1
|
Bush A, Schaub B. Approaches to reduce the risk of severe asthma in children with preschool wheeze. Expert Rev Respir Med 2025:1-16. [PMID: 40208254 DOI: 10.1080/17476348.2025.2491722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 04/11/2025]
Abstract
INTRODUCTION Asthma is a common, serious condition. We can treat the symptoms of mild-moderate disease, but severe asthma is life-threatening despite treatment. We cannot cure asthma and have no specific preventive strategies. AREAS COVERED We performed a PubMed search using the terms 'Severe asthma' and 'Prevention' and 'Preschool wheeze' limited to children, humans and English language over the previous five years. We searched the bibliographies of relevant references and also our personal archives. We cover transgenerational, antenatal and early life factors which increase the risk of pre-school wheeze; the factors promoting or protecting the pre-school wheezer from developing school age asthma; and the factors leading to one of the three types of severe asthma defined by WHO (untreated, difficult to treat, and treatment resistant). EXPERT OPINION Currently we have no pharmacological preventive strategies. Risk can be reduced by public health measures such as reduction in smoking and environmental pollution, and there are tantalizing hints from comparison of farming to other environments that exploring how environmental modulation may lead to more specific, personalized strategies. The effects of the new RSV prevention strategies are awaited. We need a better understanding of the pathways driving disease progression, and biomarkers of risk.
Collapse
Affiliation(s)
- Andrew Bush
- National Heart and Lung Institute, Imperial College, Imperial Centre for Paediatrics and Child Health, Consultant Paediatric Chest Physician, Royal Brompton Hospital, London, UK
| | - Bianca Schaub
- Department of Pulmonary and Allergy, Dr von Hauner Children's Hospital, University Children's Hospital, Ludwig-Maximilians-University, Comprehensive Pneumology Center (CPC-M), LMU Munich, Member of the German Center for Lung Research (DZL) German Center for Child and Adolescent Health (DZKJ), Dr von Hauner Children's Hospital, LMU Munich, All Munich, Germany
| |
Collapse
|
2
|
Matricardi PM, van Hage M, Custovic A, Korosec P, Santos AF, Valenta R. Molecular allergy diagnosis enabling personalized medicine. J Allergy Clin Immunol 2025:S0091-6749(25)00065-X. [PMID: 39855360 DOI: 10.1016/j.jaci.2025.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
Allergic patients are characterized by complex and patient-specific IgE sensitization profiles to various allergens, which are accompanied by different phenotypes of allergic disease. Molecular allergy diagnosis establishes the patient's IgE reactivity profile at a molecular allergen level and has moved allergology into the era of precision medicine. Molecular allergology started in the late 1980s with the isolation of the first allergen-encoding DNA sequences. Already in 2002, the first allergen microarrays were developed for the assessment of complex IgE sensitization patterns. Recombinant allergens are used for a precise definition of personal IgE reactivity profiles, identification of genuine IgE sensitization to allergen sources for refined prescription of allergen-specific immunotherapy and allergen avoidance diagnosis of co- versus cross-sensitization, epidemiologic studies, and prediction of symptoms, phenotypes, and development of allergic disease. For example, molecular IgE sensitization patterns associated with more severe respiratory allergies, severe food allergy, and allergy to honeybee or vespids are already established. The implementation of molecular allergy diagnosis into daily clinical practice requires continuous medical education and training doctors in molecular allergy diagnosis, and may be facilitated by clinical decision support systems such as diagnostic algorithms that may take advantage of artificial intelligence.
Collapse
Affiliation(s)
- Paolo Maria Matricardi
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Institute of Allergology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Berlin, Germany.
| | - Marianne van Hage
- Department of Medicine Solna, Division of Immunology and Respiratory Medicine, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden; Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Adnan Custovic
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Peter Korosec
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik, Slovenia; Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Alexandra F Santos
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom; Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom; Children's Allergy Service, Evelina Children's Hospital, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Rudolf Valenta
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria; Department of Clinical Immunology and Allergy, Laboratory of Immunopathology, Sechenov First Moscow State Medical University, Moscow, Russia; Karl Landsteiner University, Krems an der Donau, Austria; National Research Center, National Research Center Institute of Immunology Institute of Immunology, Federal Medical-Biological Agency of Russia, Moscow, Russia
| |
Collapse
|
3
|
Bourgoin‐Heck M, Wolff‐Goldnadel V, Chantran Y, Saf S, Guiddir T, Amat F, Rancière F, Momas I, Wanin S, Rose T, Saint‐Pierre P, Just J. Molecular allergen sensitization drives phenotypes of severe asthma in children: Evidence from a megacity cohort (SAMP). Pediatr Allergy Immunol 2024; 35:e70014. [PMID: 39636251 PMCID: PMC11619752 DOI: 10.1111/pai.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/04/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Several major sensitization profiles have been described in children with asthma, but it remains unclear how these profiles relate to asthma phenotypes. The aim of this study was to determine allergenic sensitization profiles in a megacity cohort (SAMP). METHODS This was a cross-sectional analysis performed from 2011 to 2015 including preschool and school-age children with severe and moderate asthma from the SAMP cohort. We performed ALEX multiplex array and carried out cluster analysis. RESULTS Data from 367 children were analyzed: 224 of preschool age and 143 of school age, respectively 84 (38%) and 114 (80%) presented at least one allergic sensitization. At preschool age, three clusters were identified: Cluster 1, Few sensitizations to inhaled allergen molecular families and non-type 2 (T2) inflammation (n = 61); Cluster 2, Predominant sensitization to HDM molecular families (n = 16); Cluster 3, Severe asthma with multiple sensitizations to inhaled and food allergen molecular families (n = 7). At school age, five clusters were identified: Cluster 1, Few sensitizations to inhaled allergen molecular families and non-T2 inflammation (n = 43); Cluster 2, Predominant sensitization to HDM molecular families (n = 31); Cluster 3, Predominant sensitization to PR-10 protein family (n = 25); Cluster 4, Severe asthma with predominant sensitization to tropomyosin family (n = 11); Cluster 5, Severe asthma with multiple sensitizations to inhaled and food allergen molecular families (n = 4). CONCLUSION These results underline the heterogeneity of sensitization profiles in severe allergic childhood asthma. The most severe asthma phenotypes were associated with multiple sensitizations to both inhaled and food allergen molecular families as expected, and to the tropomyosin molecular family, a novel finding.
Collapse
Affiliation(s)
- Mélisande Bourgoin‐Heck
- Allergology DepartmentHospital A. Trousseau, Sorbonne Université AP‐HPParisFrance
- CRESS, Inserm, INRAE, HERA TeamUniversité Paris CitéParisFrance
- Plateforme d'Innovation et de Développement de Tests Diagnostiques Institut PasteurParisFrance
| | | | - Yannick Chantran
- CRESS, Inserm, INRAE, HERA TeamUniversité Paris CitéParisFrance
- Immunology Department, Biological Allergology Unit, Hôpital A. TrousseauSorbonne Université, AP‐HPParisFrance
| | - Sarah Saf
- Allergology DepartmentHospital A. Trousseau, Sorbonne Université AP‐HPParisFrance
| | - Tamazoust Guiddir
- Pediatric Pulmonology and Allergology UnitParis‐Saclay University, AP‐HP, Bicêtre HospitalLe Kremlin BicêtreFrance
| | - Flore Amat
- Pediatric Pulmonology and Allergology Department, Robert Debré Hospital, AP‐HPUniversité Paris CitéParisFrance
- INSERM 1018 ‐ Centre for Epidemiology and Population Health, Integrative Respiratory EpidemiologyVillejuifFrance
| | - Fanny Rancière
- CRESS, Inserm, INRAE, HERA TeamUniversité Paris CitéParisFrance
- Faculté de Pharmacie de ParisUniversité Paris CitéParisFrance
| | - Isabelle Momas
- CRESS, Inserm, INRAE, HERA TeamUniversité Paris CitéParisFrance
- Faculté de Pharmacie de ParisUniversité Paris CitéParisFrance
| | - Stéphanie Wanin
- Allergology DepartmentHospital A. Trousseau, Sorbonne Université AP‐HPParisFrance
- CRESS, Inserm, INRAE, HERA TeamUniversité Paris CitéParisFrance
| | - Thierry Rose
- Plateforme d'Innovation et de Développement de Tests Diagnostiques Institut PasteurParisFrance
| | | | - Jocelyne Just
- CRESS, Inserm, INRAE, HERA TeamUniversité Paris CitéParisFrance
- Unité d'Allergologie, Hôpital Américain de ParisNeuilly sur seineFrance
| |
Collapse
|
4
|
Papadopoulos NG, Bacharier LB, Jackson DJ, Deschildre A, Phipatanakul W, Szefler SJ, Gall R, Ledanois O, Jacob-Nara JA, Sacks H. Type 2 Inflammation and Asthma in Children: A Narrative Review. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:2310-2324. [PMID: 38878861 DOI: 10.1016/j.jaip.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 07/22/2024]
Abstract
Increased understanding of the underlying pathophysiology has highlighted the heterogeneity of asthma and identified that most children with asthma have type 2 inflammation with elevated biomarkers, such as blood eosinophils and/or fractional exhaled nitric oxide. Although in the past most of these children may have been categorized as having allergic asthma, identifying the type 2 inflammatory phenotype provides a mechanism to explain both allergic and non-allergic triggers in pediatric patients with asthma. Most children achieve control with low to medium doses of inhaled corticosteroids. However, in a small but significant proportion of children, asthma remains uncontrolled despite maximum conventional treatment, with an increased risk of severe exacerbations. In this review, we focus on the role of type 2 inflammation and allergic processes in children with asthma, together with evidence of the efficacy of available treatment options for those who experience severe symptoms.
