manguso G, Ajmone F, Ballatore F, Costantino J, Ciaramella P, Severino P, Miraldi F, Lavalle C, Vizza CD. The Role of MicroRNA in the Myocarditis: a Small Actor for a Great Role. Curr Cardiol Rep 2023:10.1007/s11886-023-01888-5. [PMID: 37269474 DOI: 10.1007/s11886-023-01888-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/24/2023] [Indexed: 06/05/2023]
Abstract
PURPOSE OF REVIEW Myocarditis is an inflammation of the myocardium secondary to a variety of agents such as infectious pathogens, toxins, drugs, and autoimmune disorders. In our review, we provide an overview of miRNA biogenesis and their role in the etiology and pathogenesis of myocarditis, evaluating future directions for myocarditis management. RECENT FINDINGS Advances in genetic manipulation techniques allowed to demonstrate the important role of RNA fragments, especially microRNAs (miRNAs), in cardiovascular pathogenesis. miRNAs are small non-coding RNA molecules that regulate the post-transcriptional gene expression. Advances in molecular techniques allowed to identify miRNA's role in pathogenesis of myocarditis. miRNAs are related to viral infection, inflammation, fibrosis, and apoptosis of cardiomyocytes, making them not only promising diagnostic markers but also prognostics and therapeutic targets in myocarditis. Of course, further real-world studies will be needed to assess the diagnostic accuracy and applicability of miRNA in the myocarditis diagnosis.
Collapse
Affiliation(s)
- Cristina Chimenti
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy.
| | - Michele Magnocavallo
- Cardiology Division, Arrhythmology Unit, S. Giovanni Calibita Hospital, Isola Tiberina, Rome, Italy
| | - Giampaolo Vetta
- Department of Clinical and Experimental Medicine, Cardiology Unit, University of Messina, Mesina, Italy
| | - Maria Alfarano
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - Giulia Manguso
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - Francesco Ajmone
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - Federico Ballatore
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - Jacopo Costantino
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - Piera Ciaramella
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - Paolo Severino
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - Fabio Miraldi
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - Carlo Lavalle
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - Carmine Dario Vizza
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| |
Collapse
|
19
|
Wang J, Zhou Y, Zhang H, Hu L, Liu J, Wang L, Wang T, Zhang H, Cong L, Wang Q. Pathogenesis of allergic diseases and implications for therapeutic interventions. Signal Transduct Target Ther 2023; 8:138. [PMID: 36964157 PMCID: PMC10039055 DOI: 10.1038/s41392-023-01344-4] [Citation(s) in RCA: 108] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 03/26/2023] Open
Abstract
Allergic diseases such as allergic rhinitis (AR), allergic asthma (AAS), atopic dermatitis (AD), food allergy (FA), and eczema are systemic diseases caused by an impaired immune system. Accompanied by high recurrence rates, the steadily rising incidence rates of these diseases are attracting increasing attention. The pathogenesis of allergic diseases is complex and involves many factors, including maternal-fetal environment, living environment, genetics, epigenetics, and the body's immune status. The pathogenesis of allergic diseases exhibits a marked heterogeneity, with phenotype and endotype defining visible features and associated molecular mechanisms, respectively. With the rapid development of immunology, molecular biology, and biotechnology, many new biological drugs have been designed for the treatment of allergic diseases, including anti-immunoglobulin E (IgE), anti-interleukin (IL)-5, and anti-thymic stromal lymphopoietin (TSLP)/IL-4, to control symptoms. For doctors and scientists, it is becoming more and more important to understand the influencing factors, pathogenesis, and treatment progress of allergic diseases. This review aimed to assess the epidemiology, pathogenesis, and therapeutic interventions of allergic diseases, including AR, AAS, AD, and FA. We hope to help doctors and scientists understand allergic diseases systematically.
Collapse
Affiliation(s)
- Ji Wang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Yumei Zhou
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Honglei Zhang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Linhan Hu
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Juntong Liu
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Lei Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 1000210, China
| | - Tianyi Wang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Haiyun Zhang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Linpeng Cong
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Qi Wang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China.
| |
Collapse
|
20
|
Studies on the role of non-coding RNAs in controlling the activity of T cells in asthma. Noncoding RNA Res 2023; 8:211-217. [PMID: 36865391 PMCID: PMC9972402 DOI: 10.1016/j.ncrna.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Bronchial asthma, commonly known as asthma, is a chronic inflammatory disease characterized by airway inflammation, increased responsiveness and changes in airway structure. T cells, particularly T helper cells, play a crucial role in the disease. Non-coding RNAs, which are RNAs that do not code for proteins, mainly include microRNAs, long non-coding RNAs, and circular RNAs, play a role in regulating various biological processes. Studies have shown that non-coding RNAs have an important role in the activation and transformation of T cells and other biological processes in asthma. The specific mechanisms and clinical applications are worth further examination. This article reviews the recent research on the role of microRNAs, long non-coding RNAs and circular RNAs in T cells in asthma.
Collapse
|
21
|
Bandeira E, Jang SC, Lässer C, Johansson K, Rådinger M, Park KS. Effects of mesenchymal stem cell-derived nanovesicles in experimental allergic airway inflammation. Respir Res 2023; 24:3. [PMID: 36604658 PMCID: PMC9817274 DOI: 10.1186/s12931-023-02310-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Allergic asthma is associated with airflow obstruction and hyper-responsiveness that arises from airway inflammation and remodeling. Cell therapy with mesenchymal stem cells (MSC) has been shown to attenuate inflammation in asthma models, and similar effects have recently been observed using extracellular vesicles (EV) obtained from these cells. Biologically functional vesicles can also be artificially generated from MSC by extruding cells through membranes to produce EV-mimetic nanovesicles (NV). In this study, we aimed to determine the effects of different MSC-derived vesicles in a murine model of allergic airway inflammation. METHODS EV were obtained through sequential centrifugation of serum-free media conditioned by human bone marrow MSC for 24 h. NV were produced through serial extrusion of the whole cells through filters. Both types of vesicles underwent density gradient purification and were quantified through nanoparticle tracking analysis. C57BL/6 mice were sensitized to ovalbumin (OVA, 8 µg), and then randomly divided into the OVA group (intranasally exposed to 100 µg OVA for 5 days) and control group (exposed to PBS). The mice were then further divided into groups that received 2 × 109 EV or NV (intranasally or intraperitoneally) or PBS immediately following the first OVA exposure. RESULTS Administration of EV and NV reduced cellularity and eosinophilia in bronchoalveolar lavage (BAL) fluid in OVA-sensitized and OVA-exposed mice. In addition, NV treatment resulted in decreased numbers of inflammatory cells within the lung tissue, and this was associated with lower levels of Eotaxin-2 in both BAL fluid and lung tissue. Furthermore, both intranasal and systemic administration of NV were effective in reducing inflammatory cells; however, systemic delivery resulted in a greater reduction of eosinophilia in the lung tissue. CONCLUSIONS Taken together, our results indicate that MSC-derived NV significantly reduce OVA-induced allergic airway inflammation to a level comparable to EV. Thus, cell-derived NV may be a novel EV-mimetic therapeutic candidate for treating allergic diseases such as asthma.
Collapse
Affiliation(s)
- Elga Bandeira
- grid.8761.80000 0000 9919 9582Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Su Chul Jang
- grid.8761.80000 0000 9919 9582Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Cecilia Lässer
- grid.8761.80000 0000 9919 9582Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kristina Johansson
- grid.8761.80000 0000 9919 9582Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Madeleine Rådinger
- grid.8761.80000 0000 9919 9582Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kyong-Su Park
- grid.8761.80000 0000 9919 9582Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
22
|
Tu X, Gomez HM, Kim RY, Brown AC, de Jong E, Galvao I, Faiz A, Bosco A, Horvat JC, Hansbro P, Donovan C. Airway and parenchyma transcriptomics in a house dust mite model of experimental asthma. Respir Res 2023; 24:32. [PMID: 36698141 PMCID: PMC9878882 DOI: 10.1186/s12931-022-02298-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/15/2022] [Indexed: 01/26/2023] Open
Abstract
Lung transcriptomics studies in asthma have provided valuable information in the whole lung context, however, deciphering the individual contributions of the airway and parenchyma in disease pathogenesis may expedite the development of novel targeted treatment strategies. In this study, we performed transcriptomics on the airway and parenchyma using a house dust mite (HDM)-induced model of experimental asthma that replicates key features of the human disease. HDM exposure increased the expression of 3,255 genes, of which 212 were uniquely increased in the airways, 856 uniquely increased in the parenchyma, and 2187 commonly increased in both compartments. Further interrogation of these genes using a combination of network and transcription factor enrichment analyses identified several transcription factors that regulate airway and/or parenchymal gene expression, including transcription factor EC (TFEC), transcription factor PU.1 (SPI1), H2.0-like homeobox (HLX), metal response element binding transcription factor-1 (MTF1) and E74-like factor 4 (ets domain transcription factor, ELF4) involved in controlling innate immune responses. We next assessed the effects of inhibiting lung SPI1 responses using commercially available DB1976 and DB2313 on key disease outcomes. We found that both compounds had no protective effects on airway inflammation, however DB2313 (8 mg/kg) decreased mucus secreting cell number, and both DB2313 (1 mg/kg) and DB1976 (2.5 mg/kg and 1 mg/kg) reduced small airway collagen deposition. Significantly, both compounds decreased airway hyperresponsiveness. This study demonstrates that SPI1 is important in HDM-induced experimental asthma and that its pharmacological inhibition reduces HDM-induced airway collagen deposition and hyperresponsiveness.
