1
|
Philip R, Elhani I, Gallou S, Boysson HD, Martin Silva N, Georgin-Lavialle S, Deshayes S, Aouba A. A20 haploinsufficiency diagnosis beyond systemic lupus erythematosus: A systematic review of the literature. Autoimmun Rev 2025; 24:103722. [PMID: 39672252 DOI: 10.1016/j.autrev.2024.103722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/06/2024] [Accepted: 12/08/2024] [Indexed: 12/15/2024]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease whose pathophysiology remains incompletely understood, involving genetic and epigenetic factors. However, an increasing small subset of patients present with monogenic lupus, providing insight into the pathogenesis of the disease. This systematic review focuses on SLE associated with A20 haploinsufficiency (HA20), a monogenic disorder associated with tumor necrosis factor alpha-induced protein 3 gene (TNFAIP3) variants. Besides the mainly auto-inflammatory phenotypic expression of HA20 mimicking Behçet's disease spectrum, some of its clinical and biological manifestations are part of the spectrum of autoimmune diseases, including glomerulonephritis as well as the frequent presence of antinuclear antibodies, sometimes with anti-DNA specificity. Among all the 191 HA20 patients reported in the literature, we identified 16 patients (8.4 %) with a compatible diagnosis of SLE. When estimable, the SLICC 2012 and EULAR/ACR 2019 classification criteria were positive for 92.9 % of them. A majority had multi-system involvement, mainly cutaneous (81.3 %), musculoskeletal (56.3 %), and/or renal (56.3 %) manifestations. They also seemed to exhibit differences compared to other SLE patients: higher prevalence of fever, chronic cutaneous lupus erythematosus, oral and genital ulcers, neuropsychiatric manifestations, autoimmune cytopenia, and elevated biologic inflammatory markers. This review highlights the necessity of considering TNFAIP3 variants in SLE patients with early-onset disease, familial history, and/or specific clinical manifestations suggestive of autoinflammatory diseases. Recognizing HA20-SLE patients may improve our understanding of SLE pathogenesis and lead to better therapeutic strategies for these patients.
Collapse
Affiliation(s)
- Rémi Philip
- Department of Clinical Immunology and Internal Medicine, CHU of Caen Normandie, 14000 Caen, France; Normandie Univ, UNICAEN, CHU de Caen Normandie, 14000 Caen, France.
| | - Inès Elhani
- AP-HP, Tenon Hospital, Department of Internal Medicine, Paris, France; Sorbonne Université, Centre de Recherche Saint-Antoine (CRSA) INSERM UMRS-938, USA; National French Reference Centre for Auto-inflammatory Diseases and Inflammatory Amyloidosis (CEREMAIA), France
| | - Sophie Gallou
- Department of Clinical Immunology and Internal Medicine, CHU of Caen Normandie, 14000 Caen, France; Normandie Univ, UNICAEN, CHU de Caen Normandie, 14000 Caen, France
| | - Hubert De Boysson
- Department of Clinical Immunology and Internal Medicine, CHU of Caen Normandie, 14000 Caen, France; Normandie Univ, UNICAEN, CHU de Caen Normandie, 14000 Caen, France
| | - Nicolas Martin Silva
- Department of Clinical Immunology and Internal Medicine, CHU of Caen Normandie, 14000 Caen, France
| | - Sophie Georgin-Lavialle
- AP-HP, Tenon Hospital, Department of Internal Medicine, Paris, France; Sorbonne Université, Centre de Recherche Saint-Antoine (CRSA) INSERM UMRS-938, USA; National French Reference Centre for Auto-inflammatory Diseases and Inflammatory Amyloidosis (CEREMAIA), France
| | - Samuel Deshayes
- Department of Clinical Immunology and Internal Medicine, CHU of Caen Normandie, 14000 Caen, France; Normandie Univ, UNICAEN, CHU de Caen Normandie, 14000 Caen, France
| | - Achille Aouba
- Department of Clinical Immunology and Internal Medicine, CHU of Caen Normandie, 14000 Caen, France; Normandie Univ, UNICAEN, CHU de Caen Normandie, 14000 Caen, France
| |
Collapse
|
2
|
An J, Marwaha A, Laxer RM. Autoinflammatory Diseases: A Review. J Rheumatol 2024; 51:848-861. [PMID: 38879186 DOI: 10.3899/jrheum.2023-1209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2024] [Indexed: 07/17/2024]
Abstract
Autoinflammatory disease (AID) is a vast spectrum of disorders characterized by recurrent attacks of sterile inflammation. Since the first cloning of the familial Mediterranean fever gene in 1997, there has been a rapid rate of discovery of new AIDs. As of 2022, there have been 485 inborn errors of immunity documented by the International Union of Immunological Societies, for which many display aspects of autoinflammation. The pathophysiology of AIDs is complex. Although many are caused by rare mutations in genes that govern innate immunity, others are polygenic, where disease expression is thought to be triggered by environmental factors in genetically predisposed hosts. AIDs range in prevalence from common entities like gout to ultrarare monogenic diseases. Whereas AIDs were initially studied in pediatric populations, it is now apparent that they can present in adulthood and even in the elderly. AIDs can be clinically challenging given their rarity, as well as the heterogeneity in presentation and underlying etiology. Although the care of AIDs can span medical disciplines, the rheumatologist often plays a central role given the inflammatory nature of these illnesses. In this review, we explore the current understanding of the pathophysiology of these complex conditions and propose a classification system for AIDs. We place an emphasis on AIDs that present to the adult rheumatologist and discuss important AIDs that can mimic more classic rheumatic diseases such as systemic lupus erythematosus and inflammatory arthritis. Finally, we offer an approach to the clinical assessment, diagnosis, and management of AIDs.
Collapse
Affiliation(s)
- Jason An
- J. An, MD, MSc, Division of Rheumatology, Hospital for Sick Children, University of Toronto, Toronto, Ontario;
| | - Ashish Marwaha
- A. Marwaha, MD, PhD, Department of Medical Genetics, Alberta Children's Hospital, University of Calgary, Calgary, Alberta
| | - Ronald M Laxer
- R.M. Laxer, MDCM, Division of Rheumatology, Hospital for Sick Children, University of Toronto, and Division of Rheumatology, Department of Medicine, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Bagyinszky E, An SSA. Genetic Mutations Associated With TNFAIP3 (A20) Haploinsufficiency and Their Impact on Inflammatory Diseases. Int J Mol Sci 2024; 25:8275. [PMID: 39125844 PMCID: PMC11311569 DOI: 10.3390/ijms25158275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
TNF-α-induced protein 3 (TNFAIP3), commonly referred to as A20, is an integral part of the ubiquitin-editing complex that significantly influences immune regulation, apoptosis, and the initiation of diverse immune responses. The A20 protein is characterized by an N-terminal ovarian tumor (OTU) domain and a series of seven zinc finger (ZNF) domains. Mutations in the TNFAIP3 gene are implicated in various immune-related diseases, such as Behçet's disease, polyarticular juvenile idiopathic arthritis, autoimmune thyroiditis, autoimmune hepatitis, and rheumatoid arthritis. These mutations can lead to a spectrum of symptoms, including, but not limited to, recurrent fever, ulcers, rashes, musculoskeletal and gastrointestinal dysfunctions, cardiovascular issues, and respiratory infections. The majority of these mutations are either nonsense (STOP codon) or frameshift mutations, which are typically associated with immune dysfunctions. Nonetheless, missense mutations have also been identified as contributors to these conditions. These genetic alterations may interfere with several biological pathways, notably abnormal NF-κB signaling and dysregulated ubiquitination. Currently, there is no definitive treatment for A20 haploinsufficiency; however, therapeutic strategies can alleviate the symptoms in patients. This review delves into the mutations reported in the TNFAIP3 gene, the clinical progression in affected individuals, potential disease mechanisms, and a brief overview of the available pharmacological interventions for A20 haploinsufficiency. Mandatory genetic testing of the TNFAIP3 gene should be performed in patients diagnosed with autoinflammatory disorders to better understand the genetic underpinnings and guide treatment decisions.
Collapse
Affiliation(s)
- Eva Bagyinszky
- Graduate School of Environment Department of Industrial and Environmental Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon Medical Research Institute, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
4
|
Elhani I, Riller Q, Boursier G, Hentgen V, Rieux-Laucat F, Georgin-Lavialle S. A20 Haploinsufficiency: A Systematic Review of 177 Cases. J Invest Dermatol 2024; 144:1282-1294.e8. [PMID: 38128752 DOI: 10.1016/j.jid.2023.12.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
A20 haploinsufficiency is an autoinflammatory disease caused by defective inactivation of the NF-κB pathway. We conducted a systematic literature review of articles reporting patients with TNFAIP3 sequence variants from 2016 to August 2023 following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Data from 177 patients from 65 articles were retrieved (108 women). The principal features were mucosal ulcers (n = 129); fever (n = 93) followed by gastrointestinal (n = 81); skin features (n = 76); autoimmunity (n = 61), including thyroiditis (n = 25) and lupus (n = 16); and joint involvements (n = 54). Five patients had died at the time of publication. In 54 of 63 patients, CRP was significantly elevated during flares, with a median of 51 mg/l. The most commonly used treatment included corticosteroids and nonsteroidal anti-inflammatory drugs (n = 32), TNF blockers (n = 29), colchicine (n = 28), and methotrexate (n = 14). TNFAIP3 variants impacted the ovarian tumor domain in 92 cases and a Zinc finger domain in 68 cases. Geographic origin, reported sex, and variant type significantly impacted phenotype. A better understanding of the wide A20 haploinsufficiency phenotype could facilitate the diagnosis process. Much remains to be elucidated about pathogenesis and treatment to improve outcome in patients with A20 haploinsufficiency.
Collapse
Affiliation(s)
- Inès Elhani
- Department of Internal Medicine, Tenon Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France; Saint-Antoine Research Center (CRSA) INSERM UMRS 938, Sorbonne Université, Paris, France; National French Reference Centre for Auto-inflammatory Diseases and Inflammatory Amyloidosis (CEREMAIA), Montpellier, France; Department of General Pediatrics, Versailles Hospital, Versailles, France.
| | - Quentin Riller
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Institut Imagine, Université Paris Cité, Paris, France
| | - Guilaine Boursier
- National French Reference Centre for Auto-inflammatory Diseases and Inflammatory Amyloidosis (CEREMAIA), Montpellier, France; Laboratory of Rare and Autoinflammatory Genetic Diseases, Department of genetics, CHU Montpellier, Univ Montpellier, Montpellier, France
| | - Véronique Hentgen
- National French Reference Centre for Auto-inflammatory Diseases and Inflammatory Amyloidosis (CEREMAIA), Montpellier, France; Department of General Pediatrics, Versailles Hospital, Versailles, France
| | - Frédéric Rieux-Laucat
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Institut Imagine, Université Paris Cité, Paris, France
| | - Sophie Georgin-Lavialle
- Department of Internal Medicine, Tenon Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France; Saint-Antoine Research Center (CRSA) INSERM UMRS 938, Sorbonne Université, Paris, France; National French Reference Centre for Auto-inflammatory Diseases and Inflammatory Amyloidosis (CEREMAIA), Montpellier, France.
| |
Collapse
|
5
|
Karri U, Harasimowicz M, Carpio Tumba M, Schwartz DM. The Complexity of Being A20: From Biological Functions to Genetic Associations. J Clin Immunol 2024; 44:76. [PMID: 38451381 DOI: 10.1007/s10875-024-01681-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
A20, encoded by TNFAIP3, is a critical negative regulator of immune activation. A20 is a ubiquitin editing enzyme with multiple domains, each of which mediates or stabilizes a key ubiquitin modification. A20 targets diverse proteins that are involved in pleiotropic immunologic pathways. The complexity of A20-mediated immunomodulation is illustrated by the varied effects of A20 deletion in different cell types and disease models. Clinically, the importance of A20 is highlighted by its extensive associations with human disease. A20 germline variants are associated with a wide range of inflammatory diseases, while somatic mutations promote development of B cell lymphomas. More recently, the discovery of A20 haploinsufficiency (HA20) has provided real world evidence for the role of A20 in immune cell function. Originally described as an autosomal dominant form of Behcet's disease, HA20 is now considered a complex inborn error of immunity with a broad spectrum of immunologic and clinical phenotypes.
Collapse
Affiliation(s)
- Urekha Karri
- Departments of Medicine and Immunology, Division of Rheumatology and Clinical Immunology, University of Pittsburgh, 200 Lothrop St., Pittsburgh, PA, 15213, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Magdalena Harasimowicz
- Departments of Medicine and Immunology, Division of Rheumatology and Clinical Immunology, University of Pittsburgh, 200 Lothrop St., Pittsburgh, PA, 15213, USA
| | - Manuel Carpio Tumba
- Departments of Medicine and Immunology, Division of Rheumatology and Clinical Immunology, University of Pittsburgh, 200 Lothrop St., Pittsburgh, PA, 15213, USA
| | - Daniella M Schwartz
- Departments of Medicine and Immunology, Division of Rheumatology and Clinical Immunology, University of Pittsburgh, 200 Lothrop St., Pittsburgh, PA, 15213, USA.
| |
Collapse
|
6
|
Federici S, Cinicola BL, La Torre F, Castagnoli R, Lougaris V, Giardino G, Volpi S, Caorsi R, Leonardi L, Corrente S, Soresina A, Cancrini C, Insalaco A, Gattorno M, De Benedetti F, Marseglia GL, Del Giudice MM, Cardinale F. Vasculitis and vasculopathy associated with inborn errors of immunity: an overview. Front Pediatr 2024; 11:1258301. [PMID: 38357265 PMCID: PMC10866297 DOI: 10.3389/fped.2023.1258301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/29/2023] [Indexed: 02/16/2024] Open
Abstract
Systemic autoinflammatory diseases (SAIDs) are disorders of innate immunity, which are characterized by unprovoked recurrent flares of systemic inflammation often characterized by fever associated with clinical manifestations mainly involving the musculoskeletal, mucocutaneous, gastrointestinal, and nervous systems. Several conditions also present with varied, sometimes prominent, involvement of the vascular system, with features of vasculitis characterized by variable target vessel involvement and organ damage. Here, we report a systematic review of vasculitis and vasculopathy associated with inborn errors of immunity.
