1
|
Rossello-Gelabert M, Igartua M, Santos-Vizcaino E, Hernandez RM. Fine-tuning licensing strategies to boost MSC-based immunomodulatory secretome. Stem Cell Res Ther 2025; 16:183. [PMID: 40247371 PMCID: PMC12004826 DOI: 10.1186/s13287-025-04315-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Accepted: 04/04/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND Immune-mediated inflammatory diseases (IMIDs) are a major global health challenge, affecting millions of people and often lacking effective treatments. The mesenchymal stromal cell (MSC)-derived secretome has emerged as a promising therapeutic approach owing to its potent immunomodulatory properties. However, progress has been hindered by the lack of standardized protocols for inducing a robust immunomodulatory MSC phenotype. METHODS In this study, we focused on optimizing the MSC-derived secretome to enhance its ability to suppress activated immune cells. Specifically, we examined (1) the effects of IFN-γ and TNF-α, individually and in combination, to uncover potential synergy; (2) the ideal cytokine ratio and (3) concentration; (4) the best production time for the secretome; and (5) the impact of cellular confluence. These factors were systematically evaluated to assess their influence on cell behavior, viability, cytosolic content release, and the secretion of key immunomodulatory and regenerative factors. RESULTS Our results demonstrate that overnight licensing with a 1:1 ratio of IFN-γ and TNF-α at 60 ng/mL, followed by 48 h of incubation at 90% confluence, yields an optimized conditioned media (CM) with significantly enhanced immunomodulatory properties. Functional assays showed that this CM can inhibit human peripheral blood mononuclear cell (PBMC) activation with more than twice the effectiveness of suboptimal protocols. Additionally, we found that direct cell-cell contact was critical for inducing regulatory T cells (Tregs), highlighting the complex dynamics of immune regulation. CONCLUSIONS These findings establish a robust and standardized MSC licensing protocol, paving the way for the development of innovative and effective therapies to combat IMIDs. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Maria Rossello-Gelabert
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, Vitoria Gasteiz, 01006, Spain
- Bioaraba, NanoBioCel Research Group, Vitoria Gasteiz, Spain
| | - Manoli Igartua
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, Vitoria Gasteiz, 01006, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid, Spain
- Bioaraba, NanoBioCel Research Group, Vitoria Gasteiz, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, Vitoria Gasteiz, 01006, Spain.
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid, Spain.
- Bioaraba, NanoBioCel Research Group, Vitoria Gasteiz, Spain.
| | - Rosa Maria Hernandez
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, Vitoria Gasteiz, 01006, Spain.
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid, Spain.
- Bioaraba, NanoBioCel Research Group, Vitoria Gasteiz, Spain.
| |
Collapse
|
2
|
Lv D, Li B, Liu Z, Zhang Q, Cao S, Xu Y, Zhang Z. LPS‑mediated adaptation accelerates ecto‑MSCs differentiation into osteoblasts. Mol Med Rep 2024; 30:241. [PMID: 39422037 PMCID: PMC11544396 DOI: 10.3892/mmr.2024.13365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/10/2024] [Indexed: 10/19/2024] Open
Abstract
Addressing the repair and regeneration of large bone defects poses significant challenges in bone tissue engineering. Despite the abundant evidence demonstrating the positive role of MSCs in osteogenesis, their limited osteogenic differentiation ability still needs to be improved. The present study used lipopolysaccharide (LPS) to enhance the osteogenic properties of ecto‑mesenchymal stem cells (EMSCs). Human nasal respiratory mucosa‑derived EMSCs were cultured on plates and stimulated with LPS for 5 days prior to undergoing osteogenic differentiation. The findings revealed that LPS effectively stimulated the osteogenic differentiation capacity of EMSCs, as evidenced by heightened alkaline phosphatase activity, elevated expression levels of osteogenic‑related proteins and enhanced mineralization of EMSCs. The present study also demonstrated that the augmentation occurred due to increased IL‑10 levels, although it was not solely attributable to this factor. Together, the findings illustrated that the LPS‑mediated adaptation of EMSCs is an active process driving osteogenic differentiation and could be a novel strategy for bone regeneration.
Collapse
Affiliation(s)
- Demin Lv
- Department of Traumatic Orthopedics, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Bingxia Li
- Department of Stomatology, Zhenjiang 359th Hospital, Zhenjiang, Jiangsu 212001, P.R. China
| | - Zhen Liu
- Department of Neurosurgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Qing Zhang
- Department of Traumatic Orthopedics, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Sucheng Cao
- Department of Emergency Services, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Yanlong Xu
- Department of Emergency Services, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Zheng Zhang
- Department of Medical Ultrasonics, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| |
Collapse
|
3
|
Zhang X, Li T, Lu YQ. Mesenchymal stem cell-based therapy for paraquat-induced lung injury. Cell Biol Toxicol 2024; 40:70. [PMID: 39136896 PMCID: PMC11322247 DOI: 10.1007/s10565-024-09911-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/06/2024] [Indexed: 08/16/2024]
Abstract
Paraquat poisoning results in significant pulmonary damage, but current treatments are only minimally effective in repairing the injured lung tissues. Recent research has highlighted the promise of using stem cell therapy, namely mesenchymal stem cells, as a new method for treating paraquat toxicity. These cells have shown effectiveness in decreasing inflammation, apoptosis, and fibrosis in the mice lungs subjected to paraquat. The therapeutic implications of mesenchymal stem cells are believed to arise from their release of bioactive proteins and their capacity to regulate inflammatory responses. However, additional clinical study is required to validate these therapies' efficacy. This review thoroughly explores the pathophysiology of paraquat poisoning and the properties of mesenchymal stem cells. Additionally, it critically assesses the long-term safety and effectiveness of mesenchymal stem cell therapies, which is crucial for developing more dependable and effective treatment protocols. In summary, although mesenchymal stem cells offer promising prospects for treating lung injuries, more investigations are required to optimize their therapeutic promise and ensure their safe clinical application in the context of paraquat poisoning.
Collapse
Affiliation(s)
- Xiaping Zhang
- Department of Emergency Medicine, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Ting Li
- Department of Emergency Medicine, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Yuan-Qiang Lu
- Department of Emergency Medicine, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, 310003, People's Republic of China.
- Zhejiang Key Laboratory for Diagnosis and Treatment of Physic-Chemical and Aging-Related Injuries, Hangzhou, Zhejiang, 310003, People's Republic of China.
| |
Collapse
|
4
|
Lim JJ, Vining KH, Mooney DJ, Blencowe BJ. Matrix stiffness-dependent regulation of immunomodulatory genes in human MSCs is associated with the lncRNA CYTOR. Proc Natl Acad Sci U S A 2024; 121:e2404146121. [PMID: 39074278 PMCID: PMC11317610 DOI: 10.1073/pnas.2404146121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/17/2024] [Indexed: 07/31/2024] Open
Abstract
Cell-matrix interactions in 3D environments significantly differ from those in 2D cultures. As such, mechanisms of mechanotransduction in 2D cultures are not necessarily applicable to cell-encapsulating hydrogels that resemble features of tissue architecture. Accordingly, the characterization of molecular pathways in 3D matrices is expected to uncover insights into how cells respond to their mechanical environment in physiological contexts, and potentially also inform hydrogel-based strategies in cell therapies. In this study, a bone marrow-mimetic hydrogel was employed to systematically investigate the stiffness-responsive transcriptome of mesenchymal stromal cells. High matrix rigidity impeded integrin-collagen adhesion, resulting in changes in cell morphology characterized by a contractile network of actin proximal to the cell membrane. This resulted in a suppression of extracellular matrix-regulatory genes involved in the remodeling of collagen fibrils, as well as the upregulation of secreted immunomodulatory factors. Moreover, an investigation of long noncoding RNAs revealed that the cytoskeleton regulator RNA (CYTOR) contributes to these 3D stiffness-driven changes in gene expression. Knockdown of CYTOR using antisense oligonucleotides enhanced the expression of numerous mechanoresponsive cytokines and chemokines to levels exceeding those achievable by modulating matrix stiffness alone. Taken together, our findings further our understanding of mechanisms of mechanotransduction that are distinct from canonical mechanotransductive pathways observed in 2D cultures.
Collapse
Affiliation(s)
- Justin J. Lim
- Donnelly Centre, University of Toronto, Toronto, ONM5S3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ONM5S1A8, Canada
| | - Kyle H. Vining
- Department of Preventative and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA19104
- Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA19104
| | - David J. Mooney
- Department of Bioengineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA02138
| | - Benjamin J. Blencowe
- Donnelly Centre, University of Toronto, Toronto, ONM5S3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ONM5S1A8, Canada
| |
Collapse
|
5
|
Gao M, Guo H, Dong X, Wang Z, Yang Z, Shang Q, Wang Q. Regulation of inflammation during wound healing: the function of mesenchymal stem cells and strategies for therapeutic enhancement. Front Pharmacol 2024; 15:1345779. [PMID: 38425646 PMCID: PMC10901993 DOI: 10.3389/fphar.2024.1345779] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
A wound takes a long time to heal and involves several steps. Following tissue injury, inflammation is the primary cause of tissue regeneration and repair processes. As a result, the pathophysiological processes involving skin damage, healing, and remodeling depend critically on the control of inflammation. The fact that it is a feasible target for improving the prognosis of wound healing has lately become clear. Mesenchymal stem cells (MSCs) are an innovative and effective therapeutic option for wound healing due to their immunomodulatory and paracrine properties. By controlling the inflammatory milieu of wounds through immunomodulation, transplanted MSCs have been shown to speed up the healing process. In addition to other immunomodulatory mechanisms, including handling neutrophil activity and modifying macrophage polarization, there may be modifications to the activation of T cells, natural killer (NK) cells, and dendritic cells (DCs). Furthermore, several studies have shown that pretreating MSCs improves their ability to modulate immunity. In this review, we summarize the existing knowledge about how MSCs influence local inflammation in wounds by influencing immunity to facilitate the healing process. We also provide an overview of MSCs optimizing techniques when used to treat wounds.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qiying Wang
- Department of Plastic Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
6
|
Hong D, Hu Z, Weng J, Yang L, Xiong Y, Liu Y. Effect of mesenchymal stem cell therapy in animal models of allergic rhinitis: A systematic review and meta-analysis. Int Immunopharmacol 2023; 124:111003. [PMID: 37806104 DOI: 10.1016/j.intimp.2023.111003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 09/06/2023] [Accepted: 09/25/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Allergic rhinitis (AR) is a worldwide problem that affects people of all ages, impairing patients' physical and mental health and causing great social expenditure. Animal studies have suggested the potential efficacy of mesenchymal stem cell (MSC) therapy in treating AR. Our meta-analysis was performed to evaluate the effect of MSC therapy in animal models of AR by pooling animal studies. METHODS The search was executed in PubMed, Embase, Web of Science, OVID, and the Cochrane Library for relevant studies up to February 2023. The applicable data were extracted from the eligible studies, and the risk of bias was assessed for each study. The meta-analysis was conducted using Review Manager (version 5.4.1) and Stata (version 15.1). RESULTS A total of 12 studies were included in the final analysis. Compared to the model control group, the MSC therapy group presented lower frequency of sneezing [(Standardized mean difference (SMD) -1.87, 95% CI -2.30 to -1.43)], nasal scratching (SMD -1.41, 95% CI -1.83 to -0.99), and overall nasal symptoms (SMD -1.88, 95% CI -3.22 to -0.54). There were also remarkable reductions after transplantation with MSCs in the levels of total immunoglobulin E (IgE) (SMD -1.25, 95% CI -1.72 to -0.79), allergen-specific IgE (SMD -1.79, 95% CI -2.25 to -1.32), and allergen-specific immunoglobulin G1 (SMD -1.29, 95% CI -2.03) in serum, as well as the count of eosinophils (EOS) in nasal mucosa (SMD -3.48, 95% CI -4.48 to -2.49). In terms of cytokines, MSC therapy significantly decreased both protein and mRNA levels of T helper cell 2 (Th2)-related cytokines, including interleukin (IL)-4, IL-5, IL-10, and IL-13. CONCLUSION MSC therapy has the potential to be an effective clinical treatment for AR patients by attenuating Th2 immune responses, reducing secretion of IgE and nasal infiltration of EOS, and consequently alleviating nasal symptoms.