Collapse
Affiliation(s)
- Xiaofan Tu
- grid.266842.c0000 0000 8831 109XPriority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW Australia
| | - Henry M. Gomez
- grid.266842.c0000 0000 8831 109XPriority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW Australia
| | - Richard Y. Kim
- grid.266842.c0000 0000 8831 109XPriority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW Australia ,grid.117476.20000 0004 1936 7611Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW Australia
| | - Alexandra C. Brown
- grid.266842.c0000 0000 8831 109XPriority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW Australia
| | - Emma de Jong
- Centre for Health Research, Telethon Kids Institute, The University of Western Australia, Nedlands, WA Australia
| | - Izabela Galvao
- grid.117476.20000 0004 1936 7611Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW Australia
| | - Alen Faiz
- grid.117476.20000 0004 1936 7611Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW Australia
| | - Anthony Bosco
- grid.134563.60000 0001 2168 186XAsthma and Airway Disease Research Center, University of Arizona, Arizona, USA
| | - Jay C. Horvat
- grid.266842.c0000 0000 8831 109XPriority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW Australia
| | - Philip Hansbro
- grid.266842.c0000 0000 8831 109XPriority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW Australia ,grid.117476.20000 0004 1936 7611Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW Australia
| | - Chantal Donovan
- grid.266842.c0000 0000 8831 109XPriority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW Australia ,grid.117476.20000 0004 1936 7611Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW Australia
| |
Collapse
|
23
|
Albano GD, Gagliardo R, Montalbano AM, Profita M. Non-Coding RNAs in Airway Diseases: A Brief Overview of Recent Data. Cancers (Basel) 2022; 15:cancers15010054. [PMID: 36612051 PMCID: PMC9817765 DOI: 10.3390/cancers15010054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
Inflammation of the human lung is mediated in response to different stimuli (e.g., physical, radioactive, infective, pro-allergenic, or toxic) such as cigarette smoke and environmental pollutants. These stimuli often promote an increase in different inflammatory activities in the airways, manifesting themselves as chronic diseases (e.g., allergic airway diseases, asthma chronic bronchitis/chronic obstructive pulmonary disease, or even lung cancer). Non-coding RNA (ncRNAs) are single-stranded RNA molecules of few nucleotides that regulate the gene expression involved in many cellular processes. ncRNA are molecules typically involved in the reduction of translation and stability of the genes of mRNAs s. They regulate many biological aspects such as cellular growth, proliferation, differentiation, regulation of cell cycle, aging, apoptosis, metabolism, and neuronal patterning, and influence a wide range of biologic processes essential for the maintenance of cellular homeostasis. The relevance of ncRNAs in the pathogenetic mechanisms of respiratory diseases has been widely established and in the last decade many papers were published. However, once their importance is established in pathogenetic mechanisms, it becomes important to further deepen the research in this direction. In this review we describe several of most recent knowledge concerning ncRNA (overall miRNAs) expression and activities in the lung.
Collapse
|
24
|
Role of miR-155 in inflammatory autoimmune diseases: a comprehensive review. Inflamm Res 2022; 71:1501-1517. [DOI: 10.1007/s00011-022-01643-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/05/2022] Open
|
25
|
He L, Liu J, Wang X, Wang Y, Zhu J, Kang X. Identifying a novel serum microRNA biomarker panel for the diagnosis of childhood asthma. Exp Biol Med (Maywood) 2022; 247:1732-1740. [PMID: 36000159 PMCID: PMC9638957 DOI: 10.1177/15353702221114870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The pathological mechanism of childhood asthma is complex, and timely diagnosis is the key to effective prevention and control of childhood asthma. We collected 170 serum samples from 95 children with asthma and 75 healthy children. Serum miRNA biomarkers were analyzed by Illumina sequencing for childhood asthma. Differentially serum miRNAs were confirmed with quantitative reverse transcription polymerase chain reaction (qRT-PCR) assay. The Illumina sequencing data showed the differential expression of 111 serum miRNAs among asthmatic and healthy children. After confirmation of miRNAs expression through qRT-PCR, four of them (namely hsa-miR-106a-5p, hsa-miR-18a-5p, hsa-miR-144-3p, and hsa-miR-375) manifested significant differential expression between asthmatic children and healthy controls. The biomarkers classification tree model created with these four miRNAs using the Biomarker Patterns Software could effectively separate childhood asthma and healthy children, with a specificity of 88.3%, a sensitivity of 95.0%, and an area under the curve (AUC) value of 0.942. The regulatory networks containing miRNAs and their gene targets suggested that the four miRNAs might have gene targets implicated in inflammation, immunity, and transcriptional efficiency. Taken together, this four-serum-miRNA panel is a promising biomarker to diagnose childhood asthma noninvasively.
Collapse
Affiliation(s)
- Linjuan He
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiyan Liu
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China,Department of Academic Journals, Hangzhou Normal University, Hangzhou 311121, China,Jiyan Liu.
| | - Xiaoyue Wang
- Department of Academic Journals, Hangzhou Normal University, Hangzhou 311121, China
| | - Yuanzhao Wang
- Department of Pediatrics, Zhejiang Hospital of Traditional Chinese Medicine, Hangzhou 310006, China
| | - Jiawen Zhu
- Department of Pediatrics, Zhejiang Hospital of Traditional Chinese Medicine, Hangzhou 310006, China
| | - Xuexue Kang
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
26
|
Mirra D, Cione E, Spaziano G, Esposito R, Sorgenti M, Granato E, Cerqua I, Muraca L, Iovino P, Gallelli L, D’Agostino B. Circulating MicroRNAs Expression Profile in Lung Inflammation: A Preliminary Study. J Clin Med 2022; 11:jcm11185446. [PMID: 36143090 PMCID: PMC9500709 DOI: 10.3390/jcm11185446] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/29/2022] Open
Abstract
Background: Bronchial asthma is an inflammatory airway disease with an ever-increasing incidence. Therefore, innovative management strategies are urgently needed. MicroRNAs are small molecules that play a key role in lungs cellular functions and are involved in chronic inflammatory diseases, such as bronchial asthma. This study aims to compare microRNA serum expression between subjects with asthma, obesity, the most common co-morbidity in asthma, and healthy controls to obtain a specific expression profile specifically related to lung inflammation. Methods: We collected serum samples from a prospective cohort of 25 sex-matched subjects to determine circulating miRNAs through a quantitative RT-PCR. Moreover, we performed an in silico prediction of microRNA target genes linked to lung inflammation. Results: Asthmatic patients had a significant lower expression of hsa-miR-34a-5p, 181a-5p and 146a-5p compared to both obese and healthy ones suggesting microRNAs’ specific involvement in the regulation of lungs inflammatory response. Indeed, using in silico analysis, we identified microRNAs novel target genes as GATA family, linked to the inflammatory-related pathway. Conclusions: This study identifies a novel circulating miRNAs expression profile with promising potentials for asthma clinical evaluations and management. Further and larger investigations will be needed to confirm the potential role of microRNA as a clinical marker of bronchial asthma and eventually of pharmacological treatment response.
Collapse
Affiliation(s)
- Davida Mirra
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences-Department of Excellence 2018–2022, University of Calabria, 87036 Rende, CS, Italy
| | - Giuseppe Spaziano
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Renata Esposito
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Mario Sorgenti
- Respiratory Diseases in Primary Care, ASP Catanzaro, 88100 Catanzaro, Italy
| | - Elisabetta Granato
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy
| | - Ida Cerqua
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy
| | - Lucia Muraca
- Department of Primary Care, ASP Catanzaro, 88100 Catanzaro, Italy
| | - Pasquale Iovino
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Luca Gallelli
- Clinical Pharmacology and Pharmacovigilance Unit, Department of Health Sciences, Mater Domini Hospital, University of Catanzaro, 88100 Catanzaro, Italy
- Correspondence:
| | - Bruno D’Agostino
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| |
Collapse
|
27
|
Kim JY, Stevens P, Karpurapu M, Lee H, Englert JA, Yan P, Lee TJ, Pabla N, Pietrzak M, Park GY, Christman JW, Chung S. Targeting ETosis by miR-155 inhibition mitigates mixed granulocytic asthmatic lung inflammation. Front Immunol 2022; 13:943554. [PMID: 35958610 PMCID: PMC9360579 DOI: 10.3389/fimmu.2022.943554] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Asthma is phenotypically heterogeneous with several distinctive pathological mechanistic pathways. Previous studies indicate that neutrophilic asthma has a poor response to standard asthma treatments comprising inhaled corticosteroids. Therefore, it is important to identify critical factors that contribute to increased numbers of neutrophils in asthma patients whose symptoms are poorly controlled by conventional therapy. Leukocytes release chromatin fibers, referred to as extracellular traps (ETs) consisting of double-stranded (ds) DNA, histones, and granule contents. Excessive components of ETs contribute to the pathophysiology of asthma; however, it is unclear how ETs drive asthma phenotypes and whether they could be a potential therapeutic target. We employed a mouse model of severe asthma that recapitulates the intricate immune responses of neutrophilic and eosinophilic airway inflammation identified in patients with severe asthma. We used both a pharmacologic approach using miR-155 inhibitor-laden exosomes and genetic approaches using miR-155 knockout mice. Our data show that ETs are present in the bronchoalveolar lavage fluid of patients with mild asthma subjected to experimental subsegmental bronchoprovocation to an allergen and a severe asthma mouse model, which resembles the complex immune responses identified in severe human asthma. Furthermore, we show that miR-155 contributes to the extracellular release of dsDNA, which exacerbates allergic lung inflammation, and the inhibition of miR-155 results in therapeutic benefit in severe asthma mice. Our findings show that targeting dsDNA release represents an attractive therapeutic target for mitigating neutrophilic asthma phenotype, which is clinically refractory to standard care.
