1
|
Crosson T, Bretaud N, Ugolini S. Role of specialized sensory neuron subtypes in modulating peripheral immune responses. Immunity 2025; 58:1161-1174. [PMID: 40324383 DOI: 10.1016/j.immuni.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/07/2025] [Accepted: 04/07/2025] [Indexed: 05/07/2025]
Abstract
The immune and sensory nervous systems detect diverse threats, from tissue damage to infection, and coordinate protective responses to restore homeostasis. Like immune cells, sensory neurons exhibit remarkable heterogeneity, with advanced genetic models revealing that distinct subsets differentially regulate immune responses. Here, we review how various immune signals engage distinct subtypes of sensory neurons to mediate inflammatory pain, itch, relief, protective behavioral adaptations, and autonomic reflexes. We also highlight how specialized sensory neuron populations modulate immune function through the release of neuropeptides, neurokines, or glutamate. This functional specialization enables precise immunomodulation adapted to the kinetics and nature of immune responses, positioning sensory neurons as key regulators of host defense and tissue homeostasis.
Collapse
Affiliation(s)
- Théo Crosson
- Aix-Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Ninon Bretaud
- Aix-Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Sophie Ugolini
- Aix-Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France.
| |
Collapse
|
2
|
Brooks SG, Yosipovitch G. Evolving evidence in the neural sensitization of prurigo nodularis. Clin Dermatol 2025:S0738-081X(25)00091-4. [PMID: 40097076 DOI: 10.1016/j.clindermatol.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Prurigo nodularis is a chronic inflammatory skin disorder characterized by relentlessly pruritic, hyperkeratotic nodules. Recent studies have provided compelling evidence for the pivotal role of dysregulated interactions between the nervous and immune systems in its pathogenesis. This article reviews the latest findings on the neurogenic mechanisms contributing to prurigo nodularis, particularly how these processes lead to the sensation of increased itch intensity. Peripheral sensitization is primarily driven by abnormal innervation of histamine-independent, small unmyelinated C fibers, epidermal hypoplasia, and dermal hyperinnervation. This sensitization is further amplified by the cyclic release of neuropeptides such as Substance P, calcitonin gene-related peptide, and nerve growth factor. Although the mechanisms underlying central sensitization in prurigo nodularis remain less understood, it likely involves enhanced itch signaling in the dorsal spinal cord or a lowered threshold for itch perception. Additionally, parallels between pruritus and pain-such as allodynia and alloknesis, as well as hyperalgesia and hyperknesis-along with the association of prurigo nodularis with various comorbid systemic conditions, offer valuable insights into the disorder's pathology. A deeper understanding of the complex neural sensitization mechanisms in prurigo nodularis may lead to the identification of novel therapeutic targets, ultimately alleviating the burden of this debilitating condition.
Collapse
Affiliation(s)
- Sarah G Brooks
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami Miller School of Medicine, Florida, USA
| | - Gil Yosipovitch
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami Miller School of Medicine, Florida, USA.
| |
Collapse
|
3
|
McSwiggin H, Wang R, Magalhães RDM, Zhu F, Doherty TA, Yan W, Jendzjowsky N. Comprehensive sequencing of the lung neuroimmune landscape in response to asthmatic induction. Front Immunol 2025; 16:1518771. [PMID: 40181989 PMCID: PMC11965707 DOI: 10.3389/fimmu.2025.1518771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/13/2025] [Indexed: 04/05/2025] Open
Abstract
Introduction Evidence demonstrates that sensory neurons respond to pathogenic/allergic infiltration and mediate immune responses, forming an integral part of host defense that becomes hypersensitized during allergy. Our objective was to investigate how asthmatic induction alters the pulmonary neuroimmune transcriptome. We hypothesized that asthmatic induction would upregulate genes in the vagal ganglia (nodose/jugular ganglia), which would be associated with asthmatic immunity, and that these would be clustered, primarily in nodose neurons. Furthermore, lungs would increase transcripts associated with nerve activation, and these would be centered in neural and neuroendocrine-like cells. Methods Standard RNA sequencing, single nucleus-RNA sequencing, and spatial RNA sequencing of vagal ganglia. Standard RNA-sequencing and spatial RNA-sequencing of lungs in naïve and mice that have undergone asthmatic induction with Alternaria alternata. Results Bulk RNA-seq revealed that genes related to allergen sensing were increased in asthmatic ganglia nodose/jugular ganglia compared to control ganglia. These genes were associated with nodose clusters as shown by single-nucleus RNA sequencing, and a distinct caudal-to-rostral spatial arrangement was presented as delineated by spatial transcriptomics. The distinct clusters closely match previous identification of nodose neuron clusters. Correspondingly, the lung transcriptome was altered with asthmatic induction such that transcripts associated with neural excitation were upregulated. The spatial distribution of these transcripts was revealed by spatial transcriptomics to illustrate that these were expressed in neuroendocrine-like cells/club cells, and neurons. Conclusions These results show that the neuroimmune transcriptome is altered in response to asthmatic induction in a cell cluster and spatially distinct manner.
Collapse
Affiliation(s)
- Hayden McSwiggin
- The Lundquist Institute for Biomedical Innovation at Harbor-University of California, Los Angeles, Medical Center, Torrance, CA, United States
| | - Rui Wang
- The Lundquist Institute for Biomedical Innovation at Harbor-University of California, Los Angeles, Medical Center, Torrance, CA, United States
| | - Rubens Daniel Miserani Magalhães
- The Lundquist Institute for Biomedical Innovation at Harbor-University of California, Los Angeles, Medical Center, Torrance, CA, United States
| | - Fengli Zhu
- The Lundquist Institute for Biomedical Innovation at Harbor-University of California, Los Angeles, Medical Center, Torrance, CA, United States
| | - Taylor A. Doherty
- Division of Allergy and Immunology, Department of Medicine, University of California, San Diego, Veterans Affairs San Diego Healthcare System, La Jolla, CA, United States
| | - Wei Yan
- The Lundquist Institute for Biomedical Innovation at Harbor-University of California, Los Angeles, Medical Center, Torrance, CA, United States
- Division of Endocrinology, Department of Medicine, Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Nicholas Jendzjowsky
- The Lundquist Institute for Biomedical Innovation at Harbor-University of California, Los Angeles, Medical Center, Torrance, CA, United States
- Division of Respiratory and Critical Care Medicine and Physiology, Department of Medicine, Harbor-UCLA Medical Center, Torrance, CA, United States
| |
Collapse
|
4
|
Kumar M, Choi YG, Wong T, Li PH, Chow BKC. Beyond the classic players: Mas-related G protein-coupled receptor member X2 role in pruritus and skin diseases. J Eur Acad Dermatol Venereol 2025; 39:476-486. [PMID: 39044547 PMCID: PMC11851267 DOI: 10.1111/jdv.20249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/19/2024] [Indexed: 07/25/2024]
Abstract
Chronic spontaneous urticaria (CSU), atopic dermatitis (AD), psoriasis and rosacea are highly prevalent inflammatory skin conditions which impose a significant burden on patients' quality of life. Their pathophysiology is likely multifactorial, involving genetic, immune and environmental factors. Recent advancements in the field have demonstrated the key role of mast cells (MC) in the pathophysiology of these conditions. The Mas-related G protein-coupled receptor X2 (MRGPRX2) has emerged as a promising non-IgE-mediated MC activation receptor. MRGPRX2 is predominately expressed on MC and activated by endogenous and exogenous ligands, leading to MC degranulation and release of various pro-inflammatory mediators. Mounting evidence on the presence of endogenous MRGPRX2 agonists (substance P, cortistatin-14, LL37, PAMP-12 and VIP) and its high expression among patients with CSU, AD, rosacea, psoriasis and chronic pruritus emphasizes the pathogenic role of MRGPRX2 in these conditions. Despite the currently available treatments, there remains a pressing need for novel drug targets and treatment options for these chronic inflammatory skin conditions. Here, we reviewed the pathogenic role of MRGPRX2 and its potential as a novel therapeutic target and provided an update on future research directions.
Collapse
Affiliation(s)
- Mukesh Kumar
- School of Biological SciencesThe University of Hong KongPokfulamHong Kong
| | - Ye Gi Choi
- School of Biological SciencesThe University of Hong KongPokfulamHong Kong
| | - Trevor Wong
- School of Biological SciencesThe University of Hong KongPokfulamHong Kong
- Faculty of Health SciencesMcMaster UniversityHamiltonOntarioCanada
| | - Philip H. Li
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Queen Mary HospitalThe University of Hong KongPokfulamHong Kong
| | - Billy K. C. Chow
- School of Biological SciencesThe University of Hong KongPokfulamHong Kong
| |
Collapse
|
5
|
Shiraishi A, Wada A, Satake H. Evolutionary scenarios for the specific recognition of nonhomologous endogenous peptides by G protein-coupled receptor paralogs. J Biol Chem 2025; 301:108125. [PMID: 39725036 PMCID: PMC11910321 DOI: 10.1016/j.jbc.2024.108125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024] Open
Abstract
Several peptides interact with phylogenetically unrelated G protein-coupled receptors (GPCRs); similarly, orthologous GPCRs interact with distinct ligands. The neuropeptide substance P (SP) activates both NK1R and another unrelated primate-specific GPCR, MRGPRX2. Furthermore, MRGPRX1, a paralog of MRGPRX2, recognizes BAM8-22 (bovine adrenal medulla peptide 8-22), which has no evolutionary relatedness to SP. To elucidate the molecular basis and evolutionary history of this phylogenetically unrelated ligand selectivity, we developed a systematic procedure, the "interaction determinant likelihood score" system, which estimates the amino acid residues responsible for peptide-GPCR interactions predicted by peptide descriptor-incorporated support vector machine, our original machine learning-based peptide-GPCR interaction predictor. An interaction determinant likelihood score-based approach followed by pharmacological validation revealed the determinant residues for the ligand selectivity of SP-MRGPRX2 (F3.24 and G4.61) and BAM8-22-MRGPRX1 (L1.35). Molecular phylogenetic analysis revealed that the MRGPRX1 of common ancestral primates recognized BAM8-22, whereas the ancestral Cercopithecinae MRGPRX1 lost its interaction with BAM8-22 because of the loss of L1.35. The SP-MRGPRX2 interaction emerged in the common ancestors of Euarchonta, and, thereafter, the interaction of MRGPRX2 with both SP and BAM8-22 was acquired via substitution with L1.35 in several lineages. Collectively, the present study unraveled the molecular mechanisms and evolution of ligand specificity in evolutionary unrelated GPCRs.