Collapse
Affiliation(s)
- Silvia Federici
- Division of Rheumatology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Bianca Laura Cinicola
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Francesco La Torre
- Department of Pediatrics, Giovanni XXIII Pediatric Hospital, University of Bari, Bari, Italy
| | - Riccardo Castagnoli
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Vassilios Lougaris
- Department of Clinical and Experimental Sciences, Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, University of Brescia and ASST-Spedali Civili di Brescia, Brescia, Italy
| | - Giuliana Giardino
- Pediatric Section, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Stefano Volpi
- Center for Autoinflammatory Diseases and Immunodeficiency, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Roberta Caorsi
- Center for Autoinflammatory Diseases and Immunodeficiency, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Lucia Leonardi
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Annarosa Soresina
- Unit of Pediatric Immunology, Pediatrics Clinic, University of Brescia, ASST-Spedali Civili Brescia, Brescia, Italy
| | - Caterina Cancrini
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Academic Department of Pediatrics, Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Antonella Insalaco
- Division of Rheumatology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Marco Gattorno
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Gian Luigi Marseglia
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Michele Miraglia Del Giudice
- Department of Woman, Child and of General and Specialized Surgery, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Fabio Cardinale
- Department of Pediatrics, Giovanni XXIII Pediatric Hospital, University of Bari, Bari, Italy
| |
Collapse
|
7
|
Maghsoudlou P, Abraham AR, El-Ashry M, Chew C, Mohd N, Ramanan AV, Dick AD. Uveitis Associated with Monogenic Autoinflammatory Syndromes in Children. Ocul Immunol Inflamm 2023; 31:1930-1943. [PMID: 38051595 PMCID: PMC11166052 DOI: 10.1080/09273948.2023.2282610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/07/2023] [Indexed: 12/07/2023]
Abstract
Monogenic autoinflammatory syndromes (MAISs), are caused by pathogenic genetic variants in the innate immune system, leading to dysregulation and aberrant inflammasome activation spontaneously or with minimal triggering. The diagnosis and treatment of MAISs can be intricate, relying on an increased recognition of potential differential diagnoses. This review examines the clinical features of MAIS, with a special focus on uveitis. It also evaluates treatment options and assesses the effects of activating molecular and cytokine pathways.
Collapse
Affiliation(s)
- P Maghsoudlou
- Academic Unit of Ophthalmology, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - A R Abraham
- Academic Unit of Ophthalmology, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - M El-Ashry
- Department of Paediatric Ophthalmology, Bristol Eye Hospital, Bristol, UK
| | - C Chew
- Department of Paediatric Rheumatology, University of Bristol, Bristol, UK
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol, UK
| | - N Mohd
- Department of Paediatric Ophthalmology, Bristol Eye Hospital, Bristol, UK
| | - A V Ramanan
- Department of Paediatric Rheumatology, University of Bristol, Bristol, UK
| | - A D Dick
- Academic Unit of Ophthalmology, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol, UK
- UCL Institute of Ophthalmology, London, UK
- NIHR - Biomedical Research Centre, Moorfields and UCL - Institute of Ophthalmology, London, UK
| |
Collapse
|
8
|
Sheveleva O, Protasova E, Nenasheva T, Butorina N, Melnikova V, Gerasimova T, Sakovnich O, Kurinov A, Grigor’eva E, Medvedev S, Lyadova I. A Model of iPSC-Derived Macrophages with TNFAIP3 Overexpression Reveals the Peculiarities of TNFAIP3 Protein Expression and Function in Human Macrophages. Int J Mol Sci 2023; 24:12868. [PMID: 37629049 PMCID: PMC10454046 DOI: 10.3390/ijms241612868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/29/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Macrophages play a crucial role in the development and control of inflammation. Understanding the mechanisms balancing macrophage inflammatory activity is important to develop new strategies for treating inflammation-related diseases. TNF-α-induced protein 3 (TNFAIP3, A20) is a negative regulator of intracellular inflammatory cascades; its deficiency induces hyper-inflammatory reactions. Whether A20 overexpression can dampen macrophage inflammatory response remains unclear. Here, we generated human-induced pluripotent stem cells with tetracycline-inducible A20 expression and differentiated them into macrophages (A20-iMacs). A20-iMacs displayed morphology, phenotype, and phagocytic activity typical of macrophages, and they displayed upregulated A20 expression in response to doxycycline. A20 overexpression dampened the A20-iMac response to TNF-α, as shown by a decreased expression of IL1B and IL6 mRNA. A dynamic analysis of A20 expression following the generation of A20-iMacs and control iMacs showed that the expression declined in iMacs and that iMacs expressed a lower molecular weight form of the A20 protein (~70 kDa) compared with less differentiated cells (~90 kDa). A low-level expression of A20 and the predominance of a low-molecular-weight A20 form were also characteristic of monocyte-derived macrophages. The study for the first time developed a model for generating macrophages with an inducible expression of a target gene and identified the peculiarities of A20 expression in macrophages that likely underlie macrophage preparedness for inflammatory reactivity. It also suggested the possibility of mitigating inflammatory macrophage responses via A20 overexpression.
Collapse
Affiliation(s)
- Olga Sheveleva
- Laboratory of Cellular and Molecular Basis of Histogenesis, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Vavilova Str., 26, 119334 Moscow, Russia; (O.S.); (E.P.); (T.N.); (N.B.); (T.G.); (O.S.)
| | - Elena Protasova
- Laboratory of Cellular and Molecular Basis of Histogenesis, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Vavilova Str., 26, 119334 Moscow, Russia; (O.S.); (E.P.); (T.N.); (N.B.); (T.G.); (O.S.)
| | - Tatiana Nenasheva
- Laboratory of Cellular and Molecular Basis of Histogenesis, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Vavilova Str., 26, 119334 Moscow, Russia; (O.S.); (E.P.); (T.N.); (N.B.); (T.G.); (O.S.)
| | - Nina Butorina
- Laboratory of Cellular and Molecular Basis of Histogenesis, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Vavilova Str., 26, 119334 Moscow, Russia; (O.S.); (E.P.); (T.N.); (N.B.); (T.G.); (O.S.)
| | - Victoria Melnikova
- Laboratory of Comparative Developmental Physiology, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Vavilova Str., 26, 119334 Moscow, Russia;
| | - Tatiana Gerasimova
- Laboratory of Cellular and Molecular Basis of Histogenesis, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Vavilova Str., 26, 119334 Moscow, Russia; (O.S.); (E.P.); (T.N.); (N.B.); (T.G.); (O.S.)
| | - Olga Sakovnich
- Laboratory of Cellular and Molecular Basis of Histogenesis, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Vavilova Str., 26, 119334 Moscow, Russia; (O.S.); (E.P.); (T.N.); (N.B.); (T.G.); (O.S.)
| | - Alexander Kurinov
- Laboratory of Regeneration Problems, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Vavilova Str., 26, 119334 Moscow, Russia;
| | - Elena Grigor’eva
- Laboratory of Developmental Epigenetics, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Lavrentyev Ave., 10, 630090 Novosibirsk, Russia; (E.G.); (S.M.)
| | - Sergey Medvedev
- Laboratory of Developmental Epigenetics, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Lavrentyev Ave., 10, 630090 Novosibirsk, Russia; (E.G.); (S.M.)
| | - Irina Lyadova
- Laboratory of Cellular and Molecular Basis of Histogenesis, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Vavilova Str., 26, 119334 Moscow, Russia; (O.S.); (E.P.); (T.N.); (N.B.); (T.G.); (O.S.)
| |
Collapse
|
9
|
Cakir M, Yakici N, Sag E, Kaya G, Bahadir A, Cebi AH, Orhan F. Primary Immunodeficiencies in Children Initially Admitted with Gastrointestinal/Liver Manifestations. Pediatr Gastroenterol Hepatol Nutr 2023; 26:201-212. [PMID: 37485029 PMCID: PMC10356973 DOI: 10.5223/pghn.2023.26.4.201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 02/19/2023] [Accepted: 05/13/2023] [Indexed: 07/25/2023] Open
Abstract
Purpose The gastrointestinal system is the most commonly affected organ, followed by the lungs, in patients with primary immunodeficiency disease (PID). Hence, it is common for children with PIDs to present with gastrointestinal symptoms. We aimed to analyze the clinical and histopathological findings of patients who were initially admitted to pediatric gastroenterology/hepatology clinics and subsequently diagnosed with PIDs to identify the clinical clues for PIDs. Methods The demographic, laboratory, and histopathological findings, treatment modality, and outcomes of patients initially admitted to the pediatric gastroenterology/hepatology unit and subsequently diagnosed with PIDs were recorded. Results The study included 24 patients (58.3% male; median age [range]: 29 [0.5-204] months). Common clinical presentations included chronic diarrhea (n=8), colitis (n=6), acute hepatitis (n=4), and acute liver failure (n=2). The association of autoimmune diseases, development of malignant diseases, and severe progression of viral diseases was observed in 20.8%, 8.3%, and 16.6% of the patients, respectively. Antibody deficiency was predominantly diagnosed in 29.2% of patients, combined immunodeficiency in 20.8%, immune dysregulation in 12.5%, defects in intrinsic and innate immunity in 4.2%, autoinflammatory disorders in 8.3%, and congenital defects of phagocytes in 4.2%. Five patients remained unclassified (20.8%). Conclusion Patients with PIDs may initially experience gastrointestinal or liver problems. It is recommended that the association of autoimmune or malignant diseases or severe progression of viral diseases provide pediatric gastroenterologists some suspicion of PIDs. After screening using basic laboratory tests, genetic analysis is mandatory for a definitive diagnosis.
Collapse
Affiliation(s)
- Murat Cakir
- Department of Pediatric Gastroenterology Hepatology and Nutrition, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Nalan Yakici
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Elif Sag
- Department of Pediatric Gastroenterology Hepatology and Nutrition, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Gulay Kaya
- Department of Pediatrics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Ayşenur Bahadir
- Department of Pediatric Hematology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Alper Han Cebi
- Department of Medical Genetics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Fazil Orhan
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
10
|
Gray PE, David C. Inborn Errors of Immunity and Autoimmune Disease. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1602-1622. [PMID: 37119983 DOI: 10.1016/j.jaip.2023.04.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/01/2023] [Accepted: 04/21/2023] [Indexed: 05/01/2023]
Abstract
Autoimmunity may be a manifestation of inborn errors of immunity, specifically as part of the subgroup of primary immunodeficiency known as primary immune regulatory disorders. However, although making a single gene diagnosis can have important implications for prognosis and management, picking patients to screen can be difficult, against a background of a high prevalence of autoimmune disease in the population. This review compares the genetics of common polygenic and rare monogenic autoimmunity, and explores the molecular mechanisms, phenotypes, and inheritance of autoimmunity associated with primary immune regulatory disorders, highlighting the emerging importance of gain-of-function and non-germline somatic mutations. A novel framework for identifying rare monogenic cases of common diseases in children is presented, highlighting important clinical and immunologic features that favor single gene disease and guides clinicians in selecting appropriate patients for genomic screening. In addition, there will be a review of autoimmunity in non-genetically defined primary immunodeficiency such as common variable immunodeficiency, and of instances where primary autoimmunity can result in clinical phenocopies of inborn errors of immunity.
Collapse
Affiliation(s)
- Paul Edgar Gray
- Sydney Children's Hospital, Randwick, NSW, Australia; Western Sydney University, Penrith, NSW, Australia.
| | - Clementine David
- Sydney Children's Hospital, Randwick, NSW, Australia; The School of Women's & Children's Health, University of New South Wales, Randwick, NSW, Australia
| |
Collapse
|
11
|
An JW, Pimpale-Chavan P, Stone DL, Bandeira M, Dedeoglu F, Lo J, Bohnsack J, Rosenzweig S, Schnappauf O, Dissanayake D, Hiraki LT, Kastner DL, Pelajo C, Laxer RM, Aksentijevich I. Case report: Novel variants in RELA associated with familial Behcet's-like disease. Front Immunol 2023; 14:1127085. [PMID: 36926348 PMCID: PMC10011480 DOI: 10.3389/fimmu.2023.1127085] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/09/2023] [Indexed: 03/08/2023] Open
Abstract
RELA haploinsufficiency is a recently described autoinflammatory condition presenting with intermittent fevers and mucocutaneous ulcerations. The RELA gene encodes the p65 protein, one of five NF-κB family transcription factors. As RELA is an essential regulator of mucosal homeostasis, haploinsufficiency leads to decreased NF-κB signaling which promotes TNF-driven mucosal apoptosis with impaired epithelial recovery. Thus far, only eight cases have been reported in the literature. Here, we report four families with three novel and one previously described pathogenic variant in RELA. These four families included 23 affected individuals for which genetic testing was available in 16. Almost half of these patients had been previously diagnosed with more common rheumatologic entities (such as Behcet's Disease; BD) prior to the discovery of their pathogenic RELA variants. The most common clinical features were orogenital ulcers, rash, joint inflammation, and fever. The least common were conjunctivitis and recurrent infections. Clinical variability was remarkable even among familial cases, and incomplete penetrance was observed. Patients in our series were treated with a variety of medications, and benefit was observed with glucocorticoids, colchicine, and TNF inhibitors. Altogether, our work adds to the current literature and doubles the number of reported cases with RELA-Associated Inflammatory Disease (RAID). It reaffirms the central importance of the NF-κB pathway in immunity and inflammation, as well as the important regulatory role of RELA in mucosal homeostasis. RELA associated inflammatory disease should be considered in all patients with BD, particularly those with early onset and/or with a strong family history.
