1
|
Domagała A, Macura B, Piekarz K, Kiecka A. Septic arthritis - symptoms, diagnosis and new therapy. Eur J Clin Microbiol Infect Dis 2025; 44:1019-1029. [PMID: 39964630 DOI: 10.1007/s10096-025-05066-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 02/05/2025] [Indexed: 05/09/2025]
Abstract
Septic arthritis (SA) is an infection of one or more joints caused mainly by Staphylococcus aureus, to a lesser extent by streptococci and Gram-negative bacilli. It poses a huge medical problem due to its high mortality rate of 2-15%. Disease symptoms are often vague, resulting in a risk that SA may be diagnosed too late. This shows the urgency of finding a rapid diagnostic method for SA and an effective therapy. Basic treatment of SA including joint drain or empirical antimicrobial therapy does not always provide the desired results. Hence, new therapies are being sought, including the use of antimicrobial peptide or phage therapy.
Collapse
Affiliation(s)
- Angelika Domagała
- Department of Immunology, Jagiellonian University Medical College, Kraków, Poland
- Centre of Microbiological Research and Autovaccines, Kraków, Poland
| | - Barbara Macura
- Faculty of Health Sciences, Institute of Physiotherapy, Chair of Biomedical Sciences, Jagiellonian University Medical College, Kopernika 7a, Kraków, 31- 034, Poland
| | - Karolina Piekarz
- Centre of Microbiological Research and Autovaccines, Kraków, Poland
| | - Aneta Kiecka
- Centre of Microbiological Research and Autovaccines, Kraków, Poland.
- Faculty of Health Sciences, Institute of Physiotherapy, Chair of Biomedical Sciences, Jagiellonian University Medical College, Kopernika 7a, Kraków, 31- 034, Poland.
| |
Collapse
|
2
|
Štrajtenberger M, Lugović-Mihić L, Stipić-Marković A, Artuković M, Glavina A, Pravica NB, Hanžek M, Sušić T, Tešija Kuna A, Nađ Bungić L. Assesment of Salivary and Serum Levels of HBD2 in Patients with Chronic Angioedema. J Clin Med 2024; 13:7552. [PMID: 39768474 PMCID: PMC11728209 DOI: 10.3390/jcm13247552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
Background/Objectives: Human β-defensin 2 (HBD2) is a protein that plays an important role in activating the immune system by modulating spinal pathways and the inflammatory response. According to previous research, HBD2 was proven to be important in chronic spontaneous urticaria (CSU) (their values were significantly elevated in CSU patients, with a significant correlation between HBD2 levels and the percentage of peripheral basophils, suggesting that elevated HBD2 levels may be a potential marker of basophil and mast cell activation), which led us to additional research on the HBD2 molecule in isolated chronic angioedema. The aim of this research is to examine HBD2 values in the saliva and serum of patients with isolated angioedema, as a potential biomarker of the disease. Methods: This cross-sectional study involved a total of 102 participants, involving three groups: 33 patients with isolated chronic non-hereditary angioedema (AE) (defined as sudden onset of localized edema without chronic urticaria), 33 patients with angioedema associated with chronic urticaria (CU+AE), and 35 healthy participants (controls, CTRL). They provided a saliva sample to determine HBD2 levels using an ELISA (Enzyme-Linked Immunosorbent Assay). Subsequently, a peripheral blood sample (serum) was taken from the participants to determine HBD2 levels using the same ELISA. Results: Salivary HBD2 levels were significantly higher in those with CU+AE than in the CTRL (p = 0.019). While salivary HBD2 values differed between those with angioedema and CTRL, the serum HBD2 values did not. Also, no correlation between the levels of HBD2 in saliva and serum was found. Conclusions: Since we found that salivary HBD2 values were significantly higher in those with CU+AE than in CTRL, this points to a possible role of the HBD2 molecule in pathogenesis of AE (namely, that it induces degranulation in mast cells and vascular permeability, and has antimicrobial properties) Therefore, more research is needed to determine how reliable salivary HBD2 measurement is, as well as its significance.