Collapse
Affiliation(s)
- Akira Shiraishi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan.
| | - Azumi Wada
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| |
Collapse
|
6
|
Santoro D, Moura RA, McKenzie SR, Chiavaccini L. Equivalence in intradermal reactions to histamine and compound 48/80 in dogs before and after sedation with dexmedetomidine or a 1:20 combination of medetomidine and vatinoxan. Vet Dermatol 2025; 36:43-51. [PMID: 39400922 DOI: 10.1111/vde.13306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/19/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Intradermal allergen testing (IDAT) is commonly used to formulate allergen-specific immunotherapy, a pillar treatment for canine atopic dermatitis. Many sedatives have shown histaminergic or anti-histaminergic effects and thus been deemed unsuitable for IDAT. OBJECTIVE The goal of this study was to determine whether, in healthy dogs, dexmedetomidine (Dexdomitor) or a 1:20 combination of medetomidine and vatinoxan (Zenalpha) will affect intradermal reactions compared to unsedated dogs. ANIMALS Ten privately owned healthy dogs were enrolled in this equivalence study. MATERIALS AND METHODS Wheal formation was subjectively and objectively assessed in conscious then sedated dogs. Dogs were randomly sedated with either Dexdomitor (dexmedetomidine [0.5 mg/m2]) or Zenalpha (medetomidine [1 mg/m2/vatinoxan] 20 mg/m2) intramuscularly. Once sedated, five 10-fold histamine (100-0.01 μg/mL) and compound 48/80 (200-0.02 μg/mL) dilutions were intradermally injected into the lateral thorax. The study was repeated on the opposite side with the alternative sedation 1 week later. Quality of sedation, cardiorespiratory function and rectal temperature were recorded every 5 min. RESULTS There was no difference in the median values of the reactions with either sedative when compared to unsedated dogs. Dexdomitor and Zenalpha achieved an equivalence in both subjective and objective scoring systems for all concentrations tested. A faster median time to sedation (10 vs. 18 min, p = 0.013) was seen with Zenalpha compared to Dexdomitor. Although both sedatives depressed the cardiovascular function, such parameters were less affected by Zenalpha than by Dexdomitor (p ≤ 0.001). CONCLUSIONS AND CLINICAL RELEVANCE Owing to the lack of effects on wheal formation, both sedatives are appropriate for sedating dogs undergoing IDAT. Although, such results should be validated in allergic dogs. Zenalpha may induce more rapid and reliable sedation than Dexdomitor.
Collapse
Affiliation(s)
- Domenico Santoro
- Department of Small Animal Clinical Sciences, University of Florida, Gainesville, Florida, USA
| | - Raiane A Moura
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville, Florida, USA
| | - Stuart R McKenzie
- Department of Comparative, Diagnostic and Population Medicine College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Ludovica Chiavaccini
- Department of Comparative, Diagnostic and Population Medicine College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
7
|
He C, Wang Q, Gao J, Chen H, Tong P. Neuro-immune regulation in allergic Diseases: Role of neuropeptides. Int Immunopharmacol 2025; 145:113771. [PMID: 39667047 DOI: 10.1016/j.intimp.2024.113771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/05/2024] [Accepted: 11/30/2024] [Indexed: 12/14/2024]
Abstract
The role of neuro-immune interaction in allergic diseases, a group of common immune system diseases, has garnered increasing attention. Neuropeptides, as a crucial component of neuro-immune crosstalk with local neuroendocrine and signaling functions, play a significant role that must not be overlooked. Neuropeptides are released by neurons and even some immune cells, and mediate neuro-immune crosstalk by activating relevant specific receptors on immune cells. Recent studies have found that neuropeptides have a certain regulatory effect on allergic diseases, which could be beneficial or detrimental for the development of allergic diseases. Nevertheless, the precise mechanism of neuropeptides in allergic diseases remains unclear, particularly in the context of food allergy where their role is poorly understood. This review summarized the interplay between neuropeptides and different immune cells, as well as their current research progress in several common allergic diseases: atopic dermatitis, allergic asthma, and food allergy. It is evident that neuropeptides such as substance P, calcitonin gene-related peptide, vasoactive intestinal peptide, and neuromedin U, exert important regulatory effects on allergic diseases, yet further investigation is required to fully elucidate their mechanisms of action, which may contribute to better understanding of the onset and progression of allergic diseases and finding better immunomodulatory strategies.
Collapse
Affiliation(s)
- Cuiying He
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; College of Food Science & Technology, Nanchang University, Nanchang 330047, China
| | - Qian Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; College of Food Science & Technology, Nanchang University, Nanchang 330047, China
| | - Jinyan Gao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; College of Food Science & Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; Sino-German Joint Research Institute (Jiangxi-OAI), Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, China
| | - Ping Tong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, China
| |
Collapse
|
8
|
Christensen SL, Levy D. Meningeal brain borders and migraine headache genesis. Trends Neurosci 2024; 47:918-932. [PMID: 39304416 PMCID: PMC11563857 DOI: 10.1016/j.tins.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/05/2024] [Accepted: 08/23/2024] [Indexed: 09/22/2024]
Abstract
Migraine is a highly prevalent and disabling pain disorder that affects >1 billion people worldwide. One central hypothesis points to the cranial meninges as a key site underlying migraine headache genesis through complex interplay between meningeal sensory nerves, blood vessels, and adjacent immune cells. How these interactions might generate migraine headaches remains incompletely understood and a subject of much debate. In this review we discuss clinical and preclinical evidence supporting the concept that meningeal sterile inflammation, involving neurovascular and neuroimmune interactions, underlies migraine headache genesis. We examine downstream signaling pathways implicated in the development of migraine pain in response to exogenous events such as infusing migraine-triggering chemical substances. We further discuss cortex-to-meninges signaling pathways that could underlie migraine pain in response to endogenous events, such as cortical spreading depolarization (CSD), and explore future directions for the field.
Collapse
Affiliation(s)
- Sarah Louise Christensen
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Neurology, Danish Headache Center, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark; Translational Research Centre, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Dan Levy
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
West PW, Chéret J, Bahri R, Kiss O, Wu Z, Macphee CH, Bulfone-Paus S. The MRGPRX2-substance P pathway regulates mast cell migration. iScience 2024; 27:110984. [PMID: 39435146 PMCID: PMC11492034 DOI: 10.1016/j.isci.2024.110984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/17/2024] [Accepted: 09/13/2024] [Indexed: 10/23/2024] Open
Abstract
Mast cells (MCs) are tissue-resident immune cells known to degranulate in response to FcεRI crosslinking or MRGPRX2 engagement. MCs are found close to nerves, but the mechanisms that regulate this privileged localization remain unclear. Here, we investigated MRGPRX2 expression patterns and specific activities in MCs. We show that MRGPRX2 expression is heterogeneous in human MC (hMC) progenitors and mature MCs. Substance P (SP) is a rapid and specific activator of MRGPRX2, and long-term supplementation of MCs with SP expands MRGPRX2-expressing cells. While high concentrations of SP induce rapid MC degranulation, low concentrations prompt immature MC chemotaxis. Lastly, we demonstrate that in inflammatory skin conditions like psoriasis, the number of MRGPRX2+ MCs is increased, and during in vitro skin reinnervation, MRGPRX2+ MCs preferentially reside in proximity to and migrate toward SP+ nerve fibers (NFs). This indicates that SP-MRGPRX2 signaling defines MC positioning and relocation within tissues and promotes immune cell-NF communication.
Collapse
Affiliation(s)
- Peter W. West
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Jérémy Chéret
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- CUTANEON- Skin & Hair Innovation, Hamburg, Berlin, Germany
| | - Rajia Bahri
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Orsolya Kiss
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Zining Wu
- GSK, 1250 South Collegeville Road, Collegeville, PA 19426, USA
| | | | - Silvia Bulfone-Paus
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
10
|
Matatia PR, Christian E, Sokol CL. Sensory sentinels: Neuroimmune detection and food allergy. Immunol Rev 2024; 326:83-101. [PMID: 39092839 PMCID: PMC11436315 DOI: 10.1111/imr.13375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Food allergy is classically characterized by an inappropriate type-2 immune response to allergenic food antigens. However, how allergens are detected and how that detection leads to the initiation of allergic immunity is poorly understood. In addition to the gastrointestinal tract, the barrier epithelium of the skin may also act as a site of food allergen sensitization. These barrier epithelia are densely innervated by sensory neurons, which respond to diverse physical environmental stimuli. Recent findings suggest that sensory neurons can directly detect a broad array of immunogens, including allergens, triggering sensory responses and the release of neuropeptides that influence immune cell function. Reciprocally, immune mediators modulate the activation or responsiveness of sensory neurons, forming neuroimmune feedback loops that may impact allergic immune responses. By utilizing cutaneous allergen exposure as a model, this review explores the pivotal role of sensory neurons in allergen detection and their dynamic bidirectional communication with the immune system, which ultimately orchestrates the type-2 immune response. Furthermore, it sheds light on how peripheral signals are integrated within the central nervous system to coordinate hallmark features of allergic reactions. Drawing from this emerging evidence, we propose that atopy arises from a dysregulated neuroimmune circuit.
Collapse
Affiliation(s)
- Peri R. Matatia
- Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Department of Immunology, Harvard Medical School, Boston, MA, 02115, USA
| | - Elena Christian
- Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Department of Immunology, Harvard Medical School, Boston, MA, 02115, USA
| | - Caroline L. Sokol
- Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
11
|
Wang JC, Crosson T, Nikpoor AR, Gupta S, Rafei M, Talbot S. NOCICEPTOR NEURONS CONTROL POLLUTION-MEDIATED NEUTROPHILIC ASTHMA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.22.609202. [PMID: 39229121 PMCID: PMC11370576 DOI: 10.1101/2024.08.22.609202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The immune and sensory nervous systems, having evolved together, use a shared language of receptors and transmitters to maintain homeostasis by responding to external and internal disruptions. Although beneficial in many cases, neurons can exacerbate inflammation during allergic reactions, such as asthma. Our research modeled asthma aggravated by pollution, exposing mice to ambient PM2.5 particles and ovalbumin. This exposure significantly increased bronchoalveolar lavage fluid neutrophils and γδ T cells compared to exposure to ovalbumin alone. We normalized airway inflammation and lung neutrophil levels by silencing nociceptor neurons at inflammation's peak using intranasal QX-314 or ablating TRPV1-expressing neurons. Additionally, we observed heightened sensitivity in chemical-sensing TRPA1 channels in neurons from pollution-exacerbated asthmatic mice. Elevated levels of artemin were detected in the bronchoalveolar lavage fluid from pollution-exposed mice, with artemin levels normalizing in mice with ablated nociceptor neurons. Upon exposure PM2.5 particles, alveolar macrophages expressing pollution-sensing aryl hydrocarbon receptors, were identified as the source of artemin. This molecule enhanced TRPA1 responsiveness and increased neutrophil influx, providing a novel mechanism by which lung-innervating neurons respond to air pollution and suggesting a potential therapeutic target for controlling neutrophilic airway inflammation in asthma, a clinically intractable condition.