Collapse
Affiliation(s)
- Dongdong Hong
- Department of Otorhinolaryngology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, China
| | - Zhen Hu
- Department of Otorhinolaryngology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, China
| | - Juanling Weng
- Department of Otorhinolaryngology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, China
| | - Long Yang
- Department of Otorhinolaryngology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, China
| | - Yalan Xiong
- Department of Otorhinolaryngology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, China
| | - Yuanxian Liu
- Department of Otorhinolaryngology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, China.
| |
Collapse
|
7
|
Zhang R, Tao Y, Huang J. The Application of MicroRNAs in Glaucoma Research: A Bibliometric and Visualized Analysis. Int J Mol Sci 2023; 24:15377. [PMID: 37895056 PMCID: PMC10607922 DOI: 10.3390/ijms242015377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Glaucoma is similar to a neurodegenerative disorder and leads to global irreversible loss of vision. Despite extensive research, the pathophysiological mechanisms of glaucoma remain unclear, and no complete cure has yet been identified for glaucoma. Recent studies have shown that microRNAs can serve as diagnostic biomarkers or therapeutic targets for glaucoma; however, there are few bibliometric studies that focus on using microRNAs in glaucoma research. Here, we have adopted a bibliometric analysis in the field of microRNAs in glaucoma research to manifest the current tendencies and research hotspots and to present a visual map of the past and emerging tendencies in this field. In this study, we retrieved publications in the Web of Science database that centered on this field between 2007 and 2022. Next, we used VOSviewer, CiteSpace, Scimago Graphica, and Microsoft Excel to present visual representations of a co-occurrence analysis, co-citation analysis, tendencies, hotspots, and the contributions of authors, institutions, journals, and countries/regions. The United States was the main contributor. Investigative Ophthalmology and Visual Science has published the most articles in this field. Over the past 15 years, there has been exponential growth in the number of publications and citations in this field across various countries, organizations, and authors. Thus, this study illustrates the current trends, hotspots, and emerging frontiers and provides new insight and guidance for searching for new diagnostic biomarkers and clinical trials for glaucoma in the future. Furthermore, international collaborations can also be used to broaden and deepen the field of microRNAs in glaucoma research.
Collapse
Affiliation(s)
| | | | - Jufang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China; (R.Z.); (Y.T.)
| |
Collapse
|
8
|
Li D, Ou Q, Shen Q, Lu MM, Xu JY, Jin C, Gao F, Wang J, Zhang J, Zhang J, Li J, Lu L, Xu GT, Tian H. Subconjunctival injection of human umbilical cord mesenchymal stem cells alleviates experimental allergic conjunctivitis via regulating T cell response. Stem Cell Res Ther 2023; 14:281. [PMID: 37784129 PMCID: PMC10546642 DOI: 10.1186/s13287-023-03484-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/29/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND T helper 2 (Th2) cells are thought to play critical roles in allergic conjunctivitis (AC). They release inflammatory cytokines to promote an allergic response in AC. Due to individual heterogeneity and long-term chronic management, current therapies do not always effectively control AC. Mesenchymal stem cells (MSCs) have been shown to be effective in treating allergy-related disorders, but it is unclear how exactly the Th2-mediated allergic response is attenuated. This study aims to elucidate the therapeutic effect and mechanism of the human umbilical cord MSCs (hUCMSCs) in a mouse model of experimental AC (EAC). METHODS A mouse EAC model was established by inoculating short ragweed (SRW) pollen. After the SRW pollen challenge, the mice received a single subconjunctival or tail vein injection of 2 × 106 hUCMSCs, or subconjunctival injection of hUCMSCs conditioned medium (hUCMSC-CM), and dexamethasone eye drops was used as positive control; subsequent scratching behavior and clinical symptoms were assessed. Immunostaining and flow cytometry were carried out to show allergic reactions and the activation of CD4 + T cell subsets in the conjunctiva and cervical lymph nodes (CLNs). Gene expression was determined by RNA-seq and further verified by qRT-PCR and Western blot. Co-culture assays were performed to explore the regulatory role of hUCMSCs in the differentiation of CD4 + naive T cells (Th0) into Th2 cells. RESULTS Subconjunctival administration of hUCMSCs resulted in fewer instances of scratching and lower inflammation scores in EAC mice compared to the tail vein delivery, hUCMSC-CM and control groups. Subconjunctival administration of hUCMSCs reduced the number of activated mast cells and infiltrated eosinophils in the conjunctiva, as well as decreased the number of Th2 cells in CLNs. After pretreatment with EAC mouse serum in vitro to mimic the in vivo milieu, hUCMSCs were able to inhibit the differentiation of Th0 into Th2 cells. Further evidence demonstrated that repression of Th2 cell differentiation by hUCMSCs is mediated by CRISPLD2 through downregulation of STAT6 phosphorylation. Additionally, hUMCSCs were able to promote the differentiation of Th0 cells into regulatory T cells in CLNs of EAC mice. CONCLUSIONS Subconjunctival injection of hUCMSCs suppressed the Th2-allergic response and alleviated clinical symptoms. This study provides not only a potential therapeutic target for the treatment of AC but also other T cell-mediated diseases.
Collapse
Affiliation(s)
- Dongli Li
- Department of Ophthalmology of Tongji Hospital, Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China
| | - Qingjian Ou
- Department of Ophthalmology of Tongji Hospital, Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China
| | - Qi Shen
- Department of Ophthalmology of Tongji Hospital, Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China
| | - Michael Mingze Lu
- Department of Ophthalmology of Tongji Hospital, Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China
| | - Jing-Ying Xu
- Department of Ophthalmology of Tongji Hospital, Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China
| | - Caixia Jin
- Department of Ophthalmology of Tongji Hospital, Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China
| | - Furong Gao
- Department of Ophthalmology of Tongji Hospital, Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China
| | - Juan Wang
- Department of Ophthalmology of Tongji Hospital, Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China
| | - Jingfa Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Jieping Zhang
- Department of Ophthalmology of Tongji Hospital, Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China
- Department of Physiology and Pharmacology, TUSM, Shanghai, 200092, China
| | - Jiao Li
- Department of Ophthalmology of Tongji Hospital, Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China
| | - Lixia Lu
- Department of Ophthalmology of Tongji Hospital, Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China.
| | - Guo-Tong Xu
- Department of Ophthalmology of Tongji Hospital, Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China.
- Department of Physiology and Pharmacology, TUSM, Shanghai, 200092, China.
- The Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200092, China.
| | - Haibin Tian
- Department of Ophthalmology of Tongji Hospital, Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China.
- Department of Physiology and Pharmacology, TUSM, Shanghai, 200092, China.
| |
Collapse
|
9
|
Bouche Djatche WH, Zhu H, Ma W, Li Y, Li Z, Zhao H, Liu Z, Qiao H. Potential of mesenchymal stem cell-derived conditioned medium/secretome as a therapeutic option for ocular diseases. Regen Med 2023; 18:795-807. [PMID: 37702008 DOI: 10.2217/rme-2023-0089] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Research has shown that the therapeutic effect of mesenchymal stem cells (MSCs) is partially due to its secreted factors as opposed to the implantation of the cells into the treated tissue or tissue replacement. MSC secretome, especially in the form of conditioned medium (MSC-CM) is now being explored as an alternative to MSCs transplantation. Despite the observed benefits of MSC-CM, only a few clinical trials have evaluated it and other secretome components in the treatment of eye diseases. This review provides insight into the potential therapeutic use of MSC-CM in eye conditions, such as corneal diseases, dry eye, glaucoma, retinal diseases and uveitis. We discuss the current evidence, some limitations, and the progress that remains to be achieved before clinical translation becomes possible.
Collapse
Affiliation(s)
| | - Huimin Zhu
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China
| | - Wenlei Ma
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China
| | - Yue Li
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China
| | - Ziang Li
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China
| | - Hong Zhao
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China
| | - Zhizhen Liu
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China
| | - Hua Qiao
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|
10
|
Zhu M, Cao L, Melino S, Candi E, Wang Y, Shao C, Melino G, Shi Y, Chen X. Orchestration of Mesenchymal Stem/Stromal Cells and Inflammation During Wound Healing. Stem Cells Transl Med 2023; 12:576-587. [PMID: 37487541 PMCID: PMC10502569 DOI: 10.1093/stcltm/szad043] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/13/2023] [Indexed: 07/26/2023] Open
Abstract
Wound healing is a complex process and encompasses a number of overlapping phases, during which coordinated inflammatory responses following tissue injury play dominant roles in triggering evolutionarily highly conserved principals governing tissue repair and regeneration. Among all nonimmune cells involved in the process, mesenchymal stem/stromal cells (MSCs) are most intensely investigated and have been shown to play fundamental roles in orchestrating wound healing and regeneration through interaction with the ordered inflammatory processes. Despite recent progress and encouraging results, an informed view of the scope of this evolutionarily conserved biological process requires a clear understanding of the dynamic interplay between MSCs and the immune systems in the process of wound healing. In this review, we outline current insights into the ways in which MSCs sense and modulate inflammation undergoing the process of wound healing, highlighting the central role of neutrophils, macrophages, and T cells during the interaction. We also draw attention to the specific effects of MSC-based therapy on different pathological wound healing. Finally, we discuss how ongoing scientific advances in MSCs could be efficiently translated into clinical strategies, focusing on the current limitations and gaps that remain to be overcome for achieving preferred functional tissue regeneration.
Collapse
Affiliation(s)
- Mengting Zhu
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, People’s Republic of China
- Department of Experimental Medicine and Biochemical Sciences, University of Rome “Tor Vergata,”Rome, Italy
| | - Lijuan Cao
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, People’s Republic of China
- Department of Experimental Medicine and Biochemical Sciences, University of Rome “Tor Vergata,”Rome, Italy
| | - Sonia Melino
- Department of Experimental Medicine and Biochemical Sciences, University of Rome “Tor Vergata,”Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine and Biochemical Sciences, University of Rome “Tor Vergata,”Rome, Italy
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Shanghai, People’s Republic of China
| | - Changshun Shao
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, People’s Republic of China
| | - Gerry Melino
- Department of Experimental Medicine and Biochemical Sciences, University of Rome “Tor Vergata,”Rome, Italy
| | - Yufang Shi
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, People’s Republic of China
| | - Xiaodong Chen
- Wuxi Sinotide New Drug Discovery Institutes, Huishan Economic and Technological Development Zone, Wuxi, Jiangsu, People’s Republic of China
| |
Collapse
|
11
|
Chen Z, Yao MW, Shen ZL, Li SD, Xing W, Guo W, Li Z, Wu XF, Ao LQ, Lu WY, Lian QZ, Xu X, Ao X. Interferon-gamma and tumor necrosis factor-alpha synergistically enhance the immunosuppressive capacity of human umbilical-cord-derived mesenchymal stem cells by increasing PD-L1 expression. World J Stem Cells 2023; 15:787-806. [PMID: 37700823 PMCID: PMC10494569 DOI: 10.4252/wjsc.v15.i8.787] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/20/2023] [Accepted: 07/24/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND The immunosuppressive capacity of mesenchymal stem cells (MSCs) is dependent on the "license" of several proinflammatory factors to express immunosuppressive factors such as programmed cell death 1 ligand 1 (PD-L1), which determines the clinical therapeutic efficacy of MSCs for inflammatory or immune diseases. In MSCs, interferon-gamma (IFN-γ) is a key inducer of PD-L1 expression, which is synergistically enhanced by tumor necrosis factor-alpha (TNF-α); however, the underlying mechanism is unclear. AIM To reveal the mechanism of pretreated MSCs express high PD-L1 and explore the application of pretreated MSCs in ulcerative colitis. METHODS We assessed PD-L1 expression in human umbilical-cord-derived MSCs (hUC-MSCs) induced by IFN-γ and TNF-α, alone or in combination. Additionally, we performed signal pathway inhibitor experiments as well as RNA interference experiments to elucidate the molecular mechanism by which IFN-γ alone or in combination with TNF-α induces PD-L1 expression. Moreover, we used luciferase reporter gene experiments to verify the binding sites of the transcription factors of each signal transduction pathway to the targeted gene promoters. Finally, we evaluated the immunosuppressive capacity of hUC-MSCs treated with IFN-γ and TNF-α in both an in vitro mixed lymphocyte culture assay, and in vivo in mice with dextran sulfate sodium-induced acute colitis. RESULTS Our results suggest that IFN-γ induction alone upregulates PD-L1 expression in hUC-MSCs while TNF-α alone does not, and that the co-induction of IFN-γ and TNF-α promotes higher expression of PD-L1. IFN-γ induces hUC-MSCs to express PD-L1, in which IFN-γ activates the JAK/STAT1 signaling pathway, up-regulates the expression of the interferon regulatory factor 1 (IRF1) transcription factor, promotes the binding of IRF1 and the PD-L1 gene promoter, and finally promotes PD-L1 mRNA. Although TNF-α alone did not induce PD-L1 expression in hUC-MSCs, the addition of TNF-α significantly enhanced IFN-γ-induced JAK/STAT1/IRF1 activation. TNF-α up-regulated IFN-γ receptor expression through activation of the nuclear factor kappa-B signaling pathway, which significantly enhanced IFN-γ signaling. Finally, co-induced hUC-MSCs have a stronger inhibitory effect on lymphocyte proliferation, and significantly ameliorate weight loss, mucosal damage, inflammatory cell infiltration, and up-regulation of inflammatory factors in colitis mice. CONCLUSION Overall, our results suggest that IFN-γ and TNF-α enhance both the immunosuppressive ability of hUC-MSCs and their efficacy in ulcerative colitis by synergistically inducing high expression of PD-L1.