Collapse
Affiliation(s)
- Maja Štrajtenberger
- Department of Pulmology, Special Hospital for Pulmonary Diseases, 10000 Zagreb, Croatia; (M.Š.); (L.N.B.)
| | - Liborija Lugović-Mihić
- Department of Dermatovenereology, University Hospital Center Sestre Milosrdnice, 10000 Zagreb, Croatia
- School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Asja Stipić-Marković
- Department for Respiratory Infections, Dr. Fran Mihaljević University Hospital for Infections Diseases, 10000 Zagreb, Croatia;
| | - Marinko Artuković
- Faculty of Dental Medicine and Health Osijek, 31000 Osijek, Croatia;
| | - Ana Glavina
- Department of Dental Medicine, University Hospital of Split, 21000 Split, Croatia;
- Department of Oral Medicine, Study of Dental Medicine, School of Medicine, University of Split, 21000 Split, Croatia
| | - Nika Barbara Pravica
- Department of Emergency Medicine, University Hospital Center Sestre Milosrdnice, 10000 Zagreb, Croatia;
| | - Milena Hanžek
- Department of Clinical Chemistry, University Hospital Center Sestre Milosrdnice, 10000 Zagreb, Croatia; (M.H.); (T.S.); (A.T.K.)
| | - Tamara Sušić
- Department of Clinical Chemistry, University Hospital Center Sestre Milosrdnice, 10000 Zagreb, Croatia; (M.H.); (T.S.); (A.T.K.)
| | - Andrea Tešija Kuna
- Department of Clinical Chemistry, University Hospital Center Sestre Milosrdnice, 10000 Zagreb, Croatia; (M.H.); (T.S.); (A.T.K.)
| | - Lara Nađ Bungić
- Department of Pulmology, Special Hospital for Pulmonary Diseases, 10000 Zagreb, Croatia; (M.Š.); (L.N.B.)
| |
Collapse
|
3
|
Ikuyo Y, Yokoi H, Wang J, Furukawa M, Raju R, Yamada M, Aoki Y, Matsushita K. Capsaicin modulates TRPV1, induces β-defensin expression, and regulates NF-κB in oral senescent cells and a murine model. Genes Cells 2024; 29:1069-1076. [PMID: 39266282 DOI: 10.1111/gtc.13158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/18/2024] [Accepted: 08/26/2024] [Indexed: 09/14/2024]
Abstract
Aging is associated with a decline in oral immune function, marked by reduced levels of antimicrobial peptides such as defensins. Capsaicin, a bioactive component found in chili peppers, has been theorized to modulate immune responses through specific receptor pathways. This study examined the effects of aging on oral defensin levels and the potential mitigating role of capsaicin, mediated by the immune response in oral tissues. We conducted a comparative analysis between young and aged mice, with or without capsaicin supplementation, for 3 months. The effect of capsaicin was also studied in vitro in senescence-induced human oral keratinocytes. We found that aging did not reduce defensin levels uniformly but did so in some instances. Capsaicin treatment increased defensin levels in these cases, potentially through transient receptor potential cation channel subfamily V member 1 (TRPV1)-mediated pathways in the oral cavity. Capsaicin supplementation may counteract age-related declines in oral defensin levels, enabling the maintenance of oral immune function during aging.