Collapse
Affiliation(s)
- Nikolaos G Papadopoulos
- Allergy and Clinical Immunology Unit, Second Pediatric Clinic, University of Athens, Athens, Greece; Lydia Becker Institute of Immunity and Inflammation, The University of Manchester, Manchester, United Kingdom.
| | - Leonard B Bacharier
- Division of Allergy, Immunology and Pulmonary Medicine, Monroe Carell Jr Children's Hospital at Vanderbilt University Medical Center, Nashville, Tenn
| | - Daniel J Jackson
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Antoine Deschildre
- University Lille, CHU Lille, Pediatric Pulmonology and Allergy Department, Hôpital Jeanne de Flandre, Lille, France
| | - Wanda Phipatanakul
- Department of Pediatrics, Harvard Medical School, Boston, Mass; Department of Allergy and Immunology, Boston Children's Hospital, Boston, Mass
| | - Stanley J Szefler
- Section of Pediatric Pulmonary and Sleep Medicine, Breathing Institute, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colo
| | | | | | | | | |
Collapse
|
5
|
Khan M, Banerjee S, Muskawad S, Maity R, Chowdhury SR, Ejaz R, Kuuzie E, Satnarine T. The Impact of Artificial Intelligence on Allergy Diagnosis and Treatment. Curr Allergy Asthma Rep 2024; 24:361-372. [PMID: 38954325 DOI: 10.1007/s11882-024-01152-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2024] [Indexed: 07/04/2024]
Abstract
PURPOSE OF REVIEW Artificial intelligence (AI), be it neuronal networks, machine learning or deep learning, has numerous beneficial effects on healthcare systems; however, its potential applications and diagnostic capabilities for immunologic diseases have yet to be explored. Understanding AI systems can help healthcare workers better assimilate artificial intelligence into their practice and unravel its potential in diagnostics, clinical research, and disease management. RECENT FINDINGS We reviewed recent advancements in AI systems and their integration in healthcare systems, along with their potential benefits in the diagnosis and management of diseases. We explored machine learning as employed in allergy diagnosis and its learning patterns from patient datasets, as well as the possible advantages of using AI in the field of research related to allergic reactions and even remote monitoring. Considering the ethical challenges and privacy concerns raised by clinicians and patients with regard to integrating AI in healthcare, we explored the new guidelines adapted by regulatory bodies. Despite these challenges, AI appears to have been successfully incorporated into various healthcare systems and is providing patient-centered solutions while simultaneously assisting healthcare workers. Artificial intelligence offers new hope in the field of immunologic disease diagnosis, monitoring, and management and thus has the potential to revolutionize healthcare systems.
Collapse
Affiliation(s)
- Maham Khan
- Fatima Jinnah Medical University, Lahore, Pakistan.
| | | | | | - Rick Maity
- Institute of Post Graduate Medical Education and Research, Kolkata, West Bengal, India
| | | | - Rida Ejaz
- Shifa College of Medicine, Islamabad, Pakistan
| | | | | |
Collapse
|
6
|
Howard R, Fontanella S, Simpson A, Murray CS, Custovic A, Rattray M. Component-specific clusters for diagnosis and prediction of allergic airway diseases. Clin Exp Allergy 2024; 54:339-349. [PMID: 38475973 DOI: 10.1111/cea.14468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND Previous studies which applied machine learning on multiplex component-resolved diagnostics arrays identified clusters of allergen components which are biologically plausible and reflect the sources of allergenic proteins and their structural homogeneity. Sensitization to different clusters is associated with different clinical outcomes. OBJECTIVE To investigate whether within different allergen component sensitization clusters, the internal within-cluster sensitization structure, including the number of c-sIgE responses and their distinct patterns, alters the risk of clinical expression of symptoms. METHODS In a previous analysis in a population-based birth cohort, by clustering component-specific (c-s)IgEs, we derived allergen component clusters from infancy to adolescence. In the current analysis, we defined each subject's within-cluster sensitization structure which captured the total number of c-sIgE responses in each cluster and intra-cluster sensitization patterns. Associations between within-cluster sensitization patterns and clinical outcomes (asthma and rhinitis) in early-school age and adolescence were examined using logistic regression and binomial generalized additive models. RESULTS Intra-cluster sensitization patterns revealed specific associations with asthma and rhinitis (both contemporaneously and longitudinally) that were previously unseen using binary sensitization to clusters. A more detailed description of the subjects' within-cluster c-sIgE responses in terms of the number of positive c-sIgEs and unique sensitization patterns added new information relevant to allergic diseases, both for diagnostic and prognostic purposes. For example, the increase in the number of within-cluster positive c-sIgEs at age 5 years was correlated with the increase in prevalence of asthma at ages 5 and 16 years, with the correlations being stronger in the prediction context (e.g. for the largest 'Broad' component cluster, contemporaneous: r = .28, p = .012; r = .22, p = .043; longitudinal: r = .36, p = .004; r = .27, p = .04). CONCLUSION Among sensitized individuals, a more detailed description of within-cluster c-sIgE responses in terms of the number of positive c-sIgE responses and distinct sensitization patterns, adds potentially important information relevant to allergic diseases.
Collapse
Affiliation(s)
- Rebecca Howard
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Sara Fontanella
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Angela Simpson
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Clare S Murray
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Adnan Custovic
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Magnus Rattray
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
7
|
Hossny E, Adachi Y, Anastasiou E, Badellino H, Custovic A, El-Owaidy R, El-Sayed ZA, Filipovic I, Gomez RM, Kalayci Ö, Le Souëf P, Miligkos M, Morais-Almeida M, Nieto A, Phipatanakul W, Shousha G, Teijeiro A, Wang JY, Wong GW, Xepapadaki P, Yong SB, Papadopoulos NG. Pediatric asthma comorbidities: Global impact and unmet needs. World Allergy Organ J 2024; 17:100909. [PMID: 38827329 PMCID: PMC11141278 DOI: 10.1016/j.waojou.2024.100909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/14/2024] [Accepted: 04/18/2024] [Indexed: 06/04/2024] Open
Abstract
Real-world data on the range and impact of comorbid health conditions that affect pediatric asthma are scant, especially from developing countries. Lack of data hinders effective diagnosis, treatment, and overall management of these complex cases. We, hereby, describe the common pediatric asthma comorbid conditions in terms of evidence for association, potential mechanisms of impact on asthma control, and treatment benefit. Obesity, upper airway allergies, dysfunctional breathing, multiple sensitizations, depressive disorders, food allergy, and gastro-esophageal reflux are common associations with difficult-to-treat asthma. On the other hand, asthma symptoms and/or management may negatively impact the well-being of children through drug adverse effects, worsening of anaphylaxis symptoms, and disturbing mental health. Awareness of these ailments may be crucial for designing the optimum care for each asthmatic child individually and may ultimately improve the quality of life of patients and their families. A multidisciplinary team of physicians is required to identify and manage such comorbidities aiming to mitigate the over-use of asthma pharmacotherapy. Asthma research should target relevant real-world difficulties encountered at clinical practice and focus on interventions that would mitigate the impact of such comorbidities. Finally, policymakers and global healthcare organizations are urged to recognize pediatric asthma control as a healthcare priority and allocate resources for research and clinical interventions. In other words, global asthma control needs support by compassionate scientific partnership.