Collapse
Affiliation(s)
- Jo-Chiao Wang
- Department of Pharmacology and Physiology, University de Montreal, Canada
| | - Theo Crosson
- Department of Pharmacology and Physiology, University de Montreal, Canada
| | - Amin Reza Nikpoor
- Department of Physiology and Pharmacology, Karolinska Institutet, Sweden
- Department of Biomedical and Molecular Sciences, Queen’s University, Canada
| | - Surbhi Gupta
- Department of Biomedical and Molecular Sciences, Queen’s University, Canada
| | - Moutih Rafei
- Department of Pharmacology and Physiology, University de Montreal, Canada
| | - Sebastien Talbot
- Department of Physiology and Pharmacology, Karolinska Institutet, Sweden
- Department of Biomedical and Molecular Sciences, Queen’s University, Canada
| |
Collapse
|
12
|
Poto R, Cristinziano L, Criscuolo G, Strisciuglio C, Palestra F, Lagnese G, Di Salvatore A, Marone G, Spadaro G, Loffredo S, Varricchi G. The JAK1/JAK2 inhibitor ruxolitinib inhibits mediator release from human basophils and mast cells. Front Immunol 2024; 15:1443704. [PMID: 39188724 PMCID: PMC11345246 DOI: 10.3389/fimmu.2024.1443704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/29/2024] [Indexed: 08/28/2024] Open
Abstract
Introduction The Janus kinase (JAK) family includes four cytoplasmic tyrosine kinases (JAK1, JAK2, JAK3, and TYK2) constitutively bound to several cytokine receptors. JAKs phosphorylate downstream signal transducers and activators of transcription (STAT). JAK-STAT5 pathways play a critical role in basophil and mast cell activation. Previous studies have demonstrated that inhibitors of JAK-STAT pathway blocked the activation of mast cells and basophils. Methods In this study, we investigated the in vitro effects of ruxolitinib, a JAK1/2 inhibitor, on IgE- and IL-3-mediated release of mediators from human basophils, as well as substance P-induced mediator release from skin mast cells (HSMCs). Results Ruxolitinib concentration-dependently inhibited IgE-mediated release of preformed (histamine) and de novo synthesized mediators (leukotriene C4) from human basophils. Ruxolitinib also inhibited anti-IgE- and IL-3-mediated cytokine (IL-4 and IL-13) release from basophils, as well as the secretion of preformed mediators (histamine, tryptase, and chymase) from substance P-activated HSMCs. Discussion These results indicate that ruxolitinib, inhibiting the release of several mediators from human basophils and mast cells, is a potential candidate for the treatment of inflammatory disorders.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità (ISS), Rome, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Leonardo Cristinziano
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Gjada Criscuolo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Caterina Strisciuglio
- Department of Woman, Child and General and Specialistic Surgery, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Francesco Palestra
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Gianluca Lagnese
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Antonio Di Salvatore
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| |
Collapse
|
13
|
Seldeslachts A, Undheim EAB, Vriens J, Tytgat J, Peigneur S. Exploring oak processionary caterpillar induced lepidopterism (part 2): ex vivo bio-assays unmask the role of TRPV1. Cell Mol Life Sci 2024; 81:281. [PMID: 38940922 PMCID: PMC11335206 DOI: 10.1007/s00018-024-05318-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/30/2024] [Accepted: 06/12/2024] [Indexed: 06/29/2024]
Abstract
As human skin comes into contact with the tiny hairs or setae of the oak processionary caterpillar, Thaumetopoea processionea, a silent yet intense chemical confrontation occurs. The result is a mix of issues: skin rashes and an intense itching that typically lasts days and weeks after the contact. This discomfort poses a significant health threat not only to humans but also to animals. In Western Europe, the alarming increase in outbreaks extends beyond areas near infested trees due to the dispersion of the setae. Predictions indicate a sustained rise in outbreaks, fueled by global changes favoring the caterpillar's survival and distribution. Currently, the absence of an efficient treatment persists due to significant gaps in our comprehension of the pathophysiology associated with this envenomation. Here, we explored the interaction between the venom extract derived from the setae of T. processionea and voltage- and ligand-gated ion channels and receptors. By conducting electrophysiological analyses, we discovered ex vivo evidence highlighting the significant role of TPTX1-Tp1, a peptide toxin from T. processionea, in modulating TRPV1. TPTX1-Tp1 is a secapin-like peptide and demonstrates a unique ability to modulate TRPV1 channels in the presence of capsaicin, leading to cell depolarization, itch and inflammatory responses. This discovery opens new avenues for developing a topical medication, suggesting the incorporation of a TRPV1 blocker as a potential solution for the local effects caused by T. processionea.
Collapse
Affiliation(s)
- Andrea Seldeslachts
- Toxicology and Pharmacology, Department Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Vlaams-Brabant, Belgium
| | | | - Joris Vriens
- Laboratory of Endometrium, Endometriosis and Reproductive Medicine, Department of Development and Regeneration, KU Leuven, Leuven, Vlaams-Brabant, Belgium
| | - Jan Tytgat
- Toxicology and Pharmacology, Department Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Vlaams-Brabant, Belgium.
| | - Steve Peigneur
- Toxicology and Pharmacology, Department Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Vlaams-Brabant, Belgium.
| |
Collapse
|
14
|
Wong TK, Choi YG, Li PH, Chow BKC, Kumar M. MRGPRX2 antagonist GE1111 attenuated DNFB-induced atopic dermatitis in mice by reducing inflammatory cytokines and restoring skin integrity. Front Immunol 2024; 15:1406438. [PMID: 38817611 PMCID: PMC11137259 DOI: 10.3389/fimmu.2024.1406438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/26/2024] [Indexed: 06/01/2024] Open
Abstract
Introduction Atopic dermatitis (AD) is a chronic inflammatory skin disorder characterised by itching, erythema, and epidermal barrier dysfunction. The pathogenesis of AD is complex and multifactorial; however,mast cell (MC) activation has been reported to be one of the crucial mechanisms in the pathogenesis of AD. The MC receptor Mas related G protein-coupled receptor-X2 (MRGPRX2) has been identified as a prominent alternative receptor to the IgE receptor in causing MC activation and the subsequent release of inflammatory mediators. The current study aimed to evaluate the therapeutic effect of a novel small molecule MRGPRX2 antagonist GE1111 in AD using in vitro and in vivo approaches. Methods We developed an in vitro cell culture disease model by using LAD-2 MC, HaCaT keratinocytes and RAW 264.7 macrophage cell lines. We challenged keratinocytes and macrophage cells with CST-14 treated MC supernatant in the presence and absence of GE1111 and measured the expression of tight junction protein claudin 1, inflammatory cytokines and macrophage phagocytosis activity through immunohistochemistry, western blotting, RT-qPCR and fluorescence imaging techniques. In addition to this, we developed a DFNB-induced AD model in mice and evaluated the protective effect and underlying mechanism of GE1111. Results and Discussion Our in vitro findings demonstrated a potential therapeutic effect of GE1111, which inhibits the expression of TSLP, IL-13, MCP-1, TNF-a, and IL-1ß in MC and keratinocytes. In addition to this, GE1111 was able to preserve the expression of claudin 1 in keratinocytes and the phagocytotic activity of macrophage cells. The in vivo results demonstrated that GE1111 treatment significantly reduced phenotypic changes associated with AD (skin thickening, scaling, erythema and epidermal thickness). Furthermore, immunohistochemical analysis demonstrated that GE1111 treatment preserved the expression of the tight junction protein Involucrin and reduced the expression of the inflammatory mediator periostin in the mouse model of AD. These findings were supported by gene and protein expression analysis, where GE1111 treatment reduced the expression of TSLP, IL-13, and IL-1ß, as well as downstream signalling pathways of MRGPRX2 in AD skin lesions. In conclusion, our findings provide compelling in vitro and in vivo evidence supporting the contribution of MRGPRX2-MC interaction with keratinocytes and macrophages in the pathogenesis of AD.
Collapse
Affiliation(s)
- Trevor K. Wong
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Faculty of Health Sciences, McMaster University, Hamliton, ON, Canada
| | - Ye Gi Choi
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Philip H. Li
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong SAR, China
| | - Billy K. C. Chow
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Mukesh Kumar
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
15
|
Weman HM, Ceder MM, Ahemaiti A, Magnusson KA, Henriksson K, Andréasson L, Lagerström MC. Spinal Glycine Receptor Alpha 3 Cells Communicate Sensations of Chemical Itch in Hairy Skin. J Neurosci 2024; 44:e1585232024. [PMID: 38553047 PMCID: PMC11079978 DOI: 10.1523/jneurosci.1585-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/31/2024] [Accepted: 02/15/2024] [Indexed: 05/12/2024] Open
Abstract
Glycinergic neurons regulate nociceptive and pruriceptive signaling in the spinal cord, but the identity and role of the glycine-regulated neurons are not fully known. Herein, we have characterized spinal glycine receptor alpha 3 (Glra3) subunit-expressing neurons in Glra3-Cre female and male mice. Glra3-Cre(+) neurons express Glra3, are located mainly in laminae III-VI, and respond to glycine. Chemogenetic activation of spinal Glra3-Cre(+) neurons induced biting/licking, stomping, and guarding behaviors, indicative of both a nociceptive and pruriceptive role for this population. Chemogenetic inhibition did not affect mechanical or thermal responses but reduced behaviors evoked by compound 48/80 and chloroquine, revealing a pruriceptive role for these neurons. Spinal cells activated by compound 48/80 or chloroquine express Glra3, further supporting the phenotype. Retrograde tracing revealed that spinal Glra3-Cre(+) neurons receive input from afferents associated with pain and itch, and dorsal root stimulation validated the monosynaptic input. In conclusion, these results show that spinal Glra3(+) neurons contribute to acute communication of compound 48/80- and chloroquine-induced itch in hairy skin.
Collapse
Affiliation(s)
- Hannah M Weman
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75108, Sweden
| | - Mikaela M Ceder
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75108, Sweden
| | - Aikeremu Ahemaiti
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75108, Sweden
| | - Kajsa A Magnusson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75108, Sweden
| | - Katharina Henriksson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75108, Sweden
| | - Linn Andréasson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75108, Sweden
| | - Malin C Lagerström
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75108, Sweden
| |
Collapse
|
16
|
Biazus Soares G, Hashimoto T, Yosipovitch G. Atopic Dermatitis Itch: Scratching for an Explanation. J Invest Dermatol 2024; 144:978-988. [PMID: 38363270 DOI: 10.1016/j.jid.2023.10.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/20/2023] [Accepted: 10/31/2023] [Indexed: 02/17/2024]
Abstract
Chronic pruritus is a cardinal symptom of atopic dermatitis (AD). The mechanisms underlying atopic itch involve intricate crosstalk among skin, immune components, and neural components. In this review, we explore these mechanisms, focusing on key players and interactions that induce and exacerbate itch. We discuss the similarities and differences between pruritus and pain in patients with AD as well as the relationship between pruritus and factors such as sweat and the skin microbiome. Furthermore, we explore novel targets that could provide significant itch relief in these patients as well as exciting future research directions to better understand atopic pruritus in darker skin types.
Collapse
Affiliation(s)
- Georgia Biazus Soares
- Miami Itch Center, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Takashi Hashimoto
- Department of Dermatology, National Defense Medical College, Tokorozawa, Japan
| | - Gil Yosipovitch
- Miami Itch Center, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA.
| |
Collapse
|
17
|
Yosipovitch G, Kim B, Luger T, Lerner E, Metz M, Adiri R, Canosa JM, Cha A, Ständer S. Similarities and differences in peripheral itch and pain pathways in atopic dermatitis. J Allergy Clin Immunol 2024; 153:904-912. [PMID: 38103700 DOI: 10.1016/j.jaci.2023.10.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/22/2023] [Accepted: 10/12/2023] [Indexed: 12/19/2023]
Abstract
Atopic dermatitis (AD) is predominantly characterized by intense itching, but concomitant skin pain is experienced by more than 40% of patients. Patients with AD display considerable somatosensory aberrations, including increased nerve sensitivity to itch stimuli (hyperknesis), perception of itch from innocuous stimuli (alloknesis), or perception of pain from innocuous stimuli (allodynia). This review summarizes the current understanding of the similarities and differences in the peripheral mechanisms underlying itch and pain in AD. These distinct yet reciprocal sensations share many similarities in the peripheral nervous system, including common mediators (such as serotonin, endothelin-1, IL-33, and thymic stromal lymphopoietin), receptors (such as members of the G protein-coupled receptor family and Toll-like receptors), and ion channels for signal transduction (such as certain members of the transient receptor potential [TRP] cation channels). Itch-responding neurons are also sensitive to pain stimuli. However, there are distinct differences between itch and pain signaling. For example, specific immune responses are associated with pain (type 1 and/or type 3 cytokines and certain chemokine C-C [CCL2, CCL5] and C-X-C [CXCL] motif ligands) and itch (type 2 cytokines, including IL-31, and periostin). The TRP melastatin channels TRPM2 and TRPM3 have a role in pain but no known role in itch. Activation of μ-opioid receptors is known to alleviate pain but exacerbate itch. Understanding the connection between itch and pain mechanisms may offer new insights into the treatment of chronic pain and itch in AD.
