1
|
Shigemasa R, Masuko H, Oshima H, Hyodo K, Kitazawa H, Kanazawa J, Yatagai Y, Iijima H, Naito T, Saito T, Konno S, Hirota T, Tamari M, Sakamoto T, Hizawa N. The primary ciliary dyskinesia-related genetic risk score is associated with susceptibility to adult-onset asthma. PLoS One 2024; 19:e0300000. [PMID: 38457400 PMCID: PMC10923447 DOI: 10.1371/journal.pone.0300000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/19/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Disturbance of mucociliary clearance is an important factor in the pathogenesis of asthma. We hypothesized that common variants in genes responsible for ciliary function may contribute to the development of asthma with certain phenotypes. METHODS Three independent adult Japanese populations (including a total of 1,158 patients with asthma and 2,203 non-asthmatic healthy participants) were studied. First, based on the ClinVar database (https://www.ncbi.nlm.nih.gov/clinvar/), we selected 12 common single-nucleotide polymorphisms (SNPs) with molecular consequences (missense, nonsense, and 3'-untranslated region mutation) in 5 primary ciliary dyskinesia (PCD)-related genes and calculated a PCD-genetic risk score (GRS) as a cumulative effect of these PCD-related genes. Second, we performed a two-step cluster analysis using 3 variables, including PCD-GRS, forced expiratory volume in 1 second (%predicted FEV1), and age of asthma onset. RESULTS Compared to adult asthma clusters with an average PCD-GRS, clusters with high and low PCD-GRS had similar overall characteristics: adult-onset, female predominance, preserved lung function, and fewer features of type 2 immunity as determined by IgE reactivity and blood eosinophil counts. The allele frequency of rs1530496, a SNP representing an expression quantitative trait locus (eQTL) of DNAH5 in the lung, showed the largest statistically significant difference between the PCD-GRS-High and PCD-GRS-Low asthma clusters (p = 1.4 x 10-15). CONCLUSION Genes associated with PCD, particularly the common SNPs associated with abnormal expression of DNAH5, may have a certain influence on the development of adult-onset asthma, perhaps through impaired mucociliary clearance.
Collapse
Affiliation(s)
- Rie Shigemasa
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hironori Masuko
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hisayuki Oshima
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kentaro Hyodo
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Haruna Kitazawa
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Jun Kanazawa
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yohei Yatagai
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | | | | | - Takefumi Saito
- National Hospital Organization Ibaraki Higashi National Hospital, Tokai, Japan
| | - Satoshi Konno
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Tomomitsu Hirota
- Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Mayumi Tamari
- Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Tohru Sakamoto
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Nobuyuki Hizawa
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
2
|
Joo J, Mak ACY, Xiao S, Sleiman PM, Hu D, Huntsman S, Eng C, Kan M, Diwakar AR, Lasky-Su JA, Weiss ST, Sordillo JE, Wu AC, Cloutier M, Canino G, Forno E, Celedón JC, Seibold MA, Hakonarson H, Williams LK, Burchard EG, Himes BE. Genome-wide association study in minority children with asthma implicates DNAH5 in bronchodilator responsiveness. Sci Rep 2022; 12:12514. [PMID: 35869121 PMCID: PMC9307508 DOI: 10.1038/s41598-022-16488-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/11/2022] [Indexed: 12/25/2022] Open
Abstract
Variability in response to short-acting β2-agonists (e.g., albuterol) among patients with asthma from diverse racial/ethnic groups may contribute to asthma disparities. We sought to identify genetic variants associated with bronchodilator response (BDR) to identify potential mechanisms of drug response and risk factors for worse asthma outcomes. Genome-wide association studies of bronchodilator response (BDR) were performed using TOPMed Whole Genome Sequencing data of the Asthma Translational Genomic Collaboration (ATGC), which corresponded to 1136 Puerto Rican, 656 Mexican and 4337 African American patients with asthma. With the population-specific GWAS results, a trans-ethnic meta-analysis was performed to identify BDR-associated variants shared across the three populations. Replication analysis was carried out in three pediatric asthma cohorts, including CAMP (Childhood Asthma Management Program; n = 560), GACRS (Genetics of Asthma in Costa Rica Study; n = 967) and HPR (Hartford-Puerto Rico; n = 417). A genome-wide significant locus (rs35661809; P = 3.61 × 10-8) in LINC02220, a non-coding RNA gene, was identified in Puerto Ricans. While this region was devoid of protein-coding genes, capture Hi-C data showed a distal interaction with the promoter of the DNAH5 gene in lung tissue. In replication analysis, the GACRS cohort yielded a nominal association (1-tailed P < 0.05). No genetic variant was associated with BDR at the genome-wide significant threshold in Mexicans and African Americans. Our findings help inform genetic underpinnings of BDR for understudied minority patients with asthma, but the limited availability of genetic data for racial/ethnic minority children with asthma remains a paramount challenge.