Collapse
Affiliation(s)
- Zhuo Chen
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
- College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Meng-Wei Yao
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Zhi-Lin Shen
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Shi-Dan Li
- Department of Orthopedics, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Wei Xing
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Wei Guo
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Zhan Li
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Xiao-Feng Wu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Luo-Quan Ao
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Wen-Yong Lu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, The South of Shangcai Village, Wenzhou 325005, Zhejiang Province, China
| | - Qi-Zhou Lian
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Xiang Xu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Xiang Ao
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
- Department of Orthopedics, 953 Hospital of PLA Army, Shigatse Branch of Xinqiao Hospital, Army Medical University, Shigatse 857000, Tibet Autonomous Region, China.
| |
Collapse
|
12
|
Khan S, Mahgoub S, Fallatah N, Lalor PF, Newsome PN. Liver Disease and Cell Therapy: Advances Made and Remaining Challenges. Stem Cells 2023; 41:739-761. [PMID: 37052348 PMCID: PMC10809282 DOI: 10.1093/stmcls/sxad029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 02/27/2023] [Indexed: 04/14/2023]
Abstract
The limited availability of organs for liver transplantation, the ultimate curative treatment for end stage liver disease, has resulted in a growing and unmet need for alternative therapies. Mesenchymal stromal cells (MSCs) with their broad ranging anti-inflammatory and immunomodulatory properties have therefore emerged as a promising therapeutic agent in treating inflammatory liver disease. Significant strides have been made in exploring their biological activity. Clinical application of MSC has shifted the paradigm from using their regenerative potential to one which harnesses their immunomodulatory properties. Reassuringly, MSCs have been extensively investigated for over 30 years with encouraging efficacy and safety data from translational and early phase clinical studies, but questions remain about their utility. Therefore, in this review, we examine the translational and clinical studies using MSCs in various liver diseases and their impact on dampening immune-mediated liver damage. Our key observations include progress made thus far with use of MSCs for clinical use, inconsistency in the literature to allow meaningful comparison between different studies and need for standardized protocols for MSC manufacture and administration. In addition, the emerging role of MSC-derived extracellular vesicles as an alternative to MSC has been reviewed. We have also highlighted some of the remaining clinical challenges that should be addressed before MSC can progress to be considered as therapy for patients with liver disease.
Collapse
Affiliation(s)
- Sheeba Khan
- National Institute for Health Research, Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham, West Midlands, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, West Midlands, UK
- Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, Birmingham, West Midlands, UK
| | - Sara Mahgoub
- National Institute for Health Research, Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham, West Midlands, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, West Midlands, UK
- Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, Birmingham, West Midlands, UK
| | - Nada Fallatah
- National Institute for Health Research, Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham, West Midlands, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, West Midlands, UK
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Patricia F Lalor
- National Institute for Health Research, Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham, West Midlands, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, West Midlands, UK
| | - Philip N Newsome
- National Institute for Health Research, Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham, West Midlands, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, West Midlands, UK
- Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, Birmingham, West Midlands, UK
| |
Collapse
|
13
|
Gao Y, Duan R, Li H, Jiang L, Tao T, Liu X, Zhu L, Li Z, Chen B, Zheng S, Lin X, Su W. Single-cell analysis of immune cells on gingiva-derived mesenchymal stem cells in experimental autoimmune uveitis. iScience 2023; 26:106729. [PMID: 37216113 PMCID: PMC10192653 DOI: 10.1016/j.isci.2023.106729] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 03/22/2023] [Accepted: 04/19/2023] [Indexed: 05/24/2023] Open
Abstract
Gingiva-derived mesenchymal stem cells (GMSCs) have shown astonishing efficacy in the treatment of various autoimmune diseases. However, the mechanisms underlying these immunosuppressive properties remain poorly understood. Here, we generated a lymph node single-cell transcriptomic atlas of GMSC-treated experimental autoimmune uveitis mice. GMSC exerted profound rescue effects on T cells, B cells, dendritic cells, and monocytes. GMSCs rescued the proportion of T helper 17 (Th17) cells and increased the proportion of regulatory T cells. In addition to globally altered transcriptional factors (Fosb and Jund), we observed cell type-dependent gene regulation (e.g., Il17a and Rac1 in Th17 cells), highlighting the GMSCs' cell type-dependent immunomodulatory capacity. GMSCs strongly influenced the phenotypes of Th17 cells, suppressing the formation of the highly inflammatory CCR6-CCR2+ phenotype and enhancing the production of interleukin (IL) -10 in the CCR6+CCR2+ phenotype. Integration of the glucocorticoid-treated transcriptome suggests a more specific immunosuppressive effect of GMSCs on lymphocytes.
Collapse
Affiliation(s)
- Yuehan Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 51000, China
| | - Runping Duan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 51000, China
| | - He Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 51000, China
| | - Loujing Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 51000, China
| | - Tianyu Tao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 51000, China
| | - Xiuxing Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 51000, China
| | - Lei Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 51000, China
| | - Zhaohuai Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 51000, China
| | - Binyao Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 51000, China
| | - Songguo Zheng
- The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 51000, China
| | - Xianchai Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 51000, China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 51000, China
| |
Collapse
|
14
|
Lopes-Pacheco M, Rocco PRM. Functional enhancement strategies to potentiate the therapeutic properties of mesenchymal stromal cells for respiratory diseases. Front Pharmacol 2023; 14:1067422. [PMID: 37007034 PMCID: PMC10062457 DOI: 10.3389/fphar.2023.1067422] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Respiratory diseases remain a major health concern worldwide because they subject patients to considerable financial and psychosocial burdens and result in a high rate of morbidity and mortality. Although significant progress has been made in understanding the underlying pathologic mechanisms of severe respiratory diseases, most therapies are supportive, aiming to mitigate symptoms and slow down their progressive course but cannot improve lung function or reverse tissue remodeling. Mesenchymal stromal cells (MSCs) are at the forefront of the regenerative medicine field due to their unique biomedical potential in promoting immunomodulation, anti-inflammatory, anti-apoptotic and antimicrobial activities, and tissue repair in various experimental models. However, despite several years of preclinical research on MSCs, therapeutic outcomes have fallen far short in early-stage clinical trials for respiratory diseases. This limited efficacy has been associated with several factors, such as reduced MSC homing, survival, and infusion in the late course of lung disease. Accordingly, genetic engineering and preconditioning methods have emerged as functional enhancement strategies to potentiate the therapeutic actions of MSCs and thus achieve better clinical outcomes. This narrative review describes various strategies that have been investigated in the experimental setting to functionally potentiate the therapeutic properties of MSCs for respiratory diseases. These include changes in culture conditions, exposure of MSCs to inflammatory environments, pharmacological agents or other substances, and genetic manipulation for enhanced and sustained expression of genes of interest. Future directions and challenges in efficiently translating MSC research into clinical practice are discussed.
Collapse
Affiliation(s)
- Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
- *Correspondence: Miquéias Lopes-Pacheco, ; Patricia R. M. Rocco,
| | - Patricia R. M. Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- *Correspondence: Miquéias Lopes-Pacheco, ; Patricia R. M. Rocco,
| |
Collapse
|
15
|
The Role of COX-2 and PGE2 in the Regulation of Immunomodulation and Other Functions of Mesenchymal Stromal Cells. Biomedicines 2023; 11:biomedicines11020445. [PMID: 36830980 PMCID: PMC9952951 DOI: 10.3390/biomedicines11020445] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
The ability of MSCs to modulate the inflammatory environment is well recognized, but understanding the molecular mechanisms responsible for these properties is still far from complete. Prostaglandin E2 (PGE2), a product of the cyclooxygenase 2 (COX-2) pathway, is indicated as one of the key mediators in the immunomodulatory effect of MSCs. Due to the pleiotropic effect of this molecule, determining its role in particular intercellular interactions and aspects of cell functioning is very difficult. In this article, the authors attempt to summarize the previous observations regarding the role of PGE2 and COX-2 in the immunomodulatory properties and other vital functions of MSCs. So far, the most consistent results relate to the inhibitory effect of MSC-derived PGE2 on the early maturation of dendritic cells, suppressive effect on the proliferation of activated lymphocytes, and stimulatory effect on the differentiation of macrophages into M2 phenotype. Additionally, COX-2/PGE2 plays an important role in maintaining the basic life functions of MSCs, such as the ability to proliferate, migrate and differentiate, and it also positively affects the formation of niches that are conducive to both hematopoiesis and carcinogenesis.
Collapse
|
16
|
Pretreated Mesenchymal Stem Cells and Their Secretome: Enhanced Immunotherapeutic Strategies. Int J Mol Sci 2023; 24:ijms24021277. [PMID: 36674790 PMCID: PMC9864323 DOI: 10.3390/ijms24021277] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Mesenchymal stem cells (MSCs) with self-renewing, multilineage differentiation and immunomodulatory properties, have been extensively studied in the field of regenerative medicine and proved to have significant therapeutic potential in many different pathological conditions. The role of MSCs mainly depends on their paracrine components, namely secretome. However, the components of MSC-derived secretome are not constant and are affected by the stimulation MSCs are exposed to. Therefore, the content and composition of secretome can be regulated by the pretreatment of MSCs. We summarize the effects of different pretreatments on MSCs and their secretome, focusing on their immunomodulatory properties, in order to provide new insights for the therapeutic application of MSCs and their secretome in inflammatory immune diseases.
Collapse
|
17
|
Sarsenova M, Kim Y, Raziyeva K, Kazybay B, Ogay V, Saparov A. Recent advances to enhance the immunomodulatory potential of mesenchymal stem cells. Front Immunol 2022; 13:1010399. [PMID: 36211399 PMCID: PMC9537745 DOI: 10.3389/fimmu.2022.1010399] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022] Open
Abstract
Considering the unique therapeutic potential of mesenchymal stem cells (MSCs), including their immunosuppressive and immunomodulatory properties as well as their ability to improve tissue regeneration, these cells have attracted the attention of scientists and clinicians for the treatment of different inflammatory and immune system mediated disorders. However, various clinical trials using MSCs for the therapeutic purpose are conflicting and differ from the results of promising preclinical studies. This inconsistency is caused by several factors such as poor migration and homing capacities, low survival rate, low level of proliferation and differentiation, and donor-dependent variation of the cells. Enhancement and retention of persistent therapeutic effects of the cells remain a challenge to overcome in MSC-based therapy. In this review, we summarized various approaches to enhance the clinical outcomes of MSC-based therapy as well as revised current and future perspectives for the creation of cellular products with improved potential for diverse clinical applications.