Collapse
Affiliation(s)
- Yoriko Ikuyo
- Department of Nutritional Sciences, Faculty of Nutritional Sciences, Tohto University, Fukaya, Japan
- Section of Community Oral Health and Epidemiology, Division of Oral Health, Technology and Epidemiology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Haruna Yokoi
- Department of Geriatric Oral Science, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Jingshu Wang
- Nagoya College of Physical & Occupational Therapy, Nagoya, Japan
| | - Masae Furukawa
- Department of Dental Hygiene, Ogaki Women's College, Ogaki, Japan
| | - Resmi Raju
- Section on Craniofacial Genetic Disorders, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Mitsuyoshi Yamada
- Department of Operative Dentistry, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Yu Aoki
- Research Department, Daiichi Sankyo Healthcare Co., Ltd., Tokyo, Japan
| | - Kenji Matsushita
- Section of Community Oral Health and Epidemiology, Division of Oral Health, Technology and Epidemiology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
- Department of Geriatric Oral Science, Graduate School of Dentistry, Tohoku University, Sendai, Japan
- Department of Dental Hygiene, Ogaki Women's College, Ogaki, Japan
| |
Collapse
|
4
|
Yu H, Ou G. Genetic analyses unravel the causal association of cytokine levels on lichen simplex chronicus risk: insights from a mendelian randomization study. Arch Dermatol Res 2024; 316:241. [PMID: 38795165 DOI: 10.1007/s00403-024-02964-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/27/2024]
Abstract
Lichen simplex chronicus (LSC) presents a challenge in dermatology due to its elusive pathogenic mechanisms. While associations between circulating inflammatory cytokines and LSC were observed, the definitive causal dynamics remain to be elucidated. Our study used a two-sample Mendelian randomization (MR) approach to investigate causal relationships. We applied a suite of MR methodologies, including IVW, Weighted Median, MR-Egger, Weighted Mode, Simple Mode, MR-PRESSO, and the Steiger test, to ensure robust causal inference. Our analysis confirmed the causal impact of genetically determined cytokine levels on LSC risk, particularly MMP-10 (OR = 0.493, P = 0.004) and DNER (OR = 0.651, P = 0.043) in risk attenuation. We also found a positive causal correlation between GDNF levels (OR = 1.871, P = 0.007) and LSC prevalence. Notably, bidirectional causality was observed between DNER and LSC. Consistency across various MR analyses and sensitivity analyses confirmed the absence of horizontal pleiotropy, validating the causal estimates. This pioneering MR investigation unveils a novel genetically anchored causal relationship between the circulating levels of MMP-10, DNER, and GDNF and LSC risk. Although further validation is requisite, our findings augment the understanding of cytokine mediation in LSC and underscore prospective avenues for research.
Collapse
Affiliation(s)
- Haoyang Yu
- Department of Dermatology, Taizhou First People's Hospital, Taizhou, Zhejiang, 318020, P. R. China.
| | - Guanyong Ou
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| |
Collapse
|
5
|
West PW, Tontini C, Atmoko H, Kiss O, Garner T, Bahri R, Warren RB, Griffiths CEM, Stevens A, Bulfone-Paus S. Human Mast Cells Upregulate Cathepsin B, a Novel Marker of Itch in Psoriasis. Cells 2023; 12:2177. [PMID: 37681909 PMCID: PMC10486964 DOI: 10.3390/cells12172177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 09/09/2023] Open
Abstract
Mast cells (MCs) contribute to skin inflammation. In psoriasis, the activation of cutaneous neuroimmune networks commonly leads to itch. To dissect the unique contribution of MCs to the cutaneous neuroinflammatory response in psoriasis, we examined their density, distribution, relation to nerve fibres and disease severity, and molecular signature by comparing RNA-seq analysis of MCs isolated from the skin of psoriasis patients and healthy volunteers. In involved psoriasis skin, MCs and Calcitonin Gene-Related Peptide (CGRP)-positive nerve fibres were spatially associated, and the increase of both MC and nerve fibre density correlated with disease severity. Gene set enrichment analysis of differentially expressed genes in involved psoriasis skin showed significant representation of neuron-related pathways (i.e., regulation of neuron projection along with dendrite and dendritic spine morphogenesis), indicating MC engagement in neuronal development and supporting the evidence of close MC-nerve fibre interaction. Furthermore, the analysis of 208 identified itch-associated genes revealed that CTSB, TLR4, and TACR1 were upregulated in MCs in involved skin. In both whole-skin published datasets and isolated MCs, CTSB was found to be a reliable indicator of the psoriasis condition. Furthermore, cathepsin B+ cells were increased in psoriasis skin and cathepsin B+ MC density correlated with disease severity. Therefore, our study provides evidence that cathepsin B could serve as a common indicator of the MC-dependent itch signature in psoriasis.