Collapse
Affiliation(s)
- Jaehyun Joo
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, 402 Blockley Hall, 423 Guardian Drive, Philadelphia, PA, 19104, USA
| | - Angel C Y Mak
- Department of Medicine, University of California, San Francisco, UCSF, 1550 4th Street, Bldg 19B, San Francisco, CA, 94158, USA
| | - Shujie Xiao
- Center for Individualized and Genomic Medicine Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Patrick M Sleiman
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Donglei Hu
- Department of Medicine, University of California, San Francisco, UCSF, 1550 4th Street, Bldg 19B, San Francisco, CA, 94158, USA
| | - Scott Huntsman
- Department of Medicine, University of California, San Francisco, UCSF, 1550 4th Street, Bldg 19B, San Francisco, CA, 94158, USA
| | - Celeste Eng
- Department of Medicine, University of California, San Francisco, UCSF, 1550 4th Street, Bldg 19B, San Francisco, CA, 94158, USA
| | - Mengyuan Kan
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, 402 Blockley Hall, 423 Guardian Drive, Philadelphia, PA, 19104, USA
| | - Avantika R Diwakar
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, 402 Blockley Hall, 423 Guardian Drive, Philadelphia, PA, 19104, USA
| | - Jessica A Lasky-Su
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Scott T Weiss
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Joanne E Sordillo
- PRecisiOn Medicine Translational Research (PROMoTeR) Center, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Ann C Wu
- PRecisiOn Medicine Translational Research (PROMoTeR) Center, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Michelle Cloutier
- Department of Pediatrics, University of Connecticut, Farmington, CT, USA
| | - Glorisa Canino
- Behavioral Sciences Research Institute, University of Puerto Rico, San Juan, PR, USA
| | - Erick Forno
- Division of Pediatric Pulmonary Medicine, UMPC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Juan C Celedón
- Division of Pediatric Pulmonary Medicine, UMPC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Max A Seibold
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - L Keoki Williams
- Center for Individualized and Genomic Medicine Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Esteban G Burchard
- Department of Medicine, University of California, San Francisco, UCSF, 1550 4th Street, Bldg 19B, San Francisco, CA, 94158, USA.
- Department of Bioengineering and Therapeutic Sciences, University of Californica, San Francisco, CA, USA.
| | - Blanca E Himes
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, 402 Blockley Hall, 423 Guardian Drive, Philadelphia, PA, 19104, USA.