Collapse
Affiliation(s)
- Madina Sarsenova
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Yevgeniy Kim
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Kamila Raziyeva
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Bexultan Kazybay
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Vyacheslav Ogay
- Laboratory of Stem Cells, National Center for Biotechnology, Nur-Sultan, Kazakhstan
| | - Arman Saparov
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
- *Correspondence: Arman Saparov,
| |
Collapse
|
18
|
Nozari P, Mokhtari P, Nemati M, Zainodini N, Taghipour Z, Asadi F, Ayoobi F, Jafarzadeh A. Investigation of the effect of IFN-γ/TNF-α-treated mesenchymal stem cells on Th9- and Treg cell-related parameters in a mouse model of ovalbumin-induced allergic asthma. Immunopharmacol Immunotoxicol 2022; 44:773-785. [PMID: 35620857 DOI: 10.1080/08923973.2022.2082977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Th9- and regulatory T (Treg) cells exert pro- and anti-allergic activity, respectively. Mesenchymal stem cell (MSC)-related immunomodulatory impacts can be enhanced by inflammatory cytokines. Here, the modulatory effects of IFN-γ/TNF-α-induced MSCs on Th9- and Treg cell-related parameters were investigated using an asthma model. METHODS Allergic asthma was induced in BALB/c mice using sensitized and challenging with ovalbumin (OVA). The asthmatic groups were treated intraperitoneally with PBS, MSCs, IFN-γ-induced MSCs, TNF-α-induced MSCs and "IFN-γ + TNF-α"-induced MSCs before the challenge phase. The mice were sacrificed 24 hours after challenge. The serum IL-9 and IL-35 levels, as well as gene expression of IL-9, PU.1, IL-35-EBI3 and FOXP3 in the lung tissues were assessed using ELISA and real time-PCR, respectively. RESULTS The differences of Th9 and Treg-related parameters were not significant between untreated asthmatic mice and those treated with non-induced MSCs. In comparison with untreated asthmatic group, treatment with IFN-γ-induced MSCs significantly reduced serum IL-9 levels, reduced lung expression of IL-9 and PU.1, while increasing serum IL-35 levels as well as lung expression of FOXP3; treatment with TNF-α-induced MSCs significantly reduced serum IL-9 levels as well as lung expression of IL-9, and treatment with "IFN-γ + TNF-α"-induced MSCs significantly modulated all investigated Th9 and Treg-related parameters. In comparison to mice treated with non-induced MSCs, serum IL-9 levels were remarkably decreased in mice treated with IFN-γ-induced and "IFN-γ + TNF-α"-induced MSCs. CONCLUSIONS IFN-γ-and "IFN-γ + TNF-α" treated MSCs exerted almost comparable impacts, but were more efficient than TNF-α-exposed MSCs. Thus, IFN-γ alone can be sufficient to promote immunomodulatory effects of MSCs.
Collapse
Affiliation(s)
- Parvin Nozari
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Pejman Mokhtari
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Nemati
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Haematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Nahid Zainodini
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Zahra Taghipour
- Department of Histology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Fatemeh Asadi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Fatemeh Ayoobi
- Non-Communicable Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
19
|
Bhure TS, Das P, Jukanti A, Mishra DK, Sahu SK, Basu S, Shukla S. Mesenchymal stem cell therapy for alleviating ocular surface inflammation in allergic conjunctivitis. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Yu Z, Wen Y, Jiang N, Li Z, Guan J, Zhang Y, Deng C, Zhao L, Zheng SG, Zhu Y, Su W, Zhuo Y. TNF-α stimulation enhances the neuroprotective effects of gingival MSCs derived exosomes in retinal ischemia-reperfusion injury via the MEG3/miR-21a-5p axis. Biomaterials 2022; 284:121484. [DOI: 10.1016/j.biomaterials.2022.121484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 12/14/2022]
|
21
|
Han Y, Yang J, Fang J, Zhou Y, Candi E, Wang J, Hua D, Shao C, Shi Y. The secretion profile of mesenchymal stem cells and potential applications in treating human diseases. Signal Transduct Target Ther 2022; 7:92. [PMID: 35314676 PMCID: PMC8935608 DOI: 10.1038/s41392-022-00932-0] [Citation(s) in RCA: 312] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 11/18/2021] [Accepted: 02/20/2022] [Indexed: 02/06/2023] Open
Abstract
AbstractMesenchymal stromal/stem cells (MSCs) possess multi-lineage differentiation and self-renewal potentials. MSCs-based therapies have been widely utilized for the treatment of diverse inflammatory diseases, due to the potent immunoregulatory functions of MSCs. An increasing body of evidence indicates that MSCs exert their therapeutic effects largely through their paracrine actions. Growth factors, cytokines, chemokines, extracellular matrix components, and metabolic products were all found to be functional molecules of MSCs in various therapeutic paradigms. These secretory factors contribute to immune modulation, tissue remodeling, and cellular homeostasis during regeneration. In this review, we summarize and discuss recent advances in our understanding of the secretory behavior of MSCs and the intracellular communication that accounts for their potential in treating human diseases.
Collapse
|
22
|
He X, Li C, Yin H, Tan X, Yi J, Tian S, Wang Y, Liu J. Mesenchymal stem cells inhibited the apoptosis of alveolar epithelial cells caused by ARDS through CXCL12/CXCR4 axis. Bioengineered 2022; 13:9060-9070. [PMID: 35301927 PMCID: PMC9161978 DOI: 10.1080/21655979.2022.2052652] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have a wide range of anti-inflammatory and immunomodulatory effects and have been observed to have potential therapeutic potential in the clinical treatment of various diseases. We pretreated lung cancer cells A549 with tumor necrosis factor (TNF-α), knocked down the key chemokine receptor CXCR4 on MSCs using lentivirus, and induced acute respiratory distress syndrome (ARDS) mouse model using lipopolysaccharide (LPS) and CXCL12 expression in vivo by adeno-associated virus (AAV-rh10) infection in mice. By co-culturing the MSCs with A549 and in vivo experiments, we observed the effects of MSCs on cell biological functions after inflammatory stimulation, oxidative stress, and the amelioration of lung injury in ARDS mice. TNF-α inhibited A549 proliferation and promoted apoptosis, scorch death-related factor activity, and oxidative stress factor were increased and CXCL12 levels in the cell supernatant were decreased. The co-culture of MSCs was able to increase cell activity and decrease oxidative stress factor levels, and this effect was not present after the knockdown of CXCR4 in MSCs. In vivo transplantation of MSCs significantly attenuated lung injury in ARDS, inhibited serum pro-inflammatory factors in mice, and down-regulated expression of apoptotic and focal factors in lung tissues while blocking CXCR4 or CXCL12 lost the repairing effect of MSCs on ARDS lung tissues. After the co-culture of MSC and lung cancer cells, the expression of CXCR4 on the surface of lung cancer cells was significantly increased, and more CXCR4 and CXCL12 acted together to activate more pro-survival pathways and inhibit apoptosis induced by TNF-α.
Collapse
Affiliation(s)
| | | | | | | | - Jun Yi
- Xiangtan Central Hospital
| | | | | | | |
Collapse
|
23
|
Lee DG, Lee YJ, Park SH, Park HR, Kang H, Kim JE. Preventive Effects of a Human Hematopoietic Mesenchymal Stem Cell (hHMSC) Therapy in Ovalbumin-Induced Food Allergy. Biomedicines 2022; 10:511. [PMID: 35203718 PMCID: PMC8962321 DOI: 10.3390/biomedicines10020511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/02/2022] [Accepted: 02/17/2022] [Indexed: 11/23/2022] Open
Abstract
No effective therapeutic strategies have been developed against food allergies. Immunomodulation during early infant period could prevent the development of food allergies. We investigated the preventive effects of human hematopoietic mesenchymal stem cells (hHMSCs) in mice with ovalbumin (OVA)-induced food allergy. BALB/c mice with OVA-induced food allergy were divided into 3 groups, and each group was treated with hHMSCs or hHMSC culture medium (hHMSC-CM) or saline. Ear thickness, allergy score, rectal temperature, and diarrhea occurrence were checked. Total IgE, OVA-specific IgE, and mucosal mast cell protease-1 (mMCP-1) were measured by ELISA. Other allergic parameters were analyzed using histology specimens, RT-PCR, and flow cytometry. Treatment with hHMSCs or hHMSC-CM significantly suppressed the frequency of anaphylactic response and rectal temperature decline, reduced diarrhea, total IgE, OVA-specific IgE, and mMCP-1. While the treatment decreased the level of Th2 cytokines, it enhanced IL-10 and TGF-β1 mRNA. Exposure to hHMSC or hHMSC-CM did not generate regulatory T cells, but reduced mast cells. The immunomodulatory effect on the Th2 cytokines was greater in hHMSC-CM than in hHMSCs. hHMSC treatment may be a promising preventive intervention against food allergy. Further studies are needed to elucidate the key substances released from hHMSC to induce immune tolerance.
Collapse
Affiliation(s)
| | | | | | | | | | - Jung-Eun Kim
- Department of Dermatology, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 03312, Korea; (D.-G.L.); (Y.-J.L.); (S.-H.P.); (H.-R.P.); (H.K.)
| |
Collapse
|
24
|
Wu B, Gao F, Lin J, Lu L, Xu H, Xu GT. Conditioned Medium of Human Amniotic Epithelial Cells Alleviates Experimental Allergic Conjunctivitis Mainly by IL-1ra and IL-10. Front Immunol 2021; 12:774601. [PMID: 34880869 PMCID: PMC8645696 DOI: 10.3389/fimmu.2021.774601] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 10/25/2021] [Indexed: 01/04/2023] Open
Abstract
Allergic conjunctivitis (AC) is the most prevalent form of mucosal allergy, and the conditioned medium (CM) from mesenchymal stem cells has been reported to attenuate some allergic diseases. However, the therapeutic effects of CM from different tissue stem cells (TSC-CM) on allergic diseases have not been tested. Here, we studied the effects of topical administration of different human TSC-CM on experimental AC (EAC) mice. Only human amniotic epithelial cell-CM (AECM) significantly attenuated allergic eye symptoms and reduced the infiltration of immune cells and the levels of local inflammatory factors in the conjunctiva compared to EAC mice. In addition, AECM treatment decreased immunoglobulin E (IgE) release, histamine production, and the hyperpermeability of conjunctival vessels. Protein chip assays revealed that the levels of anti-inflammatory factors, interleukin-1 receptor antagonist (IL-1ra) and IL-10, were higher in AECM compared to other TSC-CM. Furthermore, the anti-allergic effects of AECM on EAC mice were abrogated when neutralized with IL-1ra or IL-10 antibody, and the similar phenomenon was for the activation and function of B cells and mast cells. Together, the present study demonstrated that AECM alleviates EAC symptoms by multiple anti-allergic mechanisms mainly via IL-1ra and IL-10. Such topical AECM therapy may represent a novel and feasible strategy for treating AC.
Collapse
Affiliation(s)
- Binxin Wu
- Department of Ophthalmology of Shanghai Tenth People's Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
| | - Furong Gao
- Department of Ophthalmology of Shanghai Tenth People's Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
| | - Jianhua Lin
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lixia Lu
- Department of Ophthalmology of Shanghai Tenth People's Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
| | - Huiming Xu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Tong Xu
- Department of Ophthalmology of Shanghai Tenth People's Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China.,Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
25
|
The Potential of Mesenchymal Stem Cells for the Treatment of Cytokine Storm due to COVID-19. BIOMED RESEARCH INTERNATIONAL 2021; 2021:3178796. [PMID: 34840969 PMCID: PMC8626179 DOI: 10.1155/2021/3178796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/24/2021] [Accepted: 10/29/2021] [Indexed: 12/15/2022]
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has seriously affected public health and social stability. The main route of the transmission is droplet transmission, where the oral cavity is the most important entry point to the body. Due to both the direct harmful effects of SARS-CoV-2 and disordered immune responses, some COVID-19 patients may progress to acute respiratory distress syndrome or even multiple organ failure. Genetic variants of SARS-CoV-2 have been emerging and circulating around the world. Currently, there is no internationally approved precise treatment for COVID-19. Mesenchymal stem cells (MSCs) can traffic and migrate towards the affected tissue, regulate both the innate and acquired immune systems, and participate in the process of healing. Here, we will discuss and investigate the mechanisms of immune disorder in COVID-19 and the therapeutic activity of MSCs, in particular human gingiva mesenchymal stem cells.
Collapse
|
26
|
Ehnert S, Relja B, Schmidt-Bleek K, Fischer V, Ignatius A, Linnemann C, Rinderknecht H, Huber-Lang M, Kalbitz M, Histing T, Nussler AK. Effects of immune cells on mesenchymal stem cells during fracture healing. World J Stem Cells 2021; 13:1667-1695. [PMID: 34909117 PMCID: PMC8641016 DOI: 10.4252/wjsc.v13.i11.1667] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/31/2021] [Accepted: 09/03/2021] [Indexed: 02/06/2023] Open
Abstract
In vertebrates, bone is considered an osteoimmune system which encompasses functions of a locomotive organ, a mineral reservoir, a hormonal organ, a stem cell pool and a cradle for immune cells. This osteoimmune system is based on cooperatively acting bone and immune cells, cohabitating within the bone marrow. They are highly interdependent, a fact that is confounded by shared progenitors, mediators, and signaling pathways. Successful fracture healing requires the participation of all the precursors, immune and bone cells found in the osteoimmune system. Recent evidence demonstrated that changes of the immune cell composition and function may negatively influence bone healing. In this review, first the interplay between different immune cell types and osteoprogenitor cells will be elaborated more closely. The separate paragraphs focus on the specific cell types, starting with the cells of the innate immune response followed by cells of the adaptive immune response, and the complement system as mediator between them. Finally, a brief overview on the challenges of preclinical testing of immune-based therapeutic strategies to support fracture healing will be given.