Collapse
Affiliation(s)
- Ji Young Kim
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH, United States
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Patrick Stevens
- Comprehensive Cancer Center, Biomedical Informatics Shared Resources, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Manjula Karpurapu
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH, United States
| | - Hyunwook Lee
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH, United States
| | - Joshua A. Englert
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH, United States
| | - Pearlly Yan
- Comprehensive Cancer Center, Division of Hematology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Tae Jin Lee
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Navjot Pabla
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Maciej Pietrzak
- Comprehensive Cancer Center, Biomedical Informatics Shared Resources, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Gye Young Park
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - John W. Christman
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH, United States
| | - Sangwoon Chung
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH, United States
| |
Collapse
|
28
|
Sharma S, Yang IV, Schwartz DA. Epigenetic regulation of immune function in asthma. J Allergy Clin Immunol 2022; 150:259-265. [PMID: 35717251 PMCID: PMC9378596 DOI: 10.1016/j.jaci.2022.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 12/13/2022]
Abstract
Asthma is a common complex respiratory disease characterized by chronic airway inflammation and partially reversible airflow obstruction resulting from genetic and environmental determinants. Because epigenetic marks influence gene expression and can be modified by both environmental exposures and genetic variation, they are increasingly recognized as relevant to the pathogenesis of asthma and may be a key link between environmental exposures and asthma susceptibility. Unlike changes to DNA sequence, epigenetic signatures are dynamic and reversible, creating an opportunity for not only therapeutic targets but may serve as biomarkers to follow disease course and identify molecular subtypes in heterogeneous diseases such as asthma. In this review, we will examine the relationship between asthma and 3 key epigenetic processes that modify gene expression: DNA methylation, modification of histone tails, and noncoding RNAs. In addition to presenting a comprehensive assessment of the existing epigenetic studies focusing on immune regulation in asthma, we will discuss future directions for epigenetic investigation in allergic airway disease.
Collapse
Affiliation(s)
- Sunita Sharma
- Divisions of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colo.
| | - Ivana V Yang
- Divisions of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colo; Divisions of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colo
| | - David A Schwartz
- Divisions of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colo
| |
Collapse
|
29
|
Abstract
Extracellular vesicles (EVs) are membranous nanoparticles secreted by nearly all cell types and play a critical role in cell-to-cell crosstalk. EVs can be categorized based on their size, surface markers, or the cell type from which they originate. EVs carry "cargo," including but not limited to, RNA, DNA, proteins, and small signaling molecules. To date, many methods have been developed to isolate EVs from biological fluids, such as blood plasma, urine, bronchoalveolar lavage fluid, and urine. Once isolated, EVs can be characterized by dynamic light scattering, nanotracking analysis, nanoscale flow cytometry, and transmission electron microscopy. Given the ability of EVs to transport cargo between cells, research has recently focused on understanding their role in various human diseases. As understanding of their significance to disease processes grows, insight into the mechanisms behind the physiological role of their cargo in target cells can facilitate the development of a new type of biomarker and therapeutic target for diseases in future. In addition, their ability to deliver their cargo selectively to target cells within the human body means that they could serve as therapeutic agents or methods of drug delivery. In this review, we will first introduce EVs and the cargo they carry, outline current methods for EV isolation and characterization, and discuss their potential use as biomarkers and therapeutic agents in the near future.
Collapse
Affiliation(s)
- Jonathan M Carnino
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University Medical Campus, Boston, MA, United States
| | - Heedoo Lee
- Department of Biology and Chemistry, Changwon National University, Changwon, South Korea.
| |
Collapse
|
30
|
Mohammed Z, McHale C, Kubinak JL, Dryer S, Gomez G. miR-155 Is a Positive Regulator of FcεRI-Induced Cyclooxygenase-2 Expression and Cytokine Production in Mast Cells. FRONTIERS IN ALLERGY 2022; 3:835776. [PMID: 36211602 PMCID: PMC9543708 DOI: 10.3389/falgy.2022.835776] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/15/2022] [Indexed: 12/02/2022] Open
Abstract
MicroRNA-155 (miR-155) has been implicated in IgE-dependent allergic disease including asthma and atopic dermatitis. A few roles for miR-155 have been described in mast cells and some specifically related to IgE receptor signaling, but it is not completely understood. Here, we demonstrate by miRNA seq profiling and quantitative RT-PCR that miR-155 expression is significantly increased in human skin-derived mast cells (SMCs) and mouse bone marrow-derived mast cells (BMMCs) following FcεRI crosslinking with antigen. We demonstrate that FcεRI-induced expression of cyclooxygenase-2 (COX-2) was significantly inhibited in miR-155 knockout (KO) BMMCs whereas arachidonate-5-lipoxygenase (ALOX-5) expression and leukotriene C4 (LTC4) biosynthesis, and degranulation were unaffected. FcεRI-induced cytokine production (TNF, IL-6, and IL-13) from miR-155 KO BMMCs was also significantly diminished. Correspondingly, Akt phosphorylation, but not protein expression, was inhibited in the absence of miR-155 whereas p38 and p42/44 were unaffected. Interesting, lipopolysaccharide (LPS)-induced cytokine production was increased in miR-155 KO BMMCs. Together, these data demonstrate that miR-155 specifically targets the FcεRI-induced prostaglandin and cytokine pathways, but not the leukotriene or degranulation pathways, in mast cells. The data further suggest that miR-155 acts indirectly by targeting a repressor of COX-2 expression and a phosphatase that normally blocks Akt phosphorylation. Overall, this study reveals the role of miR-155 as a positive regulator of mast cell function.
Collapse
Affiliation(s)
- Zahraa Mohammed
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Cody McHale
- Molecular Targeted Therapeutics Laboratory, Levine Cancer Institute, Charlotte, NC, United States
| | - Jason L. Kubinak
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Stuart Dryer
- Department of Biology and Biochemistry, College of Natural Sciences and Mathematics, University of Houston, Houston, TX, United States
| | - Gregorio Gomez
- Department of Biomedical Sciences, College of Medicine, University of Houston, Houston, TX, United States
- *Correspondence: Gregorio Gomez
| |
Collapse
|
31
|
Kim HJ, Park SO, Byeon HW, Eo JC, Choi JY, Tanveer M, Uyangaa E, Kim K, Eo SK. T cell-intrinsic miR-155 is required for Th2 and Th17-biased responses in acute and chronic airway inflammation by targeting several different transcription factors. Immunology 2022; 166:357-379. [PMID: 35404476 DOI: 10.1111/imm.13477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/30/2022] [Accepted: 03/02/2022] [Indexed: 11/29/2022] Open
Abstract
Asthmatic airway inflammation is divided into two typical endotypes: Th2-mediated eosinophilic and Th1- or Th17-mediated neutrophilic airway inflammation. The miRNA miR-155 has well-documented roles in the regulation of adaptive T-cell responses and innate immunity. However, no specific cell-intrinsic role has yet been elucidated for miR-155 in T cells in the course of Th2-eosinophilic and Th17-neutrophilic airway inflammation using actual in vivo asthma models. Here, using conditional KO (miR155ΔCD4 cKO) mice that have the specific deficiency of miR-155 in T cells, we found that the specific deficiency of miR-155 in T cells resulted in fully suppressed Th2-type eosinophilic airway inflammation following acute allergen exposure, as well as greatly attenuated the Th17-type neutrophilic airway inflammation induced by repeated allergen exposure. Furthermore, miR-155 in T cells appeared to regulate the expression of several different target genes in the functional activation of CD4+ Th2 and Th17 cells. To be more precise, the deficiency of miR-155 in T cells enhanced the expression of c-Maf, SOCS1, Fosl2, and Jarid2 in the course of CD4+ Th2 cell activation, while C/EBPβ was highly enhanced in CD4+ Th17 cell activation in the absence of miR-155 expression. Conclusively, our data revealed that miR-155 could promote Th2 and Th17-mediated airway inflammation via the regulation of several different target genes, depending on the context of asthmatic diseases. Therefore, these results provide valuable insights in actual understanding of specific cell-intrinsic role of miR-155 in eosinophilic and neutrophilic airway inflammation for the development of fine-tune therapeutic strategies.