| |
Collapse
|
3
|
Guntur VP, Manka LA, Moore CM, Wynn E, Vladar EK, Alam R, Pham TH, Fingerlin TE, Martin RJ. Refractory neutrophilic asthma and ciliary genes. J Allergy Clin Immunol 2022; 149:1970-1980. [PMID: 35034774 DOI: 10.1016/j.jaci.2021.12.761] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/12/2021] [Accepted: 12/08/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Refractory asthma (RA) remains poorly controlled, resulting in high health care utilization despite guideline-based therapies. Patients with RA manifest higher neutrophilia as a result of increased airway inflammation and subclinical infection, the underlying mechanisms of which remain unclear. OBJECTIVE We sought to characterize and clinically correlate gene expression differences between refractory and nonrefractory (NR) asthma to uncover molecular mechanisms driving group distinctions. METHODS Microarray gene expression of paired airway epithelial brush and endobronchial biopsy samples was compared between 60 RA and 30 NR subjects. Subjects were hierarchically clustered to identify subgroups of RA, and biochemical and clinical traits (airway inflammatory molecules, respiratory pathogens, chest imaging) were compared between groups. Weighted gene correlation network analysis was used to identify coexpressed gene modules. Module expression scores were compared between groups using linear regression, controlling for age, sex, and body mass index. RESULTS Differential gene expression analysis showed upregulation of proneutrophilic and downregulation of ciliary function genes/pathways in RA compared to NR. A subgroup of RA with downregulated ciliary gene expression had increased levels of subclinical infections, airway neutrophilia, and eosinophilia as well as higher chest imaging mucus burden compared to other RA, the dominant differences between RA and NR. Weighted gene correlation network analysis identified gene modules related to ciliary function, which were downregulated in RA and were associated with lower pulmonary function and higher airway wall thickness/inflammation, markers of poorer asthma control. CONCLUSIONS Identification of a novel ciliary-deficient subgroup of RA suggests that diminished mucociliary clearance may underlie repeated asthma exacerbations despite adequate treatment, necessitating further exploration of function, mechanism, and therapeutics.
Collapse
Affiliation(s)
- Vamsi P Guntur
- Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, Colo; The NJH Cohen Family Asthma Institute, National Jewish Health, Denver, Colo.
| | - Laurie A Manka
- Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, Colo; The NJH Cohen Family Asthma Institute, National Jewish Health, Denver, Colo
| | - Camille M Moore
- Center for Genes, Environment and Health, National Jewish Health, Denver, Colo
| | - Elizabeth Wynn
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colo
| | - Eszter K Vladar
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, and the Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colo
| | - Rafeul Alam
- The NJH Cohen Family Asthma Institute, National Jewish Health, Denver, Colo; Division of Allergy and Immunology, National Jewish Health, Denver, Colo
| | - Tuyet-Hang Pham
- Translational Science & Experimental Medicine, Research & Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg
| | - Tasha E Fingerlin
- Center for Genes, Environment and Health, National Jewish Health, Denver, Colo; Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colo
| | - Richard J Martin
- Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, Colo; The NJH Cohen Family Asthma Institute, National Jewish Health, Denver, Colo
| |
Collapse
|
4
|
Jang H, Kim EG, Kim M, Kim SY, Kim YH, Sohn MH, Kim KW. Metabolomic profiling revealed altered lipid metabolite levels in childhood food allergy. J Allergy Clin Immunol 2021; 149:1722-1731.e9. [PMID: 34843802 DOI: 10.1016/j.jaci.2021.10.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/26/2021] [Accepted: 10/26/2021] [Indexed: 01/17/2023]
Abstract
BACKGROUND The pathophysiology of childhood food allergy (FA) and its natural history are poorly understood. Clarification of the underlying mechanism may help identify novel biomarkers and strategies for clinical intervention in children with FA. OBJECTIVE This study aimed to identify metabolites associated with the development and resolution of FA. METHODS The metabolomic profiles of 20 children with FA and 20 healthy controls were assessed by liquid chromatography-tandem mass spectrometry. Comparative analysis was performed to identify metabolites associated with FA and FA resolution. For subjects with FA, serum samples were collected at the time of diagnosis and after resolution to identify the changes in metabolite levels. The selected metabolites were then quantified in a quantification cohort to validate the results. Finally, genome-wide association analysis of the metabolite levels was performed. RESULTS The study demonstrated a significantly higher level of sphingolipid metabolites and a lower level of acylcarnitine metabolites in children with FA than those in healthy controls. At diagnosis, subjects with resolving FA had a significantly high level of omega-3 metabolites and a low level of platelet-activating factors compared to persistent FA. However, the level of omega-3 metabolites decreased in children with resolving FA but increased in children with persistent FA during the same time. The quantification data of omega-3-derived resolvins, platelet-activating factor, and platelet-activating factor acetylhydrolase activity further supported these results. CONCLUSION The lipid metabolite profile is closely related to childhood FA and FA resolution. This study suggests potential predictive biomarkers and provides insight into the mechanisms underlying childhood FA.