Collapse
Affiliation(s)
- Sabrina Ehnert
- Siegfried Weller Research Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Tübingen 72076, Germany
| | - Borna Relja
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto-von-Guericke University, Magdeburg 39120, Germany
| | - Katharina Schmidt-Bleek
- Julius Wolff Institute and Berlin Institute of Health Center of Regenerative Therapies, Charité - University Medicine Berlin, Berlin 13353, Germany
| | - Verena Fischer
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm 89091, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm 89091, Germany
| | - Caren Linnemann
- Siegfried Weller Research Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Tübingen 72076, Germany
| | - Helen Rinderknecht
- Siegfried Weller Research Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Tübingen 72076, Germany
| | - Markus Huber-Lang
- Institute for Clinical and Experimental Trauma-Immunology (ITI), University Hospital Ulm, Ulm 89091, Germany
| | - Miriam Kalbitz
- Department of Trauma and Orthopedic Surgery, University Hospital Erlangen Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany
| | - Tina Histing
- Siegfried Weller Research Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Tübingen 72076, Germany
| | - Andreas K Nussler
- Siegfried Weller Research Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Tübingen 72076, Germany
| |
Collapse
|
27
|
Kim EY, Kim HS, Hong KS, Chung HM, Park SP, Noh G. Mesenchymal stem/stromal cell therapy in atopic dermatitis and chronic urticaria: immunological and clinical viewpoints. Stem Cell Res Ther 2021; 12:539. [PMID: 34635172 PMCID: PMC8503727 DOI: 10.1186/s13287-021-02583-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/30/2021] [Indexed: 12/29/2022] Open
Abstract
Allergic diseases are immune-mediated diseases. Allergies share a common immunopathogenesis, with specific differences according to the specific disease. Mesenchymal stem/stromal cells (MSCs) have been applied to people suffering from allergic and many other diseases. In this review, the immunologic roles of MSCs are systemically reviewed according to disease immunopathogenesis from a clinical viewpoint. MSCs seem to be a promising therapeutic modality not only as symptomatic treatments but also as causative and even preventive treatments for allergic diseases, including atopic dermatitis and chronic urticaria.
Collapse
Affiliation(s)
| | - Hyuk Soon Kim
- Department of Biomedical Sciences, College of Natural Science, The Graduate School of Dong-A University, Busan, Korea.,Department of Health Sciences, The Graduate School of Dong-A University, Busan, Korea
| | | | - Hyung-Min Chung
- Miraecellbio Co., Ltd., Seoul, Korea.,Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Korea
| | - Se-Pill Park
- Miraecellbio Co., Ltd., Seoul, Korea. .,Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju, 63243, Korea.
| | - Geunwoong Noh
- Department of Allergy, Allergy and Clinical Immunology Center, Cheju Halla General Hospital, Doreongno 65, Jeju-si, 63127, Jeju Special Self-Governing Province, Korea.
| |
Collapse
|
28
|
Liang L, Luo X, Zhang J, Su W, Zhu W, Xie Y, Zhang N, Peng Y, Chen X, Xiang AP, Liu Y, Liang D. Safety and feasibility of subconjunctival injection of mesenchymal stem cells for acute severe ocular burns: A single-arm study. Ocul Surf 2021; 22:103-109. [PMID: 34333155 DOI: 10.1016/j.jtos.2021.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 06/06/2021] [Accepted: 07/28/2021] [Indexed: 01/27/2023]
Abstract
PURPOSE To investigate the safety and feasibility of topical injection of bone marrow derived mesenchymal stem cells (BM-MSCs) in acute severe ocular burns. METHODS In this open-label,single-arm study, subconjunctival injection of allogenic BM-MSCs combined with standard treatment was given to 16 patients with acute severe ocular burns (Dua's grade IV to VI) within 2 weeks after injury. The primary outcome was efficacy rate which referred to the proportion of complete corneal epithelialization patients without perforation. The secondary outcome was safety, visual acuity, the number of symblephara, and elevated intraocular pressure. RESULTS One patient was lost to follow-up. During the follow-up period, no corneal perforation was developed. Complete corneal epithelialization was noted 8 (ranged 4-10 weeks) weeks after treatment in 13 eyes (81.3%). The efficacy rate was 87.5% (95% confidence interval, CI: 61.7-98.4). Hypopyon was detected and later well controlled in 1 eye. Partial or total limbal stem cell deficiency (LSCD) was noted in all eyes. Improvement of visual acuity was achieved in 5 out of 16 eyes (31.3%). Seven eyes' visual acuity was reached 0.1. Symblepharon with varied severity was noted in 5 eyes. Two eyes had elevated intraocular pressure. CONCLUSIONS This study confirms the safety of subconjunctival injection of BM-MSCs as an innovative and convenient procedure in ocular burns. The overall result is promising considering the absence of perforation, the low severity of symblepharon and visual acuity improvement.
Collapse
Affiliation(s)
- Lingyi Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Ocular Surface Center, Sun Yat-sen University, 54S Xianlie Road, Guangzhou, 510060, China
| | - Xiaohui Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Ocular Surface Center, Sun Yat-sen University, 54S Xianlie Road, Guangzhou, 510060, China
| | - Jian Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Ocular Surface Center, Sun Yat-sen University, 54S Xianlie Road, Guangzhou, 510060, China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Ocular Surface Center, Sun Yat-sen University, 54S Xianlie Road, Guangzhou, 510060, China
| | - Wenjie Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Ocular Surface Center, Sun Yat-sen University, 54S Xianlie Road, Guangzhou, 510060, China
| | - Yanyan Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Ocular Surface Center, Sun Yat-sen University, 54S Xianlie Road, Guangzhou, 510060, China
| | - Nuan Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Ocular Surface Center, Sun Yat-sen University, 54S Xianlie Road, Guangzhou, 510060, China
| | - Yanwen Peng
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xiaoyong Chen
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Ocular Surface Center, Sun Yat-sen University, 54S Xianlie Road, Guangzhou, 510060, China.
| | - Dan Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Ocular Surface Center, Sun Yat-sen University, 54S Xianlie Road, Guangzhou, 510060, China.
| |
Collapse
|
29
|
Wu J, Chen Z, Zhong F, Yang W, Ouyang X, Ma X, Zheng S, Wei H. Transplantation of Human Gingiva-Derived Mesenchymal Stem Cells Ameliorates Neurotic Erectile Dysfunction in a Rat Model. Front Bioeng Biotechnol 2021; 9:630076. [PMID: 34235136 PMCID: PMC8255925 DOI: 10.3389/fbioe.2021.630076] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/22/2021] [Indexed: 12/23/2022] Open
Abstract
Cavernous nerve injury (CNI) is the main cause of erectile dysfunction (ED) following pelvic surgery. Our previous studies have demonstrated that transplantation of different sources of mesenchymal stem cells (MSCs) was able to alleviate ED induced by CNI in rat models. However, little is known about the therapeutic effects of human gingiva-derived MSCs (hGMSCs) in CNI ED rats. Herein, we injected the hGMSCs around the bilateral major pelvic ganglia (MPG) in a rat model of CNI and evaluated their efficacy. The results showed that treatment of hGMSCs could significantly promote the recovery of erectile function, enhance smooth muscle and endothelial content, restore neuronal nitric oxide synthase (nNOS) expression, and attenuate cell apoptosis in penile tissue. Moreover, penile fibrosis was significantly alleviated after hGMSC administration. In addition, potential mechanism exploration indicated that hGMSCs might exert its functions via skewed macrophage polarity from M1 toward M2 anti-inflammatory phenotype. In conclusion, this study found that transplantation of hGMSCs significantly improved CNI-related ED, which might provide new clues to evaluate their pre-clinical application.
Collapse
Affiliation(s)
- Juekun Wu
- Department of Thyroid and Breast Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zehong Chen
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Fuyan Zhong
- Central Laboratory, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wende Yang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xi Ouyang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaolei Ma
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Songguo Zheng
- Department of Internal Medicine, Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, United States
| | - Hongbo Wei
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
30
|
Chen J, Zheng CX, Jin Y, Hu CH. Mesenchymal stromal cell-mediated immune regulation: A promising remedy in the therapy of type 2 diabetes mellitus. STEM CELLS (DAYTON, OHIO) 2021; 39:838-852. [PMID: 33621403 DOI: 10.1002/stem.3357] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 02/03/2021] [Indexed: 11/09/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a major threat to global public health, with increasing prevalence as well as high morbidity and mortality, to which immune dysfunction has been recognized as a crucial contributor. Mesenchymal stromal cells (MSCs), obtained from various sources and possessing potent immunomodulatory abilities, have displayed great therapeutic potential for T2DM. Interestingly, the immunomodulatory capabilities of MSCs are endowed and plastic. Among the multiple mechanisms involved in MSC-mediated immune regulation, the paracrine effects of MSCs have attracted much attention. Of note, extracellular vesicles (EVs), an important component of MSC secretome, have emerged as pivotal mediators of their immunoregulatory effects. Particularly, the necrobiology of MSCs, especially apoptosis, has recently been revealed to affect their immunomodulatory functions in vivo. In specific, a variety of preclinical studies have demonstrated the beneficial effects of MSCs on improving islet function and ameliorating insulin resistance. More importantly, clinical trials have further uncovered the therapeutic potential of MSCs for T2DM. In this review, we outline current knowledge regarding the plasticity and underlying mechanisms of MSC-mediated immune modulation, focusing on the paracrine effects. We also summarize the applications of MSC-based therapies for T2DM in both preclinical studies and clinical trials, with particular emphasis on the modulation of immune system.
Collapse
Affiliation(s)
- Ji Chen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases,Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China.,Department of Oral Implantology, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Chen-Xi Zheng
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases,Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Yan Jin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases,Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Cheng-Hu Hu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases,Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, People's Republic of China
| |
Collapse
|
31
|
Di GH, Qi X, Xu J, Yu CQ, Cao QL, Xing ZJ, Li ZC. Therapeutic effect of secretome from TNF-α stimulated mesenchymal stem cells in an experimental model of corneal limbal stem cell deficiency. Int J Ophthalmol 2021; 14:179-185. [PMID: 33614444 DOI: 10.18240/ijo.2021.02.01] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/03/2020] [Indexed: 12/15/2022] Open
Abstract
AIM To explore the secretome efficacy in tumor necrosis factor (TNF)-α stimulated mouse mesenchymal stem cells (MSCs) in a murine model of corneal limbal alkali injury. METHODS Corneal limbal stem cell deficiency (LSCD) was created in the eyes of male C57 mice. Concentrated conditioned medium from TNF-α stimulated MSCs (MSC-CMT) was applied topically for 4wk, with basal medium and conditioned medium from MSCs as controls. Corneal opacification, corneal inflammatory response, and corneal neovascularization (NV) were evaluated. Corneal epithelial cell apoptosis, corneal conjunctivation, and inflammatory cell infiltration were assessed with TUNEL staining, CK3 and Muc-5AC immunostaining, and CD11b immunofluorescence staining, respectively. The effect of TSG-6 was further evaluated by knockdown with short hairpin RNA (shRNA). RESULTS Compared to the controls, topical administration of MSC-CMT significantly ameliorated the clinical symptoms of alkali-induced LSCD, with restrained corneal NV, reduced corneal epithelial cell apoptosis, and inhibition of corneal conjunctivation. In addition, MSC-CMT treatment significantly reduced CD11b+ inflammatory cell infiltration, and inhibited the expression of pro-inflammatory cytokines (IL-1β, TNF-α and IL-6). Furthermore, the promotion of corneal epithelial reconstruction by MSC-CMT was largely abolished by TSG-6 knockdown. CONCLUSION Our study provides evidence that MSC-CMT enhances the alleviation of corneal alkali injuries, partially through TSG-6-mediated anti-inflammatory protective mechanisms. MSC-CMT may serve as a potential strategy for treating corneal disorders.