Collapse
Affiliation(s)
- Elham Hossny
- Pediatric Allergy, Immunology, and Rheumatology Unit, Children's Hospital, Ain Shams University, Cairo, Egypt
| | - Yuichi Adachi
- Pediatric Allergy Center, Toyama Red Cross Hospital, Japan
| | - Eleni Anastasiou
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Héctor Badellino
- Faculty of Psychology, UCES University, San Francisco, Argentina
| | - Adnan Custovic
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Rasha El-Owaidy
- Pediatric Allergy, Immunology, and Rheumatology Unit, Children's Hospital, Ain Shams University, Cairo, Egypt
| | - Zeinab A. El-Sayed
- Pediatric Allergy, Immunology, and Rheumatology Unit, Children's Hospital, Ain Shams University, Cairo, Egypt
| | | | | | - Ömer Kalayci
- Hacettepe University School of Medicine, Ankara, Turkey
| | - Peter Le Souëf
- School of Medicine, University of Western Australia, Perth, WA, Australia
| | - Michael Miligkos
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Antonio Nieto
- Pediatric Pulmonology and Allergy Unit, Hospital Universitari i Politècnic La Fe, Health Research Institute La Fe, Valencia, Spain
| | - Wanda Phipatanakul
- Division of Allergy and Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ghada Shousha
- Pediatric Allergy, Immunology, and Rheumatology Unit, Children's Hospital, Ain Shams University, Cairo, Egypt
| | - Alvaro Teijeiro
- Respiratory Department, Pediatric Hospital, Córdoba, Argentina
| | - Jiu-Yao Wang
- Allergy, Immunology and Microbiome Research Center, China Medical University Children's Hospital, Taichung, Taiwan
| | - Gary W.K. Wong
- Department of Paediatrics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong
| | - Paraskevi Xepapadaki
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Su Boon Yong
- Department of Allergy and Immunology, China Medical University Children's Hospital, Taichung, Taiwan
| | - Nikolaos G. Papadopoulos
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, UK
| |
Collapse
|
8
|
Custovic A, Custovic D, Fontanella S. Understanding the heterogeneity of childhood allergic sensitization and its relationship with asthma. Curr Opin Allergy Clin Immunol 2024; 24:79-87. [PMID: 38359101 PMCID: PMC10906203 DOI: 10.1097/aci.0000000000000967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
PURPOSE OF REVIEW To review the current state of knowledge on the relationship between allergic sensitization and asthma; to lay out a roadmap for the development of IgE biomarkers that differentiate, in individual sensitized patients, whether their sensitization is important for current or future asthma symptoms, or has little or no relevance to the disease. RECENT FINDINGS The evidence on the relationship between sensitization and asthma suggests that some subtypes of allergic sensitization are not associated with asthma symptoms, whilst others are pathologic. Interaction patterns between IgE antibodies to individual allergenic molecules on component-resolved diagnostics (CRD) multiplex arrays might be hallmarks by which different sensitization subtypes relevant to asthma can be distinguished. These different subtypes of sensitization are associated amongst sensitized individuals at all ages, with different clinical presentations (no disease, asthma as a single disease, and allergic multimorbidity); amongst sensitized preschool children with and without lower airway symptoms, with different risk of subsequent asthma development; and amongst sensitized patients with asthma, with differing levels of asthma severity. SUMMARY The use of machine learning-based methodologies on complex CRD data can help us to design better diagnostic tools to help practising physicians differentiate between benign and clinically important sensitization.
Collapse
Affiliation(s)
- Adnan Custovic
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | | |
Collapse
|
9
|
Lejeune S, Bouazza N, Nicaise PR, Jolaine V, Roditis L, Marguet C, Amat F, Berger P, Fayon M, Dubus JC, Valois S, Reix P, Pellan M, Brouard J, Chiron R, Giovannini-Chami L, de Blic J, Deschildre A, Lezmi G. COBRAPed cohort: Do sensitization patterns differentiate children with severe asthma from those with a milder disease? Pediatr Allergy Immunol 2024; 35:e14112. [PMID: 38520021 DOI: 10.1111/pai.14112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND It is unclear whether sensitization patterns differentiate children with severe recurrent wheeze (SRW)/severe asthma (SA) from those with non-severe recurrent wheeze (NSRW)/non-severe asthma (NSA). Our objective was to determine whether sensitization patterns can discriminate between children from the French COBRAPed cohort with NSRW/NSA and those with SRW/SA. METHODS IgE to 112 components (c-sIgE) (ImmunoCAP® ISAC) were analyzed in 125 preschools (3-6 years) and 170 school-age children (7-12 years). Supervised analyses and clustering methods were applied to identify patterns of sensitization among children with positive c-sIgE. RESULTS We observed c-sIgE sensitization in 51% of preschool and 75% of school-age children. Sensitization to house dust mite (HDM) components was more frequent among NSRW than SRW (53% vs. 24%, p < .01). Sensitization to non-specific lipid transfer protein (nsLTP) components was more frequent among SA than NSA (16% vs. 4%, p < .01) and associated with an FEV1/FVC < -1.64 z-score. Among sensitized children, seven clusters with varying patterns were identified. The two broader clusters identified in each age group were characterized by "few sensitizations, mainly to HDM." One cluster (n = 4) with "multiple sensitizations, mainly to grass pollen, HDM, PR-10, and nsLTP" was associated with SA in school-age children. CONCLUSIONS Although children with wheeze/asthma display frequent occurrences and high levels of sensitization, sensitization patterns did not provide strong signals to discriminate children with severe disease from those with milder disease. These results suggest that the severity of wheeze/asthma may depend on both IgE- and non-IgE-mediated mechanisms.
Collapse
Affiliation(s)
- Stéphanie Lejeune
- Pediatric Pulmonology and Allergy Department, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Hôpital Jeanne de Flandre, Univ. Lille, Lille, France
- Clinical Investigation Center, LIRIC UMR 995 Inserm, CIC-1403-Inserm-CHU, Univ. Lille, Lille, France
| | - Naïm Bouazza
- Unité de Recherche Clinique-Centre Investigation Clinique, APHP, Hôpital Necker-Enfants malades, Paris, France
| | - Pascale Roland Nicaise
- Immunology Department, Hôpital Bichat, APHP, Paris, France
- Inserm, PHERE, Université Paris Cité, Paris, France
| | - Valérie Jolaine
- Unité de Recherche Clinique-Centre Investigation Clinique, APHP, Hôpital Necker-Enfants malades, Paris, France
| | - Léa Roditis
- Pediatric Pulmonology and Allergology Unit CHU Toulouse, Children Hospital, Toulouse, France
| | - Christophe Marguet
- Pediatric Respiratory and Allergic Diseases, CF Reference Center, Rouen University Hospital-Charles Nicolle, EA3830-GHRV, Rouen University, Rouen, France
| | - Flore Amat
- Pediatric Pulmonology and Allergology, INSERM UMR 1018, Robert Debré Hospital, University of Paris Cité, Paris, France
| | - Patrick Berger
- Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM, U1045, Centre d'Investigation Clinique (CIC 1401), Univ. Bordeaux, Bordeaux, France
| | - Michael Fayon
- Unité de Pneumologie Pédiatrique, Centre d'Investigation Clinique (CIC 1401), CHU de Bordeaux, Bordeaux, France
| | - Jean-Christophe Dubus
- Unité de Pneumopédiatrie CHU Timone-Enfants, Aix-Marseille Université, IRD MEPHI, IHU Méditerranée-Infection, Marseille, France
| | - Sophie Valois
- Pédiatrie, CHU Grenoble Alpes, INSERM, Institute for Advanced Biosciences, Université Grenoble Alpes, Grenoble, France
| | - Philippe Reix
- Service de Pneumologie, Allergologie et Mucoviscidose Pédiatrique, CHU de Lyon, Lyon, France
- UMR 5558 (EMET), CNRS, LBBE, Université de Lyon, Villeurbanne, France
| | | | - Jacques Brouard
- Service de Pédiatrie Médicale, CHU Caen, Caen, France
- Groupe de Recherche sur l'Adaptation Microbienne (GRAM 2.0), Normandie Université, Caen, France
| | - Raphael Chiron
- Pediatric Department, Montpellier University Hospital, Montpellier, France
| | | | - Jacques de Blic
- Department of Pediatric Pulmonology and Allergy, AP-HP, Hôpital Necker-Enfants Malades, Université Paris Cité, Paris, France
| | - Antoine Deschildre
- Pediatric Pulmonology and Allergy Department, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Hôpital Jeanne de Flandre, Univ. Lille, Lille, France
- Clinical Investigation Center, LIRIC UMR 995 Inserm, CIC-1403-Inserm-CHU, Univ. Lille, Lille, France
| | - Guillaume Lezmi
- Department of Pediatric Pulmonology and Allergy, AP-HP, Hôpital Necker-Enfants Malades, Université Paris Cité, Paris, France
| |
Collapse
|
10
|
Gleeson PK, Morales KH, Buckey TM, Fadugba OO, Apter AJ, Christie JD, Himes BE. Factors associated with aeroallergen testing among adults with asthma in a large health system. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2023; 2:100167. [PMID: 37841071 PMCID: PMC10570953 DOI: 10.1016/j.jacig.2023.100167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/22/2023] [Accepted: 07/01/2023] [Indexed: 10/17/2023]
Abstract
Background Aeroallergen testing informs precision care for adults with asthma, yet the epidemiology of testing in this population remains poorly understood. Objective We sought to identify factors associated with receiving aeroallergen testing, the results of these tests, and subsequent reductions in exacerbation measures among adults with asthma. Methods We used electronic health record data to conduct a retrospective, observational cohort study of 30,775 adults with asthma who had an office visit with a primary care provider or an asthma specialist from January 1, 2017, to August 26, 2022. We used regression models to identify (1) factors associated with receiving any aeroallergen test and tests to 9 allergen categories after the index visit, (2) factors associated with positive test results, and (3) reductions in asthma exacerbation measures in the year after testing compared with before testing. Results Testing was received by 2201 patients (7.2%). According to multivariable models, receiving testing was associated with having any office visit with an allergy/immunology specialist during the study period (odds ratio [OR] = 91.3 vs primary care only [P < .001]) and having an asthma emergency department visit (OR = 1.62 [P = .004]) or hospitalization (OR = 1.62 [P = .03]) in the year before the index visit. Age 65 years or older conferred decreased odds of testing (OR = 0.74 vs age 18-34 years [P = .008]) and negative test results to 6 categories (P ≤ .04 for all comparisons). Black race conferred increased odds of testing (OR =1.22 vs White race [P = .01]) and positive test results to 8 categories (P < .04 for all comparisons). Exacerbation measures decreased after testing. Conclusion Aeroallergen testing was performed infrequently among adults with asthma and was associated with reductions in asthma exacerbation measures.