Collapse
Affiliation(s)
- Haerin Jang
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Seoul, Korea
| | - Eun Gyul Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Seoul, Korea
| | - Mina Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Seoul, Korea
| | - Soo Yeon Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Seoul, Korea
| | - Yoon Hee Kim
- Department of Pediatrics, Gangnam Severance Hospital, Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
| | - Myung Hyun Sohn
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Seoul, Korea
| | - Kyung Won Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Seoul, Korea.
| |
Collapse
|
5
|
Genetics, pathogenesis and therapeutic developments for Usher syndrome type 2. Hum Genet 2021; 141:737-758. [PMID: 34331125 DOI: 10.1007/s00439-021-02324-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/24/2021] [Indexed: 12/28/2022]
Abstract
Usher syndrome (USH) is a rare, autosomal recessively inherited disorder resulting in a combination of sensorineural hearing loss and a progressive loss of vision resulting from retinitis pigmentosa (RP), occasionally accompanied by an altered vestibular function. More and more evidence is building up indicating that also sleep deprivation, olfactory dysfunction, deficits in tactile perception and reduced sperm motility are part of the disease etiology. USH can be clinically classified into three different types, of which Usher syndrome type 2 (USH2) is the most prevalent. In this review, we, therefore, assess the genetic and clinical aspects, available models and therapeutic developments for USH2. Mutations in USH2A, ADGRV1 and WHRN have been described to be responsible for USH2, with USH2A being the most frequently mutated USH-associated gene, explaining 50% of all cases. The proteins encoded by the USH2 genes together function in a dynamic protein complex that, among others, is found at the photoreceptor periciliary membrane and at the base of the hair bundles of inner ear hair cells. To unravel the pathogenic mechanisms underlying USH2, patient-derived cellular models and animal models including mouse, zebrafish and drosophila, have been generated that all in part mimic the USH phenotype. Multiple cellular and genetic therapeutic approaches are currently under development for USH2, mainly focused on preserving or partially restoring the visual function of which one is already in the clinical phase. These developments are opening a new gate towards a possible treatment for USH2 patients.
Collapse
|
6
|
Gao Y, Li J, Zhang Y, Zhang L. Replication study of susceptibility variants associated with allergic rhinitis and allergy in Han Chinese. Allergy Asthma Clin Immunol 2020; 16:13. [PMID: 32082391 PMCID: PMC7014941 DOI: 10.1186/s13223-020-0411-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/28/2020] [Indexed: 12/12/2022] Open
Abstract
Background Allergic rhinitis (AR) is believed to be a complex genetic disease. The last decade has been marked by the publication of more than 20 genome-wide association studies (GWASs) of AR and associated allergic phenotypes and allergic diseases, which have shown allergic diseases and traits to share a large number of genetic susceptibility loci. The aim of present study was therefore to investigate the highly replicated allergy related genes and variants as candidates for AR in Han Chinese subjects. Methods A total of 762 AR patients and 760 control subjects were recruited, and a total of 58 susceptible variants previously reported to be associated with allergic traits were choose for replication. Results Logistic regression analyses revealed that in the co-dominant-effect model as assessed by the AIC, compared with wild-type carriers, significant AR risk were associated with rs9865818 in LPP (P = 0.029, OR = 1.469 for GG vs. AA); rs6554809 in DNAH5 (P = 0.000, OR = 1.597 for TC vs. CC); rs1438673 in WDR36-CAMK4 loci (P = 0.037, OR = 1.396 for CC vs.TT), rs7775228 in HLA region (P = 0.000, OR = 1.589 for TC vs.TT), rs7203459 in CLEC16A (P = 0.025, OR = 0.731 for TC vs. TT). Conclusion We replicated Han Chinese AR-specific susceptibility loci in LPP, DNAH5, HLA, CLEC16A and WDR36-CAMK4. Further understanding the molecular mechanisms underlying these associations may provide new insights into the etiology of allergic disease.