Collapse
Affiliation(s)
- Guo-Hu Di
- School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong Province, China.,Shandong Eye Institute, Qingdao 266071, Shandong Province, China
| | - Xia Qi
- Shandong Eye Institute, Qingdao 266071, Shandong Province, China
| | - Jing Xu
- School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Chao-Qun Yu
- School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Qi-Long Cao
- Qingdao Haier Biotech Co. Ltd., Qingdao 266071, Shandong Province, China
| | - Zhi-Jun Xing
- Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser Hospital), Qingdao 266033, Shandong Province, China
| | - Zhi-Chao Li
- Department of Gynecology and Obstetrics, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, Shandong Province, China
| |
Collapse
|
32
|
Huang Z, Li W, Su W. Tregs in Autoimmune Uveitis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1278:205-227. [PMID: 33523450 DOI: 10.1007/978-981-15-6407-9_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Uveitis is a chronic disease with relapsing and remitting ocular attack, which requires corticosteroids and systemic immunosuppression to prevent severe vision loss. Classically, uveitis is referred to an autoimmune disease, mediated by pro-inflammatory Th17 cells and immunosuppressive CD4+CD25+FoxP3+ T-regulatory cells (Tregs). More and more evidence indicates that Tregs are involved in development, resolution, and remission of uveitis. Clinically, many researchers have conducted quantitative and functional analyses of peripheral blood from patients with different subtypes of uveitis, in an attempt to find the changing rules of Tregs. Consistently, using the experimental autoimmune uveitis (EAU) model, researchers have explored the development and resolution mechanism of uveitis in many aspects. In addition, many drug and Tregs therapy investigations have yielded encouraging results. In this chapter, we introduced the current understanding of Tregs, summarized the clinical changes in the number and function of patients with uveitis and the immune mechanism of Tregs involved in EAU model, as well as discussed the progress and shortcomings of Tregs-related drug therapy and Tregs therapy. Although the exact mechanism of Tregs-mediated uveitis protection remains to be elucidated, the strategy of Tregs regulation may provide a specific and meaningful way for the prevention and treatment of uveitis.
Collapse
Affiliation(s)
- Zhaohao Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Wenli Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
33
|
Beeken LJ, Ting DS, Sidney LE. Potential of mesenchymal stem cells as topical immunomodulatory cell therapies for ocular surface inflammatory disorders. Stem Cells Transl Med 2021; 10:39-49. [PMID: 32896982 PMCID: PMC7780815 DOI: 10.1002/sctm.20-0118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/10/2020] [Accepted: 07/30/2020] [Indexed: 12/17/2022] Open
Abstract
Ocular surface inflammatory disorders (OSIDs) are a group of highly prevalent, heterogeneous diseases that display a variety of aetiologies and symptoms and are risk factors for serious complications, including ocular and cornea impairment. Corneal inflammation is a common factor of all OSIDs, regardless of their cause or symptoms. Current medications include over-the-counter lubricating eye drops, corticosteroids, and ciclosporin, which either do not treat the corneal inflammation or have been associated with multiple side effects leading to alternative treatments being sought. Regenerative medicine cell therapies, particularly mesenchymal stem cells (MSCs), have shown great promise for immunosuppression and disease amelioration across multiple tissues, including the cornea. However, for successful development and clinical translation of MSC therapy for OSIDs, significant problems must be addressed. This review aims to highlight considerations, including whether the source of MSC isolation impacts the efficacy and safety of the therapy, in addition to assessing the feasibility of MSC topical application to the cornea and ocular surface through analysis of potential scaffolds and cell carriers for application to the eye. The literature contains limited data assessing MSCs incorporated into scaffolds for corneal administration, thus here we highlight the necessity of further investigations to truly exploit the potential of an MSC-based cell therapy for the treatment of OSIDs.
Collapse
Affiliation(s)
- Lydia J. Beeken
- Academic Ophthalmology, Division of Clinical NeurosciencesUniversity of Nottingham, Queens Medical Centre CampusNottinghamUK
| | - Darren S.J. Ting
- Academic Ophthalmology, Division of Clinical NeurosciencesUniversity of Nottingham, Queens Medical Centre CampusNottinghamUK
| | - Laura E. Sidney
- Academic Ophthalmology, Division of Clinical NeurosciencesUniversity of Nottingham, Queens Medical Centre CampusNottinghamUK
| |
Collapse
|
34
|
TNF-TNFR2 Signal Plays a Decisive Role in the Activation of CD4 +Foxp3 + Regulatory T Cells: Implications in the Treatment of Autoimmune Diseases and Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1278:257-272. [PMID: 33523452 DOI: 10.1007/978-981-15-6407-9_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The puzzling biphasic or dual roles of tumor necrosis factor α (TNF) in the inflammatory and immune responses are likely to be mediated by distinct signaling pathways transduced by one of its two receptors, e.g., TNF receptor type I (TNFR1) and TNF receptor type II (TNFR2). Unlike TNFR1 that is ubiquitously expressed on almost all types of cells, the expression of TNFR2 is rather restricted to certain types of cells, such as T lymphocytes. There is now compelling evidence that TNFR2 is preferentially expressed by CD4+Foxp3+ regulatory T cells (Tregs), and TNFR2 plays a decisive role in the activation, expansion, in vivo function, and phenotypical stability of Tregs. In this chapter, the current understanding of the molecular basis and signaling pathway of TNF-TNFRs signal is introduced. Latest studies that have further supported and substantiated the pivotal role of TNF-TNFR2 interaction in Tregs biology and its molecular basis are discussed. The research progress regarding TNFR2-targeting treatment for autoimmune diseases and cancer is analyzed. Future study should focus on the further understanding of molecular mechanism underlying Treg-stimulatory effect of TNFR2 signal, as well as on the translation of research findings into therapeutic benefits of human patients with autoimmune diseases, allergy, allograft rejection, and cancer.
Collapse
|
35
|
An updated advance of autoantibodies in autoimmune diseases. Autoimmun Rev 2020; 20:102743. [PMID: 33333232 DOI: 10.1016/j.autrev.2020.102743] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/06/2020] [Indexed: 12/18/2022]
Abstract
Autoantibodies are abnormal antibodies which are generated by pathogenic B cells when targeting an individual's own tissue. Autoantibodies have been identified as a symbol of autoimmune disorders and are frequently considered a clinical marker of these disorders. Autoimmune diseases, including system lupus erythematosus and rheumatoid arthritis, consist of a series of disorders that share some similarities and differences. They are characterized by chronic, systemic, excessive immune activation and inflammation and involve in almost all body tissues. Autoimmune diseases occur more frequently in women than men due to hormonal impacts. In this review we systemically introduce and summarize the latest advances of various autoantibodies in multiple autoimmune diseases.
Collapse
|
36
|
Zhang N, Luo X, Zhang S, Liu R, Liang L, Su W, Liang D. Subconjunctival injection of tumor necrosis factor-α pre-stimulated bone marrow-derived mesenchymal stem cells enhances anti-inflammation and anti-fibrosis in ocular alkali burns. Graefes Arch Clin Exp Ophthalmol 2020; 259:929-940. [PMID: 33237391 DOI: 10.1007/s00417-020-05017-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 11/02/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023] Open
Abstract
PURPOSE To investigate the therapeutic effect of subconjunctival injection of tumor necrosis factor-α (TNF-α) pre-stimulated bone marrow-derived mesenchymal stem cells (BMMSCs) on ocular alkali burns in a rat model. METHODS After applying a 6 mm filter paper soaking in 1 N NaOH on the cornea of rats, the suspension of TNF-α pre-stimulated BMMSCs, BMMSCs and PBS were given subconjunctivally and respectively. Corneal epithelial defect, corneal opacity, inflammation as well as PTGS2 and TSG-6 expression on day 7 and fibrosis on day 14 were compared. RESULTS TNF-α pre-stimulated BMMSCs group had a more predominate effect on promoting corneal epithelial repairing, decreasing corneal opacity, reducing inflammatory cells and CD68 + macrophages on day 7 and suppressing fibrosis on day 14 compared to BMMSCs group. Besides, it had significant increased expressions of PTGS2 and TSG-6 in vitro. Pre-treated with Indomethacin revealed a reverse effect on above-mentioned changes. CONCLUSION Subconjunctival injection of TNF-α pre-stimulated BMMSCs enhanced anti-inflammatory and anti-fibrotic effect in ocular alkali burns, which was possibly though up regulation of PTGS2 and TSG-6 expression.
Collapse
Affiliation(s)
- Nuan Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Xiaohui Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Shiyao Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Ren Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Lingyi Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China.
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China.
| | - Dan Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China.
| |
Collapse
|
37
|
He X, Yang Y, Yao M, Yang L, Ao L, Hu X, Li Z, Wu X, Tan Y, Xing W, Guo W, Bellanti JA, Zheng SG, Xu X. Combination of human umbilical cord mesenchymal stem (stromal) cell transplantation with IFN-γ treatment synergistically improves the clinical outcomes of patients with rheumatoid arthritis. Ann Rheum Dis 2020; 79:1298-1304. [PMID: 32561603 DOI: 10.1136/annrheumdis-2020-217798] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVES To clarify the key role of circulating interferon-γ (IFN-γ) and to improve the clinical efficacy of mesenchymal stem cell (MSC) transplantation (MSCT) in patients with rheumatoid arthritis (RA). METHODS Study of wild-type or IFN-γR-/- MSCT was first evaluated in a murine model of collagen-induced arthritis (CIA) following which a phase 1/2 randomised controlled study was conducted in 63 patients with RA who responded poorly to regular clinical treatments. Subjects were randomly assigned to an MSCT monotherapy group (n=32) or an MSCT plus recombinant human IFN-γ treatment group (n=31), with 1 year of follow-up. The primary end points consisted of efficacy as assessed as good or moderate EULAR response rates and the proportion of patients at 3 months attaining American College of Rheumatology 20 (ACR20) response rates. RESULTS In the murine studies, wild-type MSCT significantly improved the clinical severity of CIA, while IFN-γR-/- MSCT aggravated synovitis, and joint and cartilage damage. Transitioning from the murine to the clinical study, the 3-month follow-up results showed that the efficacy and ACR20 response rates were attained in 53.3% patients with MSCT monotherapy and in 93.3% patients with MSCT combined with IFN-γ treatment (p<0.05). No new or unexpected safety issues were encountered in 1-year follow-up for either treatment group. CONCLUSIONS The results of this study show that IFN-γ is a key factor in determining the efficacy of MSCT in the treatment of RA, and that an MSC plus IFN-γ combination therapeutic strategy can greatly improve the clinical efficacy of MSC-based therapy in RA patients.