Collapse
Affiliation(s)
- Patrick K. Gleeson
- Section of Allergy and Immunology, Division of Pulmonary, Allergy and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Knashawn H. Morales
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Timothy M. Buckey
- Section of Allergy and Immunology, Division of Pulmonary, Allergy and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Olajumoke O. Fadugba
- Section of Allergy and Immunology, Division of Pulmonary, Allergy and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Andrea J. Apter
- Section of Allergy and Immunology, Division of Pulmonary, Allergy and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Jason D. Christie
- Division of Pulmonary, Allergy and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Blanca E. Himes
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| |
Collapse
|
11
|
van Breugel M, Fehrmann RSN, Bügel M, Rezwan FI, Holloway JW, Nawijn MC, Fontanella S, Custovic A, Koppelman GH. Current state and prospects of artificial intelligence in allergy. Allergy 2023; 78:2623-2643. [PMID: 37584170 DOI: 10.1111/all.15849] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/08/2023] [Accepted: 07/31/2023] [Indexed: 08/17/2023]
Abstract
The field of medicine is witnessing an exponential growth of interest in artificial intelligence (AI), which enables new research questions and the analysis of larger and new types of data. Nevertheless, applications that go beyond proof of concepts and deliver clinical value remain rare, especially in the field of allergy. This narrative review provides a fundamental understanding of the core concepts of AI and critically discusses its limitations and open challenges, such as data availability and bias, along with potential directions to surmount them. We provide a conceptual framework to structure AI applications within this field and discuss forefront case examples. Most of these applications of AI and machine learning in allergy concern supervised learning and unsupervised clustering, with a strong emphasis on diagnosis and subtyping. A perspective is shared on guidelines for good AI practice to guide readers in applying it effectively and safely, along with prospects of field advancement and initiatives to increase clinical impact. We anticipate that AI can further deepen our knowledge of disease mechanisms and contribute to precision medicine in allergy.
Collapse
Affiliation(s)
- Merlijn van Breugel
- Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- MIcompany, Amsterdam, the Netherlands
| | - Rudolf S N Fehrmann
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | | - Faisal I Rezwan
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- Department of Computer Science, Aberystwyth University, Aberystwyth, UK
| | - John W Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- National Institute for Health and Care Research Southampton Biomedical Research Centre, University Hospitals Southampton NHS Foundation Trust, Southampton, UK
| | - Martijn C Nawijn
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Sara Fontanella
- National Heart and Lung Institute, Imperial College London, London, UK
- National Institute for Health and Care Research Imperial Biomedical Research Centre (BRC), London, UK
| | - Adnan Custovic
- National Heart and Lung Institute, Imperial College London, London, UK
- National Institute for Health and Care Research Imperial Biomedical Research Centre (BRC), London, UK
| | - Gerard H Koppelman
- Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
12
|
Salehian S, Fleming L, Saglani S, Custovic A. Phenotype and endotype based treatment of preschool wheeze. Expert Rev Respir Med 2023; 17:853-864. [PMID: 37873657 DOI: 10.1080/17476348.2023.2271832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023]
Abstract
INTRODUCTION Preschool wheeze (PSW) is a significant public health issue, with a high presentation rate to emergency departments, recurrent symptoms, and severe exacerbations. A heterogenous condition, PSW comprises several phenotypes that may relate to a range of pathobiological mechanisms. However, treating PSW remains largely generalized to inhaled corticosteroids and a short acting beta agonist, guided by symptom-based labels that often do not reflect underlying pathways of disease. AREAS COVERED We review the observable features and characteristics used to ascribe phenotypes in children with PSW and available pathobiological evidence to identify possible endotypes. These are considered in the context of treatment options and future research directions. The role of machine learning (ML) and modern analytical techniques to identify patterns of disease that distinguish phenotypes is also explored. EXPERT OPINION Distinct clusters (phenotypes) of severe PSW are characterized by different underlying mechanisms, some shared and some unique. ML-based methodologies applied to clinical, biomarker, and environmental data can help design tools to differentiate children with PSW that continues into adulthood, from those in whom wheezing resolves, identifying mechanisms underpinning persistence and resolution. This may help identify novel therapeutic targets, inform mechanistic studies, and serve as a foundation for stratification in future interventional therapeutic trials.
Collapse
Affiliation(s)
- Sormeh Salehian
- National Heart and Lung Institute, Imperial College London, London, UK
- Department of Respiratory Paediatrics, Royal Brompton Hospital, London, UK
| | - Louise Fleming
- National Heart and Lung Institute, Imperial College London, London, UK
- Department of Respiratory Paediatrics, Royal Brompton Hospital, London, UK
| | - Sejal Saglani
- National Heart and Lung Institute, Imperial College London, London, UK
- Department of Respiratory Paediatrics, Royal Brompton Hospital, London, UK
| | - Adnan Custovic
- NIHR Imperial Biomedical Research Centre (BRC), London, UK
| |
Collapse
|
13
|
Wise SK, Damask C, Roland LT, Ebert C, Levy JM, Lin S, Luong A, Rodriguez K, Sedaghat AR, Toskala E, Villwock J, Abdullah B, Akdis C, Alt JA, Ansotegui IJ, Azar A, Baroody F, Benninger MS, Bernstein J, Brook C, Campbell R, Casale T, Chaaban MR, Chew FT, Chambliss J, Cianferoni A, Custovic A, Davis EM, DelGaudio JM, Ellis AK, Flanagan C, Fokkens WJ, Franzese C, Greenhawt M, Gill A, Halderman A, Hohlfeld JM, Incorvaia C, Joe SA, Joshi S, Kuruvilla ME, Kim J, Klein AM, Krouse HJ, Kuan EC, Lang D, Larenas-Linnemann D, Laury AM, Lechner M, Lee SE, Lee VS, Loftus P, Marcus S, Marzouk H, Mattos J, McCoul E, Melen E, Mims JW, Mullol J, Nayak JV, Oppenheimer J, Orlandi RR, Phillips K, Platt M, Ramanathan M, Raymond M, Rhee CS, Reitsma S, Ryan M, Sastre J, Schlosser RJ, Schuman TA, Shaker MS, Sheikh A, Smith KA, Soyka MB, Takashima M, Tang M, Tantilipikorn P, Taw MB, Tversky J, Tyler MA, Veling MC, Wallace D, Wang DY, White A, Zhang L. International consensus statement on allergy and rhinology: Allergic rhinitis - 2023. Int Forum Allergy Rhinol 2023; 13:293-859. [PMID: 36878860 DOI: 10.1002/alr.23090] [Citation(s) in RCA: 160] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/11/2022] [Accepted: 09/13/2022] [Indexed: 03/08/2023]
Abstract
BACKGROUND In the 5 years that have passed since the publication of the 2018 International Consensus Statement on Allergy and Rhinology: Allergic Rhinitis (ICAR-Allergic Rhinitis 2018), the literature has expanded substantially. The ICAR-Allergic Rhinitis 2023 update presents 144 individual topics on allergic rhinitis (AR), expanded by over 40 topics from the 2018 document. Originally presented topics from 2018 have also been reviewed and updated. The executive summary highlights key evidence-based findings and recommendation from the full document. METHODS ICAR-Allergic Rhinitis 2023 employed established evidence-based review with recommendation (EBRR) methodology to individually evaluate each topic. Stepwise iterative peer review and consensus was performed for each topic. The final document was then collated and includes the results of this work. RESULTS ICAR-Allergic Rhinitis 2023 includes 10 major content areas and 144 individual topics related to AR. For a substantial proportion of topics included, an aggregate grade of evidence is presented, which is determined by collating the levels of evidence for each available study identified in the literature. For topics in which a diagnostic or therapeutic intervention is considered, a recommendation summary is presented, which considers the aggregate grade of evidence, benefit, harm, and cost. CONCLUSION The ICAR-Allergic Rhinitis 2023 update provides a comprehensive evaluation of AR and the currently available evidence. It is this evidence that contributes to our current knowledge base and recommendations for patient evaluation and treatment.