Collapse
Affiliation(s)
- Peter W. West
- Lydia Becker Institute of Immunology and Inflammation, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (P.W.W.); (C.T.); (O.K.); (R.B.); (R.B.W.); (C.E.M.G.)
| | - Chiara Tontini
- Lydia Becker Institute of Immunology and Inflammation, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (P.W.W.); (C.T.); (O.K.); (R.B.); (R.B.W.); (C.E.M.G.)
| | - Haris Atmoko
- Lydia Becker Institute of Immunology and Inflammation, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (P.W.W.); (C.T.); (O.K.); (R.B.); (R.B.W.); (C.E.M.G.)
| | - Orsolya Kiss
- Lydia Becker Institute of Immunology and Inflammation, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (P.W.W.); (C.T.); (O.K.); (R.B.); (R.B.W.); (C.E.M.G.)
| | - Terence Garner
- Division of Developmental Biology and Medicine, Manchester Institute for Collaborative Research on Ageing, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M23 9LT, UK; (T.G.); (A.S.)
| | - Rajia Bahri
- Lydia Becker Institute of Immunology and Inflammation, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (P.W.W.); (C.T.); (O.K.); (R.B.); (R.B.W.); (C.E.M.G.)
| | - Richard B. Warren
- Lydia Becker Institute of Immunology and Inflammation, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (P.W.W.); (C.T.); (O.K.); (R.B.); (R.B.W.); (C.E.M.G.)
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M23 9LT, UK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M23 9LT, UK
| | - Christopher E. M. Griffiths
- Lydia Becker Institute of Immunology and Inflammation, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (P.W.W.); (C.T.); (O.K.); (R.B.); (R.B.W.); (C.E.M.G.)
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M23 9LT, UK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M23 9LT, UK
| | - Adam Stevens
- Division of Developmental Biology and Medicine, Manchester Institute for Collaborative Research on Ageing, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M23 9LT, UK; (T.G.); (A.S.)
| | - Silvia Bulfone-Paus
- Lydia Becker Institute of Immunology and Inflammation, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (P.W.W.); (C.T.); (O.K.); (R.B.); (R.B.W.); (C.E.M.G.)
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M23 9LT, UK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M23 9LT, UK
| |
Collapse
|
6
|
Tseng PY, Hoon MA. GPR15L is an epithelial inflammation-derived pruritogen. SCIENCE ADVANCES 2022; 8:eabm7342. [PMID: 35704588 PMCID: PMC9200282 DOI: 10.1126/sciadv.abm7342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 05/02/2022] [Indexed: 05/09/2023]
Abstract
Itch is an unpleasant sensation that often accompanies chronic dermatological conditions. Although many of the itch receptors and the neural pathways underlying this sensation are known, the identity of endogenous ligands is still not fully appreciated. Using an unbiased bioinformatic approach, we identified GPR15L as a candidate pruritogen whose expression is robustly up-regulated in psoriasis and atopic dermatitis. Although GPR15L was previously shown to be a cognate ligand of the receptor GPR15, expressed in dermal T cells, here we show that it also contributes to pruritogenesis by activating Mas-related G protein-coupled receptors (MRGPRs). GPR15L can selectively stimulate mouse dorsal root ganglion neurons that express Mrgpra3 and evokes intense itch responses. GPR15L causes mast cell degranulation through stimulation of MRGPRX2 and Mrgprb2. Genetic disruption of GPR15L expression attenuates scratch responses in a mouse model of psoriasis. Our study reveals unrecognized features of GRP15L, showing that it is a potent itch-inducing agent.