Collapse
Affiliation(s)
- Gil Yosipovitch
- Miami Itch Center, Miller School of Medicine, University of Miami, Miami, Fla.
| | - Brian Kim
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St Louis, Mo
| | | | - Ethan Lerner
- Massachusetts General Hospital, Charlestown, Mass
| | - Martin Metz
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Roni Adiri
- Pfizer Pharmaceuticals Israel Ltd, Herzliya Pituach, Israel
| | | | | | - Sonja Ständer
- Center for Chronic Pruritus, Münster University Hospital, Münster, Germany
| |
Collapse
|
18
|
Gupta S, Viotti A, Eichwald T, Roger A, Kaufmann E, Othman R, Ghasemlou N, Rafei M, Foster SL, Talbot S. Navigating the blurred path of mixed neuroimmune signaling. J Allergy Clin Immunol 2024; 153:924-938. [PMID: 38373475 DOI: 10.1016/j.jaci.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/21/2024]
Abstract
Evolution has created complex mechanisms to sense environmental danger and protect tissues, with the nervous and immune systems playing pivotal roles. These systems work together, coordinating local and systemic reflexes to restore homeostasis in response to tissue injury and infection. By sharing receptors and ligands, they influence the pathogenesis of various diseases. Recently, a less-explored aspect of neuroimmune communication has emerged: the release of neuropeptides from immune cells and cytokines/chemokines from sensory neurons. This article reviews evidence of this unique neuroimmune interplay and its impact on the development of allergy, inflammation, itch, and pain. We highlight the effects of this neuroimmune signaling on vital processes such as host defense, tissue repair, and inflammation resolution, providing avenues for exploration of the underlying mechanisms and therapeutic potential of this signaling.
Collapse
Affiliation(s)
- Surbhi Gupta
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Alice Viotti
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Mass
| | - Tuany Eichwald
- Department of Pharmacology and Physiology, Karolinska Institutet, Solna, Sweden; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Anais Roger
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada; Aix-Marseille University, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Eva Kaufmann
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Rahmeh Othman
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Nader Ghasemlou
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Moutih Rafei
- Department of Pharmacology and Physiology, University of Montréal, Montréal, Québec, Canada
| | - Simmie L Foster
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Mass
| | - Sebastien Talbot
- Department of Pharmacology and Physiology, Karolinska Institutet, Solna, Sweden; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
19
|
Gour N, Yong HM, Magesh A, Atakkatan A, Andrade F, Lajoie S, Dong X. A GPCR-neuropeptide axis dampens hyperactive neutrophils by promoting an alternative-like polarization during bacterial infection. Immunity 2024; 57:333-348.e6. [PMID: 38295799 PMCID: PMC10940224 DOI: 10.1016/j.immuni.2024.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/10/2023] [Accepted: 01/08/2024] [Indexed: 02/16/2024]
Abstract
The notion that neutrophils exist as a homogeneous population is being replaced with the knowledge that neutrophils adopt different functional states. Neutrophils can have a pro-inflammatory phenotype or an anti-inflammatory state, but how these states are regulated remains unclear. Here, we demonstrated that the neutrophil-expressed G-protein-coupled receptor (GPCR) Mrgpra1 is a negative regulator of neutrophil bactericidal functions. Mrgpra1-mediated signaling was driven by its ligand, neuropeptide FF (NPFF), which dictated the balance between pro- and anti-inflammatory programming. Specifically, the Mrgpra1-NPFF axis counter-regulated interferon (IFN) γ-mediated neutrophil polarization during acute lung infection by favoring an alternative-like polarization, suggesting that it may act to balance overzealous neutrophilic responses. Distinct, cross-regulated populations of neutrophils were the primary source of NPFF and IFNγ during infection. As a subset of neutrophils at steady state expressed NPFF, these findings could have broad implications in various infectious and inflammatory diseases. Therefore, a neutrophil-intrinsic pathway determines their cellular fate, function, and magnitude of infection.
Collapse
Affiliation(s)
- Naina Gour
- Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Hwan Mee Yong
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Aishwarya Magesh
- Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA; Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Aishwarya Atakkatan
- Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Felipe Andrade
- Division of Rheumatology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Stephane Lajoie
- Department of Otolaryngology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Xinzhong Dong
- Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
20
|
Tamamoto-Mochizuki C, Santoro D, Saridomikelakis MN, Eisenschenk MNC, Hensel P, Pucheu-Haston C. Update on the role of cytokines and chemokines in canine atopic dermatitis. Vet Dermatol 2024; 35:25-39. [PMID: 37485553 DOI: 10.1111/vde.13192] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/02/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND Cytokines and chemokines play central roles in the pathogenesis of canine atopic dermatitis (cAD). Numerous studies have been published and provide new insights into their roles in cAD. OBJECTIVES To summarise the research updates on the role of cytokines and chemokines in the pathogenesis of cAD since the last review by the International Committee on Allergic Diseases of Animals in 2015. MATERIAL AND METHODS Online citation databases, abstracts and proceedings from international meetings on cytokines and chemokines relevant to cAD that had been published between 2015 and 2022 were reviewed. RESULTS Advances in technologies have allowed the simultaneous analysis of a broader range of cytokines and chemokines, which revealed an upregulation of a multipolar immunological axis (Th1, Th2, Th17 and Th22) in cAD. Most studies focused on specific cytokines, which were proposed as potential novel biomarkers and/or therapeutic targets for cAD, such as interleukin-31. Most other cytokines and chemokines had inconsistent results, perhaps as a consequence of their varied involvement in the pathogenesis of different endotypes of cAD. CONCLUSIONS AND CLINICAL RELEVANCE Inconsistent results for many cytokines and chemokines illustrate the difficulty of studying the complex cytokine and chemokine networks in cAD, and highlight the need for more comprehensive and structured studies in the future.
Collapse
Affiliation(s)
- Chie Tamamoto-Mochizuki
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Domenico Santoro
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | | | | | | | - Cherie Pucheu-Haston
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
21
|
Gour N, Dong X. The MRGPR family of receptors in immunity. Immunity 2024; 57:28-39. [PMID: 38198852 PMCID: PMC10825802 DOI: 10.1016/j.immuni.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/03/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024]
Abstract
The discovery of Mas-related G protein-coupled receptors (Mrgprs) has opened a compelling chapter in our understanding of immunity and sensory biology. This family of receptors, with their unique expression and diverse ligands, has emerged as key players in inflammatory states and hold the potential to alleviate human diseases. This review will focus on the members of this receptor family expressed on immune cells and how they govern immune and neuro-immune pathways underlying various physiological and pathological states. Immune cell-specific Mrgprs have been shown to control a variety of manifestations, including adverse drug reactions, inflammatory conditions, bacterial immunity, and the sensing of environmental exposures like allergens and irritants.
Collapse
Affiliation(s)
- Naina Gour
- Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | - Xinzhong Dong
- Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
22
|
Zhou Y, Chen R, Kong L, Sun Y, Deng J. Neuroimmune communication in allergic rhinitis. Front Neurol 2023; 14:1282130. [PMID: 38178883 PMCID: PMC10764552 DOI: 10.3389/fneur.2023.1282130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024] Open
Abstract
The prevalence rate of allergic rhinitis (AR) is high worldwide. The inhalation of allergens induces AR, which is an immunoglobulin E-mediated and type 2 inflammation-driven disease. Recently, the role of neuroimmune communication in AR pathogenesis has piqued the interest of the scientific community. Various neuropeptides, such as substance P (SP), vasoactive intestinal peptide (VIP), calcitonin gene-related peptide (CGRP), nerve growth factor (NGF), and neuromedin U (NMU), released via "axon reflexes" or "central sensitization" exert regulatory effects on immune cells to elicit "neurogenic inflammation," which contributes to nasal hyperresponsiveness (NHR) in AR. Additionally, neuropeptides can be produced in immune cells. The frequent colocalization of immune and neuronal cells at certain anatomical regions promotes the establishment of neuroimmune cell units, such as nerve-mast cells, nerve-type 2 innate lymphoid cells (ILC2s), nerve-eosinophils and nerve-basophils units. Receptors expressed both on immune cells and neurons, such as TRPV1, TRPA1, and Mas-related G protein-coupled receptor X2 (MRGPRX2) mediate AR pathogenesis. This review focused on elucidating the mechanisms underlying neuroimmune communication in AR.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Otolaryngology, Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Zhejiang, China
- Department of Otolaryngology, The First Hospital of Jiaxing, Jiaxing, China
| | - Ru Chen
- Department of Otolaryngology, The First Hospital of Jiaxing, Jiaxing, China
| | - Lili Kong
- Department of Otolaryngology, Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Zhejiang, China
- Department of Otolaryngology, The First Hospital of Jiaxing, Jiaxing, China
| | - Yaoyao Sun
- Department of Otolaryngology, The First Hospital of Jiaxing, Jiaxing, China
| | - Jing Deng
- Department of Otolaryngology, Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Zhejiang, China
- Department of Otolaryngology, The First Hospital of Jiaxing, Jiaxing, China
| |
Collapse
|
23
|
Hu M, Scheffel J, Elieh-Ali-Komi D, Maurer M, Hawro T, Metz M. An update on mechanisms of pruritus and their potential treatment in primary cutaneous T-cell lymphoma. Clin Exp Med 2023; 23:4177-4197. [PMID: 37555911 PMCID: PMC10725374 DOI: 10.1007/s10238-023-01141-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/12/2023] [Indexed: 08/10/2023]
Abstract
Primary cutaneous T-cell lymphomas (CTCL), which include mycosis fungoides (MF) and Sézary syndrome (SS), are a group of lymphoproliferative disorders characterized by clonal accumulation of neoplastic T-lymphocytes in the skin. Severe pruritus, one of the most common and distressing symptoms in primary CTCL, can significantly impair emotional well-being, physical functioning, and interpersonal relationships, thus greatly reducing quality of life. Unfortunately, effectively managing pruritus remains challenging in CTCL patients as the underlying mechanisms are, as of yet, not fully understood. Previous studies investigating the mechanisms of itch in CTCL have identified several mediators and their corresponding antagonists used for treatment. However, a comprehensive overview of the mediators and receptors contributing to pruritus in primary CTCL is lacking in the current literature. Here, we summarize and review the mediators and receptors that may contribute to pruritus in primary CTCL to explore the mechanisms of CTCL pruritus and identify effective therapeutic targets using the PubMed and Web of Science databases. Studies were included if they described itch mediators and receptors in MF and SS. Overall, the available data suggest that proteases (mainly tryptase), and neuropeptides (particularly Substance P) may be of greatest interest. At the receptor level, cytokine receptors, MRGPRs, and TRP channels are most likely important. Future drug development efforts should concentrate on targeting these mediators and receptors for the treatment of CTCL pruritus.
Collapse
Affiliation(s)
- Man Hu
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Hindenburgdamm 27, 12203, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Jörg Scheffel
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Hindenburgdamm 27, 12203, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Daniel Elieh-Ali-Komi
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Hindenburgdamm 27, 12203, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Marcus Maurer
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Hindenburgdamm 27, 12203, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Tomasz Hawro
- Department of Dermatology, Allergology and Venereology, Institute and Comprehensive Center for Inflammation Medicine, University Medical Center Schleswig-Holstein, Lübeck, Germany.
| | - Martin Metz
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Hindenburgdamm 27, 12203, Berlin, Germany.