Collapse
Affiliation(s)
- Sarah K Wise
- Otolaryngology-HNS, Emory University, Atlanta, Georgia, USA
| | - Cecelia Damask
- Otolaryngology-HNS, Private Practice, University of Central Florida, Lake Mary, Florida, USA
| | - Lauren T Roland
- Otolaryngology-HNS, Washington University, St. Louis, Missouri, USA
| | - Charles Ebert
- Otolaryngology-HNS, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Joshua M Levy
- Otolaryngology-HNS, Emory University, Atlanta, Georgia, USA
| | - Sandra Lin
- Otolaryngology-HNS, University of Wisconsin, Madison, Wisconsin, USA
| | - Amber Luong
- Otolaryngology-HNS, McGovern Medical School of the University of Texas, Houston, Texas, USA
| | - Kenneth Rodriguez
- Otolaryngology-HNS, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Ahmad R Sedaghat
- Otolaryngology-HNS, University of Cincinnati, Cincinnati, Ohio, USA
| | - Elina Toskala
- Otolaryngology-HNS, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | - Baharudin Abdullah
- Otolaryngology-HNS, Universiti Sains Malaysia, Kubang, Kerian, Kelantan, Malaysia
| | - Cezmi Akdis
- Immunology, Infectious Diseases, Swiss Institute of Allergy and Asthma Research, Davos, Switzerland
| | - Jeremiah A Alt
- Otolaryngology-HNS, University of Utah, Salt Lake City, Utah, USA
| | | | - Antoine Azar
- Allergy/Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Fuad Baroody
- Otolaryngology-HNS, University of Chicago, Chicago, Illinois, USA
| | | | | | - Christopher Brook
- Otolaryngology-HNS, Harvard University, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Raewyn Campbell
- Otolaryngology-HNS, Macquarie University, Sydney, NSW, Australia
| | - Thomas Casale
- Allergy/Immunology, University of South Florida College of Medicine, Tampa, Florida, USA
| | - Mohamad R Chaaban
- Otolaryngology-HNS, Cleveland Clinic, Case Western Reserve University, Cleveland, Ohio, USA
| | - Fook Tim Chew
- Allergy/Immunology, Genetics, National University of Singapore, Singapore, Singapore
| | - Jeffrey Chambliss
- Allergy/Immunology, University of Texas Southwestern, Dallas, Texas, USA
| | - Antonella Cianferoni
- Allergy/Immunology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | | | | | - Anne K Ellis
- Allergy/Immunology, Queens University, Kingston, ON, Canada
| | | | - Wytske J Fokkens
- Otorhinolaryngology, Amsterdam University Medical Centres, Amsterdam, Netherlands
| | | | - Matthew Greenhawt
- Allergy/Immunology, Pediatrics, University of Colorado, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Amarbir Gill
- Otolaryngology-HNS, University of Michigan, Ann Arbor, Michigan, USA
| | - Ashleigh Halderman
- Otolaryngology-HNS, University of Texas Southwestern, Dallas, Texas, USA
| | - Jens M Hohlfeld
- Respiratory Medicine, Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover Medical School, German Center for Lung Research, Hannover, Germany
| | | | - Stephanie A Joe
- Otolaryngology-HNS, University of Illinois Chicago, Chicago, Illinois, USA
| | - Shyam Joshi
- Allergy/Immunology, Oregon Health and Science University, Portland, Oregon, USA
| | | | - Jean Kim
- Otolaryngology-HNS, Johns Hopkins University, Baltimore, Maryland, USA
| | - Adam M Klein
- Otolaryngology-HNS, Emory University, Atlanta, Georgia, USA
| | - Helene J Krouse
- Otorhinolaryngology Nursing, University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Edward C Kuan
- Otolaryngology-HNS, University of California Irvine, Orange, California, USA
| | - David Lang
- Allergy/Immunology, Cleveland Clinic, Cleveland, Ohio, USA
| | | | | | - Matt Lechner
- Otolaryngology-HNS, University College London, Barts Health NHS Trust, London, UK
| | - Stella E Lee
- Otolaryngology-HNS, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Victoria S Lee
- Otolaryngology-HNS, University of Illinois Chicago, Chicago, Illinois, USA
| | - Patricia Loftus
- Otolaryngology-HNS, University of California San Francisco, San Francisco, California, USA
| | - Sonya Marcus
- Otolaryngology-HNS, Stony Brook University, Stony Brook, New York, USA
| | - Haidy Marzouk
- Otolaryngology-HNS, State University of New York Upstate, Syracuse, New York, USA
| | - Jose Mattos
- Otolaryngology-HNS, University of Virginia, Charlottesville, Virginia, USA
| | - Edward McCoul
- Otolaryngology-HNS, Ochsner Clinic, New Orleans, Louisiana, USA
| | - Erik Melen
- Pediatric Allergy, Karolinska Institutet, Stockholm, Sweden
| | - James W Mims
- Otolaryngology-HNS, Wake Forest University, Winston Salem, North Carolina, USA
| | - Joaquim Mullol
- Otorhinolaryngology, Hospital Clinic Barcelona, Barcelona, Spain
| | - Jayakar V Nayak
- Otolaryngology-HNS, Stanford University, Palo Alto, California, USA
| | - John Oppenheimer
- Allergy/Immunology, Rutgers, State University of New Jersey, Newark, New Jersey, USA
| | | | - Katie Phillips
- Otolaryngology-HNS, University of Cincinnati, Cincinnati, Ohio, USA
| | - Michael Platt
- Otolaryngology-HNS, Boston University, Boston, Massachusetts, USA
| | | | | | - Chae-Seo Rhee
- Rhinology/Allergy, Seoul National University Hospital and College of Medicine, Seoul, Korea
| | - Sietze Reitsma
- Otolaryngology-HNS, University of Amsterdam, Amsterdam, Netherlands
| | - Matthew Ryan
- Otolaryngology-HNS, University of Texas Southwestern, Dallas, Texas, USA
| | - Joaquin Sastre
- Allergy, Fundacion Jiminez Diaz, University Autonoma de Madrid, Madrid, Spain
| | - Rodney J Schlosser
- Otolaryngology-HNS, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Theodore A Schuman
- Otolaryngology-HNS, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Marcus S Shaker
- Allergy/Immunology, Dartmouth Geisel School of Medicine, Lebanon, New Hampshire, USA
| | - Aziz Sheikh
- Primary Care, University of Edinburgh, Edinburgh, Scotland
| | - Kristine A Smith
- Otolaryngology-HNS, University of Utah, Salt Lake City, Utah, USA
| | - Michael B Soyka
- Otolaryngology-HNS, University of Zurich, University Hospital of Zurich, Zurich, Switzerland
| | - Masayoshi Takashima
- Otolaryngology-HNS, Houston Methodist Academic Institute, Houston, Texas, USA
| | - Monica Tang
- Allergy/Immunology, University of California San Francisco, San Francisco, California, USA
| | | | - Malcolm B Taw
- Integrative East-West Medicine, University of California Los Angeles, Westlake Village, California, USA
| | - Jody Tversky
- Allergy/Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Matthew A Tyler
- Otolaryngology-HNS, University of Minnesota, Minneapolis, Minnesota, USA
| | - Maria C Veling
- Otolaryngology-HNS, University of Texas Southwestern, Dallas, Texas, USA
| | - Dana Wallace
- Allergy/Immunology, Nova Southeastern University, Ft. Lauderdale, Florida, USA
| | - De Yun Wang
- Otolaryngology-HNS, National University of Singapore, Singapore, Singapore
| | - Andrew White
- Allergy/Immunology, Scripps Clinic, San Diego, California, USA
| | - Luo Zhang
- Otolaryngology-HNS, Beijing Tongren Hospital, Beijing, China
| |
Collapse
|
14
|
van der Burg N, Tufvesson E. Is asthma's heterogeneity too vast to use traditional phenotyping for modern biologic therapies? Respir Med 2023; 212:107211. [PMID: 36924848 DOI: 10.1016/j.rmed.2023.107211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/07/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023]
Affiliation(s)
- Nicole van der Burg
- Department of Clinical Sciences Lund, Respiratory Medicine and Allergology, Lund University, Lund, Sweden.