Collapse
Affiliation(s)
- Hyo Jin Kim
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, Republic of Korea
| | - Seong Ok Park
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, Republic of Korea
| | - Hee Won Byeon
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, Republic of Korea
| | - Jun Cheol Eo
- Division of Biotechnology, College of Environmental & Biosource Science, Jeonbuk National University, Iksan, South Korea
| | - Jin Young Choi
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, Republic of Korea
| | - Maryum Tanveer
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, Republic of Korea
| | - Erdenebelig Uyangaa
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, Republic of Korea
| | - Koanhoi Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Seong Kug Eo
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, Republic of Korea
| |
Collapse
|
32
|
Zhang X, Xu Z, Wen X, Huang G, Nian S, Li L, Guo X, Ye Y, Yuan Q. The onset, development and pathogenesis of severe neutrophilic asthma. Immunol Cell Biol 2022; 100:144-159. [PMID: 35080788 DOI: 10.1111/imcb.12522] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 12/02/2021] [Accepted: 01/23/2022] [Indexed: 12/12/2022]
Abstract
Bronchial asthma is divided into Th2 high, Th2 low and mixed types. The Th2 high type is dominated by eosinophils while the Th2 low type is divided into neutrophilic and paucigranulocytic types. Eosinophilic asthma has gained increased attention recently, and its pathogenesis and treatment are well understood. However, severe neutrophilic asthma requires more in-depth research because its pathogenesis is not well understood, and no effective treatment exists. This review looks at the advances made in asthma research, the pathogenesis of neutrophilic asthma, the mechanisms of progression to severe asthma, risk factors for asthma exacerbations, and biomarkers and treatment of neutrophilic asthma. The pathogenesis of neutrophilic asthma is further discussed from four aspects: Th17-type inflammatory response, inflammasomes, exosomes and microRNAs. This review provides direction for the mechanistic study, diagnosis and treatment of neutrophilic asthma. The treatment of neutrophilic asthma remains a significant challenge for clinical therapists and is an important area of future clinical research.
Collapse
Affiliation(s)
- Xingli Zhang
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan, China
| | - Zixi Xu
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan, China
| | - Xue Wen
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Guoping Huang
- Zigong Hospital of Woman and Children Healthcare, Sichuan, China
| | - Siji Nian
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan, China
| | - Lin Li
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan, China
| | - Xiyuan Guo
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan, China
| | - Yingchun Ye
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan, China
| | - Qing Yuan
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
33
|
Liang J, Liu XH, Chen XM, Song XL, Li W, Huang Y. Emerging Roles of Non-Coding RNAs in Childhood Asthma. Front Pharmacol 2022; 13:856104. [PMID: 35656293 PMCID: PMC9152219 DOI: 10.3389/fphar.2022.856104] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Asthma is a chronic airway inflammatory disease in children characterized by airway inflammation, airway hyperresponsiveness and airway remodeling. Childhood asthma is usually associated with allergy and atopy, unlike adult asthma, which is commonly associated with obesity, smoking, etc. The pathogenesis and diagnosis of childhood asthma also remains more challenging than adult asthma, such as many diseases showing similar symptoms may coexist and be confused with asthma. In terms of the treatment, although most childhood asthma can potentially be self-managed and controlled with drugs, approximately 5-10% of children suffer from severe uncontrolled asthma, which carries significant health and socioeconomic burdens. Therefore, it is necessary to explore the pathogenesis of childhood asthma from a new perspective. Studies have revealed that non-coding RNAs (ncRNAs) are involved in the regulation of respiratory diseases. In addition, altered expression of ncRNAs in blood, and in condensate of sputum or exhalation affects the progression of asthma via regulating immune response. In this review, we outline the regulation and pathogenesis of asthma and summarize the role of ncRNAs in childhood asthma. We also hold promise that ncRNAs may be used for the development of biomarkers and support a new therapeutic strategy for childhood asthma.
Collapse
Affiliation(s)
- Juan Liang
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Graduate School of Guangdong Medical University, Zhanjiang, China
| | - Xiao-Hua Liu
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Graduate School of Guangdong Medical University, Zhanjiang, China
| | - Xue-Mei Chen
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Graduate School of Guangdong Medical University, Zhanjiang, China
| | - Xiu-Ling Song
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Graduate School of Guangdong Medical University, Zhanjiang, China
| | - Wen Li
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yuge Huang
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
34
|
Gu W, Li G, Zhang W, Zhang X, He Y, Huang L, Yan Y, Ji W, Hao C, Chen Z. MiR-29b regulates Th2 cell differentiation in asthma by targeting inducible B7-H3 and STAT3. Clin Transl Allergy 2022; 12:e12114. [PMID: 35079347 PMCID: PMC8764737 DOI: 10.1002/clt2.12114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/22/2021] [Accepted: 01/02/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND MicroRNAs play an important role in T cell responses. However, how microRNAs regulate Th cells in asthma remains poorly defined. OBJECTIVE In this study, we investigated the mechanism and pathways of miR-29b regulating Th cells in asthma, in order to find new targets for asthma. METHODS We detected miR-29b, B7-H3 and STAT3 in the peripheral blood of children with asthma, explored the relationship between these molecules and their effects on T cells through in vitro cell culture, and verified it by animal model. RESULTS MiR-29b levels were decreased in the peripheral blood mononuclear cells from children with asthma. Vitro studies found that the expression of miR-29b in macrophages was decreased and the expression of B7-H3 and STAT3 was increased after house dust mite (HDM) stimulation. After down-regulation of miR-29b in macrophages, the expressions of B7-H3 and STAT3 in macrophages were increased and T cells differentiate into Th2 cells. After the addition of B7-H3 or STAT3 antibodies, the differentiation of naive T cells into Th2 cells was reduced. In OVA induced mice asthmatic model, after the up-regulation of miR-29b in lung, the expression of B7-H3 and STAT3 decreased in the lung tissues of mice, and the expression of Th2 cells and type II cytokine decreased simultaneously. The pathological changes of lung tissues were also alleviated. CONCLUSION The expression of miR-29b is decreased in asthmatic children. MiR-29b can inhibit Th2 cell differentiation by inhibiting B7-H3 and STAT3 pathways at the same time, and reduce asthmatic immune inflammation.
Collapse
Affiliation(s)
- Wenjing Gu
- Department of Respiratory MedicineChildren's Hospital of Soochow UniversitySuzhouChina
| | - Gang Li
- Institute of Pediatric ResearchChildren's Hospital of Soochow UniversitySuzhouChina
| | - Weili Zhang
- Department of Respiratory MedicineChildren's Hospital of Soochow UniversitySuzhouChina
| | - Xinxing Zhang
- Department of Respiratory MedicineChildren's Hospital of Soochow UniversitySuzhouChina
| | - Yanyu He
- Department of Respiratory MedicineChildren's Hospital of Soochow UniversitySuzhouChina
| | - Li Huang
- Department of Respiratory MedicineChildren's Hospital of Soochow UniversitySuzhouChina
| | - Yongdong Yan
- Department of Respiratory MedicineChildren's Hospital of Soochow UniversitySuzhouChina
| | - Wei Ji
- Department of Respiratory MedicineChildren's Hospital of Soochow UniversitySuzhouChina
| | - Chuangli Hao
- Department of Respiratory MedicineChildren's Hospital of Soochow UniversitySuzhouChina
| | - Zhengrong Chen
- Department of Respiratory MedicineChildren's Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
35
|
Wang C, Wang J, Zheng X, Zhang J, Zhang J, Qiao G, Liu H, Zhao H, Bai J, Zhang H, Zhang Z. Epigenetic regulation is involved in traffic-related PM 2.5 aggravating allergic airway inflammation in rats. Clin Immunol 2021; 234:108914. [PMID: 34954131 DOI: 10.1016/j.clim.2021.108914] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/27/2021] [Accepted: 12/20/2021] [Indexed: 11/29/2022]
Abstract
Increasing fine particulate matter (PM2.5) and epigenetic modifications are closely associated with the pathogenesis of asthma, but the definite mechanism remains unclear. The traffic-related PM2.5 exposure aggravated pulmonary inflammation and changed the methylation level of interferon gamma (Ifng) and interleukin (Il)4 genes, and then altered levels of affiliated cytokines of IFN-γ and IL-4 in rats with allergic airway inflammation. It also increased the level of miR146a and decreased the level of miR31. In addition, transcription factors of nuclear factor kappa B (NF-κB) and signal transducer and activator of transcription 6 (Stat6) rose; forkhead box P3 (Foxp3) and signal transducer and activator of transcription 4 (Stat4) lowered. The traffic-related PM2.5 altered epigenetic modifications in allergic airway inflammation of rats leading to inflammation exacerbation through impaired regulatory T (Treg) cells function and T-helper type 1 (Th1)/Th2 cells imbalance, which provided a new target for the treatment and control of asthma.