Collapse
Affiliation(s)
- Yunbo Gao
- 1Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, 100730 People's Republic of China
| | - Jingyun Li
- 1Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, 100730 People's Republic of China.,2Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, No. 17, HouGouHuTong, DongCheng District, Beijing, 100005 People's Republic of China
| | - Yuan Zhang
- 1Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, 100730 People's Republic of China.,2Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, No. 17, HouGouHuTong, DongCheng District, Beijing, 100005 People's Republic of China.,3Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, 100730 People's Republic of China
| | - Luo Zhang
- 1Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, 100730 People's Republic of China.,2Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, No. 17, HouGouHuTong, DongCheng District, Beijing, 100005 People's Republic of China.,3Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, 100730 People's Republic of China
| |
Collapse
|
7
|
Peng Y, Guan WJ, Zhu ZC, Tan KS, Chen Z, Hong HY, Zi XX, Andiappan AK, Shi L, Yang QT, Wang DY, Qiu QH. Microarray Assay Reveals Ciliary Abnormalities of the Allergic Nasal Mucosa. Am J Rhinol Allergy 2019; 34:50-58. [PMID: 31450948 DOI: 10.1177/1945892419871795] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background Gene expression patterns (particularly, cilia-associated genes) of nasal mucosa, the first-line defense system, in allergic rhinitis (AR) are not well understood. Objective We sought to screen for AR-associated genes in inferior turbinate (IT) from patients with AR, and to validate the expression of common cilia-related genes and ciliary shedding. Methods Prime View™ Human Gene Expression Array, which consisted of more than 530 000 probes covering more than 36 000 transcripts and variants, was employed to compare individual gene expression of ITs from control subjects (n = 11) and patients with AR (n = 19). Gene ontology (GO) analysis was performed with Cytoscape software. Eight of the common cilia-related genes were validated with quantitative polymerase chain reaction. We applied a semiquantitative scoring system for immunofluorescence assay to demonstrate ciliary shedding in 5 areas per paraffin section, with individual sections being scored between 0 (normal ciliary distribution) and 1 (ciliary shedding). Results Compared with control subjects, 160 (38 upregulated and 122 downregulated) genes were differentially expressed for at least 2 folds (all P < .05) in AR. Seven GO categories were significantly enriched, 4 of which were related to cilium assembly and motility. Quantitative polymerase chain reaction validated the predicted direction of change for common cilia-related gene expression. The ciliary distribution score was significantly higher (more prominent ciliary shedding) in AR than in controls ( P < .05). Conclusion The significant aberrant cilia-related gene expression, revealed by microarray assays, might be the critical driver of AR where ciliary shedding is prominent.
Collapse
Affiliation(s)
- Yang Peng
- Department of Otolaryngology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Otolaryngology, National University of Singapore, National University Health System, Singapore, Singapore
| | - Wei-Jie Guan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Otolaryngology, National University of Singapore, National University Health System, Singapore, Singapore
| | - Zhen-Chao Zhu
- Department of Otolaryngology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Kai Sen Tan
- Department of Otolaryngology, National University of Singapore, National University Health System, Singapore, Singapore
| | - Zhuo Chen
- Department of Otolaryngology Head & Neck Surgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Hai-Yu Hong
- Department of Otolaryngology-Head and Neck Surgery, The 5th Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Xiao-Xue Zi
- Department of Otolaryngology, National University of Singapore, National University Health System, Singapore, Singapore.,Department of Otolaryngology, The Second Hospital of Shandong University, Jinan, China
| | - Anand Kumar Andiappan
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Li Shi
- Department of Otolaryngology, The Second Hospital of Shandong University, Jinan, China
| | - Qin-Tai Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - De-Yun Wang