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany.
| |
Collapse
|
24
|
Shao Y, Wang D, Zhu Y, Xiao Z, Jin T, Peng L, Shen Y, Tang H. Molecular mechanisms of pruritus in prurigo nodularis. Front Immunol 2023; 14:1301817. [PMID: 38077377 PMCID: PMC10701428 DOI: 10.3389/fimmu.2023.1301817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
Pruritus is the most common symptom of dermatological disorders, and prurigo nodularis (PN) is notorious for intractable and severe itching. Conventional treatments often yield disappointing outcomes, significantly affecting patients' quality of life and psychological well-being. The pathogenesis of PN is associated with a self-sustained "itch-scratch" vicious cycle. Recent investigations of PN-related itch have partially revealed the intricate interactions within the cutaneous neuroimmune network; however, the underlying mechanism remains undetermined. Itch mediators play a key role in pruritus amplification in PN and understanding their action mechanism will undoubtedly lead to the development of novel targeted antipruritic agents. In this review, we describe a series of pruritogens and receptors involved in mediating itching in PN, including cytokines, neuropeptides, extracellular matrix proteins, vasculogenic substances, ion channels, and intracellular signaling pathways. Moreover, we provide a prospective outlook on potential therapies based on existing findings.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hui Tang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Boyvadoglu C, Ulusal H, Taysı S, Ozaydin-Yavuz G, Yavuz IH, Korkmaz P, Inaloz HS. Effects of Omalizumab on Serum Levels of Substance P, Calcitonin Gene-Related Peptide, Neuropeptide Y, and Interleukin-31 in Patients with Chronic Spontaneous Urticaria. Mediators Inflamm 2023; 2023:8087274. [PMID: 37795408 PMCID: PMC10547569 DOI: 10.1155/2023/8087274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/26/2023] [Accepted: 09/02/2023] [Indexed: 10/06/2023] Open
Abstract
The mechanism of action of omalizumab in urticaria is still not literally known. This study examines the serum values of substance P (SP), calcitonin gene-related peptide (CGRP), neuropeptide Y (NPY), and interleukin-31 (IL-31) in patients using omalizumab. In this study, 30 patients with chronic spontaneous urticaria (CSU) who were going to be treated with omalizumab and 20 healthy volunteers took part. Demographic data, clinical data, and disease activity scores were noted. For serum SP, CGRP, NPY, and IL-31 values, 10 mL of blood were taken from the patients before starting the treatment, 3 months after the treatment, at the end of the 6th month, and from healthy volunteers all at once. The change in values measured at baseline, 3rd month, and 6th month was analyzed by the Friedman Test. The Mann-Whitney U test was used to compare the parameters obtained from the patients and control groups. The significance level was set at p=0.05. SP, CGRP, NPY, and IL-31 values were all statistically significantly lower in the CSU patient group compared to the control group. After treatment, the levels of SP and CGRP in the serum went up, and the levels of serum IL-31 went down. These changes were statistically significant. This study supports the view that omalizumab does not only affect IgE receptors but also affects mast cells through other mechanisms. According to our knowledge, this is the first study to show that omalizumab therapy and serum CGRP levels are related.
Collapse
Affiliation(s)
| | - Hasan Ulusal
- Department of Medical Biochemistry, University of Gaziantep Faculty of Medicine, Gaziantep, Turkey
| | - Seyithan Taysı
- Department of Medical Biochemistry, University of Gaziantep Faculty of Medicine, Gaziantep, Turkey
| | - Goknur Ozaydin-Yavuz
- Department of Dermatology, Yuzuncu Yil University Faculty of Medicine, Van, Turkey
| | - Ibrahim Halil Yavuz
- Department of Dermatology, Yuzuncu Yil University Faculty of Medicine, Van, Turkey
| | - Pınar Korkmaz
- Department of Dermatology, Ersin Arslan Training and Research Hospital, Gaziantep, Turkey
| | - Huseyin Serhat Inaloz
- Department of Dermatology, University of Gaziantep Faculty of Medicine, Gaziantep, Turkey
| |
Collapse
|
26
|
Nattkemper LA, Vander Does A, Stull CM, Lavery MJ, Valdes-Rodriguez R, McGregory M, Chan YH, Yosipovitch G. Prolonged Antipruritic Effect of Botulinum Toxin Type A on Cowhage-induced Itch: A Randomized, Single-blind, Placebo-controlled Trial. Acta Derm Venereol 2023; 103:adv6581. [PMID: 37584094 PMCID: PMC10442928 DOI: 10.2340/actadv.v103.6581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/17/2023] [Indexed: 08/17/2023] Open
Abstract
Botulinum toxin type A (Botox) is thought to have antipruritic effects through inhibition of pruritic factors, including acetylcholine, substance P, and glutamate. The aim of this randomized, single-blind, placebo-controlled trial was to test the effect of botulinum toxin type A on cowhage, a non-histaminergic model for chronic itch. Botulinum toxin type A was injected into the arm of 35 healthy subjects, with a saline control injected into the contralateral arm. Thermal sensory parameters (warmth and heat thresholds and heat pain intensity) and itch intensity after cowhage application were examined on test areas. Botulinum toxin type A reduced itch intensity, overall perceived itch (area under the curve (AUC); percentage change from baseline), and peak itch intensity compared with the control at 1 week, 1 month, and 3 months. Botulinum toxin type A had no effect on thermal thresholds or heat pain intensity. In conclusion, botulinum toxin type A reduced cowhage itch for at least 3 months, which suggests that botulinum toxin type A is a potential long-lasting treatment for localized, non-histaminergic itch.
Collapse
Affiliation(s)
- Leigh A Nattkemper
- Department of Dermatology, Miami Itch Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ashley Vander Does
- Department of Dermatology, Miami Itch Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Carolyn M Stull
- Department of Dermatology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Michael J Lavery
- Department of Dermatology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Rodrigo Valdes-Rodriguez
- Department of Dermatology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Marlene McGregory
- Department of Dermatology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Yiong Huak Chan
- Biostatistics Unit, National University of Singapore Lon Lin School of Medicine, Singapore, Singapore
| | - Gil Yosipovitch
- Department of Dermatology, Miami Itch Center, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
27
|
Abstract
Migraine is a complex neurovascular pain disorder linked to the meninges, a border tissue innervated by neuropeptide-containing primary afferent fibers chiefly from the trigeminal nerve. Electrical or mechanical stimulation of this nerve surrounding large blood vessels evokes headache patterns as in migraine, and the brain, blood, and meninges are likely sources of headache triggers. Cerebrospinal fluid may play a significant role in migraine by transferring signals released from the brain to overlying pain-sensitive meningeal tissues, including dura mater. Interactions between trigeminal afferents, neuropeptides, and adjacent meningeal cells and tissues cause neurogenic inflammation, a critical target for current prophylactic and abortive migraine therapies. Here we review the importance of the cranial meninges to migraine headaches, explore the properties of trigeminal meningeal afferents, and briefly review emerging concepts, such as meningeal neuroimmune interactions, that may one day prove therapeutically relevant.
Collapse
Affiliation(s)
- Dan Levy
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA;
| | - Michael A Moskowitz
- Center for Systems Biology and Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA;
| |
Collapse
|
28
|
Navarro-Triviño FJ. [Translated article] Pruritus in Dermatology: Part 1-General Concepts and Pruritogens. ACTAS DERMO-SIFILIOGRAFICAS 2023; 114:T512-T522. [PMID: 37172902 DOI: 10.1016/j.ad.2023.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/16/2023] [Indexed: 05/15/2023] Open
Abstract
Pruritus is the most common symptom of dermatologic and systemic diseases. The diagnosis of pruritus is clinical, although additional tests may be necessary to identify or confirm the cause. Translational medicine has led to the discovery of new mediators of itch, or pruritogens, as well as new receptors. Knowing how to properly recognize the main pathway that mediates itch in each patient is the key to successful treatment. Although the histaminergic pathway predominates in conditions like urticaria or drug-induced pruritus, it is the nonhistaminergic pathway that predominates in nearly all other skin diseases covered in this review. Part 1 of this 2-part review discusses the classification of pruritus, additional testing, the pathophysiology of itch and the pruritogens implicated (including cytokines and other molecules), and central sensitization to itch.
Collapse
Affiliation(s)
- F J Navarro-Triviño
- Unidad de Eczema de Contacto e Inmunoalergia, Dermatología, Hospital Universitario San Cecilio, Granada, Spain.
| |
Collapse
|
29
|
Raj S, Hlushak S, Arizmendi N, Kovalenko A, Kulka M. Substance P analogs devoid of key residues fail to activate human mast cells via MRGPRX2. Front Immunol 2023; 14:1155740. [PMID: 37228611 PMCID: PMC10203606 DOI: 10.3389/fimmu.2023.1155740] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023] Open
Abstract
Mast cells play an important role in disease pathogenesis by secreting immunomodulatory molecules. Mast cells are primarily activated by the crosslinking of their high affinity IgE receptors (FcεRI) by antigen bound immunoglobulin (Ig)E antibody complexes. However, mast cells can also be activated by the mas related G protein-coupled receptor X2 (MRGPRX2), in response to a range of cationic secretagogues, such as substance P (SP), which is associated with pseudo-allergic reactions. We have previously reported that the in vitro activation of mouse mast cells by basic secretagogues is mediated by the mouse orthologue of the human MRGPRX2, MRGPRB2. To further elucidate the mechanism of MRGPRX2 activation, we studied the time-dependent internalization of MRGPRX2 by human mast cells (LAD2) upon stimulation with the neuropeptide SP. In addition, we performed computational studies to identify the intermolecular forces that facilitate ligand-MRGPRX2 interaction using SP. The computational predictions were tested experimentally by activating LAD2 with SP analogs, which were missing key amino acid residues. Our data suggest that mast cell activation by SP causes internalization of MRGPRX2 within 1 min of stimulation. Hydrogen bonds (h-bonds) and salt bridges govern the biding of SP to MRGPRX2. Arg1 and Lys3 in SP are key residues that are involved in both h-bonding and salt bridge formations with Glu164 and Asp184 of MRGPRX2, respectively. In accordance, SP analogs devoid of key residues (SP1 and SP2) failed to activate MRGPRX2 degranulation. However, both SP1 and SP2 caused a comparable release of chemokine CCL2. Further, SP analogs SP1, SP2 and SP4 did not activate tumor necrosis factor (TNF) production. We further show that SP1 and SP2 limit the activity of SP on mast cells. The results provide important mechanistic insight into the events that result in mast cell activation through MRGPRX2 and highlight the important physiochemical characteristics of a peptide ligand that facilitates ligand-MRGPRX2 interactions. The results are important in understanding activation through MRGPRX2, and the intermolecular forces that govern ligand-MRGPRX2 interaction. The elucidation of important physiochemical properties within a ligand that are needed for receptor interaction will aid in designing novel therapeutics and antagonists for MRGPRX2.