Collapse
Affiliation(s)
- Jason W An
- Division of Rheumatology, Department of Medicine, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada.,Division of Rheumatology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Pallavi Pimpale-Chavan
- National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Deborah L Stone
- National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Marcia Bandeira
- Division of Rheumatology, Hospital Pequeno Príncipe e Hospital de Clínicas, University Federal do Parana, Curitiba, Brazil
| | - Fatma Dedeoglu
- Division of Immunology, Rheumatology Program, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Jeffrey Lo
- Division of Immunology, Rheumatology Program, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - John Bohnsack
- Department of Pediatrics, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Sofia Rosenzweig
- National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Oskar Schnappauf
- National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Dilan Dissanayake
- Division of Rheumatology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Linda T Hiraki
- Division of Rheumatology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Daniel L Kastner
- National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Christina Pelajo
- Division of Rheumatology, Hospital Pequeno Príncipe e Hospital de Clínicas, University Federal do Parana, Curitiba, Brazil
| | - Ronald M Laxer
- Division of Rheumatology, Department of Medicine, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada.,Division of Rheumatology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Ivona Aksentijevich
- National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
12
|
Aslani N, Asnaashari K, Parvaneh N, Shahrooei M, Sotoudeh-Anvari M, Shahram F, Ziaee V. TNFAIP3 mutation causing haploinsufficiency of A20 with a hemophagocytic lymphohistiocytosis phenotype: a report of two cases. Pediatr Rheumatol Online J 2022; 20:78. [PMID: 36064566 PMCID: PMC9446712 DOI: 10.1186/s12969-022-00735-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A20 haploinsufficiency (HA20) is a newly introduced autosomal dominant autoinflammatory disorder, also known as Behcet's-like disease. Some of the most common symptoms of the disease are recurrent oral, genital, and/or gastrointestinal (GI) ulcers, episodic fever, musculoskeletal symptoms, cutaneous lesions, and recurrent infections. Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening condition of multi-organ failure due to excessive immune activation. HLH has been reported in a few HA20 patients. Herein, we report two children with the primary presentation of HLH, with a mutation in TNFAIP3, in favor of HA20. CASE PRESENTATIONS Our first patient was a 4-month-old boy who presented with fever, irritability, pallor, and hepatosplenomegaly. Pancytopenia, elevated ferritin, and decreased fibrinogen levels were found in laboratory evaluation. He was diagnosed with HLH and was treated with methylprednisolone and cyclosporine. Two years later, whole exome sequencing (WES) indicated a mutation in TNFAIP3 at NM_001270507: exon3: c.C386T, p.T129M, consistent with A20 haploinsufficiency. Etanercept, a TNF inhibitor, was prescribed, but the parents were reluctant to initiate the therapy. The patient passed away with the clinical picture of cerebral hemorrhage. The second patient was a 3-month-old boy who presented with a fever and hepatosplenomegaly. Laboratory evaluation found pancytopenia, hyperferritinemia, hypoalbuminemia, hypertriglyceridemia, and hypofibrinogenemia. With the establishment of the HLH diagnosis, he was treated with etoposide, dexamethasone, and cyclosporine, and recovered. WES results revealed a heterozygous de novo variant of TNFAIP3 (c. T824C in exon 6, 6q23.3) that leads to a proline to leucine amino acid change (p. L275P). He was treated with etanercept and has been symptom-free afterward. CONCLUSIONS This report is a hypothesis for developing of the HLH phenotype in the presence of TNFAIP3 mutation. Our results provide a new perspective on the role of TNFAIP3 mutation in HLH phenotypes, but more extensive studies are required to confirm these preliminary results.
Collapse
Affiliation(s)
- Nahid Aslani
- Children's Medical Center, Pediatrics Center of Excellence, Tehran, Iran
- Pediatric Rheumatology Society of Iran, Tehran, Iran
- Department of Pediatrics, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kosar Asnaashari
- Children's Medical Center, Pediatrics Center of Excellence, Tehran, Iran
- Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran
- Pediatric Rheumatology Research Group, Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Parvaneh
- Children's Medical Center, Pediatrics Center of Excellence, Tehran, Iran
- Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Shahrooei
- Department of Microbiology and Immunology, Laboratory of Clinical Bacteriology and Mycology, KU Leuven, Leuven, Belgium
| | - Maryam Sotoudeh-Anvari
- Children's Medical Center, Pediatrics Center of Excellence, Tehran, Iran
- Department of Pathology, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Shahram
- Behcet's Disease Unit, Rheumatology Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Vahid Ziaee
- Children's Medical Center, Pediatrics Center of Excellence, Tehran, Iran.
- Pediatric Rheumatology Society of Iran, Tehran, Iran.
- Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran.
- Pediatric Rheumatology Research Group, Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Division of Pediatric Rheumatology, Children's Medical Center, No. 62 Dr. Gharib St., Keshavarz Blvd, Tehran, 14194, Islamic Republic of Iran.
| |
Collapse
|
13
|
Lindahl H, Bryceson YT. Neuroinflammation Associated With Inborn Errors of Immunity. Front Immunol 2022; 12:827815. [PMID: 35126383 PMCID: PMC8807658 DOI: 10.3389/fimmu.2021.827815] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/27/2021] [Indexed: 01/16/2023] Open
Abstract
The advent of high-throughput sequencing has facilitated genotype-phenotype correlations in congenital diseases. This has provided molecular diagnosis and benefited patient management but has also revealed substantial phenotypic heterogeneity. Although distinct neuroinflammatory diseases are scarce among the several thousands of established congenital diseases, elements of neuroinflammation are increasingly recognized in a substantial proportion of inborn errors of immunity, where it may even dominate the clinical picture at initial presentation. Although each disease entity is rare, they collectively can constitute a significant proportion of neuropediatric patients in tertiary care and may occasionally also explain adult neurology patients. We focus this review on the signs and symptoms of neuroinflammation that have been reported in association with established pathogenic variants in immune genes and suggest the following subdivision based on proposed underlying mechanisms: autoinflammatory disorders, tolerance defects, and immunodeficiency disorders. The large group of autoinflammatory disorders is further subdivided into IL-1β-mediated disorders, NF-κB dysregulation, type I interferonopathies, and hemophagocytic syndromes. We delineate emerging pathogenic themes underlying neuroinflammation in monogenic diseases and describe the breadth of the clinical spectrum to support decisions to screen for a genetic diagnosis and encourage further research on a neglected phenomenon.
Collapse
Affiliation(s)
- Hannes Lindahl
- Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Yenan T. Bryceson
- Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Brogelmann Research Laboratory, Department of Clinical Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
14
|
Zhang C, Han X, Sun L, Yang S, Peng J, Chen Y, Jin Y, Xu F, Liu Z, Zhou Q. OUP accepted manuscript. Clin Kidney J 2022; 15:2027-2038. [PMID: 36325013 PMCID: PMC9613433 DOI: 10.1093/ckj/sfac130] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background Heterozygous loss-of-function mutations in the tumour necrosis factor alpha induced protein 3 (TNFAIP3) gene cause an early-onset auto-inflammatory disease named haploinsufficiency of A20 (HA20). Here we describe three unrelated patients with autoimmune lupus nephritis (LN) phenotypes carrying three novel mutations in the TNFAIP3 gene. Methods Whole-exome sequencing (WES) was used to identify the causative mutations in three biopsy-proven LN patients. Sanger sequencing and quantitative polymerase chain reaction (qPCR) were used to validate the mutations identified by WES. RNA sequencing, qPCR and cytometric bead array was used to detect inflammatory signatures in the patients. Results The patients predominantly presented with an autoimmune phenotype, including autoimmune haemolytic anaemia, multipositive autoantibodies and LN. Additionally, novel phenotypes of allergy and pericardial effusion were first reported. WES identified three novel heterozygous mutations in the TNFAIP3 gene, including a novel splicing mutation located in the canonical splicing site (c.634+2T>C) resulting in an intron 4 insertion containing a premature stop codon, a de novo novel copy number variation (exon 7–8 deletion) and a novel nonsense mutation c.1300_1301delinsTA causing a premature stop codon. We further identified hyperactivation signatures of nuclear factor- kappa B and type I IFN signalling and overproduction of pro-inflammatory cytokines in the blood. This report expanded the phenotype to a later age, as two girls were diagnosed at age 3 years and one man at age 29 years. Conclusions Kidney involvement may be the main feature of the clinical spectrum of HA20, even in adults. Genetic screening should be considered for early-onset LN patients.
Collapse
Affiliation(s)
| | | | - Li Sun
- Department of Rheumatology, Children's Hospital of Fudan University, Shanghai, China
| | - Sirui Yang
- Department of Pediatric Rheumatology and Allergy, First Hospital, Jilin University, Changchun, China
| | - Jiahui Peng
- Kidney Diseases Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Yinghua Chen
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing, China
| | - Ying Jin
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing, China
| | - Feng Xu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing, China
| | | | - Qing Zhou
- Correspondence to: Qing Zhou; E-mail:
| |
Collapse
|
15
|
Endo Y, Funakoshi Y, Koga T, Ohashi H, Takao M, Miura K, Yoshiura KI, Matsumoto T, Moriuchi H, Kawakami A. Large deletion in 6q containing the TNFAIP3 gene associated with autoimmune lymphoproliferative syndrome. Clin Immunol 2021; 235:108853. [PMID: 34520861 DOI: 10.1016/j.clim.2021.108853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 11/03/2022]
Affiliation(s)
- Yushiro Endo
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Medical Sciences, Nagasaki, Japan
| | - Yasutomo Funakoshi
- Department of Pediatrics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tomohiro Koga
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Medical Sciences, Nagasaki, Japan.
| | - Hirofumi Ohashi
- Division of Medical Genetics, Saitama Children's Medical Center, Saitama, Japan
| | - Mami Takao
- Department of Genetic Counseling Unit, Clinical Genomics Center, Nagasaki University Hospital, Nagasaki, Japan
| | - Kiyonori Miura
- Department of Obstetrics and Gynecology, Nagasaki University Hospital, Nagasaki, Japan
| | - Koh-Ichiro Yoshiura
- Department of Human Genetics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Tadashi Matsumoto
- Department of Human Genetics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hiroyuki Moriuchi
- Department of Pediatrics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Atsushi Kawakami
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Medical Sciences, Nagasaki, Japan
| |
Collapse
|
16
|
Intestinal immunoregulation: lessons from human mendelian diseases. Mucosal Immunol 2021; 14:1017-1037. [PMID: 33859369 DOI: 10.1038/s41385-021-00398-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 02/04/2023]
Abstract
The mechanisms that maintain intestinal homeostasis despite constant exposure of the gut surface to multiple environmental antigens and to billions of microbes have been scrutinized over the past 20 years with the goals to gain basic knowledge, but also to elucidate the pathogenesis of inflammatory bowel diseases (IBD) and to identify therapeutic targets for these severe diseases. Considerable insight has been obtained from studies based on gene inactivation in mice as well as from genome wide screens for genetic variants predisposing to human IBD. These studies are, however, not sufficient to delineate which pathways play key nonredundant role in the human intestinal barrier and to hierarchize their respective contribution. Here, we intend to illustrate how such insight can be derived from the study of human Mendelian diseases, in which severe intestinal pathology results from single gene defects that impair epithelial and or hematopoietic immune cell functions. We suggest that these diseases offer the unique opportunity to study in depth the pathogenic mechanisms leading to perturbation of intestinal homeostasis in humans. Furthermore, molecular dissection of monogenic intestinal diseases highlights key pathways that might be druggable and therapeutically targeted in common forms of IBD.
Collapse
|
17
|
Barnabei L, Laplantine E, Mbongo W, Rieux-Laucat F, Weil R. NF-κB: At the Borders of Autoimmunity and Inflammation. Front Immunol 2021; 12:716469. [PMID: 34434197 PMCID: PMC8381650 DOI: 10.3389/fimmu.2021.716469] [Citation(s) in RCA: 347] [Impact Index Per Article: 86.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/22/2021] [Indexed: 12/18/2022] Open
Abstract
The transcription factor NF-κB regulates multiple aspects of innate and adaptive immune functions and serves as a pivotal mediator of inflammatory response. In the first part of this review, we discuss the NF-κB inducers, signaling pathways, and regulators involved in immune homeostasis as well as detail the importance of post-translational regulation by ubiquitination in NF-κB function. We also indicate the stages of central and peripheral tolerance where NF-κB plays a fundamental role. With respect to central tolerance, we detail how NF-κB regulates medullary thymic epithelial cell (mTEC) development, homeostasis, and function. Moreover, we elaborate on its role in the migration of double-positive (DP) thymocytes from the thymic cortex to the medulla. With respect to peripheral tolerance, we outline how NF-κB contributes to the inactivation and destruction of autoreactive T and B lymphocytes as well as the differentiation of CD4+-T cell subsets that are implicated in immune tolerance. In the latter half of the review, we describe the contribution of NF-κB to the pathogenesis of autoimmunity and autoinflammation. The recent discovery of mutations involving components of the pathway has both deepened our understanding of autoimmune disease and informed new therapeutic approaches to treat these illnesses.