Collapse
Affiliation(s)
- Caihong Wang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, China
| | - Jing Wang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, China
| | - Xin Zheng
- Department of Environmental Health, School of Public Health, Shanxi Medical University, China
| | - Jiaqi Zhang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, China
| | - Jingwei Zhang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, China
| | - Guoguo Qiao
- Teaching Experiment Center, School of Public Health, Shanxi Medical University, China
| | - Haifang Liu
- Department of Environmental Health, School of Public Health, Shanxi Medical University, China
| | - Huichao Zhao
- Department of Environmental Health, School of Public Health, Shanxi Medical University, China
| | - Jianying Bai
- Department of Environmental Health, School of Public Health, Shanxi Medical University, China
| | - Hongmei Zhang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, China
| | - Zhihong Zhang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, China.
| |
Collapse
|
36
|
Wang X, Chen H, Liu J, Gai L, Yan X, Guo Z, Liu F. Emerging Advances of Non-coding RNAs and Competitive Endogenous RNA Regulatory Networks in Asthma. Bioengineered 2021; 12:7820-7836. [PMID: 34635022 PMCID: PMC8806435 DOI: 10.1080/21655979.2021.1981796] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/11/2021] [Accepted: 09/12/2021] [Indexed: 12/31/2022] Open
Abstract
Asthma is a chronic inflammatory disease characterized by airway remodeling and bronchial hyperresponsiveness. A variety of effector cells and cytokines jointly stimulate the occurrence of inflammatory response in asthma. Although the pathogenesis of asthma is not entirely clear, the possible roles of non-coding RNAs (ncRNAs) have been recently demonstrated. NcRNAs are non-protein-coding RNA molecules, such as circular RNAs (circRNAs), long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), which are involved in the regulation of a variety of biological processes. Mounting studies have shown that ncRNAs play pivotal roles in the occurrence and progression of asthma via competing endogenous RNA (ceRNA) regulatory networks. However, the specific mechanism and clinical application of ncRNAs and ceRNA regulatory networks in asthma have not been fully elucidated, which are worthy of further investigation. This paper comprehensively summarized the current progress on the roles of miRNAs, lncRNAs, circRNAs, and ceRNA regulatory networks in asthma, which can provide a better understanding for the disease pathogenesis and is helpful for identifying novel biomarkers for asthma.
Collapse
Affiliation(s)
- Xiaoxu Wang
- Clinical Medicine College, Weifang Medical University, WeifangChina
- Department of Allergy, The First Affiliated Hospital of Weifang Medical University/ Weifang People’s Hospital, WeifangChina
| | - Hui Chen
- Clinical Medicine College, Weifang Medical University, WeifangChina
- Department of Allergy, The First Affiliated Hospital of Weifang Medical University/ Weifang People’s Hospital, WeifangChina
| | - Jingjing Liu
- Clinical Medicine College, Weifang Medical University, WeifangChina
- Department of Allergy, The First Affiliated Hospital of Weifang Medical University/ Weifang People’s Hospital, WeifangChina
| | - Linlin Gai
- Department of Central Laboratory, The First Affiliated Hospital of Weifang Medical University/Weifang People’s Hospital, WeifangChina
| | - Xinyi Yan
- Department of Central Laboratory, The First Affiliated Hospital of Weifang Medical University/Weifang People’s Hospital, WeifangChina
| | - Zhiliang Guo
- Department of Spine Surgery, The 80th Group Army Hospital of Chinese PLA, WeifangChina
| | - Fengxia Liu
- Department of Allergy, The First Affiliated Hospital of Weifang Medical University/ Weifang People’s Hospital, WeifangChina
| |
Collapse
|
37
|
The Impact of MicroRNAs during Inflammatory Bowel Disease: Effects on the Mucus Layer and Intercellular Junctions for Gut Permeability. Cells 2021; 10:cells10123358. [PMID: 34943865 PMCID: PMC8699384 DOI: 10.3390/cells10123358] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/15/2022] Open
Abstract
Research on inflammatory bowel disease (IBD) has produced mounting evidence for the modulation of microRNAs (miRNAs) during pathogenesis. MiRNAs are small, non-coding RNAs that interfere with the translation of mRNAs. Their high stability in free circulation at various regions of the body allows researchers to utilise miRNAs as biomarkers and as a focus for potential treatments of IBD. Yet, their distinct regulatory roles at the gut epithelial barrier remain elusive due to the fact that there are several external and cellular factors contributing to gut permeability. This review focuses on how miRNAs may compromise two components of the gut epithelium that together form the initial physical barrier: the mucus layer and the intercellular epithelial junctions. Here, we summarise the impact of miRNAs on goblet cell secretion and mucin structure, along with the proper function of various junctional proteins involved in paracellular transport, cell adhesion and communication. Knowledge of how this elaborate network of cells at the gut epithelial barrier becomes compromised as a result of dysregulated miRNA expression, thereby contributing to the development of IBD, will support the generation of miRNA-associated biomarker panels and therapeutic strategies that detect and ameliorate gut permeability.
Collapse
|
38
|
Subramanian H, Hashem T, Bahal D, Kammala AK, Thaxton K, Das R. Ruxolitinib Ameliorates Airway Hyperresponsiveness and Lung Inflammation in a Corticosteroid-Resistant Murine Model of Severe Asthma. Front Immunol 2021; 12:786238. [PMID: 34777398 PMCID: PMC8586657 DOI: 10.3389/fimmu.2021.786238] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/18/2021] [Indexed: 11/27/2022] Open
Abstract
Asthma prevalence has increased considerably over the decades and it is now considered as one of the most common chronic disorders in the world. While the current anti-asthmatic therapies are effective for most asthma patients, there are 5-10% subjects whose disease is not controlled by such agents and they account for about 50% of the asthma-associated healthcare costs. Such patients develop severe asthma (SA), a condition characterized by a dominant Th1/Th17 cytokine response that is accompanied by Type 2 (T2)-low endotype. As JAK (Janus Kinase) signaling is very important for the activation of several cytokine pathways, we examined whether inhibition of JAKs might lessen the clinical and laboratory manifestations of SA. To that end, we employed a recently described murine model that recapitulates the complex immune response identified in the airways of human SA patients. To induce SA, mice were sensitized with house dust mite extract (HDME) and cyclic (c)-di-GMP and then subsequently challenged with HDME and a lower dose of c-di-GMP. In this model, treatment with the JAK inhibitor, Ruxolitinib, significantly ameliorated all the features of SA, including airway hyperresponsiveness and lung inflammation as well as total IgE antibody titers. Thus, these studies highlight JAKs as critical targets for mitigating the hyper-inflammation that occurs in SA and provide the framework for their incorporation into future clinical trials for patients that have severe or difficult-to manage asthma.
Collapse
Affiliation(s)
- Hariharan Subramanian
- Department of Physiology, College of Human Medicine, Michigan State University, East Lansing, MI, United States
| | - Tanwir Hashem
- College of Natural Science, Michigan State University, East Lansing, MI, United States
| | - Devika Bahal
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Ananth K Kammala
- Department of Physiology, College of Human Medicine, Michigan State University, East Lansing, MI, United States
| | - Kanedra Thaxton
- College of Natural Science, Michigan State University, East Lansing, MI, United States
| | - Rupali Das
- Department of Physiology, College of Human Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
39
|
Johansson K, Woodruff PG, Ansel KM. Regulation of airway immunity by epithelial miRNAs. Immunol Rev 2021; 304:141-153. [PMID: 34549450 PMCID: PMC9135676 DOI: 10.1111/imr.13028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 02/07/2023]
Abstract
The airway epithelium is essential to protect the host from inhaled pathogens and particles. It maintains immune homeostasis and mediates tissue repair after injury. Inflammatory diseases of the airways are associated with failure of epithelial functions, including loss of barrier integrity that results in increased tissue permeability and immune activation; excessive mucus secretion and impaired mucociliary clearance that leads to airflow obstruction and microbial overgrowth; and dysregulation of cellular signals that promotes inflammation and alters tissue structure and airway reactivity. MicroRNAs play crucial roles in mounting appropriate cellular responses to environmental stimuli and preventing disease, using a common machinery and mechanism to regulate gene expression in epithelial cells, immune cells of hematopoietic origin, and other cellular components of the airways. Respiratory diseases are accompanied by dramatic changes in epithelial miRNA expression that drive persistent immune dysregulation. In this review, we discuss responses of the epithelium that promote airway immunopathology, with a focus on miRNAs that contribute to the breakdown of essential epithelial functions. We emphasize the emerging role of miRNAs in regulation of epithelial responses in respiratory health and their value as diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Kristina Johansson
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
- Sandler Asthma Basic Research Center, University of California, San Francisco, California, USA
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of California, San Francisco, California, USA
- Department of Microbiology and Immunology, University of California, San Francisco, California, USA
| | - Prescott G. Woodruff
- Sandler Asthma Basic Research Center, University of California, San Francisco, California, USA
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of California, San Francisco, California, USA
- Cardiovascular Research Institute, University of California, San Francisco, California, USA
| | - K. Mark Ansel
- Sandler Asthma Basic Research Center, University of California, San Francisco, California, USA
- Department of Microbiology and Immunology, University of California, San Francisco, California, USA
| |
Collapse
|
40
|
Li L, Shan W, Zhu H, Xue F, Ma Y, Dong L, Feng D, Mao J, Yuan G, Wang X. SJMHE1 Peptide from Schistosoma japonicum Inhibits Asthma in Mice by Regulating Th17/Treg Cell Balance via miR-155. J Inflamm Res 2021; 14:5305-5318. [PMID: 34703270 PMCID: PMC8523811 DOI: 10.2147/jir.s334636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/30/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Helminths and their products can regulate immune response and offer new strategies to control and alleviate inflammation, including asthma. We previously found that a peptide named as SJMHE1 from Schistosoma japonicum can suppress asthma in mice. This study mainly investigated the molecular mechanism of SJMHE1 in inhibiting asthma inflammation. Methods SJMHE1 was administered to mice with OVA-induced asthma via subcutaneous injection, and its effects were detected by testing the airway inflammation of mice. The Th cell distribution was analyzed by flow cytometry. Th-related transcription factor and cytokine expression in the lungs of mice were analyzed using quantitative real-time PCR (qRT-PCR). The expression of miR-155 and levels of phosphorylated STAT3 and STAT5 were also determined after SJMHE1 treatment in mice by qRT-PCR and Western blot analysis. The in vitro mouse CD4+ T cells were transfected with lentivirus containing overexpressed or inhibited miR-155, and the proportion of Th17, Treg cells, CD4+p-STAT3+, and CD4+p-STAT5+ cells were analyzed by flow cytometry. Results SJMHE1 ameliorated the airway inflammation of asthmatic mice, upregulated the proportion of Th1 and Treg cells, and the expression of Th1 and Treg-related transcription factor and cytokines. Simultaneously, SJMHE1 treatment reduced the percentage of Th2 and Th17 cells and the expression of Th2 and Th17-related transcription factor and cytokines. SJMHE1 treatment decreased the expression of miR-155 and p-STAT3 but increased p-STAT5 expression. In vitro, the percentage of Th17 and CD4+p-STAT3+ cells increased in CD4+ T cells transfected over-expression of miR-155, but SJMHE1 inhibited the miR-155-mediated increase of Th17 cells. Furthermore, SJMHE1 increased the proportion of Treg and CD4+p-STAT5+ cells after transfected over-expression or inhibition of miR-155. Conclusion SJMHE1 regulated the balance of Th17 and Treg cells by modulating the activation of STAT3 and STAT5 via miR-155 in asthma. SJMHE1 might be a promising treatment for asthma.