Collapse
Affiliation(s)
- Xiao He
- Department of Stem Cell & Regenerative Medicine, Daping Hospital, Army Military Medical University,Chongqing, Chongqing, China
- Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing, China
- PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Yi Yang
- Department of Stem Cell & Regenerative Medicine, Daping Hospital, Army Military Medical University,Chongqing, Chongqing, China
- Department of Rheumatology and Clinical Immunology, Daping Hospital, Army Military Medical University, Chongqing, China
| | - Mengwei Yao
- Department of Stem Cell & Regenerative Medicine, Daping Hospital, Army Military Medical University,Chongqing, Chongqing, China
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Lei Yang
- Force Health Team of 61365 Troops of the Chinese People's Liberation Army, Tianjin, China
| | - Luoquan Ao
- Department of Stem Cell & Regenerative Medicine, Daping Hospital, Army Military Medical University,Chongqing, Chongqing, China
- Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing, China
| | - Xueting Hu
- Department of Stem Cell & Regenerative Medicine, Daping Hospital, Army Military Medical University,Chongqing, Chongqing, China
- Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing, China
| | - Zhan Li
- Department of Stem Cell & Regenerative Medicine, Daping Hospital, Army Military Medical University,Chongqing, Chongqing, China
- Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing, China
| | - Xiaofeng Wu
- Department of Stem Cell & Regenerative Medicine, Daping Hospital, Army Military Medical University,Chongqing, Chongqing, China
- Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing, China
| | - Yan Tan
- Department of Stem Cell & Regenerative Medicine, Daping Hospital, Army Military Medical University,Chongqing, Chongqing, China
- Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing, China
| | - Wei Xing
- Department of Stem Cell & Regenerative Medicine, Daping Hospital, Army Military Medical University,Chongqing, Chongqing, China
- Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing, China
| | - Wei Guo
- Department of Stem Cell & Regenerative Medicine, Daping Hospital, Army Military Medical University,Chongqing, Chongqing, China
- Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing, China
| | - Joseph A Bellanti
- Departments of Pediatrics and Microbiology-Immunology, Georgetown University Medical Center, Washington, DC, USA
| | - Song Guo Zheng
- Division of Rheumatology, Department of Internal Medicine, Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, USA
| | - Xiang Xu
- Department of Stem Cell & Regenerative Medicine, Daping Hospital, Army Military Medical University,Chongqing, Chongqing, China
- Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing, China
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| |
Collapse
|
38
|
Jauković A, Kukolj T, Obradović H, Okić-Đorđević I, Mojsilović S, Bugarski D. Inflammatory niche: Mesenchymal stromal cell priming by soluble mediators. World J Stem Cells 2020; 12:922-937. [PMID: 33033555 PMCID: PMC7524701 DOI: 10.4252/wjsc.v12.i9.922] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/13/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) are adult stem cells of stromal origin that possess self-renewal capacity and the ability to differentiate into multiple mesodermal cell lineages. They play a critical role in tissue homeostasis and wound healing, as well as in regulating the inflammatory microenvironment through interactions with immune cells. Hence, MSCs have garnered great attention as promising candidates for tissue regeneration and cell therapy. Because the inflammatory niche plays a key role in triggering the reparative and immunomodulatory functions of MSCs, priming of MSCs with bioactive molecules has been proposed as a way to foster the therapeutic potential of these cells. In this paper, we review how soluble mediators of the inflammatory niche (cytokines and alarmins) influence the regenerative and immunomodulatory capacity of MSCs, highlighting the major advantages and concerns regarding the therapeutic potential of these inflammatory primed MSCs. The data summarized in this review may provide a significant starting point for future research on priming MSCs and establishing standardized methods for the application of preconditioned MSCs in cell therapy.
Collapse
Affiliation(s)
- Aleksandra Jauković
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Tamara Kukolj
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Hristina Obradović
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Ivana Okić-Đorđević
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Slavko Mojsilović
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Diana Bugarski
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| |
Collapse
|
39
|
Liu Y, Cao F, Sun B, Bellanti JA, Zheng SG. Magnetic nanoparticles: A new diagnostic and treatment platform for rheumatoid arthritis. J Leukoc Biol 2020; 109:415-424. [PMID: 32967052 DOI: 10.1002/jlb.5mr0420-008rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 12/30/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory condition characterized by articular synovitis that eventually leads to the destruction of cartilage and bone in the joints with resulting pain and disability. The current therapies for RA are divided into 4 categories: non-steroidal anti-inflammatory drugs (NSAIDs), glucocorticoids, nonbiological disease-modifying anti-rheumatic drugs (DMARDs), and biological DMARDs. Each drug grouping is beset with significant setbacks that not only include limited drug bioavailability and high clearance, but also varying degrees of drug toxicity to normal tissues. Recently, nanotechnology has provided a promising tool for the development of novel therapeutic and diagnostic systems in the area of malignant and inflammatory diseases. Among these, magnetic nanoparticles (MNPs) have provided an attractive carrier option for delivery of therapeutic agents. Armed with an extra magnetic probe, MNPs are capable of more accurately targeting the local lesion with avoidance of unpleasant systemic side effects. This review aims to provide an introduction to the applications of magnetic nanoparticles in RA, focusing on the latest advances, challenges, and opportunities for future development.
Collapse
Affiliation(s)
- Yan Liu
- Institute of Clinical Immunology Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Fenglin Cao
- Department of Internal Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Baoqing Sun
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Medical University, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Joseph A Bellanti
- Department of Pediatrics and Microbiology-Immunology, Georgetown University Medical Center, Washington, District of Columbia, United States
| | - Song Guo Zheng
- Department of Internal Medicine, Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, United States
| |
Collapse
|
40
|
Lee BC, Kang KS. Functional enhancement strategies for immunomodulation of mesenchymal stem cells and their therapeutic application. Stem Cell Res Ther 2020; 11:397. [PMID: 32928306 PMCID: PMC7491075 DOI: 10.1186/s13287-020-01920-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/17/2020] [Accepted: 09/01/2020] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have recently been considered a promising alternative treatment for diverse immune disorders due to their unique biomedical potentials including the immunomodulatory property and ability to promote tissue regeneration. However, despite many years of pre-clinical studies in the research field, results from clinical trials using these cells have been diverse and conflicting. This discrepancy is caused by several factors such as poor engraftment, low survival rate, and donor-dependent variation of the cells. Enhancement of consistency and efficacy of MSCs remains a challenge to overcome the current obstacles to MSC-based therapy and subsequently achieve an improved therapeutic outcome. In this review, we investigated function enhancement strategies by categorizing as preconditioning, genetic manipulation, usage of supportive materials, and co-administration with currently used drugs. Preconditioning prior to MSC application makes up a large proportion of improvement strategies and preconditioning reagents include bioactive substances (cytokines, growth factors, and innate immune receptor agonists), hypoxia, and modification in culture method. With the piled results from previous studies using each method, disease- or patient-specific therapy has become more important than ever. On the other hand, genetic manipulation targeting therapeutic-associated factors or co-administration of biocompatible materials has also arisen as other therapeutic strategies. Thus, we summarized several specialized tactics by analyzing up-to-date results in the field and proposed some promising enhancement methods to improve the clinical outcomes for MSC therapy.
Collapse
Affiliation(s)
- Byung-Chul Lee
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kyung-Sun Kang
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
41
|
Allergic conjunctivitis in children: current understanding and future perspectives. Curr Opin Allergy Clin Immunol 2020; 20:507-515. [DOI: 10.1097/aci.0000000000000675] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
42
|
Huang Z, Qi G, Miller JS, Zheng SG. CD226: An Emerging Role in Immunologic Diseases. Front Cell Dev Biol 2020; 8:564. [PMID: 32850777 PMCID: PMC7396508 DOI: 10.3389/fcell.2020.00564] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/15/2020] [Indexed: 01/03/2023] Open
Abstract
CD226, a member of the immunoglobulin superfamily, is a functional protein initially expressed on natural killer and T cells. In recent years, the function of CD226 has been increasingly realized and researched. Accumulating evidence shows that CD226 is closely related to the occurrence of autoimmune diseases, infectious diseases, and tumors. Because of the CD226’s increasing importance, the author herein discusses the structure, mechanism of action, and role of CD226 in various pathophysiological environments, allowing for further understanding of the function of CD226 and providing the basis for further research in related diseases.
Collapse
Affiliation(s)
- Zhiyi Huang
- Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
| | - Guangyin Qi
- Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
| | - Joseph S Miller
- Ohio University Heritage College of Osteopathic Medicine, Dublin, OH, United States
| | - Song Guo Zheng
- Department of Internal Medicine, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
43
|
Tofacitinib suppresses mast cell degranulation and attenuates experimental allergic conjunctivitis. Int Immunopharmacol 2020; 86:106737. [PMID: 32615452 DOI: 10.1016/j.intimp.2020.106737] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/04/2020] [Accepted: 06/22/2020] [Indexed: 01/24/2023]
Abstract
BACKGROUND Allergic conjunctivitis (AC), a common eye inflammation that affects patients' health and quality of life, is still a therapeutic challenge for ophthalmologists. Tofacitinib, a new Janus kinase (JAK) inhibitor, has been successfully used in the treatment of several disorders. Nonetheless, its effect in AC and the potential anti-allergic mechanisms are still unclear. The objective of the current study was to explore the roles of tofacitinib in preventing AC and elucidate the potential underlying mechanisms. METHODS Tofacitinib was used topically in BALB/c mice with experimental allergic conjunctivitis (EAC). Ocular allergic symptoms and biological modifications were examined. To assess the anti-allergic mechanisms of tofacitinib, RBL-2H3 cells and HUVECs were cultured in vitro. The inhibitory effects and mechanisms of tofacitinib were studied and measured by real-time quantitative PCR, ELISA, western blot analysis, and flow cytometry. RESULTS Topical administration of tofacitinib reduced the clinical symptoms of OVA-induced EAC, with a substantial mitigation in inflammatory cell infiltration, histamine release, and TNF-α mRNA as well as IL-4 mRNA expression. In vitro, tofacitinib repressed the degranulation and cytokine production in RBL-2H3 cells and reduced histamine-induced vascular hyperpermeability. The underlying mechanism might involve the downregulation of phosphorylation of JAK3/STATs signaling molecules in RBL-2H3 cells and HUVECs. CONCLUSIONS Our findings provide evidence that tofacitinib prevented EAC by targeting the JAK3/STATs pathway. We recommend the use of tofacitinib as an innovative approach for the treatment of AC.
Collapse
|
44
|
Dang J, Xu Z, Xu A, Liu Y, Fu Q, Wang J, Huang F, Zheng Y, Qi G, Sun B, Bellanti JA, Kandalam U, Emam HA, Jarjour W, Zheng SG. Human gingiva-derived mesenchymal stem cells are therapeutic in lupus nephritis through targeting of CD39 -CD73 signaling pathway. J Autoimmun 2020; 113:102491. [PMID: 32565049 DOI: 10.1016/j.jaut.2020.102491] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/30/2020] [Accepted: 05/18/2020] [Indexed: 12/21/2022]
Abstract
Cell specific and cytokine targeted therapeutics have underperformed in systemic lupus erythematosus (SLE). Mesenchymal stem cells (MSCs) have emerged as a novel therapy to address the dysregulation in autoimmune diseases but also have limitations. Human gingiva derived MSCs (GMSCs) are superior in regulating immune responses. Here, we demonstrate that the adoptive transfer of GMSCs homes to and maintains in the kidney and has a robust therapeutic effect in a spontaneous lupus nephritis model. Specifically, GMSCs limits the development of autoantibodies as well as proteinuria, decreases the frequency of plasma cells and lupus nephritis histopathological scores by directly suppressing B cells activation, proliferation and differentiation. The blockage of CD39-CD73 pathway dramatically abrogates the suppressive capacities of GMSCs in vitro and in vivo and highlights the significance of this signaling pathway in SLE. Collectively, manipulation of GMSCs provides a promising strategy for the treatment of patients with SLE and other autoimmune diseases.
Collapse
Affiliation(s)
- Junlong Dang
- Department of Clinical Immunology, Third Affiliated Hospital at Sun Yat-sen University, Guangzhou, China; Division of Rheumatology, Department of Medicine, Penn State College of Medicine, Hershey, PA, USA
| | - Zhenjian Xu
- Division of Rheumatology, Department of Medicine, Penn State College of Medicine, Hershey, PA, USA; Department of Nephrology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Anping Xu
- Department of Nephrology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yan Liu
- Department of Clinical Immunology, Third Affiliated Hospital at Sun Yat-sen University, Guangzhou, China
| | - Qingling Fu
- Otorhinolaryngology Department, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Julie Wang
- Division of Immunology and Rheumatology, Department of Internal Medicine, Ohio State University College of Medicine, USA
| | - Feng Huang
- Department of Clinical Immunology, Third Affiliated Hospital at Sun Yat-sen University, Guangzhou, China
| | - Yuejuan Zheng
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Guangying Qi
- Guangxi State Key Lab, Guilin College of Medicine, Guilin, China
| | - Boqing Sun
- Department of Allergy and Clinical Immunology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Joseph A Bellanti
- Departments of Pediatrics and Microbiology-Immunology, Georgetown University Medical Center, Washington DC, USA
| | - Umadevi Kandalam
- Department of Pediatric Dentistry, College of Dental Medicine, Nova Southeastern University, Davie, FL, USA
| | - Hany A Emam
- Department of Oral & Maxillofacial Surgery, The Ohio State University, Columbus, USA
| | - Wael Jarjour
- Division of Immunology and Rheumatology, Department of Internal Medicine, Ohio State University College of Medicine, USA
| | - Song Guo Zheng
- Division of Immunology and Rheumatology, Department of Internal Medicine, Ohio State University College of Medicine, USA.