Collapse
Affiliation(s)
- Laura Barnabei
- INSERM UMR 1163, Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute Paris Descartes Sorbonne Paris Cité University, Paris, France
| | - Emmanuel Laplantine
- Sorbonne Universités, Institut National de la Santé et de la Recherche Médicale (INSERM, UMR1135), Centre National de la Recherche Scientifique (CNRS, ERL8255), Centre d'Immunologie et des Maladies Infectieuses CMI, Paris, France
| | - William Mbongo
- Sorbonne Universités, Institut National de la Santé et de la Recherche Médicale (INSERM, UMR1135), Centre National de la Recherche Scientifique (CNRS, ERL8255), Centre d'Immunologie et des Maladies Infectieuses CMI, Paris, France
| | - Frédéric Rieux-Laucat
- INSERM UMR 1163, Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute Paris Descartes Sorbonne Paris Cité University, Paris, France
| | - Robert Weil
- Sorbonne Universités, Institut National de la Santé et de la Recherche Médicale (INSERM, UMR1135), Centre National de la Recherche Scientifique (CNRS, ERL8255), Centre d'Immunologie et des Maladies Infectieuses CMI, Paris, France
| |
Collapse
|
18
|
López-Nevado M, González-Granado LI, Ruiz-García R, Pleguezuelo D, Cabrera-Marante O, Salmón N, Blanco-Lobo P, Domínguez-Pinilla N, Rodríguez-Pena R, Sebastián E, Cruz-Rojo J, Olbrich P, Ruiz-Contreras J, Paz-Artal E, Neth O, Allende LM. Primary Immune Regulatory Disorders With an Autoimmune Lymphoproliferative Syndrome-Like Phenotype: Immunologic Evaluation, Early Diagnosis and Management. Front Immunol 2021; 12:671755. [PMID: 34447369 PMCID: PMC8382720 DOI: 10.3389/fimmu.2021.671755] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/16/2021] [Indexed: 12/26/2022] Open
Abstract
Primary immune regulatory disorders (PIRD) are associated with autoimmunity, autoinflammation and/or dysregulation of lymphocyte homeostasis. Autoimmune lymphoproliferative syndrome (ALPS) is a PIRD due to an apoptotic defect in Fas-FasL pathway and characterized by benign and chronic lymphoproliferation, autoimmunity and increased risk of lymphoma. Clinical manifestations and typical laboratory biomarkers of ALPS have also been found in patients with a gene defect out of the Fas-FasL pathway (ALPS-like disorders). Following the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA), we identified more than 600 patients suffering from 24 distinct genetic defects described in the literature with an autoimmune lymphoproliferative phenotype (ALPS-like syndromes) corresponding to phenocopies of primary immunodeficiency (PID) (NRAS, KRAS), susceptibility to EBV (MAGT1, PRKCD, XIAP, SH2D1A, RASGRP1, TNFRSF9), antibody deficiency (PIK3CD gain of function (GOF), PIK3R1 loss of function (LOF), CARD11 GOF), regulatory T-cells defects (CTLA4, LRBA, STAT3 GOF, IL2RA, IL2RB, DEF6), combined immunodeficiencies (ITK, STK4), defects in intrinsic and innate immunity and predisposition to infection (STAT1 GOF, IL12RB1) and autoimmunity/autoinflammation (ADA2, TNFAIP3,TPP2, TET2). CTLA4 and LRBA patients correspond around to 50% of total ALPS-like cases. However, only 100% of CTLA4, PRKCD, TET2 and NRAS/KRAS reported patients had an ALPS-like presentation, while the autoimmunity and lymphoproliferation combination resulted rare in other genetic defects. Recurrent infections, skin lesions, enteropathy and malignancy are the most common clinical manifestations. Some approaches available for the immunological study and identification of ALPS-like patients through flow cytometry and ALPS biomarkers are provided in this work. Protein expression assays for NKG2D, XIAP, SAP, CTLA4 and LRBA deficiencies and functional studies of AKT, STAT1 and STAT3 phosphorylation, are showed as useful tests. Patients suspected to suffer from one of these disorders require rapid and correct diagnosis allowing initiation of tailored specific therapeutic strategies and monitoring thereby improving the prognosis and their quality of life.
Collapse
Affiliation(s)
- Marta López-Nevado
- Immunology Department, University Hospital 12 de Octubre, Madrid, Spain
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
| | - Luis I. González-Granado
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
- Immunodeficiency Unit, Department of Pediatrics, University Hospital 12 de Octubre, Madrid, Spain
| | - Raquel Ruiz-García
- Immunology Department, Centre Diagnòstic Biomèdic, Hospital Clínic, Barcelona, Spain
| | - Daniel Pleguezuelo
- Immunology Department, University Hospital 12 de Octubre, Madrid, Spain
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
| | - Oscar Cabrera-Marante
- Immunology Department, University Hospital 12 de Octubre, Madrid, Spain
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
| | - Nerea Salmón
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
- Immunodeficiency Unit, Department of Pediatrics, University Hospital 12 de Octubre, Madrid, Spain
| | - Pilar Blanco-Lobo
- Paediatric Infectious Diseases, Rheumatology and Immunology Unit, University Hospital Virgen del Rocío, Institute of Biomedicine, Biomedicine Institute (IBiS)/University of Seville/Superior Council of Scientific Investigations (CSIC), Seville, Spain
| | - Nerea Domínguez-Pinilla
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
- Pediatric Hematology and Oncology Unit, Toledo Hospital Complex, Toledo, Spain and University Hospital 12 de Octubre, Madrid, Spain
| | | | - Elena Sebastián
- Hematology and Hemotherapy Unit, University Children’s Hospital Niño Jesús, Madrid, Spain
| | - Jaime Cruz-Rojo
- Endocrine Unit, Department of Pediatrics, University Hospital 12 de Octubre, Madrid, Spain
| | - Peter Olbrich
- Paediatric Infectious Diseases, Rheumatology and Immunology Unit, University Hospital Virgen del Rocío, Institute of Biomedicine, Biomedicine Institute (IBiS)/University of Seville/Superior Council of Scientific Investigations (CSIC), Seville, Spain
| | - Jesús Ruiz-Contreras
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
- Immunodeficiency Unit, Department of Pediatrics, University Hospital 12 de Octubre, Madrid, Spain
- School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Estela Paz-Artal
- Immunology Department, University Hospital 12 de Octubre, Madrid, Spain
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
- School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Olaf Neth
- Paediatric Infectious Diseases, Rheumatology and Immunology Unit, University Hospital Virgen del Rocío, Institute of Biomedicine, Biomedicine Institute (IBiS)/University of Seville/Superior Council of Scientific Investigations (CSIC), Seville, Spain
| | - Luis M. Allende
- Immunology Department, University Hospital 12 de Octubre, Madrid, Spain
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
- School of Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
19
|
Deshayes S, Bazille C, El Khouri E, Kone-Paut I, Giurgea I, Georgin-Lavialle S, Martin Silva N, Dumont A, Ollivier I, Amselem S, de Boysson H, Aouba A. Chronic hepatic involvement in the clinical spectrum of A20 haploinsufficiency. Liver Int 2021; 41:1894-1900. [PMID: 33966343 DOI: 10.1111/liv.14935] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/09/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Secondary to tumour necrosis factor-alpha induced protein 3 (TNFAIP3) mutations, A20 haploinsufficiency (HA20) is a recently described autoinflammatory disease with clinical features similar to those of Behçet's and Crohn's diseases but with a constantly expanding clinical spectrum. Here, we describe HA20 liver involvement in three new patients from the same family. METHODS We retrospectively assessed clinical, biological and/or histological findings for eight patients over three generations of the same family with heterozygous mutations in the TNFAIP3 gene (c.259C > T, p.Arg87*). RESULTS The eight patients exhibited the following: aphthous ulcers (8/8, bipolar in 7), autoimmune features (6/8, including 5 with definitive autoimmune disease diagnoses, ie, type I diabetes, Hashimoto thyroiditis, pernicious anaemia, and/or 5 with antinuclear antibodies ≥320), pustulosis/folliculitis (5/8), abdominal pain (4/8), arthralgia (3/8), enlarged cervical lymph nodes (3/8) and pericarditis (1/8). In addition, three patients (twin sisters and their grandmother aged 23 and 70 years, respectively) exhibited persistent mild hepatic cytolysis associated with splenomegaly (n = 3), hepatomegaly (n = 1) and/or liver atrophy (n = 1) on echography. We could not detect any other causes of chronic liver diseases. Liver biopsies from three patients displayed hepatic fibrosis, hepatocyte injury and/or CD4+ /CD8+ T lymphocyte infiltration, and patterns of inflammatory cells and NLRP3 or NF-κB immunostaining differed from the predominant neutrophil infiltration observed in skin or some digestive tract biopsies. CONCLUSIONS This study reinforces the dual involvement of innate and adaptive immunity in HA20 according to both acute and chronic injury and the organ involved and widens its clinical spectrum to include chronic hepatic involvement.
Collapse
Affiliation(s)
- Samuel Deshayes
- Department of Internal Medicine, CHU de Caen Normandie, Caen, France.,Normandie Univ, UNICAEN, Caen, France
| | - Céline Bazille
- Department of Pathology, CHU de Caen Normandie, Caen, France
| | - Elma El Khouri
- Department of Genetics, Sorbonne Université, UPMC University, Paris, France
| | - Isabelle Kone-Paut
- Department of Pediatric Rheumatology, Bicêtre Hospital, AP-HP, University of Paris Sud Saclay, CEREMAIA, Le Kremlin-Bicêtre, France
| | - Irina Giurgea
- Department of Genetics, Sorbonne Université, UPMC University, Paris, France
| | - Sophie Georgin-Lavialle
- Department of Internal Medicine, Sorbonne Université, UPMC University, CEREMAIA, Paris, France
| | | | - Anaël Dumont
- Department of Internal Medicine, CHU de Caen Normandie, Caen, France.,Normandie Univ, UNICAEN, Caen, France
| | - Isabelle Ollivier
- Department of Hepatogastroenterology, CHU de Caen Normandie, Caen, France
| | - Serge Amselem
- Department of Genetics, Sorbonne Université, UPMC University, Paris, France
| | - Hubert de Boysson
- Department of Internal Medicine, CHU de Caen Normandie, Caen, France.,Normandie Univ, UNICAEN, Caen, France
| | - Achille Aouba
- Department of Internal Medicine, CHU de Caen Normandie, Caen, France.,Normandie Univ, UNICAEN, Caen, France
| |
Collapse
|
20
|
Inhibitory feedback control of NF-κB signalling in health and disease. Biochem J 2021; 478:2619-2664. [PMID: 34269817 PMCID: PMC8286839 DOI: 10.1042/bcj20210139] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/14/2022]
Abstract
Cells must adapt to changes in their environment to maintain cell, tissue and organismal integrity in the face of mechanical, chemical or microbiological stress. Nuclear factor-κB (NF-κB) is one of the most important transcription factors that controls inducible gene expression as cells attempt to restore homeostasis. It plays critical roles in the immune system, from acute inflammation to the development of secondary lymphoid organs, and also has roles in cell survival, proliferation and differentiation. Given its role in such critical processes, NF-κB signalling must be subject to strict spatiotemporal control to ensure measured and context-specific cellular responses. Indeed, deregulation of NF-κB signalling can result in debilitating and even lethal inflammation and also underpins some forms of cancer. In this review, we describe the homeostatic feedback mechanisms that limit and ‘re-set’ inducible activation of NF-κB. We first describe the key components of the signalling pathways leading to activation of NF-κB, including the prominent role of protein phosphorylation and protein ubiquitylation, before briefly introducing the key features of feedback control mechanisms. We then describe the array of negative feedback loops targeting different components of the NF-κB signalling cascade including controls at the receptor level, post-receptor signalosome complexes, direct regulation of the critical ‘inhibitor of κB kinases’ (IKKs) and inhibitory feedforward regulation of NF-κB-dependent transcriptional responses. We also review post-transcriptional feedback controls affecting RNA stability and translation. Finally, we describe the deregulation of these feedback controls in human disease and consider how feedback may be a challenge to the efficacy of inhibitors.
Collapse
|
21
|
Zhang D, Su G, Zhou Z, Lai J. Clinical characteristics and genetic analysis of A20 haploinsufficiency. Pediatr Rheumatol Online J 2021; 19:75. [PMID: 34030699 PMCID: PMC8147020 DOI: 10.1186/s12969-021-00558-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 04/16/2021] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To evaluate the clinical and genetic characteristics of 3 children with Haploinsufficiency of A20 (HA20). METHODS The clinical and genetic testing data of 3 children with HA20 treated at Capital Institute of Pediatrics (CIP) between August 2016 and October 2019 were retrospectively analysed. RESULT Patient 1 presented with arthritis and inflammatory bowel disease, patient 2 presented with axial spinal arthritis and lupus-like syndrome, and patient 3 presented with recurrent oral ulcers, gastrointestinal ulcers, and perianal abscesses. Regarding laboratory tests, patients were found to have elevated white blood cell (WBC) count, C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR). The CRP and ESR was reported to be high in all the patients. The WBC was reported to be high in patient 1 and 3. Patient 2 was positive for antinuclear antibodies, anti-Sjögren's syndrome antigen A, dsDNA, rheumatoid factor and Coombs test. Genetic testing showed that all three patients had heterozygous mutation in TNFAIP3 gene. As for the treatment, patient 1 was treated with TNFα antagonist, patient 2 was treated with TNF α antagonist and sulfasalazine, and patient 3 was treated with corticosteroids and thalidomide. Patients 1 and 2 were followed for four and 3 months, respectively. There was an improvement in joint and gastrointestinal symptoms; inflammatory indices and rheumatoid factor (RF) were normal, and dsDNA and Coombs test became negative. Patient 3 was treated at another hospital and showed gradual improvement in oral ulcers and perianal abscesses. CONCLUSION HA20 is a single-gene auto-inflammatory disease caused by mutation in tumour necrosis factor (TNF)-α-induced protein 3 (TNFAIP3) gene. It may present as Behçet-like syndrome and resemble various other autoimmune diseases as well. Corticosteroids and immunosuppressive agents are effective treatments, and cytokine antagonists can be used in refractory cases. Whole-exome genetic testing should be proactively performed for children with early-age onset or Behçet-like syndrome to achieve early diagnosis and accurate treatment.
Collapse
Affiliation(s)
- Dan Zhang
- Capital Institute of Pediatrics, 2 yabao road, Chaoyang District, Beijing, China
| | - Gaixiu Su
- Capital Institute of Pediatrics, 2 yabao road, Chaoyang District, Beijing, China
| | - Zhixuan Zhou
- Capital Institute of Pediatrics, 2 yabao road, Chaoyang District, Beijing, China
| | - Jianming Lai
- Capital Institute of Pediatrics, 2 yabao road, Chaoyang District, Beijing, China
| |
Collapse
|
22
|
Role of Proteasomes in Inflammation. J Clin Med 2021; 10:jcm10081783. [PMID: 33923887 PMCID: PMC8072576 DOI: 10.3390/jcm10081783] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/10/2021] [Accepted: 04/14/2021] [Indexed: 12/14/2022] Open
Abstract
The ubiquitin–proteasome system (UPS) is involved in multiple cellular functions including the regulation of protein homeostasis, major histocompatibility (MHC) class I antigen processing, cell cycle proliferation and signaling. In humans, proteasome loss-of-function mutations result in autoinflammation dominated by a prominent type I interferon (IFN) gene signature. These genomic alterations typically cause the development of proteasome-associated autoinflammatory syndromes (PRAAS) by impairing proteasome activity and perturbing protein homeostasis. However, an abnormal increased proteasomal activity can also be found in other human inflammatory diseases. In this review, we cast a light on the different clinical aspects of proteasomal activity in human disease and summarize the currently studied therapeutic approaches.