Collapse
Affiliation(s)
- Li Li
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People's Republic of China.,Department of Clinical Laboratory, The Taixing City People's Hospital, Taixing, 225400, People's Republic of China
| | - Wenqi Shan
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People's Republic of China.,Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People's Republic of China
| | - Haijin Zhu
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People's Republic of China.,Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People's Republic of China
| | - Fei Xue
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People's Republic of China.,Department of Clinical Laboratory, The Taixing City People's Hospital, Taixing, 225400, People's Republic of China
| | - Yongbin Ma
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People's Republic of China.,Department of Central Laboratory, Jintan Hospital, Jiangsu University, Jintan, 213200, People's Republic of China
| | - Liyang Dong
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People's Republic of China.,Department of Nuclear Medicine and Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People's Republic of China
| | - Dingqi Feng
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People's Republic of China
| | - Jiahui Mao
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People's Republic of China
| | - Guoyue Yuan
- Department of Endocrinology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, People's Republic of China
| | - Xuefeng Wang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People's Republic of China.,Department of Nuclear Medicine and Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People's Republic of China
| |
Collapse
|
41
|
Jafarzadeh A, Naseri A, Shojaie L, Nemati M, Jafarzadeh S, Bannazadeh Baghi H, Hamblin MR, Akhlagh SA, Mirzaei H. MicroRNA-155 and antiviral immune responses. Int Immunopharmacol 2021; 101:108188. [PMID: 34626873 DOI: 10.1016/j.intimp.2021.108188] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 02/08/2023]
Abstract
The microRNA, miR-155 regulates both adaptive and innate immune responses. In viral infections, miR-155 can affect both innate immunity (interferon response, natural killer cell activity, and macrophage polarization) and adaptive immunity (including generation of anti-viral antibodies, CD8+ cytotoxic T lymphocytes, Th17, Th2, Th1, Tfh and Treg cells). In many viral infections, the proper and timely regulation of miR-155 expression is critical for the induction of an effective anti-virus immune response and viral clearance without any harmful immunopathologic consequences. MiR-155 may also exert pro-viral effects, mainly through the inhibition of the anti-viral interferon response. Thus, dysregulated expression of miR-155 can result in virus persistence and disruption of the normal response to viral infections. This review provides a thorough discussion of the role of miR-155 in immune responses and immunopathologic reactions during viral infections, and highlights its potential as a therapeutic target.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Alma Naseri
- Department of Immunology, Islamic Azadi university of Zahedan, Zahedan, Iran
| | - Layla Shojaie
- Research Center for Liver Diseases, Keck School of Medicine, Department of Medicine, University of Southern California, Los angeles, CA, USA
| | - Maryam Nemati
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Hematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Sara Jafarzadeh
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hossein Bannazadeh Baghi
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | | | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
42
|
Gutierrez MJ, Perez GF, Gomez JL, Rodriguez-Martinez CE, Castro-Rodriguez JA, Nino G. Genes, environment, and developmental timing: New insights from translational approaches to understand early origins of respiratory diseases. Pediatr Pulmonol 2021; 56:3157-3165. [PMID: 34388306 PMCID: PMC8858026 DOI: 10.1002/ppul.25598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 12/24/2022]
Abstract
Over the past decade, "omics" approaches have advanced our understanding of the molecular programming of the airways in humans. Several studies have identified potential molecular mechanisms that contribute to early life epigenetic reprogramming, including DNA methylation, histone modifications, microRNAs, and the homeostasis of the respiratory mucosa (epithelial function and microbiota). Current evidence supports the notion that early infancy is characterized by heightened susceptibility to airway genetic reprogramming in response to the first exposures in life, some of which can have life-long consequences. Here, we summarize and analyze the latest insights from studies that support a novel epigenetic paradigm centered on human maturational and developmental programs including three cardinal elements: genes, environment, and developmental timing. The combination of these factors is likely responsible for the functional trajectory of the respiratory system at the molecular, functional, and clinical levels.
Collapse
Affiliation(s)
- Maria J Gutierrez
- Division of Pediatric Allergy and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Geovanny F Perez
- Division of Pediatric Pulmonology, Oishei Children's Hospital, University at Buffalo, Buffalo, New York, USA
| | - Jose L Gomez
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Carlos E Rodriguez-Martinez
- Department of Pediatrics, Universidad Nacional de Colombia, Bogota, Colombia.,Department of Pediatric Pulmonology and Pediatric Critical Care Medicine, School of Medicine, Universidad El Bosque, Bogota, Colombia
| | - Jose A Castro-Rodriguez
- Department of Pediatric Pulmonology, School of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Gustavo Nino
- Division of Pediatric Pulmonary and Sleep Medicine, Children's National Hospital, George Washington University, Washington D.C., USA
| |
Collapse
|
43
|
Role of Epigenetics in the Pathogenesis, Treatment, Prediction, and Cellular Transformation of Asthma. Mediators Inflamm 2021; 2021:9412929. [PMID: 34566492 PMCID: PMC8457970 DOI: 10.1155/2021/9412929] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/27/2021] [Indexed: 12/15/2022] Open
Abstract
Asthma is a mysterious disease with heterogeneity in etiology, pathogenesis, and clinical phenotypes. Although ongoing studies have provided a better understanding of asthma, its natural history, progression, pathogenesis, diversified phenotypes, and even the exact epigenetic linkage between childhood asthma and adult-onset/old age asthma remain elusive in many aspects. Asthma heritability has been established through genetic studies, but genetics is not the only influencing factor in asthma. The increasing incidence and some unsolved queries suggest that there may be other elements related to asthma heredity. Epigenetic mechanisms link genetic and environmental factors with developmental trajectories in asthma. This review provides an overview of asthma epigenetics and its components, including several epigenetic studies on asthma, and discusses the epigenetic linkage between childhood asthma and adult-onset/old age asthma. Studies involving asthma epigenetics present valuable novel approaches to solve issues related to asthma. Asthma epigenetic research guides us towards gene therapy and personalized T cell therapy, directs the discovery of new therapeutic agents, predicts long-term outcomes in severe cases, and is also involved in the cellular transformation of childhood asthma to adult-onset/old age asthma.
Collapse
|
44
|
Agache I, Palmer E, Sanver D, Kirtland M, Shamji MH. Molecular allergology approach to allergic asthma. Mol Aspects Med 2021; 85:101027. [PMID: 34579961 DOI: 10.1016/j.mam.2021.101027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 07/26/2021] [Accepted: 09/15/2021] [Indexed: 12/25/2022]
Abstract
Allergic asthma is a frequently encountered and well described asthma phenotype. However, its precise mechanisms are less known. The tools for targeted selection of patients for an optimal response to intervention (prevention or treatment) are also lacking. Here we explore the potential of the molecular allergology approach to achieve a better understanding of allergic asthma mechanisms, a precise diagnosis and an optimal management of these patients.