| | - Ellen Tufvesson
- Department of Clinical Sciences Lund, Respiratory Medicine and Allergology, Lund University, Lund, Sweden
| |
Collapse
|
15
|
Kitahara A, Yamamoto Y, Fukutomi Y, Shiraishi Y, Tanaka J, Oguma T, Taniguchi M, Nagai T, Asano K. Sensitization pattern to environmental allergens in a Japanese population. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2023; 2:30-35. [PMID: 37780114 PMCID: PMC10509945 DOI: 10.1016/j.jacig.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 10/14/2022] [Accepted: 10/27/2022] [Indexed: 10/03/2023]
Abstract
Background We previously described the prevalence of allergen-specific IgE in a general population of Japanese adults. Objective We sought to elucidate allergen sensitization patterns in this population. Methods Serum samples had been obtained from 800 blood donors aged 20 to 59 years and living in Tokyo, Japan, in 2005 and stored in the Japanese Red Cross Society. These samples were examined for IgE levels, total and specific for 23 allergens or allergen sources correlated with allergic airway diseases using the ImmunoCAP method. Exploratory and confirmatory factor analyses were performed to uncover the relationship among allergen-specific IgE based on their titers. Hierarchical cluster analysis was executed using Ward's method based on standardized factor scores identified through factor analysis. Results Exploratory factor analysis revealed 6 categories of allergen-specific IgE: specific to 2 types of animals (insects and Dermatophagoides pteronyssinus/animal dander), 2 types of pollens (group 1 [Japanese cedar and cypress] and group 2 [alder, grass, and weeds]), and 2 types of microorganisms (fungi and commensal microorganisms on the skin). The Japanese population was categorized into 3 clusters: (A) nonatopic type, (B) house dust mite-dominant sensitization type, and (C) panatopic type. The panatopic group could be further classified into 2 subclusters positive and negative for fungal sensitization. Conclusions This study demonstrated that a Japanese population could be divided into 3 clusters according to the sensitization pattern to 6 types of allergens.
Collapse
Affiliation(s)
- Asako Kitahara
- Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Yoshiro Yamamoto
- Department of Mathematics, School of Science, Tokai University, Kanagawa, Japan
| | - Yuma Fukutomi
- Clinical Research Center, National Hospital Organization Sagamihara National Hospital, Kanagawa, Japan
| | - Yoshiki Shiraishi
- Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Jun Tanaka
- Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Tsuyoshi Oguma
- Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Masami Taniguchi
- Clinical Research Center, National Hospital Organization Sagamihara National Hospital, Kanagawa, Japan
- Shonan Kamakura General Hospital Center for Immunology and Allergology, Kanagawa, Japan
| | - Tadashi Nagai
- Central Blood Institute, Japanese Red Cross Society, Tokyo, Japan
| | - Koichiro Asano
- Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, Kanagawa, Japan
| |
Collapse
|
16
|
Custovic A, de Moira AP, Murray CS, Simpson A. Environmental influences on childhood asthma: Allergens. Pediatr Allergy Immunol 2023; 34:e13915. [PMID: 36825741 DOI: 10.1111/pai.13915] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 02/15/2023]
Abstract
Allergen exposure is associated with the development of allergen-specific sensitization, but their relationship is influenced by other contemporaneous exposures (such as microbial exposure) and the genetic predisposition of the host. Clinical outcomes of the primary prevention studies that tested the effectiveness of allergen avoidance in pregnancy and early life on the subsequent development of sensitization and asthma published to date are inconsistent. Therefore, we cannot provide any evidence-based advice on the use of allergen avoidance for the primary prevention of these conditions. The evidence about the impact of allergen exposure among and among sensitized children with asthma is more consistent, and the combination of sensitization and high exposure to sensitizing allergen increases airway inflammation, triggers symptoms, adversely impacts upon disease control, and is associated with poorer lung function in preschool age. However, there are differing opinions about the role of inhalant allergen avoidance in asthma management, and recommendations differ in different guidelines. Evidence from more recent high-quality trials suggests that mite allergen-impermeable bed encasings reduce hospital attendance with asthma attacks and that multifaceted targeted environmental control improves asthma control in children. We therefore suggest a pragmatic approach to allergen avoidance in the management of childhood asthma for clinical practice, including the recommendations to: (1) tailor the intervention to the patient's sensitization and exposure status by using titer of allergen-specific IgE antibodies and/or the size of the skin test as indicators of potential response; (2) use a multifaceted allergen control regime to reduce exposure as much as possible; and (3) start intervention as early as possible upon diagnosis.
Collapse
Affiliation(s)
- Adnan Custovic
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Clare S Murray
- NIHR Manchester Biomedical Research Unit, Division of Immunology, Immunity to Infection, and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Angela Simpson
- NIHR Manchester Biomedical Research Unit, Division of Immunology, Immunity to Infection, and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
17
|
Kang SY, Yang MS, Borres MP, Andersson M, Lee SM, Lee SP. The association between specific IgE antibodies to component allergens and allergic symptoms on dog and cat exposure among Korean pet exhibition participants. World Allergy Organ J 2022; 15:100709. [PMID: 36321071 PMCID: PMC9574497 DOI: 10.1016/j.waojou.2022.100709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/12/2022] Open
Abstract
Background Component resolved diagnostics (CRD) in dog and cat allergy is not sufficiently investigated, especially regarding new components such as Can f 4, Can f 6, and Fel d 7. The purpose of this study is to evaluate the potential role of CRD with new components in predicting allergic symptoms on dog and cat exposure. Methods Among 552 Korean adults who participated in a pet exhibition and completed questionnaires regarding exposure to dog or cat and allergic symptoms, 522 were venipunctured for measurement of IgE and IgG4 antibody concentration against dog and cat dander extract and underwent skin prick test (SPT). In 238 individuals who were sensitized for both dog and cat dander extract, the dog IgE components (Can f 1–6) and the cat components (Fel d 1/2/4/7) were analyzed. Results An increasing number of sensitizing components was associated with the likelihood of having any allergic symptoms (P < 0.001 for dog and P < 0.01 for cat), and those of asthma (P < 0.01 for dog and P < 0.05 for cat) and rhinoconjunctivitis (P < 0.001 for dog and P < 0.05 for cat). Pairwise correlation of IgE levels was r = 0.56 (P < 0.001) for Can f 6 and Fel d 4, r = 0.74 (P < 0.001) for Can f 1 and Fel d 7 and r = 0.84 (P < 0.001) for Can f 3 and Fel d 2. Conclusions Polysensitization to dog and cat allergen components is associated with high likelihood of having allergic symptoms during exposure to dogs and cats. Cross-reactivity between dog and cat allergen components is also identified. CRD has a potential in fine-tuning prediction for allergic symptoms on dog and cat exposure.
Collapse
|
18
|
Sesé L, Mahay G, Barnig C, Guibert N, Leroy S, Guilleminault L. [Markers of severity and predictors of response to treatment in severe asthma]. Rev Mal Respir 2022; 39:740-757. [PMID: 36115752 DOI: 10.1016/j.rmr.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/19/2022] [Indexed: 10/14/2022]
Abstract
Asthma is a multifactorial disease with complex pathophysiology. Knowledge of its immunopathology and inflammatory mechanisms is progressing and has led to the development over recent years of increasingly targeted therapeutic strategies. The objective of this review is to pinpoint the different predictive markers of asthma severity and therapeutic response. Obesity, nasal polyposis, gastroesophageal reflux disease and intolerance to aspirin have all been considered as clinical markers associated with asthma severity, as have functional markers such as bronchial obstruction, low FEV1, small daily variations in FEV1, and high FeNO. While sinonasal polyposis and allergic comorbidities are associated with better response to omalizumab, nasal polyposis or long-term systemic steroid use are associated with better response to antibodies targeting the IL5 pathway. Elevated total IgE concentrations and eosinophil counts are classic biological markers regularly found in severe asthma. Blood eosinophils are predictive biomarkers of response to anti-IgE, anti-IL5, anti-IL5R and anti-IL4R biotherapies. Dupilumab is particularly effective in a subgroup of patients with marked type 2 inflammation (long-term systemic corticosteroid therapy, eosinophilia≥150/μl or FENO>20 ppb). Chest imaging may help to identify severe patients by seeking out bronchial wall thickening and bronchial dilation. Study of the patient's environment is crucial insofar as exposure to tobacco, dust mites and molds, as well as outdoor and indoor air pollutants (cleaning products), can trigger asthma exacerbation. Wider and more systematic use of markers of severity or response to treatment could foster increasingly targeted and tailored approaches to severe asthma.