Collapse
|
23
|
Yamashita M, Inoue K, Okano T, Morio T. Inborn errors of immunity-recent advances in research on the pathogenesis. Inflamm Regen 2021; 41:9. [PMID: 33766139 PMCID: PMC7992775 DOI: 10.1186/s41232-021-00159-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/15/2021] [Indexed: 11/15/2022] Open
Abstract
Primary immunodeficiency (PID) is a genetic disorder with a defect of one of the important components of our immune system. Classical PID has been recognized as a disorder with loss of function of the immune system. Recent studies have unveiled disorders with immune dysfunction with autoimmunity, autoinflammation, allergy, or predisposition to malignancy. Some of them were caused by an augmented immune function or a defect in immune regulation. With this background, the term inborn errors of immunity (IEI) is now used to refer to PID in the International Union of Immunological Societies (IUIS) classification. More than 400 responsible genes have been identified in patients with IEI so far, and importantly, many of them identified lately were caused by a heterologous mutation. Moreover, the onset is not necessarily in childhood, and we started seeing more and more IEI patients diagnosed in adulthood in the clinical settings. Recent advances in genetic analysis, including whole-exome analysis, whole-genome analysis, and RNA-seq have contributed to the identification of the disease-causing gene mutation. We also started to find heterogeneity of phenotype even in the patients with the same mutation in the same family, leading us to wonder if modifier gene or epigenetic modification is involved in the pathogenesis. In contrast, we accumulated many cases suggesting genetic heterogeneity is associated with phenotypic homogeneity. It has thus become difficult to deduce a responsible gene only from the phenotype in a certain type of IEI. Current curative therapy for IEI includes hematopoietic cell transplantation and gene therapy. Other curative therapeutic modalities have been long waited and are to be introduced in the future. These include a small molecule that inhibits the gain-of-function of the molecule- and genome-editing technology. Research on IEI will surely lead to a better understanding of other immune-related disorders including rheumatic diseases and atopic disorders.
Collapse
Affiliation(s)
- Motoi Yamashita
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kento Inoue
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Tsubasa Okano
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
24
|
Nigrovic PA, Lee PY, Hoffman HM. Monogenic autoinflammatory disorders: Conceptual overview, phenotype, and clinical approach. J Allergy Clin Immunol 2021; 146:925-937. [PMID: 33160483 DOI: 10.1016/j.jaci.2020.08.017] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023]
Abstract
Autoinflammatory diseases are conditions in which pathogenic inflammation arises primarily through antigen-independent hyperactivation of immune pathways. First recognized just over 2 decades ago, the autoinflammatory disease spectrum has expanded rapidly to include more than 40 distinct monogenic conditions. Related mechanisms contribute to common conditions such as gout and cardiovascular disease. Here, we review the basic concepts underlying the "autoinflammatory revolution" in the understanding of immune-mediated disease and introduce major categories of monogenic autoinflammatory disorders recognized to date, including inflammasomopathies and other IL-1-related conditions, interferonopathies, and disorders of nuclear factor kappa B and/or aberrant TNF activity. We highlight phenotypic presentation as a reflection of pathogenesis and outline a practical approach to the evaluation of patients with suspected autoinflammation.
Collapse
Affiliation(s)
- Peter A Nigrovic
- Division of Immunology, Boston Children's Hospital, Department of Pediatrics, Boston, Mass; Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, Mass.
| | - Pui Y Lee
- Division of Immunology, Boston Children's Hospital, Department of Pediatrics, Boston, Mass; Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, Mass
| | - Hal M Hoffman
- Division of Pediatric Allergy, Immunology, and Rheumatology, Rady Children's Hospital and University of California at San Diego, San Diego, Calif
| |
Collapse
|
25
|
Shaheen ZR, Williams SJA, Binstadt BA. Case Report: A Novel TNFAIP3 Mutation Causing Haploinsufficiency of A20 With a Lupus-Like Phenotype. Front Immunol 2021; 12:629457. [PMID: 33679772 PMCID: PMC7933217 DOI: 10.3389/fimmu.2021.629457] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 01/04/2021] [Indexed: 12/25/2022] Open
Abstract
Genetic mutations that result in loss-of-function of the protein A20 result in an early-onset autoinflammatory disease—haploinsufficiency of A20 (HA20). The reported clinical presentations of HA20 include a Behcet’s disease-like phenotype and a more lupus-like phenotype. We have identified a novel mutation in the gene encoding A20 in a pediatric patient with chronic lymphadenopathy, lupus-like symptoms, and progressive hypogammaglobulinemia. This case illustrates the wide range of clinical symptoms, including immunodeficiency, that can occur in patients with HA20.
Collapse
Affiliation(s)
- Zachary R Shaheen
- Division of Rheumatology, Allergy & Immunology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Sarah J A Williams
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Bryce A Binstadt
- Division of Rheumatology, Allergy & Immunology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
26
|
Kadowaki S, Hashimoto K, Nishimura T, Kashimada K, Kadowaki T, Kawamoto N, Imai K, Okada S, Kanegane H, Ohnishi H. Functional analysis of novel A20 variants in patients with atypical inflammatory diseases. Arthritis Res Ther 2021; 23:52. [PMID: 33549127 PMCID: PMC7866758 DOI: 10.1186/s13075-021-02434-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/31/2021] [Indexed: 12/29/2022] Open
Abstract
Background A20 haploinsufficiency (HA20) is an early-onset autoinflammatory disease caused by mutations in the TNFAIP3 gene, which encodes the protein A20. Numerous truncating mutations in the TNFAIP3 gene have been reported in HA20 patients, whereas fewer missense variants have had their pathogenicity confirmed. Here, we evaluated the pathogenic significance of three previously unreported missense variants of the TNFAIP3 gene in suspected cases of HA20. Methods We obtained the clinical features and immunological data of three patients with missense variants (Glu192Lys, Ile310Thr, and Gln709Arg) of unknown significance of TNFAIP3. We then performed in vitro functional assays including analysis of nuclear factor (NF)-κB reporter gene activity, detection of A20 expression and phosphorylation of A20 by IκB kinase β (IKKβ), and K63-deubiquitination assay using TNFAIP3-deficient HEK293 cells. Three known pathogenic missense mutations reported previously were also investigated. Results The inhibitory effect on NF-κB reporter gene activity was significantly disrupted by A20 Glu192Lys and the three known mutations. The variants Ile310Thr and Gln709Arg did not show a difference from the wild type in any of the assays performed in this study. Conclusions Among the three variants in the TNFAIP3 gene, Glu192Lys was interpreted as being likely pathogenic, but Ile310Thr and Gln709Arg as being not pathogenic (uncertain significance and likely benign, respectively), based on the American College of Medical Genetics and Genomics standards and guidelines. Our study highlights the necessity of performing in vitro functional assays, notably, NF-κB reporter gene assay, to evaluate the pathogenicity of TNFAIP3 missense variants for the accurate diagnosis of HA20. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-021-02434-w.
Collapse
Affiliation(s)
- Saori Kadowaki
- Department of Pediatrics, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan
| | - Kunio Hashimoto
- Department of Pediatrics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Toyoki Nishimura
- Division of Pediatrics, Developmental and Urological-Reproductive Medicine Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Kenichi Kashimada
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tomonori Kadowaki
- Department of Pediatrics, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan.,Department of Pediatrics, National Hospital Organization, Nagara Medical Center, Gifu, Japan
| | - Norio Kawamoto
- Department of Pediatrics, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan
| | - Kohsuke Imai
- Department of Community Pediatrics, Perinatal and Maternal Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hidenori Ohnishi
- Department of Pediatrics, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan. .,Clinical Genetics Center, Gifu University Hospital, Gifu, Japan.
| |
Collapse
|
27
|
Yu MP, Xu XS, Zhou Q, Deuitch N, Lu MP. Haploinsufficiency of A20 (HA20): updates on the genetics, phenotype, pathogenesis and treatment. World J Pediatr 2020; 16:575-584. [PMID: 31587140 DOI: 10.1007/s12519-019-00288-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 07/04/2019] [Indexed: 01/25/2023]
Abstract
BACKGROUND A20, a protein encoded by the tumor necrosis factor alpha-induced protein 3 gene (TNFAIP3), plays a vital role in the negative regulation of inflammation and immunity. Loss-of-function mutation in TNFAIP3 leads to a new described autoinflammatory disease-haploinsufficiency of A20 (HA20). Since HA20 was first described in 2016, a number of new cases have been described in this literature, however, the disease and its pathogenesis are poorly understood. This review seeks to improve clinical recognition of this disorder, and promote both earlier diagnosis and initiation of targeted therapies to improve patients' outcomes. METHODS We reviewed 26 papers about A20 and HA20, and we summarized genetic variants and clinical manifestations of a total of 61 reported patients from 26 families identified to have a genetic diagnosis of germline pathogenic variants in TNFAIP3/A20. Additionally, we discussed the pathogenesis and treatment of HA20. RESULTS A total of 24 pathogenic variants of A20 had been reported. There was significant clinical heterogeneity, even among those with the same variants in TNFAIP3. Prior to receiving a molecular diagnosis of HA20, patients had been diagnosed with Behcet's disease, rheumatoid arthritis, rheumatic fever, juvenile idiopathic arthritis, systemic lupus erythematosus, and even adult-onset Stills' disease. The patients with HA20 that presented with inflammatory signatures in NF-κB signaling were mostly responsive to treatment. CONCLUSIONS HA20 is a monogenic autoinflammatory disease with highly variable clinical manifestations. This extensive heterogeneity makes it difficult to set a clinical diagnostic criteria, and genetic sequencing is necessary for a definitive diagnosis of HA20.
Collapse
Affiliation(s)
- Mei-Ping Yu
- Department of Rheumatology Immunology and Allergy, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Xi-Sheng Xu
- Department of Rheumatology Immunology and Allergy, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Qing Zhou
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | | | - Mei-Ping Lu
- Department of Rheumatology Immunology and Allergy, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China.
| |
Collapse
|
28
|
Perga S, Montarolo F, Martire S, Bonaldo B, Bono G, Bertolo J, Magliozzi R, Bertolotto A. Overexpression of the ubiquitin-editing enzyme A20 in the brain lesions of Multiple Sclerosis patients: moving from systemic to central nervous system inflammation. Brain Pathol 2020; 31:283-296. [PMID: 33051914 PMCID: PMC8018032 DOI: 10.1111/bpa.12906] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/07/2020] [Indexed: 12/19/2022] Open
Abstract
Multiple Sclerosis (MS) is a chronic demyelinating disease of the central nervous system (CNS) in which inflammation plays a key pathological role. Recent evidences showed that systemic inflammation induces increasing cell infiltration within meninges and perivascular spaces in the brain parenchyma, triggering resident microglial and astrocytic activation. The anti-inflammatory enzyme A20, also named TNF associated protein 3 (TNFAIP3), is considered a central gatekeeper in inflammation and peripheral immune system regulation through the inhibition of NF-kB. The TNFAIP3 locus is genetically associated to MS and its transcripts is downregulated in blood cells in treatment-naïve MS patients. Recently, several evidences in mouse models have led to hypothesize a function of A20 also in the CNS. Thus, here we aimed to unveil a possible contribution of A20 to the CNS human MS pathology. By immunohistochemistry/immunofluorescence and biomolecular techniques on post-mortem brain tissue blocks obtained from control cases (CC) and progressive MS cases, we demonstrated that A20 is present in CC brain tissues in both white matter (WM) regions, mainly in few parenchymal astrocytes, and in grey matter (GM) areas, in some neuronal populations. Conversely, in MS brain tissues, we observed increased expression of A20 by perivascular infiltrating macrophages, resident-activated astrocytes, and microglia in all the active and chronic active WM lesions. A20 was highly expressed also in the majority of active cortical lesions compared to the neighboring areas of normal-appearing grey matter (NAGM) and control GM, particularly by activated astrocytes. We demonstrated increased A20 expression in the active MS plaques, particularly in macrophages and resident astrocytes, suggesting a key role of this molecule in chronic inflammation.
Collapse
Affiliation(s)
- Simona Perga
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy.,Neurobiology Unit, Neurology - CReSM (Regional Referring Center of Multiple Sclerosis), San Luigi Gonzaga University Hospital, Orbassano, Italy.,Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy
| | - Francesca Montarolo
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy.,Neurobiology Unit, Neurology - CReSM (Regional Referring Center of Multiple Sclerosis), San Luigi Gonzaga University Hospital, Orbassano, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Serena Martire
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy.,Neurobiology Unit, Neurology - CReSM (Regional Referring Center of Multiple Sclerosis), San Luigi Gonzaga University Hospital, Orbassano, Italy
| | - Brigitta Bonaldo
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy.,Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy
| | - Gabriele Bono
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy.,Neurobiology Unit, Neurology - CReSM (Regional Referring Center of Multiple Sclerosis), San Luigi Gonzaga University Hospital, Orbassano, Italy
| | - Jessica Bertolo
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy.,Neurobiology Unit, Neurology - CReSM (Regional Referring Center of Multiple Sclerosis), San Luigi Gonzaga University Hospital, Orbassano, Italy
| | - Roberta Magliozzi
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK.,Neurology B, Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Antonio Bertolotto
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy.,Neurobiology Unit, Neurology - CReSM (Regional Referring Center of Multiple Sclerosis), San Luigi Gonzaga University Hospital, Orbassano, Italy
| |
Collapse
|
29
|
Abstract
A20/TNFAIP3 is a TNF induced gene that plays a profound role in preserving cellular and organismal homeostasis (Lee, et al., 2000; Opipari etal., 1990). This protein has been linked to multiple human diseases via genetic, epigenetic, and an emerging series of patients with mono-allelic coding mutations. Diverse cellular functions of this pleiotropically expressed protein include immune-suppressive, anti-inflammatory, and cell protective functions. The A20 protein regulates ubiquitin dependent cell signals; however, the biochemical mechanisms by which it performs these functions is surprisingly complex. Deciphering these cellular and biochemical facets of A20 dependent biology should greatly improve our understanding of murine and human disease pathophysiology as well as unveil new mechanisms of cell and tissue biology.
Collapse
Affiliation(s)
- Bahram Razani
- Department of Dermatology, University of California, San Francisco, CA, United States
| | - Barbara A Malynn
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Averil Ma
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States.
| |
Collapse
|
30
|
Abstract
Monogenic autoinflammatory diseases present with systemic inflammation with the involvement of multiple organs. With the help of modern molecular genetic techniques a large number of diseases with previously unknown pathomechanisms have been described in recent years. This knowledge can be utilized to group autoinflammatory diseases according to the signalling pathways involved and thus provide a better understanding of these entities.