Collapse
Affiliation(s)
- Ioana Agache
- Faculty of Medicine, Transylvania University, Brasov, Romania.
| | - Elizabeth Palmer
- Imperial College, Faculty of Medicine, National Heart & Lung Institute, London, UK
| | - Didem Sanver
- Imperial College, Faculty of Medicine, National Heart & Lung Institute, London, UK; Necmettin Erbakan University, Engineering & Architecture Faculty, Department of Food Engineering, Konya, Turkey
| | - Max Kirtland
- Imperial College, Faculty of Medicine, National Heart & Lung Institute, London, UK
| | - Mohamed H Shamji
- Imperial College, Faculty of Medicine, National Heart & Lung Institute, London, UK
| |
Collapse
|
45
|
Jafarzadeh A, Marzban H, Nemati M, Jafarzadeh S, Mahjoubin-Tehran M, Hamblin MR, Mirzaei H, Mirzaei HR. Dysregulated expression of miRNAs in immune thrombocytopenia. Epigenomics 2021; 13:1315-1325. [PMID: 34498489 DOI: 10.2217/epi-2021-0092] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In recent years the critical role of miRNAs has been established in many diseases, including autoimmune disorders. Immune thrombocytopenia purpura (ITP) is a predominant autoimmune disease, in which aberrant expression of miRNAs has been observed, suggesting that miRNAs are involved in its development. miRNAs could induce an imbalance in the T helper (Th)1/Th2 cell and Th17/Treg cell-related responses. Moreover, they could also cause alterations in Th9 and Th22 cell responses, and activate Tfh (T follicular helper) cell-dependent auto-reactive B cells, thus influencing megakaryogenesis. Herein, we summarize the role of immune-related miRNAs in ITP pathogenesis, and look forward to clinical applications.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, 76169-13555, Kerman, Iran.,Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, 7718175911, Rafsanjan, Iran
| | - Havva Marzban
- Department of Pathology & Experimental Animals, Razi Vaccine & Serum Research Institute, Agricultural Research, Education & Extension Organization (AREEO), 31975/148 Karaj, Iran
| | - Maryam Nemati
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, 77181/75911, Rafsanjan, Iran.,Department of Hematology & Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, 76169-13555, Kerman, Iran
| | - Sara Jafarzadeh
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, 76169-13555, Kerman, Iran
| | - Maryam Mahjoubin-Tehran
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, 13131- 99137, Mashhad, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, 2028 Doornfontein, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry & Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, 87159-88141, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, 87159-88141, Kashan, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, 1417613151, Tehran, Iran
| |
Collapse
|
46
|
Wardzyńska A, Pawełczyk M, Rywaniak J, Makowska J, Jamroz-Brzeska J, Kowalski ML. Circulating miRNA expression in asthmatics is age-related and associated with clinical asthma parameters, respiratory function and systemic inflammation. Respir Res 2021; 22:177. [PMID: 34112152 PMCID: PMC8193882 DOI: 10.1186/s12931-021-01769-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 06/02/2021] [Indexed: 12/14/2022] Open
Abstract
Background The course of asthma may differ between elderly asthmatics (EA) and non-elderly asthmatics (nEA), which may be partially associated with an age-dependent aberrant immune response. The aim of the study was to determine the influence of serum miRNA expression on asthma characteristics and systemic inflammation markers in EA and nEA. Methods Control and severity of asthma, pulmonary function and FeNO were assessed in 28 EA and 31 nEA patients. The control group included 59 elderly and non-elderly healthy individuals. The expression of selected miRNAs in serum was measured with rt-PCR, and proinflammatory cytokine activity was assayed by ELISA or flow cytometry. Results No difference in serum miRNA expression was observed between the asthmatics and healthy controls. EA demonstrated lower expression of miRNA-106a and miRNA-126a than nEA (p = 0.003 and p = 0.02) and EC had lower expression of miRNA-146a, -126a, -106a and 19b than nEC (p = 0.001, p = 0.003, p = 0.005 and p < 0.001 respectively). Only nEA demonstrated a relationship between the expression of selected miRNAs and the level of asthma control (assessed with ACT) and with airway inflammation, measured by FeNO level. All patients with asthma demonstrated elevated TNFα, IL-6 and sTNF RI levels compared to controls (p = 0.026, p = 0.03 and p < 0.001 respectively). EA demonstrated a higher TNFα level than EC (p < 0.001), and EA had a higher level of sTNF RI than nEA (p < 0.001). A significant correlation was observed between serum levels of proinflammatory cytokines and selected miRNAs. Conclusion Serum miRNA expression was found to correlate with clinical characteristics of asthma and systemic inflammation in an age-dependent fashion, suggesting that miRNA may differentially contribute to asthma pathogenesis in elderly and non-elderly patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-021-01769-x.
Collapse
Affiliation(s)
- Aleksandra Wardzyńska
- Department of Immunology and Allergy, Medical University of Lodz, Poland ul. Pomorska 251, 92-213, Lodz, Poland.
| | - Małgorzata Pawełczyk
- Department of Immunology and Allergy, Medical University of Lodz, Poland ul. Pomorska 251, 92-213, Lodz, Poland
| | - Joanna Rywaniak
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Joanna Makowska
- Department of Rheumatology, Medical University of Lodz, Lodz, Poland
| | - Joanna Jamroz-Brzeska
- Department of Immunology and Allergy, Medical University of Lodz, Poland ul. Pomorska 251, 92-213, Lodz, Poland
| | - Marek L Kowalski
- Department of Immunology and Allergy, Medical University of Lodz, Poland ul. Pomorska 251, 92-213, Lodz, Poland
| |
Collapse
|
47
|
Role of MicroRNA-155 as a Potential Biomarker for Allergic Rhinitis in Children. Can Respir J 2021; 2021:5554461. [PMID: 34221208 PMCID: PMC8211517 DOI: 10.1155/2021/5554461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/10/2021] [Accepted: 06/03/2021] [Indexed: 12/02/2022] Open
Abstract
Background Allergic rhinitis (AR) is an inflammatory state categorized by a disturbance of immunoregulatory mechanisms. MicroRNA-155 (miRNA-155) has an essential role in regulating gene expression and can mediate the allergic TH2 process. Objective In this study, we aimed to evaluate the role of miR-155 as a biomarker in AR and correlate its level with the total nasal symptom score (TNSS) and the levels of serum interleukin-4 (IL-4). Methods This study included 90 children: 45 with pollen-induced AR and 45 healthy controls. Serum miR-155 expression levels were measured using quantitative real-time PCR. Human IL-4 ELIZA kits were used for the semiquantitative detection of the serum levels of IL-4. Receiver operating characteristic (ROC) curves were used to determine the best cutoff values for the studied parameters for the diagnosis of AR. Results The demographic characteristics of the two groups were matched with respect to age and sex. The AR case group included 23 (51.1%) males and 22 (48.9%) females, while the control group included 24 (53.3%) males and 21 (46.7%) females. The miR-155 level was increased in the serum of children with pollen-induced AR compared with controls (mean difference = 2.8, p < 0.001). A significant positive correlation between the serum expression level of miR-155 and TNSS in children with AR was detected (r = 0.494, p < 0.001). However, no significant correlation was identified between the expression of miR-155 and that of IL-4. At a cutoff value of 1.09, the sensitivity of miR-155 as a biomarker for AR was 100%, and the specificity was 71.1%. Conclusion MiR-155 expression levels were elevated in the serum of AR children. Therefore, miR-155 could be used as a biomarker in AR diagnosis.
Collapse
|
48
|
Zhang K, Feng Y, Liang Y, Wu W, Chang C, Chen D, Chen S, Gao J, Chen G, Yi L, Cheng D, Zhen G. Epithelial miR-206 targets CD39/extracellular ATP to upregulate airway IL-25 and TSLP in type 2-high asthma. JCI Insight 2021; 6:148103. [PMID: 33945508 PMCID: PMC8262281 DOI: 10.1172/jci.insight.148103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/28/2021] [Indexed: 02/05/2023] Open
Abstract
The epithelial cell–derived cytokines IL-25, IL-33, and thymic stromal lymphopoietin (TSLP) initiate type 2 inflammation in allergic diseases, including asthma. However, the signaling pathway regulating these cytokines expression remains elusive. Since microRNAs are pivotal regulators of gene expression, we profiled microRNA expression in bronchial epithelial brushings from type 2–low and type 2–high asthma patients. miR-206 was the most highly expressed epithelial microRNA in type 2–high asthma relative to type 2–low asthma but was downregulated in both subsets compared with healthy controls. CD39, an ectonucleotidase degrading ATP, was a target of miR-206 and upregulated in asthma. Allergen-induced acute extracellular ATP accumulation led to miR-206 downregulation and CD39 upregulation in human bronchial epithelial cells, forming a feedback loop to eliminate excessive ATP. Airway ATP levels were markedly elevated and strongly correlated with IL-25 and TSLP expression in asthma patients. Intriguingly, airway miR-206 antagonism increased Cd39 expression; reduced ATP accumulation; suppressed IL-25, IL-33, and Tslp expression and group 2 innate lymphoid cell expansion; and alleviated type 2 inflammation in a mouse model of allergic airway inflammation. In contrast, airway miR-206 overexpression had opposite effects. Overall, epithelial miR-206 upregulates airway IL-25 and TSLP expression by targeting the CD39–extracellular ATP axis, which represents a potentially novel therapeutic target in type 2–high asthma.