Collapse
Affiliation(s)
- Pang-Yen Tseng
- Molecular Genetics Section, National Institute of Dental and Craniofacial Research/NIH, 35 Convent Drive, Bethesda, MD 20892, USA
| | | |
Collapse
|
7
|
Yamanishi K, Imai Y. Alarmins/stressorins and immune dysregulation in intractable skin disorders. Allergol Int 2021; 70:421-429. [PMID: 34127380 DOI: 10.1016/j.alit.2021.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 04/21/2021] [Indexed: 12/18/2022] Open
Abstract
Unlike other barrier epithelia of internal organs, the stratified squamous epithelium of the skin is always exposed to the external environment. However, the robust barrier structure and function of the skin are highly resistant against external insults so as to not easily allow foreign invasions. Upon sensing danger signals, the innate immunity system is promptly activated. This process is mediated by alarmins, which are released passively from damaged cells. Nuclear alarmins or stressorins are actively released from intact cells in response to various cellular stresses. Alarmins/stressorins are deeply involved in the disease processes of chronic skin disorders of an unknown cause, such as rosacea, psoriasis, and atopic dermatitis. Furthermore, alarmins/stressorins are also induced in the congenital skin disorders of ichthyosis and keratoderma due to defective keratinization. Studies on alarmin activation and its downstream pathways may help develop novel therapeutic agents for intractable skin disorders.
Collapse
|
8
|
Mechanisms of Broad-Band UVB Irradiation‒Induced Itch in Mice. J Invest Dermatol 2021; 141:2499-2508.e3. [PMID: 33812858 DOI: 10.1016/j.jid.2021.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/02/2021] [Accepted: 03/09/2021] [Indexed: 11/24/2022]
Abstract
Although sunburn can produce severe uncontrollable itching, the underlying mechanisms of UV irradiation‒induced itch are poorly understood because of a lack of experimental animal models of sunburn itch. In this study, we established a sunburn-related mouse model and found that broad-band UVB irradiation elicited scratching but not wiping behavior in mice. Using a combination of live-cell calcium ion imaging and quantitative RT-PCR on dorsal root ganglion neurons, H&E staining, immunofluorescence staining of skin preparations, and behavioral testing, in combination with genetic and pharmacological approaches, we showed that TRPV1-positive dorsal root ganglion neurons but not mast cells are involved in broad-band UVB irradiation‒induced itch. Moreover, both genetic and pharmacological inhibition of TRPV1 function significantly alleviated the broad-band UVB irradiation‒induced itch response. Collectively, our results suggest that broad-band UVB irradiation evokes itch sensation in mice by promoting TRPV1 channel function in dorsal root ganglion neurons and provide potential therapeutic targets for sunburn-related itch.
Collapse
|
9
|
Li X, Yang H, Han Y, Yin S, Shen B, Wu Y, Li W, Cao Z. Tick peptides evoke itch by activating MrgprC11/MRGPRX1 to sensitize TRPV1 in pruriceptors. J Allergy Clin Immunol 2020; 147:2236-2248.e16. [PMID: 33358893 DOI: 10.1016/j.jaci.2020.12.626] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 11/21/2020] [Accepted: 12/02/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Tick bites severely threaten human health because they allow the transmission of many deadly pathogens, including viruses, bacteria, protozoa, and helminths. Pruritus is a leading symptom of tick bites, but its molecular and neural bases remain elusive. OBJECTIVES This study sought to discover potent drugs and targets for the specific prevention and treatment of tick bite-induced pruritus and arthropod-related itch. METHODS We used live-cell calcium imaging, patch-clamp recordings, and genetic ablation and evaluated mouse behavior to investigate the molecular and neural bases of tick bite-induced pruritus. RESULTS We found that 2 tick salivary peptides, IP defensin 1 (IPDef1) and IR defensin 2 (IRDef2), induced itch in mice. IPDef1 was further revealed to have a stronger pruritogenic potential than IRDef2 and to induce pruritus in a histamine-independent manner. IPDef1 evoked itch by activating mouse MrgprC11 and human MRGPRX1 on dorsal root ganglion neurons. IPDef1-activated MrgprC11/X1 signaling sensitized downstream ion channel TRPV1 on dorsal root ganglion neurons. Moreover, IPDef1 also activated mouse MrgprB2 and its ortholog human MRGPRX2 selectively expressed on mast cells, inducing the release of inflammatory cytokines and driving acute inflammation in mice, although mast cell activation did not contribute to oxidated IPDef1-induced itch. CONCLUSIONS Our study identifies tick salivary peptides as a new class of pruritogens that initiate itch through MrgprC11/X1-TRPV1 signaling in pruritoceptors. Our work will provide potential drug targets for the prevention and treatment of pruritus induced by the bites or stings of tick and maybe other arthropods.