Collapse
|
31
|
Sharifinejad N, Azizi G, Behniafard N, Zaki-Dizaji M, Jamee M, Yazdani R, Abolhassani H, Aghamohammadi A. Protein Kinase C-Delta Defect in Autoimmune Lymphoproliferative Syndrome-Like Disease: First Case from the National Iranian Registry and Review of the Literature. Immunol Invest 2020; 51:331-342. [PMID: 33047643 DOI: 10.1080/08820139.2020.1829638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Protein kinase C is a family of serine/threonine kinases that play a key role in the adaptive immune cell signaling, as well as regulation of growth, apoptosis, and differentiation of a variety of cell types. Patients homozygous for a null mutation of the Protein Kinase C Delta (PRKCD) gene, present clinical feature of immune dysregulation with susceptibility to Epstein-Barr virus infection. However, a minority of patients present the autoimmune lymphoproliferative syndrome (ALPS). METHODS The data were collected by direct interview and examining the patient's clinical record. Whole-exome sequencing was performed to detect the underlying genetic mutation in the patient. We also conducted electronic searches for ALPS-like reported patients in PubMed, Web of Science, and Scopus databases. RESULTS In this study, we reported a 13-year-old boy who presented with autoimmunity, lymphoproliferation, recurrent pneumonia, cardiomyopathy, and dermatological manifestations. An elevation of double-negative T cells, CD8+ T cells, serum IgG level, as well as a reduction in NK cells, was observed in the patient. A homozygous frameshift mutation (c.1293_1294insA) in exon 13 of the PRKCD gene was confirmed. The literature search showed 39 ALPS-like patients with monogenic defects which only six (15.3%) of them were due to PRKCD genes. CONCLUSION PRKCD should be considered in the context of ALPS clinical manifestations with prominent dermatological involvements.
Collapse
Affiliation(s)
- Niusha Sharifinejad
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran.,Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Nasrin Behniafard
- Department of Allergy and Clinical Immunology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Majid Zaki-Dizaji
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Mahnaz Jamee
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran.,Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Abolhassani
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Comprehensive Targeted Sequencing Identifies Monogenic Disorders in Patients With Early-onset Refractory Diarrhea. J Pediatr Gastroenterol Nutr 2020; 71:333-339. [PMID: 32487952 DOI: 10.1097/mpg.0000000000002796] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Causes of early-onset refractory diarrhea include exudative diarrhea associated with very early-onset inflammatory bowel diseases, osmotic or secretory diarrhea, and protein-losing enteropathy. Monogenic disorders are included in these diseases, yet a comprehensive genetic analysis has not been fully established. METHODS We established targeted gene panels covering all responsible genes for early-onset diarrhea. In total, 108 patients from 15 institutions were enrolled in this study. We collected clinical data from all patients. Seventy-three patients with exudative diarrhea, 4 with osmotic or secretory diarrhea and 8 with protein-losing enteropathy were subjected to genetic analysis. RESULTS A total of 15 out of the 108 enrolled patients (13.9%) were identified as monogenic. We identified 1 patient with RELA, 2 with TNFAIP3, 1 with CTLA4, 1 with SLCO2A1, 4 with XIAP, 3 with IL10RA, 1 with HPS1, 1 with FOXP3, and 1 with CYBB gene mutations. We also identified 1 patient with NFKB2 and 1 with TERT mutations from the gene panel for primary immunodeficiency syndromes. The patient with refractory diarrhea caused by heterozygous truncated RelA protein expression is the first case identified worldwide, and functional analysis revealed that the mutation affected nuclear factor kappa B signaling. Genotypes were significantly associated with the clinical and pathological findings in each patient. CONCLUSIONS We identified variable monogenic diseases in the patients and found that genes responsible for primary immunodeficiency diseases were frequently involved in molecular pathogenesis. Comprehensive genetic analysis was useful for accurate molecular diagnosis, understanding of underlying pathogenesis, and selecting the optimal treatment for patients with early-onset refractory diarrhea.An infographic for this article is available at: http://links.lww.com/MPG/B853.
Collapse
|
33
|
Schnappauf O, Aksentijevich I. Mendelian diseases of dysregulated canonical NF-κB signaling: From immunodeficiency to inflammation. J Leukoc Biol 2020; 108:573-589. [PMID: 32678922 DOI: 10.1002/jlb.2mr0520-166r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/05/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022] Open
Abstract
NF-κB is a master transcription factor that activates the expression of target genes in response to various stimulatory signals. Activated NF-κB mediates a plethora of diverse functions including innate and adaptive immune responses, inflammation, cell proliferation, and NF-κB is regulated through interactions with IκB inhibitory proteins, which are in turn regulated by the inhibitor of κB kinase (IKK) complex. Together, these 3 components form the core of the NF-κB signalosomes that have cell-specific functions which are dependent on the interactions with other signaling molecules and pathways. The activity of NF-κB pathway is also regulated by a variety of post-translational modifications including phosphorylation and ubiquitination by Lys63, Met1, and Lys48 ubiquitin chains. The physiologic role of NF-κB is best studied in the immune system due to discovery of many human diseases caused by pathogenic variants in various proteins that constitute the NF-κB pathway. These disease-causing variants can act either as gain-of-function (GoF) or loss-of-function (LoF) and depending on the function of mutated protein, can cause either immunodeficiency or systemic inflammation. Typically, pathogenic missense variants act as GoF and they lead to increased activity in the pathway. LoF variants can be inherited as recessive or dominant alleles and can cause either a decrease or an increase in pathway activity. Dominantly inherited LoF variants often result in haploinsufficiency of inhibitory proteins. Here, we review human Mendelian immunologic diseases, which results from mutations in different molecules in the canonical NF-κB pathway and surprisingly present with a continuum of clinical features including immunodeficiency, atopy, autoimmunity, and autoinflammation.
Collapse
Affiliation(s)
- Oskar Schnappauf
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ivona Aksentijevich
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
34
|
He T, Huang Y, Luo Y, Xia Y, Wang L, Zhang H, Ling J, Yang J. Haploinsufficiency of A20 Due to Novel Mutations in TNFAIP3. J Clin Immunol 2020; 40:741-751. [PMID: 32514655 DOI: 10.1007/s10875-020-00792-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/07/2020] [Indexed: 02/06/2023]
Abstract
Haploinsufficiency of A20 (HA20) is a newly described immune dysregulation disease due to the loss-of-function mutation in TNFAIP3. In the present study, we report six patients from four unrelated Chinese families with distinct pathogenic mutations in TNFAIP3, including three novel variants. All of the patients presented with early-onset autoimmune/auto-inflammatory diseases, including Crohn's disease, Behcet's disease, systemic lupus erythematosus, and unclassified auto-inflammatory syndrome. Immunological phenotype tests showed elevated levels of serum pro-inflammatory cytokines, reduced naïve B cells and TFH cells, an inverted CD4:CD8 ratio, and increased susceptibility to restimulation-induced cell death (RICD) and FASL-induced apoptosis in derived T cells. Insufficient expression of A20 was found in these patients. A20 truncated protein was detected in mutant-transfected 293T cells. Upon TNF-α stimulation, the NF-κB pathway was over-activated in both derived T cells of these patients and mutant-transfected Hela cells. In conclusion, clinical manifestations are diverse in patients with HA20, even in those with the same TNFAIP3 mutation. A20 inhibits the NF-κB pathway and plays a crucial role in the regulation of cell death. Haploinsufficiency of A20 leads to defects in both innate and adaptive immunity.
Collapse
Affiliation(s)
- Tingyan He
- Department of Rheumatology and Immunology, Shenzhen Children's hospital, 7019 Yitian Road, Shenzhen, 518026, China
| | - Yanyan Huang
- Department of Rheumatology and Immunology, Shenzhen Children's hospital, 7019 Yitian Road, Shenzhen, 518026, China
| | - Ying Luo
- Department of Rheumatology and Immunology, Shenzhen Children's hospital, 7019 Yitian Road, Shenzhen, 518026, China
| | - Yu Xia
- Department of Rheumatology and Immunology, Shenzhen Children's hospital, 7019 Yitian Road, Shenzhen, 518026, China
| | - LinLin Wang
- Department of Rheumatology and Immunology, Shenzhen Children's hospital, 7019 Yitian Road, Shenzhen, 518026, China
| | - Huan Zhang
- Department of Pathology, Shenzhen Children's hospital, 7019 Yitian Road, Shenzhen, 518026, China
| | - Jiayun Ling
- Department of Rheumatology and Immunology, Shenzhen Children's hospital, 7019 Yitian Road, Shenzhen, 518026, China
| | - Jun Yang
- Department of Rheumatology and Immunology, Shenzhen Children's hospital, 7019 Yitian Road, Shenzhen, 518026, China.
| |
Collapse
|
35
|
Klinische Symptomatik autoinflammatorischer Erkrankungen. Hautarzt 2020; 71:342-358. [DOI: 10.1007/s00105-020-04582-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
36
|
Li G, Li Y, Liu H, Shi Y, Guan W, Zhang T, Yao W, Wu B, Xu H, Sun L. Genetic heterogeneity of pediatric systemic lupus erythematosus with lymphoproliferation. Medicine (Baltimore) 2020; 99:e20232. [PMID: 32443356 PMCID: PMC7254811 DOI: 10.1097/md.0000000000020232] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic, rare autoimmune disease. In recent years, multiple monogenic diseases with early onset autoimmunity and lymphoproliferation have been identified, such as autoimmune lymphoproliferative syndrome, rat sarcoma (RAS)-associated autoimmune leukoproliferative disease, signal transducer and activator of transcription 3 gain-of-function syndrome and interleukin-2 receptor α deficiency. Therefore, we performed whole-exome sequencing in children with SLE with lymphoproliferation to identify genes associated with these conditions.We enrolled 7 patients with SLE with lymphoproliferation from different families. Demographic data, clinical manifestations, laboratory and histopathologic findings, treatment, and outcome were documented. Whole-exome sequencing was performed in 7 patients and their families. Suspected variants were confirmed by Sanger sequencing. Protein levels were detected in patients with gene mutations by western blot.Four patients were male, and 3 were female. No consanguinity was reported within the 7 families. The average age at onset was 5.0 years (range: 1.2-10.0 years). The most common features were renal (7/7 patients) and hematologic (6/7 patients) involvement and recurrent fever (6/7 patients), while only 2 patients presented with skin involvement. Antinuclear antibodies at a titer of ≥1:320 were positive in all patients. All patients fulfilled four 2019 European League Against Rheumatism/American College of Rheumatology (EULAR/ACR) criteria for the classification of SLE. We identified a somatic activating NRAS variant (c.38 A>G, p.G13C) in peripheral venous blood from 4 patients, at levels ranging from 8.8% to 42.8% in variant tissues that were absent from their parents. B cell lymphoma (BCL)-2-interacting mediator of cell death levels in peripheral blood mononuclear cells from 4 patients were markedly reduced, whereas those in the control were normal. Another 2 mutations, c.559C>T (p.Q187X) in the TNFAIP3 gene and c.3061G>A (p.E1021K) in the PIK3CD gene were detected in 2 patients.The SLE is a novel phenotype of somatic mutations in the NRAS gene and germline mutations in the PI3CKD gene. These genes, NRAS, TNFAIP3, and PIK3CD, should be considered candidates for children with SLE with lymphoproliferation. If patients with SLE and lymphoproliferation present with renal and hematologic involvement and recurrent fever, they need gene testing, especially male patients.
Collapse
Affiliation(s)
| | | | | | - Yu Shi
- Department of Rheumatology
| | | | | | | | - Bingbing Wu
- Medical Transformation Centre, Children's Hospital of Fudan University, Shanghai, China
| | | | - Li Sun
- Department of Rheumatology
| |
Collapse
|
37
|
Kadowaki T, Ohnishi H, Kawamoto N, Kadowaki S, Hori T, Nishimura K, Kobayashi C, Shigemura T, Ogata S, Inoue Y, Hiejima E, Izawa K, Matsubayashi T, Matsumoto K, Imai K, Nishikomori R, Ito S, Kanegane H, Fukao T. Immunophenotyping of A20 haploinsufficiency by multicolor flow cytometry. Clin Immunol 2020; 216:108441. [PMID: 32335289 DOI: 10.1016/j.clim.2020.108441] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/27/2020] [Accepted: 04/22/2020] [Indexed: 12/31/2022]
Abstract
Haploinsufficiency of A20 (HA20) causes inflammatory disease resembling Behçet's disease; many cases have been reported, including some that are complicated with autoimmune diseases. This study aims to clarify the immunophenotype of patients with HA20 by analyzing lymphocyte subsets using multicolor flow cytometry. The patients with HA20 previously diagnosed in a nationwide survey were compared by their cell subpopulations. In total, 27 parameters including regulatory T cells (Tregs), double-negative T cells (DNTs), and follicular helper T cells (TFHs) were analyzed and compared with the reference values in four age groups: 0-1, 2-6, 7-19, and ≥20 years. The Tregs of patients with HA20 tended to increase in tandem with age-matched controls at all ages. In addition, patients ≥20 years had increased DNTs compared with controls, whereas TFHs significantly increased in younger patients. In HA20 patients, the increase in DNTs and TFHs may contribute to the development of autoimmune diseases.