Collapse
Affiliation(s)
- Shammy Raj
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB, Canada
| | - Stepan Hlushak
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Narcy Arizmendi
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB, Canada
| | - Andriy Kovalenko
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB, Canada
| | - Marianna Kulka
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB, Canada
- Department of Medical Microbiology and Immunology, Katz Group Centre, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
30
|
Nattkemper LA, Lipman ZM, Ingrasci G, Maldonado C, Garces JC, Loayza E, Yosipovitch G. Neuroimmune Mediators of Pruritus in Hispanic Scalp Psoriatic Itch. Acta Derm Venereol 2023; 103:adv4463. [PMID: 36967545 PMCID: PMC10074283 DOI: 10.2340/actadv.v103.4463] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/11/2023] [Indexed: 03/29/2023] Open
Abstract
Scalp psoriatic itch is a common, bothersome, yet understudied, condition with numerous associated treatment challenges. The aim of this study was to enhance our understanding of the pathophysiology of scalp psoriatic itch. Immunohistochemical analysis of known neuroimmune mediators of pruritus was conducted using scalp biopsies from 27 Hispanic psoriatic patients. Patients were categorized into mild/moderate or severe itch groups according to their itch intensity rating of scalp itch. Protease activated receptor (PAR2), substance P, transient receptor potential (TRP)V3, TRPM8 and interleukin-23 expression all correlated significantly with itch intensity. The pathophysiology of scalp psoriasis is largely non-histaminergic, mediated by PAR2, interleukin-23, transient receptor potential channels, and substance P.
Collapse
Affiliation(s)
- Leigh A Nattkemper
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery and Miami Itch Center, University of Miami, Miami, FL, USA
| | - Zoe M Lipman
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery and Miami Itch Center, University of Miami, Miami, FL, USA
| | - Giuseppe Ingrasci
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery and Miami Itch Center, University of Miami, Miami, FL, USA
| | - Claudia Maldonado
- Departamento de Dermatología, Hospital Luis Vernaza, Guayaquil, Ecuador
| | | | | | - Gil Yosipovitch
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery and Miami Itch Center, University of Miami, Miami, FL, USA.
| |
Collapse
|
31
|
Vander Does A, Ju T, Mohsin N, Chopra D, Yosipovitch G. How to get rid of itching. Pharmacol Ther 2023; 243:108355. [PMID: 36739914 DOI: 10.1016/j.pharmthera.2023.108355] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/01/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Itch is an unpleasant sensation arising from a variety of dermatologic, neuropathic, systemic, and psychogenic etiologies. Various itch pathways are implicated according to the underlying etiology. A variety of pruritogens, or itch mediators, as well as receptors have been identified and provide potential therapeutic targets. Recent research has primarily focused on targeting inflammatory cytokines and Janus kinase signaling, protease-activated receptors, substance P and neurokinin, transient receptor potential-vanilloid ion channels, Mas-related G-protein-coupled receptors (MRGPRX2 and MRGPRX4), the endogenous opioid and cannabinoid balance, and phosphodiesterase 4. Periostin, a newly identified pruritogen, should be further explored with clinical trials. Drugs targeting neural sensitization including the gabergic system and P2X3 are other potential drugs for chronic itch. There is a need for more targeted therapies to improve clinical outcomes and reduce side effects.
Collapse
Affiliation(s)
- Ashley Vander Does
- Dr Phillip Frost Department of Dermatology and Miami Itch Center, University of Miami, Miami, FL, USA
| | - Teresa Ju
- Dr Phillip Frost Department of Dermatology and Miami Itch Center, University of Miami, Miami, FL, USA
| | - Noreen Mohsin
- Dr Phillip Frost Department of Dermatology and Miami Itch Center, University of Miami, Miami, FL, USA
| | - Divya Chopra
- Dr Phillip Frost Department of Dermatology and Miami Itch Center, University of Miami, Miami, FL, USA
| | - Gil Yosipovitch
- Dr Phillip Frost Department of Dermatology and Miami Itch Center, University of Miami, Miami, FL, USA.
| |
Collapse
|
32
|
Hiroyasu S, Barit JVJG, Hiroyasu A, Tsuruta D. Pruritogens in pemphigoid diseases: Possible therapeutic targets for a burdensome symptom. J Dermatol 2023; 50:150-161. [PMID: 36477831 PMCID: PMC10108135 DOI: 10.1111/1346-8138.16652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 12/12/2022]
Abstract
Pruritus is a hallmark feature in pemphigoid diseases, where it can be severe and greatly impact the quality of life of affected patients. Despite being a key symptom, the exact pathophysiological mechanisms involved in pruritus in pemphigoid are yet to be fully elucidated and effective therapies addressing them are limited. This review summarizes the present understanding of pruritus specific to pemphigoid diseases, especially the pruritogens that induce it, and the therapeutic options that have been explored so far. The majority of the available evidence is on bullous pemphigoid and epidermolysis bullosa acquisita. Histamine derived from basophils correlates with pruritus severity, with omalizumab demonstrating promising efficacy in pruritus for bullous pemphigoid. IL-4/-13 contribute to itch in bullous pemphigoid with dupilumab being evaluated in clinical trials. Other pruritogens of interest include substance P, tryptase, and thymic stromal lymphopoetin, with therapies targeting them requiring further investigation. Scratching behaviors contribute directly to blister formation through various mechanisms, such as pathological autoantibody recruitment, T helper cell type 1 polarization, and exposure of intracellular autoantigens. Treatments addressing these pathways may contribute to decreasing disease severity. Additional studies are needed to fully characterize how pruritus is regulated in pemphigoid diseases, to help pave the way to develop novel and effective therapeutics that will not only address pruritic symptoms but also decrease disease severity.
Collapse
Affiliation(s)
- Sho Hiroyasu
- Department of Dermatology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Jay-V James G Barit
- Department of Dermatology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Aoi Hiroyasu
- Department of Dermatology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Daisuke Tsuruta
- Department of Dermatology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
33
|
Pathogenesis and Treatment of Pruritus Associated with Chronic Kidney Disease and Cholestasis. Int J Mol Sci 2023; 24:ijms24021559. [PMID: 36675074 PMCID: PMC9864517 DOI: 10.3390/ijms24021559] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/14/2023] Open
Abstract
Itching is an unpleasant sensation that provokes the desire to scratch. In general, itching is caused by dermatologic diseases, but it can also be caused by systemic diseases. Since itching hampers patients' quality of life, it is important to understand the appropriate treatment and pathophysiology of pruritus caused by systemic diseases to improve the quality of life. Mechanisms are being studied through animal or human studies, and various treatments are being tested through clinical trials. We report current trends of two major systemic diseases: chronic kidney disease and cholestatic liver disease. This review summarizes the causes and pathophysiology of systemic diseases with pruritus and appropriate treatments. This article will contribute to patients' quality of life. Further research will help understand the mechanisms and develop new strategies in the future.
Collapse
|
34
|
Saxena P, Broemer E, Herrera GM, Mingin GC, Roccabianca S, Tykocki NR. Compound 48/80 increases murine bladder wall compliance independent of mast cells. Sci Rep 2023; 13:625. [PMID: 36635439 PMCID: PMC9837046 DOI: 10.1038/s41598-023-27897-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
A balance between stiffness and compliance is essential to normal bladder function, and changes in the mechanical properties of the bladder wall occur in many bladder pathologies. These changes are often associated with the release of basic secretagogues that in turn drive the release of inflammatory mediators from mast cells. Mast cell degranulation by basic secretagogues is thought to occur by activating an orphan receptor, Mas-related G protein-coupled receptor B2 (Mrgprb2). We explored the effects of the putative mast cell degranulator and Mrgprb2 agonist Compound 48/80 on urinary bladder wall mechanical compliance, smooth muscle contractility, and urodynamics, and if these effects were mast cell dependent. In wild-type mice, Mrgprb2 receptor mRNA was expressed in both the urothelium and smooth muscle layers. Intravesical instillation of Compound 48/80 decreased intermicturition interval and void volume, indicative of bladder overactivity. Compound 48/80 also increased bladder compliance while simultaneously increasing the amplitude and leading slope of transient pressure events during ex vivo filling and these effects were inhibited by the Mrgprb2 antagonist QWF. Surprisingly, all effects of Compound 48/80 persisted in mast cell-deficient mice, suggesting these effects were independent of mast cells. These findings suggest that Compound 48/80 degrades extracellular matrix and increases urinary bladder smooth muscle excitability through activation of Mrgprb2 receptors located outside of mast cells. Thus, the pharmacology and physiology of Mrgprb2 in the urinary bladder is of potential interest and importance in terms of treating lower urinary tract dysfunction.
Collapse
Affiliation(s)
- Pragya Saxena
- Department of Pharmacology and Toxicology, Michigan State University College of Osteopathic Medicine, East Lansing, MI, USA
| | - Eli Broemer
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, USA
| | - Gerald M Herrera
- Department of Pharmacology, University of Vermont, Burlington, VT, USA
| | - Gerald C Mingin
- Division of Urology, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Sara Roccabianca
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, USA
| | - Nathan R Tykocki
- Department of Pharmacology and Toxicology, Michigan State University College of Osteopathic Medicine, East Lansing, MI, USA.
| |
Collapse
|
35
|
Xiao T, Sun M, Zhao C, Kang J. TRPV1: A promising therapeutic target for skin aging and inflammatory skin diseases. Front Pharmacol 2023; 14:1037925. [PMID: 36874007 PMCID: PMC9975512 DOI: 10.3389/fphar.2023.1037925] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/20/2023] [Indexed: 02/17/2023] Open
Abstract
TRPV1 is a non-selective channel receptor widely expressed in skin tissues, including keratinocytes, peripheral sensory nerve fibers and immune cells. It is activated by a variety of exogenous or endogenous inflammatory mediators, triggering neuropeptide release and neurogenic inflammatory response. Previous studies have shown that TRPV1 is closely related to the occurrence and/or development of skin aging and various chronic inflammatory skin diseases, such as psoriasis, atopic dermatitis, rosacea, herpes zoster, allergic contact dermatitis and prurigo nodularis. This review summarizes the structure of the TRPV1 channel and discusses the expression of TRPV1 in the skin as well as its role of TRPV1 in skin aging and inflammatory skin diseases.
Collapse
Affiliation(s)
- Tengfei Xiao
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, Yancheng, Jiangsu, China
| | - Mingzhong Sun
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, Yancheng, Jiangsu, China
| | - Chuanxiang Zhao
- Institute of Medical Genetics and Reproductive Immunity, School of Medical Science and Laboratory Medicine, Jiangsu College of Nursing, Huai'an, Jiangsu, China
| | - Jingjing Kang
- Department of Clinical Laboratory, Affiliated Hospital of Nanjing University Medical School, Yancheng First People's Hospital, Yancheng, Jiangsu, China
| |
Collapse
|
36
|
Schepko M, Stumpf KC, Tumala S, Peters EM, Kupfer JP, Schut C. Study protocol: Neuro-inflammatory parameters as mediators of the relationship between social anxiety and itch intensity: A cross-sectional, controlled laboratory study in patients with psoriasis and healthy skin controls. PLoS One 2023; 18:e0281989. [PMID: 36928456 PMCID: PMC10019658 DOI: 10.1371/journal.pone.0281989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 02/02/2023] [Indexed: 03/18/2023] Open
Abstract
INTRODUCTION Psoriasis (PSO) is a disease that in the majority of patients is accompanied by itch, which imposes a great burden and positively relates to anxiety. Social anxiety, a facet of anxiety associated with social withdrawal, may be a predictor of itch intensity in this patient group. Moreover, anxiety is linked to the secretion of neuroendocrine and inflammatory parameters such as substance P (SP), interleukin (IL)-6 and IL-17, which are also related to itch. In this research project, we investigate first, whether there is a direct relationship between social anxiety and itch intensity in patients with PSO and second whether the secretion of SP, IL-6 and IL-17 in the skin mediates this relationship. Additionally, PSO-patients are compared to healthy skin controls regarding their level of social anxiety, itch intensity and the secretion of SP, IL-6 and IL-17. METHODS AND ANALYSES For study 1, we aim to recruit 250 psoriasis patients and 250 healthy skin controls who complete questionnaires to assess social anxiety, itch intensity and control variables (e.g. sociodemographic variables and severity of PSO). A linear hierarchic regression will be used to determine whether social anxiety significantly contributes to itch intensity. In study 2, we plan to apply the suction blister method to 128 patients and healthy skin controls recruited from study 1 to determine SP, IL-6 and IL-17 in tissue fluid extracted from the skin. A mediation analysis will be conducted using the SPSS-macro PROCESS to test whether the relationship between social anxiety and itch is mediated by SP, IL-6 and IL-17. TRIAL REGISTRATION NUMBERS DRKS00023621 (study 1) and DRKS00023622 (study 2).