Collapse
Affiliation(s)
- Xueke Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Haifeng Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yuewen Han
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Shijin Yin
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Bingzheng Shen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yingliang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wenxin Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhijian Cao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China; Bio-drug Research Center, Wuhan University, Wuhan, China; Hubei Province Engineering and Technology Research, Center for Fluorinated Pharmaceuticals, Wuhan University, Wuhan, China.
| |
Collapse
|
10
|
Mudroňová D, Karaffová V, Pešulová T, Koščová J, Maruščáková IC, Bartkovský M, Marcinčáková D, Ševčíková Z, Marcinčák S. The effect of humic substances on gut microbiota and immune response of broilers. FOOD AGR IMMUNOL 2020. [DOI: 10.1080/09540105.2019.1707780] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- D. Mudroňová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - V. Karaffová
- Department of Pathological Anatomy and Pathological Physiology, University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - T. Pešulová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - J. Koščová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - I. Cingeľová Maruščáková
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - M. Bartkovský
- Department of Food Hygiene and Technology, University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - D. Marcinčáková
- Department of Food Hygiene and Technology, University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - Z. Ševčíková
- Department of Pathological Anatomy and Pathological Physiology, University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - S. Marcinčák
- Department of Food Hygiene and Technology, University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| |
Collapse
|
11
|
Batra V, Maheshwarappa A, Dagar K, Kumar S, Soni A, Kumaresan A, Kumar R, Datta TK. Unusual interplay of contrasting selective pressures on β-defensin genes implicated in male fertility of the Buffalo (Bubalus bubalis). BMC Evol Biol 2019; 19:214. [PMID: 31771505 PMCID: PMC6878701 DOI: 10.1186/s12862-019-1535-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 10/22/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The buffalo, despite its superior milk-producing ability, suffers from reproductive limitations that constrain its lifetime productivity. Male sub-fertility, manifested as low conception rates (CRs), is a major concern in buffaloes. The epididymal sperm surface-binding proteins which participate in the sperm surface remodelling (SSR) events affect the survival and performance of the spermatozoa in the female reproductive tract (FRT). A mutation in an epididymal secreted protein, beta-defensin 126 (DEFB-126/BD-126), a class-A beta-defensin (CA-BD), resulted in decreased CRs in human cohorts across the globe. To better understand the role of CA-BDs in buffalo reproduction, this study aimed to identify the BD genes for characterization of the selection pressure(s) acting on them, and to identify the most abundant CA-BD transcript in the buffalo male reproductive tract (MRT) for predicting its reproductive functional significance. RESULTS Despite the low protein sequence homology with their orthologs, the CA-BDs have maintained the molecular framework and the structural core vital to their biological functions. Their coding-sequences in ruminants revealed evidence of pervasive purifying and episodic diversifying selection pressures. The buffalo CA-BD genes were expressed in the major reproductive and non-reproductive tissues exhibiting spatial variations. The Buffalo BD-129 (BuBD-129) was the most abundant and the longest CA-BD in the distal-MRT segments and was predicted to be heavily O-glycosylated. CONCLUSIONS The maintenance of the structural core, despite the sequence divergence, indicated the conservation of the molecular functions of the CA-BDs. The expression of the buffalo CA-BDs in both the distal-MRT segments and non-reproductive tissues indicate the retention the primordial microbicidal activity, which was also predicted by in silico sequence analyses. However, the observed spatial variations in their expression across the MRT hint at their region-specific roles. Their comparison across mammalian species revealed a pattern in which the various CA-BDs appeared to follow dissimilar evolutionary paths. This pattern appears to maintain only the highly efficacious CA-BD alleles and diversify their functional repertoire in the ruminants. Our preliminary results and analyses indicated that BuBD-129 could be the functional ortholog of the primate DEFB-126. Further studies are warranted to assess its molecular functions to elucidate its role in immunity, reproduction and fertility.