Collapse
Affiliation(s)
- Tomonori Kadowaki
- Department of Pediatrics, Gifu University Graduate School of Medicine, Gifu, Japan; Department of Pediatrics, National Hospital Organization, Nagara Medical Center, Gifu, Japan
| | - Hidenori Ohnishi
- Department of Pediatrics, Gifu University Graduate School of Medicine, Gifu, Japan.
| | - Norio Kawamoto
- Department of Pediatrics, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Saori Kadowaki
- Department of Pediatrics, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tomohiro Hori
- Department of Pediatrics, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kenichi Nishimura
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Chie Kobayashi
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Tomonari Shigemura
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Shohei Ogata
- Department of Pediatrics, Kitasato University Hospital, Sagamihara, Japan
| | - Yuzaburo Inoue
- Department of Allergy and Rheumatology, Chiba Children's Hospital, Chiba, Japan
| | - Eitaro Hiejima
- Department of Pediatrics, Kyoto University Hospital, Kyoto, Japan
| | - Kazushi Izawa
- Department of Pediatrics, Kyoto University Hospital, Kyoto, Japan
| | | | - Kazuaki Matsumoto
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kohsuke Imai
- Department of Community Pediatrics, Perinatal and Maternal Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Ryuta Nishikomori
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Japan
| | - Shuichi Ito
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| | - Toshiyuki Fukao
- Department of Pediatrics, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
38
|
Jarosz-Griffiths HH, Holbrook J, Lara-Reyna S, McDermott MF. TNF receptor signalling in autoinflammatory diseases. Int Immunol 2020; 31:639-648. [PMID: 30838383 DOI: 10.1093/intimm/dxz024] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/01/2019] [Indexed: 12/16/2022] Open
Abstract
Autoinflammatory syndromes are a group of disorders characterized by recurring episodes of inflammation as a result of specific defects in the innate immune system. Patients with autoinflammatory disease present with recurrent outbreaks of chronic systemic inflammation that are mediated by innate immune cells, for the most part. A number of these diseases arise from defects in the tumour necrosis factor receptor (TNFR) signalling pathway leading to elevated levels of inflammatory cytokines. Elucidation of the molecular mechanisms of these recently defined autoinflammatory diseases has led to a greater understanding of the mechanisms of action of key molecules involved in TNFR signalling, particularly those involved in ubiquitination, as found in haploinsufficiency of A20 (HA20), otulipenia/OTULIN-related autoinflammatory syndrome (ORAS) and linear ubiquitin chain assembly complex (LUBAC) deficiency. In this review, we also address other TNFR signalling disorders such as TNFR-associated periodic syndrome (TRAPS), RELA haploinsufficiency, RIPK1-associated immunodeficiency and autoinflammation, X-linked ectodermal dysplasia and immunodeficiency (X-EDA-ID) and we review the most recent advances surrounding these diseases and therapeutic approaches currently used to target these diseases. Finally, we explore therapeutic advances in TNF-related immune-based therapies and explore new approaches to target disease-specific modulation of autoinflammatory diseases.
Collapse
Affiliation(s)
- Heledd H Jarosz-Griffiths
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Wellcome Trust Brenner Building, University of Leeds, Leeds, UK.,Leeds Institute of Medical Research at St James's, Clinical Sciences Building, University of Leeds, Leeds, UK.,Leeds Cystic Fibrosis Trust Strategic Research Centre, Wellcome Trust Brenner Building, University of Leeds, Leeds, UK
| | - Jonathan Holbrook
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Wellcome Trust Brenner Building, University of Leeds, Leeds, UK.,Leeds Institute of Medical Research at St James's, Clinical Sciences Building, University of Leeds, Leeds, UK.,Leeds Cystic Fibrosis Trust Strategic Research Centre, Wellcome Trust Brenner Building, University of Leeds, Leeds, UK
| | - Samuel Lara-Reyna
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Wellcome Trust Brenner Building, University of Leeds, Leeds, UK.,Leeds Institute of Medical Research at St James's, Clinical Sciences Building, University of Leeds, Leeds, UK.,Leeds Cystic Fibrosis Trust Strategic Research Centre, Wellcome Trust Brenner Building, University of Leeds, Leeds, UK
| | - Michael F McDermott
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Wellcome Trust Brenner Building, University of Leeds, Leeds, UK.,Leeds Cystic Fibrosis Trust Strategic Research Centre, Wellcome Trust Brenner Building, University of Leeds, Leeds, UK
| |
Collapse
|
39
|
Demirkaya E, Sahin S, Romano M, Zhou Q, Aksentijevich I. New Horizons in the Genetic Etiology of Systemic Lupus Erythematosus and Lupus-Like Disease: Monogenic Lupus and Beyond. J Clin Med 2020; 9:E712. [PMID: 32151092 PMCID: PMC7141186 DOI: 10.3390/jcm9030712] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/12/2020] [Accepted: 02/21/2020] [Indexed: 02/05/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a clinically and genetically heterogeneous autoimmune disease. The etiology of lupus and the contribution of genetic, environmental, infectious and hormonal factors to this phenotype have yet to be elucidated. The most straightforward approach to unravel the molecular pathogenesis of lupus may rely on studies of patients who present with early-onset severe phenotypes. Typically, they have at least one of the following clinical features: childhood onset of severe disease (<5 years), parental consanguinity, and presence of family history for autoimmune diseases in a first-degree relative. These patients account for a small proportion of patients with lupus but they inform considerable knowledge about cellular pathways contributing to this inflammatory phenotype. In recent years with the aid of new sequencing technologies, novel or rare pathogenic variants have been reported in over 30 genes predisposing to SLE and SLE-like diseases. Future studies will likely discover many more genes with private variants associated to lupus-like phenotypes. In addition, genome-wide association studies (GWAS) have identified a number of common alleles (SNPs), which increase the risk of developing lupus in adult age. Discovery of a possible shared immune pathway in SLE patients, either with rare or common variants, can provide important clues to better understand this complex disorder, it's prognosis and can help guide new therapeutic approaches. The aim of this review is to summarize the current knowledge of the clinical presentation, genetic diagnosis and mechanisms of disease in patents with lupus and lupus-related phenotypes.
Collapse
Affiliation(s)
- Erkan Demirkaya
- Schulich School of Medicine & Dentistry, Department of Paediatrics, Division of Paediatric Rheumatology, University of Western Ontario, London, ON N6A 5W9, Canada;
| | - Sezgin Sahin
- Van Training and Research Hospital, Department of Paediatric Rheumatology, 65000 Van, Turkey;
| | - Micol Romano
- Schulich School of Medicine & Dentistry, Department of Paediatrics, Division of Paediatric Rheumatology, University of Western Ontario, London, ON N6A 5W9, Canada;
- Department of Pediatric Rheumatology, ASST-PINI-CTO, 20122 Milano, Italy
| | - Qing Zhou
- Life Sciences Institute, Zhejiang University, Hang Zhou 310058, China;
| | - Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, MD 20892, USA;
| |
Collapse
|
40
|
Shimizu M, Matsubayashi T, Ohnishi H, Nakama M, Izawa K, Honda Y, Nishikomori R. Haploinsufficiency of A20 with a novel mutation of deletion of exons 2-3 of TNFAIP3. Mod Rheumatol 2020; 31:493-497. [PMID: 32011208 DOI: 10.1080/14397595.2020.1719595] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Haploinsufficiency of A20 (HA20) due to loss-of-function mutations of TNFAIP3 leads to an autoinflammatory disease. These mutations produce a premature termination codon in most cases of HA20. However, exon deletion has not been reported. METHODS Genomic DNA was extracted from the peripheral blood of the patient clinically suspected of HA20. We examined autoinflammatory disease-causing genes and performed a multiplex ligation-dependent probe amplification (MLPA) assay for copy number analysis. Next, to determine the disconnection point, genomic DNA was amplified with long-range PCR and sequenced. Finally, western blotting was carried out to measure A20 protein expression in mitogen phytohaemagglutinin (PHA)-induced T-cell blasts from the patient and a healthy volunteer. RESULTS Targeted next-generation sequencing found no pathogenic mutation, but copy number variation (CNV) analysis suggested a heterozygous deletion of exons 2-3. The MLPA assay and long-range PCR confirmed the mutation. Western blotting analysis indicated a marked decrease in expression of A20 protein from the patient compared to a normal control. The results showed that this deletion was a pathogenic mutation. CONCLUSION This study demonstrates a novel mutation resulting in a deletion of exons 2-3 of TNFAIP3. MLPA analysis is a useful initial screening method for HA20 patients.
Collapse
Affiliation(s)
- Maho Shimizu
- Department of Pediatrics, Seirei Hamamatsu General Hospital, Shizuoka, Japan
| | | | - Hidenori Ohnishi
- Department of Pediatrics, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Mina Nakama
- Clinical Genetics Center, Gifu University Hospital, Gifu, Japan
| | - Kazushi Izawa
- Department of Pediatrics, Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshitaka Honda
- Department of Pediatrics, Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Ryuta Nishikomori
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
41
|
Christiansen M, Offersen R, Jensen JMB, Petersen MS, Larsen CS, Mogensen TH. Identification of Novel Genetic Variants in CVID Patients With Autoimmunity, Autoinflammation, or Malignancy. Front Immunol 2020; 10:3022. [PMID: 32047491 PMCID: PMC6996488 DOI: 10.3389/fimmu.2019.03022] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/10/2019] [Indexed: 12/22/2022] Open
Abstract
Common variable immunodeficiency (CVID) is a primary immunodeficiency characterized by recurrent bacterial infections and defined by reduced levels of IgG, IgA, and/or IgM, insufficient response to polysaccharide vaccination, and an abnormal B-cell immunophenotype with a significantly reduced fraction of isotype-switched memory B cells. In addition to this infectious phenotype, at least one third of the patients experience autoimmune, autoinflammatory, granulomatous, and/or malignant complications. The very heterogeneous presentation strongly suggests a collection of different disease entities with somewhat different pathogeneses and most likely diverse genetic etiologies. Major progress has been made during recent years with the advent and introduction of next-generation sequencing, initially for research purposes, but more recently in clinical practice. In the present study, we performed whole exome sequencing on 20 CVID patients with autoimmunity, autoinflammation, and/or malignancy from the Danish CVID cohort with the aim to identify gene variants with a certain, possible, or potential disease-causing role in CVID. Through bioinformatics analyses, we identified variants with possible/probable disease-causing potential in nine of the patients. Of these, three patients had four variants in three different genes classified as likely pathogenic (NFKB1, TNFAIP3, and TTC37), whereas in six patients, we identified seven variants of possible pathogenic potential classified as variants of unknown significance (STAT3, IL17F, IRAK4, DDX41, NLRC3, TNFRSF1A, and PLCG2). In the remaining 11 patients, we did not identify possible genetic causes. Genetic findings were correlated to clinical disease presentation, clinical immunological phenotype, and disease complications. We suggest that the variants identified in the present work should lay the ground for future studies to functionally validate their disease-causing potential and to investigate at the mechanistic and molecular level their precise role in CVID pathogenesis. Overall, we believe that the present work contributes important new insights into the genetic basis of CVID and particular in the subset of CVID patients with a complex phenotype involving not only infection, but also autoimmunity, autoinflammation, and malignancy.
Collapse
Affiliation(s)
- Mette Christiansen
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Rasmus Offersen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Carsten S Larsen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Trine H Mogensen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
42
|
Martens A, van Loo G. A20 at the Crossroads of Cell Death, Inflammation, and Autoimmunity. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a036418. [PMID: 31427375 DOI: 10.1101/cshperspect.a036418] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A20 is a potent anti-inflammatory protein, acting by inhibiting nuclear factor κB (NF-κB) signaling and inflammatory gene expression and/or by preventing cell death. Mutations in the A20/TNFAIP3 gene have been associated with a plethora of inflammatory and autoimmune pathologies in humans and in mice. Although the anti-inflammatory role of A20 is well accepted, fundamental mechanistic questions regarding its mode of action remain unclear. Here, we review new findings that further clarify the molecular and cellular mechanisms by which A20 controls inflammatory signaling and cell death, and discuss new evidence for its involvement in inflammatory and autoimmune disease development.
Collapse
Affiliation(s)
- Arne Martens
- VIB Center for Inflammation Research, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Geert van Loo
- VIB Center for Inflammation Research, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| |
Collapse
|
43
|
A De Novo Frameshift Mutation in TNFAIP3 Impairs A20 Deubiquitination Function to Cause Neuropsychiatric Systemic Lupus Erythematosus. J Clin Immunol 2019; 39:795-804. [PMID: 31625129 DOI: 10.1007/s10875-019-00695-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 09/20/2019] [Indexed: 10/25/2022]
Abstract
PURPOSE Genome-wide association study of systemic lupus erythematosus (SLE) revealed tumor necrosis factor alpha-induced protein 3 (TNFAIP3, A20) as a susceptibility gene. Here, we report a de novo mutation in TNFAIP3 in a Chinese patient with neuropsychiatric SLE (NPSLE). METHODS Whole exome sequencing was performed for the patient and healthy members from the family. Suspected pathogenic variants were further analyzed and co-segregation was confirmed by Sanger sequencing. Real-time PCR and western blot were performed with peripheral blood mononuclear cells (PBMCs) and patient-derived T cells. Transfected HEK293T cells, human umbilical vein endothelial cells, normal human astrocytes, and microglia were used for in vitro studies. RESULTS A de novo frameshift mutation in TNFAIP3 was found in the NPSLE patient. Western blot analysis showed activated NF-κB and mitogen-activated protein kinase pathways. Real-time PCR revealed elevated expression of pro-inflammatory cytokines. On immunoprecipitation assay, the mutant A20 altered the K63-linked ubiquitin level of TRAF6 via its ubiquitin-editing function. CONCLUSIONS The mutant A20 may play a role in weakening the tight junction of the blood-brain barrier to cause neurologic symptoms. We report a rare variant of TNFAIP3 in a patient with NPSLE and reveal its autoimmune disease-causing mechanism in both peripheral tissues and the central nervous system.
Collapse
|
44
|
Haploinsufficiency of A20 and other paediatric inflammatory disorders with mucosal involvement. Curr Opin Rheumatol 2019; 30:506-513. [PMID: 29916847 DOI: 10.1097/bor.0000000000000532] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW This review aims at summarizing the current knowledge of A20 haploinsufficiency and other paediatric inflammatory disorders with mucosal involvement. RECENT FINDINGS A20 haploinsufficiency is a newly described autoinflammatory disease caused by loss-of-function mutations in TNFAIP3 that result in the activation of the nuclear factor (NF)-kB pathway. Patients may present with dominantly inherited, early-onset systemic inflammation and a Behçet-like disease, or a variety of autoinflammatory and autoimmune features. In Behçet disease, recent literature provides insights into genetic susceptibility and emerging treatment options; in addition, the first paediatric classification criteria were published. Recent advances in periodic fever, aphthous stomatitis, pharyngitis and adenitis syndrome (PFAPA) suggest that the disease has a complex underlying genetic mechanism and in some cases is inherited in an autosomal dominant pattern with reduced penetrance phenotype in many family members. Activation of the pyrin inflammasome through the RoA signalling pathway uncovers an interesting molecular connection between hyperimmunoglobulinemia D syndrome and familial Mediterranean fever. The description of new monogenic types of inflammatory bowel disease (IBD) may provide novel insights into disease pathogenesis. Finally, recent studies highlighted the role of gut microorganisms and dysbiosis in IBD. SUMMARY Monogenic diseases such as A20 haploinsufficiency may help to advance our understanding of disease pathogenesis and to develop targeted therapies for more common, multifactorial disorders with mucosal inflammation.