Collapse
Affiliation(s)
- Marcel Schepko
- Institute of Medical Psychology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Katharina C. Stumpf
- Institute of Medical Psychology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Susanne Tumala
- Department of Psychosomatic Medicine and Psychotherapy, Psychoneuroimmunology Laboratory, Justus-Liebig-University Giessen, Giessen, Germany
| | - Eva M. Peters
- Department of Psychosomatic Medicine and Psychotherapy, Psychoneuroimmunology Laboratory, Justus-Liebig-University Giessen, Giessen, Germany
| | - Jörg P. Kupfer
- Institute of Medical Psychology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Christina Schut
- Institute of Medical Psychology, Justus-Liebig-University Giessen, Giessen, Germany
- * E-mail:
| |
Collapse
|
37
|
Ding Y, Dang B, Wang Y, Zhao C, An H. Artemisinic acid attenuated symptoms of substance P-induced chronic urticaria in a mice model and mast cell degranulation via Lyn/PLC-p38 signal pathway. Int Immunopharmacol 2022; 113:109437. [DOI: 10.1016/j.intimp.2022.109437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/21/2022] [Accepted: 11/04/2022] [Indexed: 11/18/2022]
|
38
|
Trier AM, Kim BS. Insights into atopic dermatitis pathogenesis lead to newly approved systemic therapies. Br J Dermatol 2022; 188:698-708. [PMID: 36763703 DOI: 10.1093/bjd/ljac016] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/04/2022] [Accepted: 10/13/2022] [Indexed: 01/09/2023]
Abstract
Atopic dermatitis (AD) is a common inflammatory skin disease characterized by scaly, oozing skin and itch. In moderate-to-severe AD, treatment options have been historically very limited and off-label use has been a common method for disease management. For decades, ciclosporin A was the only systemic immunosuppressive drug approved in most European countries to address this major unmet medical need. However, increased understanding of the pathophysiology of AD has led to a revolution in the treatment of this potentially debilitating disease. Following the approval of the first biological therapy for AD in 2017, there has been a rapid expansion of compounds under development and four additional systemic therapies have been approved in Europe and the USA within the past 3 years alone. In this review, we underscore how key breakthroughs have transformed the therapeutic landscape of AD, leading to a major expansion of type 2 immunity-targeted biological therapies, exploration of neuroimmune modulatory agents, and interest in Janus kinase inhibition.
Collapse
Affiliation(s)
- Anna M Trier
- Washington University School of Medicine, St. Louis, MO, USA
| | - Brian S Kim
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
39
|
Yin Z, Zhou Y, Turnquist HR, Liu Q. Neuro-epithelial-ILC2 crosstalk in barrier tissues. Trends Immunol 2022; 43:901-916. [PMID: 36253275 DOI: 10.1016/j.it.2022.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 01/12/2023]
Abstract
Group 2 innate lymphoid cells (ILC2s) contribute to the maintenance of mammalian barrier tissue homeostasis. We review how ILC2s integrate epithelial signals and neurogenic components to preserve the tissue microenvironment and modulate inflammation. The epithelium that overlies barrier tissues, including the skin, lungs, and gut, generates epithelial cytokines that elicit ILC2 activation. Sympathetic, parasympathetic, sensory, and enteric fibers release neural signals to modulate ILC2 functions. We also highlight recent findings suggesting neuro-epithelial-ILC2 crosstalk and its implications in immunity, inflammation and resolution, tissue repair, and restoring homeostasis. We further discuss the pathogenic effects of disturbed ILC2-centered neuro-epithelial-immune cell interactions and putative areas for therapeutic targeting.
Collapse
Affiliation(s)
- Ziyi Yin
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen Key Laboratory of Cardiovascular Health and Precision Medicine, Shenzhen, Guangdong Province 518055, China
| | - Yawen Zhou
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen Key Laboratory of Cardiovascular Health and Precision Medicine, Shenzhen, Guangdong Province 518055, China
| | - Hēth R Turnquist
- Thomas E. Starzl Transplantation Institute and Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Quan Liu
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen Key Laboratory of Cardiovascular Health and Precision Medicine, Shenzhen, Guangdong Province 518055, China.
| |
Collapse
|
40
|
Radi G, Campanti A, Diotallevi F, Martina E, Marani A, Offidani A. A Systematic Review of Atopic Dermatitis: The Intriguing Journey Starting from Physiopathology to Treatment, from Laboratory Bench to Bedside. Biomedicines 2022; 10:2700. [PMID: 36359220 PMCID: PMC9688004 DOI: 10.3390/biomedicines10112700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/25/2022] [Accepted: 10/13/2022] [Indexed: 09/02/2023] Open
Abstract
Atopic dermatitis (AD) is a common chronic inflammatory and immune-mediated skin disease with a complex pathophysiology and still represents a therapeutic challenge, owing to limited responses to available treatments. However, recent advances in the understanding of AD pathophysiology have led to the discovery of several new potential therapeutic targets, and research in the field of new molecules with therapeutic perspectives is boiling, with more than 70 new promising drugs in development. The aim of this systematic review is to provide the state of the art on the current knowledge concerning the pathophysiology of the disease and on novel agents currently being investigated for AD, and to highlight which type of evolution is going to take place in therapeutic approaches of atopic dermatitis in the coming years.
Collapse
Affiliation(s)
| | | | - Federico Diotallevi
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic Marche University, 60126 Ancona, Italy
| | | | | | | |
Collapse
|
41
|
MAS-related G protein-coupled receptors X (MRGPRX): Orphan GPCRs with potential as targets for future drugs. Pharmacol Ther 2022; 238:108259. [DOI: 10.1016/j.pharmthera.2022.108259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 11/20/2022]
|
42
|
Kalangara JP, Vanijcharoenkarn K, Chisolm S, Kuruvilla ME. Neuropathic pain and itch: mechanisms in allergic conjunctivitis. Curr Opin Allergy Clin Immunol 2022; 22:298-303. [PMID: 35916592 DOI: 10.1097/aci.0000000000000843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Allergic conjunctivitis is highly prevalent and affects up to one third of the general population. The current understanding of the pathophysiology and therapeutic strategies center around the type 2 inflammatory pathway. However, there is an increasing body of evidence that suggests neurogenic mechanisms also play a role in allergic inflammation, with a substantial proportion of allergic conjunctivitis patients experiencing both ocular itch and pain. RECENT FINDINGS Unmyelinated C fibres on the ocular surface transmit histaminergic itch and can be directly activated by mast cell mediators. The conjunctival mucosa also contains TRPV1+ (histamine-dependent) and TRPA1+ (histamine-independent) neurons that enhance ocular pain and itch in allergic conjunctivitis. Allergen-complexed IgE also binds directly to FcεRI expressed on peripheral neurons. Environmental aeroallergens can also directly stimulate neuronal nociceptors to release inflammatory substances. Allergic inflammation thus stimulates nerve terminals to release vasoactive and inflammatory neuropeptides, leading to a cyclical neuronal dysregulation that augments mast cell activity. These repetitive cycles lead to both peripheral and central sensitization and neuronal plasticity, resulting in decreased itch/pain thresholds and a heightened itch/pain response. SUMMARY Neurogenic mechanisms including peripheral and central sensitization may drive chronic ocular itch and pain secondary to allergic inflammation. Research into these pathways may help to identify therapeutic targets in allergic conjunctivitis patients with refractory symptoms.
Collapse
Affiliation(s)
| | | | - Sarah Chisolm
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia
| | | |
Collapse
|
43
|
Saeki H, Ohya Y, Furuta J, Arakawa H, Ichiyama S, Katsunuma T, Katoh N, Tanaka A, Tsunemi Y, Nakahara T, Nagao M, Narita M, Hide M, Fujisawa T, Futamura M, Masuda K, Matsubara T, Murota H, Yamamoto-Hanada K. English Version of Clinical Practice Guidelines for the Management of Atopic Dermatitis 2021. J Dermatol 2022; 49:e315-e375. [PMID: 35996152 DOI: 10.1111/1346-8138.16527] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/03/2022] [Accepted: 06/17/2022] [Indexed: 11/29/2022]
Abstract
This is the English version of the Clinical Practice Guidelines for the Management of Atopic Dermatitis 2021. Atopic dermatitis (AD) is a disease characterized by relapsing eczema with pruritus as a primary lesion. In Japan, from the perspective of evidence-based medicine, the current strategies for the treatment of AD consist of three primary measures: (i) use of topical corticosteroids, tacrolimus ointment, and delgocitinib ointment as the main treatment of the inflammation; (ii) topical application of emollients to treat the cutaneous barrier dysfunction; and (iii) avoidance of apparent exacerbating factors, psychological counseling, and advice about daily life. In the present revised guidelines, descriptions of three new drugs, namely, dupilumab, delgocitinib, and baricitinib, have been added. The guidelines present recommendations to review clinical research articles, evaluate the balance between the advantages and disadvantages of medical activities, and optimize medical activity-related patient outcomes with respect to several important points requiring decision-making in clinical practice.
Collapse
Affiliation(s)
- Hidehisa Saeki
- Department of Dermatology, Nippon Medical School, Tokyo, Japan
| | - Yukihiro Ohya
- Allergy Center, National Center for Child Health and Development, Tokyo, Japan
| | - Junichi Furuta
- Medical Informatics and Management, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hirokazu Arakawa
- Kitakanto Allergy Research Institute, Kibounoie Hospital, Midori, Japan
| | - Susumu Ichiyama
- Department of Dermatology, Nippon Medical School, Tokyo, Japan
| | - Toshio Katsunuma
- Department of Pediatrics, The Jikei University Daisan Hospital, Tokyo, Japan
| | - Norito Katoh
- Department of Dermatology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Akio Tanaka
- Department of Dermatology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuichiro Tsunemi
- Department of Dermatology, Saitama Medical University, Saitama, Japan
| | - Takeshi Nakahara
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mizuho Nagao
- Allergy Center, National Hospital Organization Mie National Hospital, Tsu, Japan
| | - Masami Narita
- Department of Pediatrics, Faculty of Medicine, Kyorin University, Tokyo, Japan
| | - Michihiro Hide
- Department of Dermatology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Department of Dermatology, Hiroshima Citizens Hospital, Hiroshima, Japan
| | - Takao Fujisawa
- Allergy Center, National Hospital Organization Mie National Hospital, Tsu, Japan
| | - Masaki Futamura
- Division of Pediatrics, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Koji Masuda
- Department of Dermatology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Tomoyo Matsubara
- Department of Pediatrics, Dokkyo Medical University Saitama Medical Center, Saitama, Japan
| | - Hiroyuki Murota
- Department of Dermatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | |
Collapse
|
44
|
Bandyopadhyay M, Morelli AE, Balmert SC, Ward NL, Erdos G, Sumpter TL, Korkmaz E, Kaplan DH, Oberbarnscheidt MH, Tkacheva O, Shufesky WJ, Falo LD, Larregina AT. Skin codelivery of contact sensitizers and neurokinin-1 receptor antagonists integrated in microneedle arrays suppresses allergic contact dermatitis. J Allergy Clin Immunol 2022; 150:114-130. [PMID: 35085664 PMCID: PMC9271537 DOI: 10.1016/j.jaci.2021.12.794] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 11/03/2021] [Accepted: 12/03/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Allergic contact dermatitis (CD) is a chronic inflammatory skin disease caused by type 1 biased adaptive immunity for which there is an unmet need for antigen (Ag)-specific immunotherapies. Exposure to skin sensitizers stimulates secretion of the proinflammatory neuropeptides substance P and hemokinin 1, which signal via the neurokinin-1 receptor (NK1R) to promote the innate and adaptive immune responses of CD. Accordingly, mice lacking the NK1R develop impaired CD. Nonetheless, the role and therapeutic opportunities of targeting the NK1R in CD remain to be elucidated. OBJECTIVE We sought to develop an Ag-specific immunosuppressive approach to treat CD by skin codelivery of hapten and NK1R antagonists integrated in dissolvable microneedle arrays (MNA). METHODS In vivo mouse models of contact hypersensitivity and ex vivo models of human skin were used to delineate the effects and mechanisms of NK1R signaling and the immunosuppressive effects of the contact sensitizer NK1R antagonist MNA in CD. RESULTS We demonstrated in mice that CD requires NK1R signaling by substance P and hemokinin 1. Specific deletion of the NK1R in keratinocytes and dendritic cells, but not in mast cells, prevented CD. Skin codelivery of hapten or Ag MNA inhibited neuropeptide-mediated skin inflammation in mouse and human skin, promoted deletion of Ag-specific effector T cells, and increased regulatory T cells, which prevented CD onset and relapses locally and systemically in an Ag-specific manner. CONCLUSIONS Immunoregulation by engineering localized skin neuroimmune networks can be used to treat cutaneous diseases that like CD are caused by type 1 immunity.