Collapse
Affiliation(s)
- L Sesé
- AP-HP, service de physiologie, hôpital Avicenne, Bobigny, France
| | - G Mahay
- Service de pneumologie, oncologie thoracique et soins intensifs respiratoires, CHU Rouen, Rouen, France
| | - C Barnig
- INSERM, EFS BFC, LabEx LipSTIC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, University Bourgogne Franche-Comté, Besançon, France; Service de pneumologie, oncologie thoracique et allergologie respiratoire, CHRU Besançon, Besançon, France
| | - N Guibert
- AP-HP, service de physiologie, hôpital Avicenne, Bobigny, France
| | - S Leroy
- Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, CNRS UMR 7275-FHU OncoAge, service de pneumologie oncologie thoracique et soins intensifs respiratoires, CHU de Nice, hôpital Pasteur, Nice, France
| | - L Guilleminault
- AP-HP, service de physiologie, hôpital Avicenne, Bobigny, France; Institut Toulousain des maladies infectieuses et inflammatoires (Infinity) inserm UMR1291-CNRS UMR5051-université Toulouse III, CRISALIS F-CRIN, Toulouse, France.
| |
Collapse
|
19
|
Lewis BW, Ford ML, Khan AQ, Walum J, Britt RD. Chronic Allergen Challenge Induces Corticosteroid Insensitivity With Persistent Airway Remodeling and Type 2 Inflammation. Front Pharmacol 2022; 13:855247. [PMID: 35479312 PMCID: PMC9035517 DOI: 10.3389/fphar.2022.855247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Type 2-high severe asthma is described as a distinct endotype with Th2 inflammation, high eosinophil lung infiltration, impaired lung function, and reduced corticosteroid sensitivity. While the inflammatory milieu is similar to mild asthma, patients with type 2-high severe asthma likely have underlying mechanisms that sustain asthma pathophysiology despite corticosteroid treatments. Acute and chronic allergen models induce robust type 2 inflammatory responses, however differences in corticosteroid sensitivity remains poorly understood. In the present study, we sensitized and challenged mice with ovalbumin (OVA; acute model) or mixed allergens (MA; chronic model). Corticosteroid sensitivity was assessed by administering vehicle, 1, or 3 mg/kg fluticasone propionate (FP) and examining key asthmatic features such as airway inflammation, remodeling, hyperresponsiveness, and antioxidant capacity. Both acute and chronic allergen exposure exhibited enhanced AHR, immune cell infiltration, airway inflammation, and remodeling, but corticosteroids were unable to fully alleviate inflammation, AHR, and airway smooth muscle mass in MA-challenged mice. While there were no differences in antioxidant capacity, persistent IL-4+ Th2 cell population suggests the MA model induces type 2 inflammation that is insensitive to corticosteroids. Our data indicate that chronic allergen exposure is associated with more persistent type 2 immune responses and corticosteroid insensitivity. Understanding differences between acute and chronic allergen models could unlock underlying mechanisms related to type 2-high severe asthma.
Collapse
Affiliation(s)
- Brandon W. Lewis
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Maria L. Ford
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Aiman Q. Khan
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Joshua Walum
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Rodney D. Britt
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
- *Correspondence: Rodney D. Britt Jr,
| |
Collapse
|
20
|
Harada K, Miller RL. Environmental exposures: evolving evidence for their roles in adult allergic disorders. Curr Opin Allergy Clin Immunol 2022; 22:24-28. [PMID: 34723869 PMCID: PMC8702460 DOI: 10.1097/aci.0000000000000794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE OF REVIEW Allergic disorders are the result of complex interactions between genetic predisposition and environmental exposures. Elucidating how specific environmental exposures contribute to allergic diseases in adults is crucial, especially as the world population ages in a rapidly changing environment. RECENT FINDINGS The effects of environmental exposures on allergic diseases remain understudied in adults. Although epidemiological studies suggest various environmental exposures are associated with the development and exacerbation of allergic diseases, further longitudinal studies are needed across various age groups in adults to pinpoint the exposures of concerns and the time windows of susceptibility. Mechanistic studies in adults are few. A multicomponent strategy targeting several allergens has been conditionally recommended for asthma, but recent findings on mitigation strategies remain limited. SUMMARY Further research on how environmental exposures cause and exacerbate allergic disorders is needed in adults, particularly across disease phenotypes. The effects of mitigation strategies against environmentally induced adult allergic diseases remain large research gaps. A better understanding of how and which environmental exposures contribute to allergic disorders is necessary to identify patients who are at higher risk and would benefit from specific interventions.
Collapse
Affiliation(s)
- Kaoru Harada
- Division of Allergy and Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Rachel L. Miller
- Division of Allergy and Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| |
Collapse
|
21
|
Siroux V, Boudier A, Bousquet J, Dumas O, Just J, Le Moual N, Nadif R, Varraso R, Valenta R, Pin I. Trajectories of IgE sensitization to allergen molecules from childhood to adulthood and respiratory health in the EGEA cohort. Allergy 2022; 77:609-618. [PMID: 34169532 DOI: 10.1111/all.14987] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/04/2021] [Accepted: 06/15/2021] [Indexed: 01/11/2023]
Abstract
BACKGROUND Longitudinal studies assessing the association of profiles of allergen-specific IgE (sIgE) sensitization to a large range of allergen molecules and respiratory health are rare. We aimed to assess trajectories of molecular sIgE sensitization profiles from childhood to adulthood and their associations with respiratory health. METHODS IgE reactivity to microarrayed allergen molecules were measured in childhood (EGEA1) and 12 years later in adult life (EGEA2) among 291 EGEA participants (152 with asthma). At each time point, sIgE sensitization profiles were identified by latent class analysis (LCA) by considering IgE-reactivity to the 38 most prevalent respiratory allergens. The LCA-defined profiles were then studied in association with respiratory health. RESULTS At baseline, the mean (min-max) age of the population was 11 (4.5-16) years. The LCA identified four sIgE sensitization profiles which were very similar at both time points (% at EGEA1 and EGEA2); A: "no/few allergen(s)" (48%, 39%), B: "pollen/animal allergens" (18%, 21%), C: "most prevalent house dust mite allergens" (22%, 27%) and D: "many allergens" (12%, 13%). Overall, 73% of the participants remained in the same profile from childhood to adulthood. The profiles were associated with asthma and rhinitis phenotypes. Participants of profiles C and D had lower FEV1 % and FEF25-75 % as compared to profile A. Similar patterns of associations were observed for participants with asthma. There was no association with change in lung function. CONCLUSION Using high-resolution sIgE longitudinal data, the LCA identified four molecular sensitization profiles, mainly stable from childhood to adulthood, that were associated with respiratory health.
Collapse
Affiliation(s)
- Valérie Siroux
- Team of Environmental Epidemiology applied to the Development and Respiratory Health IAB Inserm, Univ. Grenoble Alpes, CNRS Grenoble France
| | - Anne Boudier
- Team of Environmental Epidemiology applied to the Development and Respiratory Health IAB Inserm, Univ. Grenoble Alpes, CNRS Grenoble France
| | | | - Orianne Dumas
- UVSQ INSERM Équipe d'Épidémiologie respiratoire intégrative CESP Université Paris‐Saclay Univ. Paris‐Sud Villejuif France
| | - Jocelyne Just
- Department of Allergology France Hôpital d’Enfants Armand Trousseau Sorbonne Université Paris Paris France
| | - Nicole Le Moual
- UVSQ INSERM Équipe d'Épidémiologie respiratoire intégrative CESP Université Paris‐Saclay Univ. Paris‐Sud Villejuif France
| | - Rachel Nadif
- UVSQ INSERM Équipe d'Épidémiologie respiratoire intégrative CESP Université Paris‐Saclay Univ. Paris‐Sud Villejuif France
| | - Raphaëlle Varraso
- UVSQ INSERM Équipe d'Épidémiologie respiratoire intégrative CESP Université Paris‐Saclay Univ. Paris‐Sud Villejuif France
| | - Rudolf Valenta
- Division of Immunopathology Department of Pathophysiology and Allergy Research Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
- NRC Institute of Immunology FMBA of Russia Moscow Russia
- Laboratory for Immunopathology Department of Clinical Immunology and Allergy Sechenov First Moscow State Medical University Moscow Russia
- Karl Landsteiner University of Health Sciences Krems Austria
| | - Isabelle Pin
- Team of Environmental Epidemiology applied to the Development and Respiratory Health IAB Inserm, Univ. Grenoble Alpes, CNRS Grenoble France
- Pediatric Department CHU Grenoble Alpes Grenoble France
| |
Collapse
|
22
|
Panaitescu C, Haidar L, Buzan MR, Grijincu M, Spanu DE, Cojanu C, Laculiceanu A, Bumbacea R, Agache IO. Precision medicine in the allergy clinic: the application of component resolved diagnosis. Expert Rev Clin Immunol 2022; 18:145-162. [PMID: 35078387 DOI: 10.1080/1744666x.2022.2034501] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
INTRODUCTION A precise diagnosis is key for the optimal management of allergic diseases and asthma. In vivo or in vitro diagnostic methods that use allergen extracts often fail to identify the molecules eliciting the allergic reactions. AREAS COVERED Component-resolved diagnosis (CRD) has solved most of the limitations of extract-based diagnostic procedures and is currently valuable tool for the precision diagnosis in the allergy clinic, for venom and food allergy, asthma, allergic rhinitis, and atopic dermatitis. Its implementation in daily practice facilitates: a) the distinction between genuine multiple sensitizations and cross-reactive sensitization in polysensitized patients; b) the prediction of a severe, systemic reaction in food or insect venom allergy; c) the optimal selection of allergen immunotherapy based on the patient sensitization profile. This paper describes its main advantages and disadvantages, cost-effectiveness and future perspectives. EXPERT OPINION The diagnostic strategy based on CRD is part of the new concept of precision immunology, which aims to improve the management of allergic diseases.