Collapse
|
45
|
Hori T, Ohnishi H, Kadowaki T, Kawamoto N, Matsumoto H, Ohara O, Fukao T. Autosomal dominant Hashimoto's thyroiditis with a mutation in TNFAIP3. Clin Pediatr Endocrinol 2019; 28:91-96. [PMID: 31384100 PMCID: PMC6646238 DOI: 10.1297/cpe.28.91] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 03/11/2019] [Indexed: 12/04/2022] Open
Abstract
Hashimoto’s thyroiditis (HT) is an autoimmune disease thought to involve a combination of
genetic and environmental factors, but its detailed pathogenesis is unknown. We present a
family with haploinsufficiency of the gene encoding tumor necrosis factor α-induced
protein 3 (TNFAIP3, also known as A20) and show a link
with HT in a three-generation pedigree. Currently, TNFAIP3 polymorphisms
are associated with several autoimmune diseases, and haploinsufficiency of A20 was
recently observed in families with an early-onset autoinflammatory disease resembling
Behçet’s disease. However, HT has not been linked with TNFAIP3 variants.
We analyzed TNFAIP3 and human leukocyte antigen (HLA) in
the family showing HT as an autosomal dominant trait, and identified a novel heterozygous
c.2209delC mutation of TNFAIP3 in the members with HT. The known HLA
haplotypes linked to HT could not be identified. Based on our analysis of this pedigree,
we consider HT as a possible phenotype of A20 haploinsufficiency.
Collapse
Affiliation(s)
- Tomohiro Hori
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Hidenori Ohnishi
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Tomonori Kadowaki
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Norio Kawamoto
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Hideki Matsumoto
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Osamu Ohara
- Department of Technology Development, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Toshiyuki Fukao
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| |
Collapse
|
46
|
Abstract
PURPOSE OF THE REVIEW This review aims at presenting the most significant data obtained in the field of the genetics of autoinflammatory disorders (AID) over the last past 5 years. RECENT FINDINGS More than 15 genes have been implicated in AID since 2014, unveiling new pathogenic pathways. Recent data have revealed atypical modes of transmission in several inherited AID, such as somatic mosaicism and digenism. First pieces of evidence showing an involvement of epigenetic modifications in the pathogenesis of AID have also been brought to light. Novel genetic data have been obtained on the molecular bases of genetically complex AID. The development of next-generation sequencing in routine clinical practice has led to an explosion in the identification of new AID genes. Advances in the knowledge of AID further blur the limits between monogenic and multifactorial forms of these syndromes, and between autoinflammatory and autoimmune conditions.
Collapse
Affiliation(s)
- Isabelle Jéru
- Inserm U938, Saint-Antoine Research Centre, Institute of Cardiometabolism and Nutrition, Sorbonne University, Paris, France. .,Department of Molecular Biology and Genetics, Saint-Antoine University Hospital, Assistance Publique-Hôpitaux de Paris, 184 rue du Faubourg Saint-Antoine, 75571 Cédex 12, Paris, France.
| |
Collapse
|
47
|
Tsuchida N, Kirino Y, Soejima Y, Onodera M, Arai K, Tamura E, Ishikawa T, Kawai T, Uchiyama T, Nomura S, Kobayashi D, Taguri M, Mitsuhashi S, Mizuguchi T, Takata A, Miyake N, Nakajima H, Miyatake S, Matsumoto N. Haploinsufficiency of A20 caused by a novel nonsense variant or entire deletion of TNFAIP3 is clinically distinct from Behçet's disease. Arthritis Res Ther 2019; 21:137. [PMID: 31164164 PMCID: PMC6549368 DOI: 10.1186/s13075-019-1928-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/29/2019] [Indexed: 02/03/2023] Open
Abstract
Background Haploinsufficiency of A20 (HA20) is caused by loss-of-function TNFAIP3 variants. Phenotypic and genetic features of HA20 remain uncertain; therefore, the clinical distinction between HA20 and Behçet’s disease (BD) requires clarification. Methods We have collected 12 Japanese BD-like families. Probands of these families were analyzed by whole exome sequencing (WES) and subsequent Sanger sequencing. Clinical features were compared between 54 HA20 patients (including previously reported and new cases) and 520 Japanese BD patients. Results We identified c.1434C>A:p.(Cys478*) in one family and a 236 kb deletion at 6q23.3 containing TNFAIP3 in another family. Four HA20 patients in the two families presented with childhood-onset recurrent oral and genital ulcers and were initially diagnosed and treated as BD. Consistent with the clinical features of HA20, recurrent, refractory fever attacks (three of four patients), and digestive ulcers (two of the four patients) were observed. A comparison of clinical features between HA20 patients and cohorts of BD patients revealed several critical features specific to HA20. These were early-onset, familial occurrence, recurrent fever attacks, gastrointestinal involvement, and infrequent ocular involvement. Conclusions We identified a novel nonsense variant and deletion of the entire TNFAIP3 gene in two unrelated Japanese HA20 families. Genetic screening of TNFAIP3 should be considered for familial BD-like patients with early-onset recurrent fevers. Electronic supplementary material The online version of this article (10.1186/s13075-019-1928-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Naomi Tsuchida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.,Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Yohei Kirino
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| | - Yutaro Soejima
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Masafumi Onodera
- Division of Immunology, National Center for Child Health and Development, Tokyo, Japan
| | - Katsuhiro Arai
- Division of Gastroenterology, National Center for Child Health and Development, Tokyo, Japan
| | - Eiichiro Tamura
- Division of Immunology, National Center for Child Health and Development, Tokyo, Japan
| | - Takashi Ishikawa
- Division of Immunology, National Center for Child Health and Development, Tokyo, Japan
| | - Toshinao Kawai
- Division of Immunology, National Center for Child Health and Development, Tokyo, Japan
| | - Toru Uchiyama
- Division of Immunology, National Center for Child Health and Development, Tokyo, Japan
| | - Shigeru Nomura
- Department of Pediatrics, University of Tokyo Hospital, Tokyo, Japan
| | - Daisuke Kobayashi
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masataka Taguri
- Department of Data Science, Yokohama City University School of Data Science, Yokohama, Japan
| | - Satomi Mitsuhashi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Atsushi Takata
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Hideaki Nakajima
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.,Clinical Genetics Department, Yokohama City University Hospital, Yokohama, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| |
Collapse
|
48
|
Polykratis A, Martens A, Eren RO, Shirasaki Y, Yamagishi M, Yamaguchi Y, Uemura S, Miura M, Holzmann B, Kollias G, Armaka M, van Loo G, Pasparakis M. A20 prevents inflammasome-dependent arthritis by inhibiting macrophage necroptosis through its ZnF7 ubiquitin-binding domain. Nat Cell Biol 2019; 21:731-742. [PMID: 31086261 DOI: 10.1038/s41556-019-0324-3] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 03/29/2019] [Indexed: 12/15/2022]
Abstract
Deficiency in the deubiquitinating enzyme A20 causes severe inflammation in mice, and impaired A20 function is associated with human inflammatory diseases. A20 has been implicated in negatively regulating NF-κB signalling, cell death and inflammasome activation; however, the mechanisms by which A20 inhibits inflammation in vivo remain poorly understood. Genetic studies in mice revealed that its deubiquitinase activity is not essential for A20 anti-inflammatory function. Here we show that A20 prevents inflammasome-dependent arthritis by inhibiting macrophage necroptosis and that this function depends on its zinc finger 7 (ZnF7). We provide genetic evidence that RIPK1 kinase-dependent, RIPK3-MLKL-mediated necroptosis drives inflammasome activation in A20-deficient macrophages and causes inflammatory arthritis in mice. Single-cell imaging revealed that RIPK3-dependent death caused inflammasome-dependent IL-1β release from lipopolysaccharide-stimulated A20-deficient macrophages. Importantly, mutation of the A20 ZnF7 ubiquitin binding domain caused arthritis in mice, arguing that ZnF7-dependent inhibition of necroptosis is critical for A20 anti-inflammatory function in vivo.
Collapse
Affiliation(s)
- Apostolos Polykratis
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Arne Martens
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Remzi Onur Eren
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Yoshitaka Shirasaki
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Tokyo, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Mai Yamagishi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yoshifumi Yamaguchi
- Department of Genetics, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan.,Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | - Sotaro Uemura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
| | - Bernhard Holzmann
- Department of Surgery, School of Medicine, Technical University of Munich, Munich, Germany
| | - George Kollias
- Biomedical Sciences Research Center 'Alexander Fleming', Vari, Greece.,Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Marietta Armaka
- Biomedical Sciences Research Center 'Alexander Fleming', Vari, Greece
| | - Geert van Loo
- VIB Center for Inflammation Research, Ghent, Belgium. .,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| | - Manolis Pasparakis
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine, University of Cologne, Cologne, Germany.
| |
Collapse
|
49
|
Dong X, Liu L, Wang Y, Yang X, Wang W, Lin L, Sun B, Hou J, Ying W, Hui X, Zhou Q, Liu D, Yao H, Sun J, Wang X. Novel Heterogeneous Mutation of TNFAIP3 in a Chinese Patient with Behçet-Like Phenotype and Persistent EBV Viremia. J Clin Immunol 2019; 39:188-194. [PMID: 30810840 DOI: 10.1007/s10875-019-00604-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/19/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE Tumor necrosis factor alpha-induced protein 3 (TNFAIP3, A20) is a negative regulator of the nuclear factor-κB (NF-κB) pathway. It has recently been recognized that TNFAIP3 deficiency leads to early onset of autoinflammatory and autoimmune syndrome resembling Behçet's disease. Here, we report a novel mutation in TNFAIP3 in a Chinese patient, who had Behçet-like phenotype and persistent Epstein-Barr virus (EBV) viremia. METHODS The clinical data were collected. Immunological function was detected. Gene mutation was detected by whole-exome sequencing (WES) and confirmed by Sanger sequencing. mRNA and protein levels were detected in the patient under lipopolysaccharide (LPS) stimulation by real-time PCR and Western blot. RESULTS The patient is a 13-year-old boy, presenting with intermittent fever for 5 months, who also experienced diffuse lymphadenopathy, arthritis, and recurrent multiple gastrointestinal ulcers. EBV DNA was detected in the serum and peripheral blood mononuclear cells of the patient. The immunological phenotype showed increased proportion of double-negative T cells (CD3+CD4-CD8-). A novel missense mutation (c.1428G > A) locating at the zinc fingers 2 (ZF2) domain of TNFAIP3 inherited from his mother was confirmed. Compared with age-matched healthy controls, decrease expression of A20 was observed in the patient. The NF-κB pathway was found to be overactivated, and the synthesis of TNF-α was upregulated in the patient-derived cells. However, cells from the mother showed a milder response to LPS than cells from the patient. CONCLUSIONS The present research indicated that the TNFAIP3 mutation of c.1428G > A (p.M476I) leads to the reduced suppression of NF-κB activation and accounted for the autoinflammatory phenotype and persistent EBV viremia in the patient.
Collapse
Affiliation(s)
- Xiaolong Dong
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Luyao Liu
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Ying Wang
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Xiaotao Yang
- Kunming Children's Hospital Affiliated to Kunming Medical University, Kunming, 650000, Yunnan, China
| | - Wenjie Wang
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Li Lin
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Bijun Sun
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Jia Hou
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Wenjing Ying
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Xiaoying Hui
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Qinhua Zhou
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Danru Liu
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Haili Yao
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Jinqiao Sun
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China.
| | - Xiaochuan Wang
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China.
| |
Collapse
|
50
|
Li Y, Mooney EC, Holden SE, Xia XJ, Cohen DJ, Walsh SW, Ma A, Sahingur SE. A20 Orchestrates Inflammatory Response in the Oral Mucosa through Restraining NF-κB Activity. THE JOURNAL OF IMMUNOLOGY 2019; 202:2044-2056. [PMID: 30760622 DOI: 10.4049/jimmunol.1801286] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/16/2019] [Indexed: 12/15/2022]
Abstract
Deregulated immune response to a dysbiotic resident microflora within the oral cavity leads to chronic periodontal disease, local tissue destruction, and various systemic complications. To preserve tissue homeostasis, inflammatory signaling pathways involved in the progression of periodontitis must be tightly regulated. A20 (TNFAIP3), a ubiquitin-editing enzyme, has emerged as one of the key regulators of inflammation. Yet, the function of A20 in the oral mucosa and the biological pathways in which A20 mitigates periodontal inflammation remain elusive. Using a combination of in vivo and ex vivo disease models, we report in this study that A20 regulates inflammatory responses to a keystone oral bacterium, Porphyromonas gingivalis, and restrains periodontal inflammation through its effect on NF-κB signaling and cytokine production. Depletion of A20 using gene editing in human macrophage-like cells (THP-1) significantly increased cytokine secretion, whereas A20 overexpression using lentivirus infection dampened the cytokine production following bacterial challenge through modulating NF-κB activity. Similar to human cells, bone marrow-derived macrophages from A20-deficient mice infected with P. gingivalis displayed increased NF-κB activity and cytokine production compared with the cells isolated from A20-competent mice. Subsequent experiments using a murine ligature-induced periodontitis model showed that even a partial loss of A20 promotes an increased inflammatory phenotype and more severe bone loss, further verifying the critical function of A20 in the oral mucosa. Collectively, to our knowledge, these findings reveal the first systematic evidence of a physiological role for A20 in the maintenance of oral tissue homeostasis as a negative regulator of inflammation.
Collapse
Affiliation(s)
- Yajie Li
- Department of Periodontics, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298
| | - Erin C Mooney
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298
| | - Sara E Holden
- Department of Periodontics, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298
| | - Xia-Juan Xia
- Department of Periodontics, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298
| | - David J Cohen
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284
| | - Scott W Walsh
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298.,Departments of Obstetrics and Gynecology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298; and
| | - Averil Ma
- Department of Medicine, School of Medicine, University of California San Francisco, San Francisco, CA 94143
| | - Sinem E Sahingur
- Department of Periodontics, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298; .,Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298
| |
Collapse
|