Collapse
Affiliation(s)
- Kan Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, and National Clinical Research Center for Respiratory Diseases, Wuhan, China.,Department of Respiratory and Critical Care Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Yuchen Feng
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, and National Clinical Research Center for Respiratory Diseases, Wuhan, China
| | - Yuxia Liang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, and National Clinical Research Center for Respiratory Diseases, Wuhan, China
| | - Wenliang Wu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, and National Clinical Research Center for Respiratory Diseases, Wuhan, China
| | - Chenli Chang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, and National Clinical Research Center for Respiratory Diseases, Wuhan, China
| | - Dian Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, and National Clinical Research Center for Respiratory Diseases, Wuhan, China
| | - Shengchong Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, and National Clinical Research Center for Respiratory Diseases, Wuhan, China
| | - Jiali Gao
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, and National Clinical Research Center for Respiratory Diseases, Wuhan, China
| | - Gongqi Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, and National Clinical Research Center for Respiratory Diseases, Wuhan, China
| | - Lingling Yi
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, and National Clinical Research Center for Respiratory Diseases, Wuhan, China
| | - Dan Cheng
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Guohua Zhen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, and National Clinical Research Center for Respiratory Diseases, Wuhan, China
| |
Collapse
|
49
|
Laanesoo A, Urgard E, Periyasamy K, Laan M, Bochkov YA, Aab A, Magilnick N, Pooga M, Gern JE, Johnston SL, Coquet JM, Boldin MP, Wengel J, Altraja A, Bochenek G, Jakiela B, Rebane A. Dual role of the miR-146 family in rhinovirus-induced airway inflammation and allergic asthma exacerbation. Clin Transl Med 2021; 11:e427. [PMID: 34185416 PMCID: PMC8161513 DOI: 10.1002/ctm2.427] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 12/30/2022] Open
Abstract
Rhinovirus (RV) infections are associated with asthma exacerbations. MicroRNA-146a and microRNA-146b (miR-146a/b) are anti-inflammatory miRNAs that suppress signaling through the nuclear factor kappa B (NF-κB) pathway and inhibit pro-inflammatory chemokine production in primary human bronchial epithelial cells (HBECs). In the current study, we aimed to explore whether miR-146a/b could regulate cellular responses to RVs in HBECs and airways during RV-induced asthma exacerbation. We demonstrated that expression of miR-146a/b and pro-inflammatory chemokines was increased in HBECs and mouse airways during RV infection. However, transfection with cell-penetrating peptide (CPP)-miR-146a nanocomplexes before infection with RV significantly reduced the expression of the pro-inflammatory chemokines CCL5, IL-8 and CXCL1, increased interferon-λ production, and attenuated infection with the green fluorescent protein (GFP)-expressing RV-A16 in HBECs. Concordantly, compared to wild-type (wt) mice, Mir146a/b-/- mice exhibited more severe airway neutrophilia and increased T helper (Th)1 and Th17 cell infiltration in response to RV-A1b infection and a stronger Th17 response with a less prominent Th2 response in house dust mite extract (HDM)-induced allergic airway inflammation and RV-induced exacerbation models. Interestingly, intranasal administration of CPP-miR-146a nanocomplexes reduced HDM-induced allergic airway inflammation without a significant effect on the Th2/Th1/Th17 balance in wild-type mice. In conclusion, the overexpression of miR-146a has a strong anti-inflammatory effect on RV infection in HBECs and a mouse model of allergic airway inflammation, while a lack of miR-146a/b leads to attenuated type 2 cell responses in mouse models of allergic airway inflammation and RV-induced exacerbation of allergic airway inflammation. Furthermore, our data indicate that the application of CPP-miR-146a nanocomplexes has therapeutic potential for targeting airway inflammation.
Collapse
Affiliation(s)
- Anet Laanesoo
- Institute of Biomedicine and Translational MedicineUniversity of TartuTartuEstonia
| | - Egon Urgard
- Institute of Biomedicine and Translational MedicineUniversity of TartuTartuEstonia
| | - Kapilraj Periyasamy
- Institute of Biomedicine and Translational MedicineUniversity of TartuTartuEstonia
| | - Martti Laan
- Institute of Biomedicine and Translational MedicineUniversity of TartuTartuEstonia
| | - Yury A. Bochkov
- School of Medicine and Public Health University of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Alar Aab
- Institute of Biomedicine and Translational MedicineUniversity of TartuTartuEstonia
| | - Nathaniel Magilnick
- Department of Molecular and Cellular BiologyBeckman Research Institute of City of Hope National Medical CenterDuarteCaliforniaUSA
| | - Margus Pooga
- Institute of TechnologyUniversity of TartuTartuEstonia
| | - James E. Gern
- School of Medicine and Public Health University of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Sebastian L. Johnston
- National Heart and Lung InstituteImperial College LondonLondonUK
- Imperial College Healthcare NHS TrustLondonUK
| | - Jonathan M. Coquet
- Department of MicrobiologyTumor and Cell Biology (MTC)Karolinska InstitutetStockholmSweden
| | - Mark P. Boldin
- Department of Molecular and Cellular BiologyBeckman Research Institute of City of Hope National Medical CenterDuarteCaliforniaUSA
| | - Jesper Wengel
- Nucleic Acid CenterDepartment of PhysicsChemistry and PharmacyUniversity of Southern DenmarkOdenseDenmark
| | - Alan Altraja
- Department of Pulmonary MedicineUniversity of TartuTartuEstonia
- Lung Clinic of the Tartu University HospitalTartuEstonia
| | - Grazyna Bochenek
- Department of MedicineJagiellonian University Medical CollegeKrakowPoland
| | - Bogdan Jakiela
- Department of MedicineJagiellonian University Medical CollegeKrakowPoland
| | - Ana Rebane
- Institute of Biomedicine and Translational MedicineUniversity of TartuTartuEstonia
| |
Collapse
|
50
|
Weidner J, Bartel S, Kılıç A, Zissler UM, Renz H, Schwarze J, Schmidt‐Weber CB, Maes T, Rebane A, Krauss‐Etschmann S, Rådinger M. Spotlight on microRNAs in allergy and asthma. Allergy 2021; 76:1661-1678. [PMID: 33128813 PMCID: PMC8246745 DOI: 10.1111/all.14646] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/16/2020] [Accepted: 10/25/2020] [Indexed: 12/14/2022]
Abstract
In past 10 years, microRNAs (miRNAs) have gained scientific attention due to their importance in the pathophysiology of allergic diseases and their potential as biomarkers in liquid biopsies. They act as master post‐transcriptional regulators that control most cellular processes. As one miRNA can target several mRNAs, often within the same pathway, dysregulated expression of miRNAs may alter particular cellular responses and contribute, or lead, to the development of various diseases. In this review, we give an overview of the current research on miRNAs in allergic diseases, including atopic dermatitis, allergic rhinitis, and asthma. Specifically, we discuss how individual miRNAs function in the regulation of immune responses in epithelial cells and specialized immune cells in response to different environmental factors and respiratory viruses. In addition, we review insights obtained from experiments with murine models of allergic airway and skin inflammation and offer an overview of studies focusing on miRNA discovery using profiling techniques and bioinformatic modeling of the network effect of multiple miRNAs. In conclusion, we highlight the importance of research into miRNA function in allergy and asthma to improve our knowledge of the molecular mechanisms involved in the pathogenesis of this heterogeneous group of diseases.
Collapse
Affiliation(s)
- Julie Weidner
- Department of Internal Medicine and Clinical Nutrition Krefting Research Centre Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
| | - Sabine Bartel
- Department of Pathology and Medical Biology GRIAC Research Institute University Medical Center Groningen University of Groningen Groningen The Netherlands
| | - Ayse Kılıç
- Channing Division of Network Medicine Brigham and Women's Hospital Boston MA USA
| | - Ulrich M. Zissler
- Center for Allergy and Environment (ZAUM) Technical University of Munich and Helmholtz Center MunichGerman Research Center for Environmental Health Munich Germany
| | - Harald Renz
- Institut für Laboratoriumsmedizin und Pathobiochemie Philipps University of Marburg Marburg Germany
| | - Jürgen Schwarze
- Centre for Inflammation Research The University of Edinburgh Edinburgh UK
| | - Carsten B. Schmidt‐Weber
- Center for Allergy and Environment (ZAUM) Technical University of Munich and Helmholtz Center MunichGerman Research Center for Environmental Health Munich Germany
| | - Tania Maes
- Department of Respiratory Medicine Ghent University Ghent Belgium
| | - Ana Rebane
- Institute of Biomedicine and Translational Medicine University of Tartu Tartu Estonia
| | - Susanne Krauss‐Etschmann
- Research Center Borstel Borstel Germany
- Institute of Experimental Medicine Christian‐Albrechts University Kiel Kiel Germany
| | - Madeleine Rådinger
- Department of Internal Medicine and Clinical Nutrition Krefting Research Centre Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
| |
Collapse
|