Collapse
Affiliation(s)
- Mohna Bandyopadhyay
- Department of Dermatology, University of Pittsburgh, School of Medicine, Pittsburgh, Pa
| | - Adrian E Morelli
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, School of Medicine, Pittsburgh, Pa; Department of Surgery, University of Pittsburgh, School of Medicine, Pittsburgh, Pa; Department of Immunology, University of Pittsburgh, School of Medicine, Pittsburgh, Pa
| | - Stephen C Balmert
- Department of Dermatology, University of Pittsburgh, School of Medicine, Pittsburgh, Pa
| | - Nicole L Ward
- Department of Nutrition, Case Western Reserve University, Cleveland, Ohio; Department of Dermatology, Case Western Reserve University, Cleveland, Ohio; Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio
| | - Geza Erdos
- Department of Dermatology, University of Pittsburgh, School of Medicine, Pittsburgh, Pa
| | - Tina L Sumpter
- Department of Dermatology, University of Pittsburgh, School of Medicine, Pittsburgh, Pa; Department of Immunology, University of Pittsburgh, School of Medicine, Pittsburgh, Pa
| | - Emrullah Korkmaz
- Department of Dermatology, University of Pittsburgh, School of Medicine, Pittsburgh, Pa; Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pa
| | - Daniel H Kaplan
- Department of Dermatology, University of Pittsburgh, School of Medicine, Pittsburgh, Pa; Department of Immunology, University of Pittsburgh, School of Medicine, Pittsburgh, Pa
| | - Martin H Oberbarnscheidt
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, School of Medicine, Pittsburgh, Pa; Department of Surgery, University of Pittsburgh, School of Medicine, Pittsburgh, Pa; Department of Immunology, University of Pittsburgh, School of Medicine, Pittsburgh, Pa
| | - Olga Tkacheva
- Department of Dermatology, University of Pittsburgh, School of Medicine, Pittsburgh, Pa
| | - William J Shufesky
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, School of Medicine, Pittsburgh, Pa; Department of Surgery, University of Pittsburgh, School of Medicine, Pittsburgh, Pa
| | - Louis D Falo
- Department of Dermatology, University of Pittsburgh, School of Medicine, Pittsburgh, Pa; Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pa; University of Pittsburgh Clinical and Translational Science Institute, Pittsburgh, Pa; UPMC Hillman Cancer Center, Pittsburgh, Pa; McGowan Center for Regenerative Medicine, Pittsburgh, Pa
| | - Adriana T Larregina
- Department of Dermatology, University of Pittsburgh, School of Medicine, Pittsburgh, Pa; Department of Immunology, University of Pittsburgh, School of Medicine, Pittsburgh, Pa; UPMC Hillman Cancer Center, Pittsburgh, Pa; McGowan Center for Regenerative Medicine, Pittsburgh, Pa.
| |
Collapse
|
45
|
Ozaydin-Yavuz G, Yavuz IH, İnalöz HS, Boyvadoglu C. Omalizumab is not just an anti-immunoglobulin E. J DERMATOL TREAT 2022; 33:2858-2861. [PMID: 35723235 DOI: 10.1080/09546634.2022.2089326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION AND PURPOSE The mechanism of omalizumab in urticaria is not literally known. Omalizumab may affect receptors on the mast cell surface in other ways, especially other than Fc epsilon RI. MATERIALS AND METHODS Thirty patients who were treated with omalizumab with the diagnosis of chronic urticaria were included in the study. For serum vasoactive intestinal peptide (VIP), kallikrein (KAL), and substance p (SP) values, 5 mL of blood was taken from the patients. These bloods were centrifuged for 5 min and stored at -80° until the levels were measured. The changes in values measured at baseline, third month, and sixth month were analyzed by Friedman test. A value of p < 0.05 was considered statistically significant results. RESULTS While SP, KAL, and VIP values increased continuously, it was observed that the D-dimer value decreased. CONCLUSION This study shows that omalizumab can affect mast cells other than IgE. To the best of our knowledge, this is the first study to show the relationship between omalizumab and VIP.
Collapse
Affiliation(s)
- Goknur Ozaydin-Yavuz
- Department of Dermatology, Yuzuncu Yil University Faculty of Medicine, Van, Turkey
| | - Ibrahim Halil Yavuz
- Department of Dermatology, Yuzuncu Yil University Faculty of Medicine, Van, Turkey
| | - Hüseyin Serhat İnalöz
- Department of Dermatology, University of Gaziantep Faculty of Medicine, Gaziantep, Turkey
| | - Cagdas Boyvadoglu
- Department of Dermatology, University of Gaziantep Faculty of Medicine, Gaziantep, Turkey
| |
Collapse
|
46
|
Mosquito saliva enhances virus infection through sialokinin-dependent vascular leakage. Proc Natl Acad Sci U S A 2022; 119:e2114309119. [PMID: 35675424 PMCID: PMC9214539 DOI: 10.1073/pnas.2114309119] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Viruses transmitted by Aedes mosquitoes are an increasingly important global cause of disease. Defining common determinants of host susceptibility to this large group of heterogenous pathogens is key for informing the rational design of panviral medicines. Infection of the vertebrate host with these viruses is enhanced by mosquito saliva, a complex mixture of salivary-gland-derived factors and microbiota. We show that the enhancement of infection by saliva was dependent on vascular function and was independent of most antisaliva immune responses, including salivary microbiota. Instead, the Aedes gene product sialokinin mediated the enhancement of virus infection through a rapid reduction in endothelial barrier integrity. Sialokinin is unique within the insect world as having a vertebrate-like tachykinin sequence and is absent from Anopheles mosquitoes, which are incompetent for most arthropod-borne viruses, whose saliva was not proviral and did not induce similar vascular permeability. Therapeutic strategies targeting sialokinin have the potential to limit disease severity following infection with Aedes-mosquito-borne viruses.
Collapse
|
47
|
Prurigo crónico: actualización. ACTAS DERMO-SIFILIOGRAFICAS 2022; 113:563-574. [DOI: 10.1016/j.ad.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 06/29/2021] [Accepted: 11/01/2021] [Indexed: 11/23/2022] Open
|
48
|
Docampo-Simón A, Sánchez-Pujol M, Silvestre-Salvador J. [Translated article] Update on Chronic Prurigo. ACTAS DERMO-SIFILIOGRAFICAS 2022; 113:T563-T574. [DOI: 10.1016/j.ad.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 11/01/2021] [Indexed: 11/29/2022] Open
|
49
|
Wang C, Hou Y, Ge S, Lu J, Wang X, Lv Y, Wang N, He H. Synthetic imperatorin derivatives alleviate allergic reactions via mast cells. Biomed Pharmacother 2022; 150:112982. [PMID: 35483187 DOI: 10.1016/j.biopha.2022.112982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/23/2022] [Accepted: 04/14/2022] [Indexed: 11/02/2022] Open
Abstract
Anaphylaxis is a severe systemic allergic reaction that exhibits multiple clinical symptoms. The Mas-related G protein-coupled receptor X2 (MRGPRX2) is recognized as a key cell receptor mediating allergic diseases and drug-induced anaphylactoid reactions. Thus, it has been a promising target for preventing and treating these reactions. Based on the potential activity of imperatorin and active structural feature of MRGPRX2, we first demonstrated that the synthetic imperatorin derivatives (IDs) could significantly inhibit MRGPRX2 agonist-induced degranulation and cytokine release in LAD2 cells, as well as alleviate local and systemic anaphylaxis in mice. The IC50 value of the most promising compound is an order of magnitude lower than that of imperatorin. IDs were further identified to display anti-pseudo-allergic activity by binding MRGPRX2 with the tertiary nitrogen substructures, just liking the reported MRGPRX2-ligand. These results would propose evidence for discovery of agents for treating MCs-dependent allergic disorders.
Collapse
Affiliation(s)
- Cheng Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yajing Hou
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Shuai Ge
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jiayu Lu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xiangjun Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yuexin Lv
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Nan Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Huaizhen He
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
50
|
Tominaga M, Takamori K. Peripheral itch sensitization in atopic dermatitis. Allergol Int 2022; 71:265-277. [PMID: 35624035 DOI: 10.1016/j.alit.2022.04.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 04/06/2022] [Indexed: 02/07/2023] Open
Abstract
Atopic dermatitis is a skin disorder caused by skin dryness and barrier dysfunction, resulting in skin inflammation and chronic itch (or pruritus). The pathogenesis of atopic dermatitis is thought to be initiated by a lowering of the itch threshold due to dry skin. This lowering of the itch threshold is at least partially due to the increase in intraepidermal nerve fibers and sensitization of sensory nerves by interleukin (IL)-33 produced and secreted by keratinocytes. Such skin is easily prone to itch due to mechanical stimuli, such as rubbing of clothing and chemical stimuli from itch mediators. In patients with atopic dermatitis, once itch occurs, further itch is induced by scratching, and the associated scratching breaks down the skin barrier. Disruption of the skin barrier allows entry into the epidermis of external foreign substances, such as allergens derived from house dust mites, leading to an increased induction of type 2 inflammatory responses. As a result, type 2 cytokines IL-4, IL-13, and IL-31 are mainly secreted by Th2 cells, and their action on sensory nerve fibers causes further itch sensitization. These sequences of events are thought to occur simultaneously in patients with atopic dermatitis, leading to a vicious itch-scratch cycle. This vicious cycle becomes a negative spiral that leads to disease burden. Therefore, controlling itch is essential for the treatment of atopic dermatitis. In this review, we summarize and discuss advances in the mechanisms of peripheral itch sensitization in atopic dermatitis, focusing on skin barrier-neuro-immune triadic connectivity.
Collapse
|