| |
Collapse
|
45
|
Magatti M, Masserdotti A, Bonassi Signoroni P, Vertua E, Stefani FR, Silini AR, Parolini O. B Lymphocytes as Targets of the Immunomodulatory Properties of Human Amniotic Mesenchymal Stromal Cells. Front Immunol 2020; 11:1156. [PMID: 32582218 PMCID: PMC7295987 DOI: 10.3389/fimmu.2020.01156] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/11/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stromal cells (MSC) from the amniotic membrane of human term placenta (hAMSC), and the conditioned medium generated from their culture (CM-hAMSC) offer significant tools for their use in regenerative medicine mainly due to their immunomodulatory properties. Interestingly, hAMSC and their CM have been successfully exploited in preclinical disease models of inflammatory and autoimmune diseases where depletion or modulation of B cells have been indicated as an effective treatment, such as inflammatory bowel disease, lung fibrosis, would healing, collagen-induced arthritis, and multiple sclerosis. While the interactions between hAMSC or CM-hAMSC and T lymphocytes, monocytes, dendritic cells, and macrophages has been extensively explored, how they affect B lymphocytes remains unclear. Considering that B cells are key players in the adaptive immune response and are a central component of different diseases, in this study we investigated the in vitro properties of hAMSC and CM-hAMSC on B cells. We provide evidence that both hAMSC and CM-hAMSC strongly suppressed CpG-activated B-cell proliferation. Moreover, CM-hAMSC blocked B-cell differentiation, with an increase of the proportion of mature B cells, and a reduction of antibody secreting cell formation. We observed the strong inhibition of B cell terminal differentiation into CD138+ plasma cells, as further shown by a significant decrease of the expression of interferon regulatory factor 4 (IRF-4), PR/SET domain 1(PRDM1), and X-box binding protein 1 (XBP-1) genes. Our results point out that the mechanism by which CM-hAMSC impacts B cell proliferation and differentiation is mediated by secreted factors, and prostanoids are partially involved in these actions. Factors contained in the CM-hAMSC decreased the CpG-uptake sensors (CD205, CD14, and TLR9), suggesting that B cell stimulation was affected early on. CM-hAMSC also decreased the expression of interleukin-1 receptor-associated kinase (IRAK)-4, consequently inhibiting the entire CpG-induced downstream signaling pathway. Overall, these findings add insight into the mechanism of action of hAMSC and CM-hAMSC and are useful to better design their potential therapeutic application in B-cell mediated diseases.
Collapse
Affiliation(s)
- Marta Magatti
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Alice Masserdotti
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Elsa Vertua
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | | | - Antonietta Rosa Silini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Ornella Parolini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy.,Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
46
|
Zhang S, Hou Y, Yang J, Xie D, Jiang L, Hu H, Hu J, Luo C, Zhang Q. Application of mesenchymal stem cell exosomes and their drug-loading systems in acute liver failure. J Cell Mol Med 2020; 24:7082-7093. [PMID: 32492261 PMCID: PMC7339207 DOI: 10.1111/jcmm.15290] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/22/2020] [Accepted: 03/26/2020] [Indexed: 12/11/2022] Open
Abstract
Stem cell exosomes are nanoscale membrane vesicles released from stem cells of various origins that can regulate signal transduction pathways between liver cells, and their functions in intercellular communication have been recognized. Due to their natural substance transport properties and excellent biocompatibility, exosomes can also be used as drug carriers to release a variety of substances, which has great prospects in the treatment of critical and incurable diseases. Different types of stem cell exosomes have been used to study liver diseases. Due to current difficulties in the treatment of acute liver failure (ALF), this review will outline the potential of stem cell exosomes for ALF treatment. Specifically, we reviewed the pathogenesis of acute liver failure and the latest progress in the use of stem cell exosomes in the treatment of ALF, including the role of exosomes in inhibiting the ALF inflammatory response and regulating signal transduction pathways, the advantages of stem cell exosomes and their use as a drug‐loading system, and their pre‐clinical application in the treatment of ALF. Finally, the clinical research status of stem cell therapy for ALF and the current challenges of exosome clinical transformation are summarized.
Collapse
Affiliation(s)
- Shuqin Zhang
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yu Hou
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Jing Yang
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Denghui Xie
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Linrui Jiang
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Huazhong Hu
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Jingjing Hu
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Caizhu Luo
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Qun Zhang
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
47
|
Wang Z, Liu X, Cao F, Bellanti JA, Zhou J, Zheng SG. Prospects of the Use of Cell Therapy to Induce Immune Tolerance. Front Immunol 2020; 11:792. [PMID: 32477335 PMCID: PMC7235417 DOI: 10.3389/fimmu.2020.00792] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 04/07/2020] [Indexed: 12/12/2022] Open
Abstract
Conditions in which abnormal or excessive immune responses exist, such as autoimmune diseases (ADs), graft-versus-host disease, transplant rejection, and hypersensitivity reactions, are serious hazards to human health and well-being. The traditional immunosuppressive drugs used to treat these conditions can lead to decreased immune function, a higher risk of infection, and increased tumor susceptibility. As an alternative therapeutic approach, cell therapy, in which generally intact and living cells are injected, grafted, or implanted into a patient, has the potential to overcome the limitations of traditional drug treatment and to alleviate the symptoms of many refractory diseases. Cell therapy could be a powerful approach to induce immune tolerance and restore immune homeostasis with a deeper understanding of immune tolerance mechanisms and the development of new techniques. The purpose of this review is to describe the current panoramic scope of cell therapy for immune-mediated disorders, discuss the advantages and disadvantages of different types of cell therapy, and explore novel directions and future prospects for these tolerogenic therapies.
Collapse
Affiliation(s)
- Zhenkun Wang
- Central Laboratory of Hematology and Oncology, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xiaolong Liu
- Central Laboratory of Hematology and Oncology, First Affiliated Hospital, Harbin Medical University, Harbin, China
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Fenglin Cao
- Central Laboratory of Hematology and Oncology, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Joseph A. Bellanti
- Departments of Pediatrics and Microbiology-Immunology, The International Center for Interdisciplinary Studies of Immunology (ICISI), Georgetown University Medical Center, Washington, DC, United States
| | - Jin Zhou
- Department of Hematology, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Song Guo Zheng
- Department of Internal Medicine, Ohio State University College of Medicine, Columbus, OH, United States
| |
Collapse
|
48
|
Fang Q, Bellanti JA, Zheng SG. Advances on the role of the deleted in breast cancer (DBC1) in cancer and autoimmune diseases. J Leukoc Biol 2020; 109:449-454. [PMID: 32337788 DOI: 10.1002/jlb.6mr0320-086r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/07/2020] [Accepted: 03/21/2020] [Indexed: 12/24/2022] Open
Abstract
DBC1 (deleted in breast cancer 1) is a human nuclear protein that modulates the activities of various proteins. Most of the research on DBC1 has focused on metabolism and epigenetics because it is a crucial endogenic inhibitor of deacetylase Sirtuin1 (SIRT1). In this review, we have discussed and summarized the new advances in DBC1 research, mostly focusing on its structure, regulatory function, and significance in cancer and autoimmune diseases.
Collapse
Affiliation(s)
- Qiannan Fang
- Department of Clinical Immunology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Department of Internal Medicine, Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, USA
| | - Joseph A Bellanti
- Department of Pediatrics and Microbiology-Immunology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Song Guo Zheng
- Department of Internal Medicine, Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
49
|
Wu W, Xiao Z, Chen Y, Deng Y, Zeng D, Liu Y, Huang F, Wang J, Liu Y, Bellanti JA, Rong L, Zheng SG. CD39 Produced from Human GMSCs Regulates the Balance of Osteoclasts and Osteoblasts through the Wnt/β-Catenin Pathway in Osteoporosis. Mol Ther 2020; 28:1518-1532. [PMID: 32304668 PMCID: PMC7264439 DOI: 10.1016/j.ymthe.2020.04.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/14/2020] [Accepted: 04/03/2020] [Indexed: 02/07/2023] Open
Abstract
Osteoporosis is a disease in which the density and quality of bone are reduced, causing bones to become weak and so brittle that a fall or even mild stresses can cause a fracture. Current drug treatment consists mainly of antiresorptive agents that are unable to stimulate new bone formation. Our recent studies have defined a critical role of gingiva-derived mesenchymal stem cells (GMSCs) in attenuating autoimmune arthritis through inhibition of osteoclast formation and activities, but it remains to be ruled out whether the administration of GMSCs to patients with osteoporosis could also regulate osteoblasts and eventually affect bone formation and protection. With the use of an ovariectomized mouse model, we here demonstrated that adoptive transfer of GMSCs regulated the balance of osteoclasts and osteoblasts, eventually contributing to dynamic bone formation. Validation by RNA sequencing (RNA-seq), single-cell sequencing, revealed a unique population of CD39+ GMSC that plays an important role in promoting bone formation. We further demonstrated that CD39 produced from GMSC exerted its osteogenic capacity through the Wnt/β-catenin pathway. Our results not only establish a previously unidentified role and mechanism of GMSC for bone promotion but also a potential therapeutic target for management of patients with osteoporosis and other bone loss conditions.
Collapse
Affiliation(s)
- Wenbin Wu
- Department of Clinical Immunology Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China; Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Zexiu Xiao
- Department of Clinical Immunology Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Ye Chen
- Department of Clinical Immunology Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China; Department of Internal Medicine, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH 43210, USA
| | - Yanan Deng
- Department of Clinical Immunology Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Donglan Zeng
- Department of Clinical Immunology Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Yan Liu
- Department of Clinical Immunology Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Feng Huang
- Department of Clinical Immunology Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Julie Wang
- Department of Internal Medicine, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH 43210, USA
| | - Yanying Liu
- Department of Rheumatology & Immunology, Peking University People's Hospital, Beijing 100044, China
| | - Joseph A Bellanti
- Departments of Pediatrics and Microbiology-Immunology and the International Center for Interdisciplinary Studies of Immunology (ICISI), Georgetown University Medical Center, Washington, DC 20057, USA
| | - Limin Rong
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.
| | - Song Guo Zheng
- Department of Internal Medicine, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH 43210, USA.
| |
Collapse
|
50
|
Guo C, Liu J, Hao P, Wang Y, Sui S, Li L, Ying M, Han R, Wang L, Li X. The Potential Inhibitory Effects of miR-19b on Ocular Inflammation are Mediated Upstream of the JAK/STAT Pathway in a Murine Model of Allergic Conjunctivitis. Invest Ophthalmol Vis Sci 2020; 61:8. [PMID: 32150250 PMCID: PMC7401772 DOI: 10.1167/iovs.61.3.8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 01/05/2020] [Indexed: 01/14/2023] Open
Abstract
Purpose Thymic stromal lymphopoietin (TSLP) is a pro-allergic cytokine that initiates allergic inflammatory reaction between epithelial and dendritic cells (DCs). miR-19b was reported to suppress TSLP expression. The present study aimed to examine miR-19b expression, regulation, and function in allergic conjunctivitis (AC). Methods A murine model of experimental AC was induced in BALB/c mice by short ragweed pollen. The serum, eye balls, conjunctiva, and cervical lymph nodes (CLN) were used for the study. Gene expression was determined by RT-PCR, whereas protein production and activation were evaluated by immunostaining, ELISA, and Western blotting. Results In the murine AC model, miR-19b was aberrantly downregulated, whereas the levels of TSLP and p-STAT3, as well as the number of CD11c+ pSTAT3+ DCs were increased. Moreover, Th2 inflammatory cytokine expression was significantly increased. These severe phenotypes could be counteracted by either applying exogenous miR-19b mimic microRNAs or the JAK/STAT inhibitor CYT387. Moreover, overexpression of miR-19b repressed p-STAT3 expression and the number of CD11c+ cells in AC eye and CLN tissues. Conclusions These findings suggested that miR-19b reduced ocular surface inflammation by inhibiting Stat3 signaling via TSLP downregulation in a murine AC model. Moreover, the present study further demonstrated the clinical potential of applying miR-19b and anti-JAK/STAT therapies in the treatment of AC.
Collapse
Affiliation(s)
- Chen Guo
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Jinghua Liu
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Peng Hao
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
- Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin, China
- Nankai University Affiliated Eye Hospital, Tianjin, China
| | - Yuchuan Wang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
- Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin, China
- Nankai University Affiliated Eye Hospital, Tianjin, China
| | - Shuangshuang Sui
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Linghan Li
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Ming Ying
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
- Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin, China
- Nankai University Affiliated Eye Hospital, Tianjin, China
| | - Ruifang Han
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
- Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin, China
- Nankai University Affiliated Eye Hospital, Tianjin, China
| | - Liming Wang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
- Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin, China
- Nankai University Affiliated Eye Hospital, Tianjin, China
| | - Xuan Li
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
- Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin, China
- Nankai University Affiliated Eye Hospital, Tianjin, China
| |
Collapse
|