Collapse
Affiliation(s)
- Vipul Batra
- Animal Genomics Lab, National Dairy Research Institute, Karnal, 132001, India
| | | | - Komal Dagar
- Animal Genomics Lab, National Dairy Research Institute, Karnal, 132001, India
| | - Sandeep Kumar
- Animal Genomics Lab, National Dairy Research Institute, Karnal, 132001, India
| | - Apoorva Soni
- Animal Genomics Lab, National Dairy Research Institute, Karnal, 132001, India
| | - A Kumaresan
- Theriogenology Lab, SRS of NDRI, Bengaluru, 560030, India
| | - Rakesh Kumar
- Animal Genomics Lab, National Dairy Research Institute, Karnal, 132001, India
| | - T K Datta
- Animal Genomics Lab, National Dairy Research Institute, Karnal, 132001, India.
| |
Collapse
|
12
|
Mack MR, Kim BS. The Itch–Scratch Cycle: A Neuroimmune Perspective. Trends Immunol 2018; 39:980-991. [DOI: 10.1016/j.it.2018.10.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/20/2018] [Accepted: 10/01/2018] [Indexed: 12/18/2022]
|
13
|
Hibberd TJ, Feng J, Luo J, Yang P, Samineni VK, Gereau RW, Kelley N, Hu H, Spencer NJ. Optogenetic Induction of Colonic Motility in Mice. Gastroenterology 2018; 155:514-528.e6. [PMID: 29782847 PMCID: PMC6715392 DOI: 10.1053/j.gastro.2018.05.029] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 04/12/2018] [Indexed: 02/03/2023]
Abstract
BACKGROUND & AIMS Strategies are needed to increase gastrointestinal transit without systemic pharmacologic agents. We investigated whether optogenetics, focal application of light to control enteric nervous system excitability, could be used to evoke propagating contractions and increase colonic transit in mice. METHODS We generated transgenic mice with Cre-mediated expression of light-sensitive channelrhodopsin-2 (ChR2) in calretinin neurons (CAL-ChR2 Cre+ mice); Cre- littermates served as controls. Colonic myenteric neurons were analyzed by immunohistochemistry, patch-clamp, and calcium imaging studies. Motility was assessed by mechanical, electrophysiological, and video recording in vitro and by fecal output in vivo. RESULTS In isolated colons, focal light stimulation of calretinin enteric neurons evoked classic polarized motor reflexes (50/58 stimulations), followed by premature anterograde propagating contractions (39/58 stimulations). Light stimulation could evoke motility from sites along the entire colon. These effects were prevented by neural blockade with tetrodotoxin (n = 2), and did not occur in control mice (n = 5). Light stimulation of proximal colon increased the proportion of natural fecal pellets expelled over 15 minutes in vitro (75% ± 17% vs 32% ± 8% for controls) (P < .05). In vivo, activation of wireless light-emitting diodes implanted onto the colon wall significantly increased hourly fecal pellet output in conscious, freely moving mice (4.2 ± 0.4 vs 1.3 ± 0.3 in controls) (P < .001). CONCLUSIONS In studies of mice, we found that focal activation of a subset of enteric neurons can increase motility of the entire colon in vitro, and fecal output in vivo. Optogenetic control of enteric neurons might therefore be used to modify gut motility.
Collapse
Affiliation(s)
- Timothy J Hibberd
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University, Australia
| | - Jing Feng
- Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, USA
| | - Jialie Luo
- Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, USA
| | - Pu Yang
- Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, USA
| | - Vijay K Samineni
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, St Louis, MO, USA
| | - Robert W Gereau
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, St Louis, MO, USA
| | - Nigel Kelley
- SA Biomedical Engineering, SA Health, Government of South Australia, Australia
| | - Hongzhen Hu
- Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, St Louis, Missouri.
| | - Nick J Spencer
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University, Adelaide, Australia.