- Department of Otolaryngology, National University of Singapore, National University Health System, Singapore, Singapore
| | - Qian-Hui Qiu
- Department of Otolaryngology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Otolaryngology Head & Neck Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
8
|
Dizier MH, Margaritte-Jeannin P, Pain L, Sarnowski C, Brossard M, Mohamdi H, Lavielle N, Babron MCC, Just J, Lathrop M, Laprise C, Bouzigon E, Demenais F, Nadif R. Interactive effect between ATPase-related genes and early-life tobacco smoke exposure on bronchial hyper-responsiveness detected in asthma-ascertained families. Thorax 2018; 74:254-260. [PMID: 30282721 DOI: 10.1136/thoraxjnl-2018-211797] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/21/2018] [Accepted: 08/20/2018] [Indexed: 01/29/2023]
Abstract
BACKGROUND A positional cloning study of bronchial hyper-responsiveness (BHR) at the 17p11 locus in the French Epidemiological study on the Genetics and Environment of Asthma (EGEA) families showed significant interaction between early-life environmental tobacco smoke (ETS) exposure and genetic variants located in DNAH9. This gene encodes the heavy chain subunit of axonemal dynein, which is involved with ATP in the motile cilia function.Our goal was to identify genetic variants at other genes interacting with ETS in BHR by investigating all genes belonging to the 'ATP-binding' and 'ATPase activity' pathways which include DNAH9, are targets of cigarette smoke and play a crucial role in the airway inflammation. METHODS Family-based interaction tests between ETS-exposed and unexposed BHR siblings were conducted in 388 EGEA families. Twenty single-nucleotide polymorphisms (SNP) showing interaction signals (p≤5.10-3) were tested in the 253 Saguenay-Lac-Saint-Jean (SLSJ) families. RESULTS One of these SNPs was significantly replicated for interaction with ETS in SLSJ families (p=0.003). Another SNP reached the significance threshold after correction for multiple testing in the combined analysis of the two samples (p=10-5). Results were confirmed using both a robust log-linear test and a gene-based interaction test. CONCLUSION The SNPs showing interaction with ETS belong to the ATP8A1 and ABCA1 genes, which play a role in the maintenance of asymmetry and homeostasis of lung membrane lipids.
Collapse
Affiliation(s)
- Marie-Hélène Dizier
- INSERM, UMR-946, Genetic Variation and Human Diseases Unit, Paris, France.,Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Université Paris Diderot, Paris, France
| | - Patricia Margaritte-Jeannin
- INSERM, UMR-946, Genetic Variation and Human Diseases Unit, Paris, France.,Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Université Paris Diderot, Paris, France
| | - Lucile Pain
- Département des Sciences Fondamentales, Université du Québec, Chicoutimi, Quebec, Canada
| | - Chloé Sarnowski
- INSERM, UMR-946, Genetic Variation and Human Diseases Unit, Paris, France.,Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Université Paris Diderot, Paris, France
| | - Myriam Brossard
- INSERM, UMR-946, Genetic Variation and Human Diseases Unit, Paris, France.,Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Université Paris Diderot, Paris, France
| | - Hamida Mohamdi
- INSERM, UMR-946, Genetic Variation and Human Diseases Unit, Paris, France.,Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Université Paris Diderot, Paris, France
| | - Nolwenn Lavielle
- INSERM, UMR-946, Genetic Variation and Human Diseases Unit, Paris, France.,Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Université Paris Diderot, Paris, France
| | - Marie-Claude C Babron
- INSERM, UMR-946, Genetic Variation and Human Diseases Unit, Paris, France.,Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Université Paris Diderot, Paris, France
| | - Jocelyne Just
- Service d'Allergologie Pédiatrique, Centre de l'Asthme et des Allergies, Hôpital d'Enfants Armand-Trousseau (APHP), UPMC Paris 06, Paris, France
| | - Mark Lathrop
- Department of Human Genetics, McGill University and Genome Quebec's Innovation Centre, Montréal, Québec, Canada
| | - Catherine Laprise
- Département des Sciences Fondamentales, Université du Québec, Chicoutimi, Quebec, Canada
| | - Emmanuelle Bouzigon
- INSERM, UMR-946, Genetic Variation and Human Diseases Unit, Paris, France.,Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Université Paris Diderot, Paris, France
| | - Florence Demenais
- INSERM, UMR-946, Genetic Variation and Human Diseases Unit, Paris, France.,Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Université Paris Diderot, Paris, France
| | - Rachel Nadif
- Aging and Chronic Diseases-Epidemiological and Public Health Approaches (VIMA), Inserm, U1168, Villejuif, France.,UMR-S 1168, Université de Versailles Saint-Quentin-en-Yvelines, Paris, France
| |
Collapse
|
9
|
Peng Y, Chen Z, Guan WJ, Zhu Z, Tan KS, Hong H, Zi X, Zeng J, Li Y, Ong YK, Thong M, Shi L, Yang Q, Qiu Q, Wang DY. Downregulation and Aberrant Localization of Forkhead Box J1 in Allergic Nasal Mucosa. Int Arch Allergy Immunol 2018; 176:115-123. [PMID: 29635245 DOI: 10.1159/000488014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 02/12/2018] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Forkhead box J1 (FOXJ1) plays pivotal roles in motile cilia formation. However, it remains unclear whether abnormal expression or localization of FOXJ1 in nasal mucosa tissues is associated with allergic rhinitis (AR), in which impaired mucociliary clearance is implicated. OBJECTIVE We sought to investigate the expression and localization of FOXJ1 in inferior turbinate from patients with AR and controls. METHODS We assayed mRNA levels of FOXJ1, DNAI1, DNALI1, and DNAH9 by using whole-genome expression array and quantitative real-time polymerase chain reaction. We elucidated the localization of FOXJ1 by using immunofluorescence assays in paraffin sections and primary single cells. Four patterns of FOXJ1 localization (normal, N; intermediate, I; mislocalization, M; absence, A) were defined. We developed a semiquantitative scoring system to elucidate their localization in 5 areas per paraffin section, with individual sections being assigned a score between 0 and 2. RESULTS The mRNA levels of FOXJ1, DNAI1, DNALI1, and DNAH9 were significantly reduced in patients with AR compared with controls (all p < 0.05). The median (1st and 3rd quartile) of the FOXJ1 score was 0.4 (0.0 and 0.85) in patients with AR, and 0.2 (0.0 and 0.4) in controls (p < 0.05). For primary cytospin samples, the mean percentages of FOXJ1 localization patterns N, I, M, and A were 46.7, 10.0, 30.0, and 26.7% in patients with AR, and 82.5, 5.0, 5.0, and 7.5% in controls, respectively (p < 0.05). CONCLUSION Downregulation and aberrant localization of FOXJ1 may be crucial characteristics of the allergic nasal mucosa.
Collapse
Affiliation(s)
- Yang Peng
- Department of Otolaryngology, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Otolaryngology Head and Neck Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Department of Otolaryngology, National University of Singapore, National University Health System, Singapore, Singapore
| | - Zhuo Chen
- Department of Otolaryngology - Head and Neck Surgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Wei-Jie Guan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhenchao Zhu
- Department of Otolaryngology Head and Neck Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Kai Sen Tan
- Department of Otolaryngology, National University of Singapore, National University Health System, Singapore, Singapore
| | - Haiyu Hong
- Department of Otolaryngology - Head and Neck Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Xiaoxue Zi
- Department of Otolaryngology, The Second Hospital of Shandong University, Jinan, China
| | - Jie Zeng
- Department of Otolaryngology, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yixuan Li
- Department of Otolaryngology, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yew Kwang Ong
- Department of Otolaryngology, National University of Singapore, National University Health System, Singapore, Singapore
| | - Mark Thong
- Department of Otolaryngology, National University of Singapore, National University Health System, Singapore, Singapore
| | - Li Shi
- Department of Otolaryngology, The Second Hospital of Shandong University, Jinan, China
| | - Qintai Yang
- Department of Otorhinolaryngology - Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Qianhui Qiu
- Department of Otolaryngology Head and Neck Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Department of Otolaryngology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - De-Yun Wang
- Department of Otolaryngology, National University of Singapore, National University Health System, Singapore, Singapore
| |
Collapse
|