| |
Collapse
|
14
|
Esancy K, Condon L, Feng J, Kimball C, Curtright A, Dhaka A. A zebrafish and mouse model for selective pruritus via direct activation of TRPA1. eLife 2018; 7:32036. [PMID: 29561265 PMCID: PMC5912907 DOI: 10.7554/elife.32036] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 03/19/2018] [Indexed: 11/13/2022] Open
Abstract
Little is known about the capacity of lower vertebrates to experience itch. A screen of itch-inducing compounds (pruritogens) in zebrafish larvae yielded a single pruritogen, the TLR7 agonist imiquimod, that elicited a somatosensory neuron response. Imiquimod induced itch-like behaviors in zebrafish distinct from those induced by the noxious TRPA1 agonist, allyl isothiocyanate. In the zebrafish, imiquimod-evoked somatosensory neuronal responses and behaviors were entirely dependent upon TRPA1, while in the mouse TRPA1 was required for the direct activation of somatosensory neurons and partially responsible for behaviors elicited by this pruritogen. Imiquimod was found to be a direct but weak TRPA1 agonist that activated a subset of TRPA1 expressing neurons. Imiquimod-responsive TRPA1 expressing neurons were significantly more sensitive to noxious stimuli than other TRPA1 expressing neurons. Together, these results suggest a model for selective itch via activation of a specialized subpopulation of somatosensory neurons with a heightened sensitivity to noxious stimuli. Itch is a common and uncomfortable sensation that creates a strong desire to scratch. This mechanism may have evolved so animals can remove harmful parasites or substances from themselves. Feelings like touch, pain, and itch arise when stimuli such as mechanical pressure, temperature, or chemicals activate groups of specialized neurons in the skin. This response takes place when certain proteins – or receptors – at the surface of the neurons are stimulated. For instance, TRP ion channels such as TRPA1 play an important role in both the itch and pain responses. In mammals, directly activating these channels elicits pain. Itch is felt when itch responsive receptors are activated on a distinct set of neurons, which in turn activate TRP receptors. Although these processes have been well-studied in mammals, little is known about the existence of itch sensation in other animals. To explore this, Esancy, Condon, Feng et al. exposed zebrafish to chemicals that induce itch in mammals, and found that imiquimod, a medicine used to treat certain skin conditions, can elicit itch in fish. When this chemical was injected into the lips of a fish, the animal rubbed them against the walls of its tank, akin to scratching an itch. Further experiments showed that imiquimod directly activated the pain-sensing ion channel TRPA1. In fact, this receptor was essential to the ‘scratching’ behavior: fish genetically engineered to lack TRPA1 did not react to the drug. Fluorescent proteins were then used to track when the neurons that carry TRPA1 were activated.This revealed that, in the skin of zebrafish, there are at least two functionally distinct populations neurons that express TRPA1. One population, whose activation is associated with the animal ‘scratching’, responds even when TRPA1 receives a low level of stimulation. The other population is less sensitive: it responds only to high-intensity stimuli and is associated with a pain response such as freezing and slower movements. Further experiments in the mouse suggest that this mechanism is present in mammals as well. This coding strategy explains how pain and itch can be experienced when the same receptors are being activated. Studying how animals like fish experience itch gives an insight into how detecting these sensations could have evolved. In turn, understanding this mechanism at the molecular and cellular levels may help find new ways to design better treatments for itch and pain disorders.
Collapse
Affiliation(s)
- Kali Esancy
- Department of Biological Structure, University of Washington, Seattle, United States.,Graduate Program in Neuroscience, University of Washington, Seattle, United States
| | - Logan Condon
- Department of Biological Structure, University of Washington, Seattle, United States
| | - Jing Feng
- Center for the Study of Itch, Washington University, St. Louis, United States
| | - Corinna Kimball
- Department of Biological Structure, University of Washington, Seattle, United States
| | - Andrew Curtright
- Department of Biological Structure, University of Washington, Seattle, United States
| | - Ajay Dhaka
- Department of Biological Structure, University of Washington, Seattle, United States.,Graduate Program in Neuroscience, University of Washington, Seattle, United States
| |
Collapse
|