Collapse
Affiliation(s)
- Carmen Panaitescu
- Department of Functional Sciences, Physiology, Center of Immuno-Physiology and Biotechnologies (CIFBIOTEH), "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania.,Centre for Gene and Cellular Therapies in The Treatment of Cancer - OncoGen, "Pius Brinzeu" Clinical Emergency Hospital, Timisoara, Romania
| | - Laura Haidar
- Department of Functional Sciences, Physiology, Center of Immuno-Physiology and Biotechnologies (CIFBIOTEH), "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania
| | - Maria Roxana Buzan
- Department of Functional Sciences, Physiology, Center of Immuno-Physiology and Biotechnologies (CIFBIOTEH), "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania.,Centre for Gene and Cellular Therapies in The Treatment of Cancer - OncoGen, "Pius Brinzeu" Clinical Emergency Hospital, Timisoara, Romania
| | - Manuela Grijincu
- Department of Functional Sciences, Physiology, Center of Immuno-Physiology and Biotechnologies (CIFBIOTEH), "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania.,Centre for Gene and Cellular Therapies in The Treatment of Cancer - OncoGen, "Pius Brinzeu" Clinical Emergency Hospital, Timisoara, Romania
| | | | - Catalina Cojanu
- Transylvania University Brasov - Faculty of Medicine, Brasov
| | | | - Roxana Bumbacea
- Department of Allergy, "Carol Davila" University of Medicine and Pharmacy Bucharest, Romania
| | | |
Collapse
|
23
|
Custovic A, Siddiqui S, Saglani S. Considering biomarkers in asthma disease severity. J Allergy Clin Immunol 2021; 149:480-487. [PMID: 34942235 DOI: 10.1016/j.jaci.2021.11.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 10/19/2022]
Abstract
Amongst patients with asthma, reliance on the type/dose of prescribed medication and symptom control does not adequately capture those at risk of adverse outcomes, and we need biomarkers for risk and treatment stratification which are consistently accurate, readily quantifiable and reproducible. The majority of patients with severe asthma, regardless of age, have predominant type-2 (T2) inflammation mediated disease, making airway/blood eosinophils, FeNO, periostin and/or allergic sensitization potentially important biomarkers for severe disease. In both adult and pediatric asthma, there is scope to improve prediction of severe attacks by using a composite T2 biomarkers of blood eosinophils and FeNO. Technological advances in component-resolved diagnostics (CRD) microarray technologies coupled with the development of interpretation software offer a possibility to use CRD as biomarkers of asthma severity amongst sensitized asthmatics. Genetic predisposition and polygenic risk scores of relevant traits (e.g., lung function, host immune responses, biomarkers of exposure from the indoor and outdoor environment, infection and microbial dysbiosis) may also contribute to prediction algorithms. We challenge the idea that asthma can be accurately defined in an individual patient by a discrete and static "endotype" (e.g., T2-high asthma). As we traverse the new era of molecular endotyping in asthma, we need to understand how relevant mechanisms impact patient outcomes, and in parallel develop new tools and approaches to stratify therapies and define individual patient trajectories.
Collapse
Affiliation(s)
- Adnan Custovic
- National Heart and Lung Institute, Imperial College London, UK.
| | - Salman Siddiqui
- Department of Respiratory Sciences, University of Leicester and NIHR Respiratory Biomedical Research Unit, Glenfield Hospital, Leicester UK
| | - Sejal Saglani
- National Heart and Lung Institute, Imperial College London, UK
| |
Collapse
|
24
|
Hemmings O, Niazi U, Kwok M, Radulovic S, Du Toit G, Lack G, Santos AF. Combining Allergen Components Improves the Accuracy of Peanut Allergy Diagnosis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 10:189-199. [PMID: 34492400 DOI: 10.1016/j.jaip.2021.08.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/03/2021] [Accepted: 08/25/2021] [Indexed: 01/13/2023]
Abstract
BACKGROUND IgE to peanut often occurs in the absence of peanut allergy. Detection of allergen component specific IgE (sIgE) has improved diagnosis and birthed molecular allergen component arrays, in which sensitization to multiple allergen components can be measured simultaneously. OBJECTIVE To improve the diagnostic utility of serology for peanut allergy, by mapping interactions of sIgE to multiple components and IgE functional characteristics. METHODS A cohort of 100 children was studied, with a 60-children cohort employed for external validation. Levels of total IgE, sIgE to peanut, and peanut components were measured using singleplex ImmunoCAP and multiplex immuno solid-phase allergen chip (ISAC). Peanut IgE specific activity, avidity, and diversity were determined. Diagnostic modeling was performed using a Bayesian hierarchical model. RESULTS Sensitization to the 112 allergens on ISAC (model 1) demonstrated the highest accuracy to diagnose peanut allergy (area under the curve [AUC] = 0.92). Sensitization to peanut components on ISAC (model 2) reported an AUC of 0.86 and on singleplex (model 3) an AUC of 0.92, which was greater than that of Ara h 2 sIgE alone (AUC = 0.90). Functional characteristics of peanut sIgE (model 4) reported an AUC of 0.89, which was greater than that of peanut sIgE (AUC = 0.75). Model 3 offered the highest predictive value and the second highest overall diagnostic accuracy. CONCLUSIONS sIgE to a combination of allergen components (Ara h 1, 2, 3, and 6) is highly predictive of peanut allergy and superior to individual markers. Combining the functional characteristics of IgE was superior to peanut sIgE levels alone. These models can be applied in real time during clinical consultations using online calculators.
Collapse
Affiliation(s)
- Oliver Hemmings
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom; Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom; Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Umar Niazi
- Guy's and St Thomas' National Health Service Foundation Trust and King's College London National Institute for Health Research Biomedical Research Centre Translational Bioinformatics Platform, Guy's Hospital, London, United Kingdom
| | - Matthew Kwok
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom; Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom; Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Suzana Radulovic
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom; Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom; Children's Allergy Service, Evelina London Children's Hospital, Guy's and St Thomas' Hospital, London, United Kingdom
| | - George Du Toit
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom; Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom; Children's Allergy Service, Evelina London Children's Hospital, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Gideon Lack
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom; Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom; Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom; Children's Allergy Service, Evelina London Children's Hospital, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Alexandra F Santos
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom; Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom; Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom; Children's Allergy Service, Evelina London Children's Hospital, Guy's and St Thomas' Hospital, London, United Kingdom.
| |
Collapse
|
25
|
Oxidative Stress Promotes Corticosteroid Insensitivity in Asthma and COPD. Antioxidants (Basel) 2021; 10:antiox10091335. [PMID: 34572965 PMCID: PMC8471691 DOI: 10.3390/antiox10091335] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
Corticosteroid insensitivity is a key characteristic of patients with severe asthma and COPD. These individuals experience greater pulmonary oxidative stress and inflammation, which contribute to diminished lung function and frequent exacerbations despite the often and prolonged use of systemic, high dose corticosteroids. Reactive oxygen and nitrogen species (RONS) promote corticosteroid insensitivity by disrupting glucocorticoid receptor (GR) signaling, leading to the sustained activation of pro-inflammatory pathways in immune and airway structural cells. Studies in asthma and COPD models suggest that corticosteroids need a balanced redox environment to be effective and to reduce airway inflammation. In this review, we discuss how oxidative stress contributes to corticosteroid insensitivity and the importance of optimizing endogenous antioxidant responses to enhance corticosteroid sensitivity. Future studies should aim to identify how antioxidant-based therapies can complement corticosteroids to reduce the need for prolonged high dose regimens in patients with severe asthma and COPD.
Collapse
|
26
|
Robinson PFM, Fontanella S, Ananth S, Martin Alonso A, Cook J, Kaya-de Vries D, Polo Silveira L, Gregory L, Lloyd C, Fleming L, Bush A, Custovic A, Saglani S. Recurrent Severe Preschool Wheeze: From Pre-Specified Diagnostic Labels to Underlying Endotypes. Am J Respir Crit Care Med 2021; 204:523-535. [PMID: 33961755 PMCID: PMC8491264 DOI: 10.1164/rccm.202009-3696oc] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Rationale: Preschool wheezing is heterogeneous, but the underlying mechanisms are poorly understood. Objectives: To investigate lower airway inflammation and infection in preschool children with different clinical diagnoses undergoing elective bronchoscopy and BAL. Methods: We recruited 136 children aged 1–5 years (105 with recurrent severe wheeze [RSW]; 31 with nonwheezing respiratory disease [NWRD]). Children with RSW were assigned as having episodic viral wheeze (EVW) or multiple-trigger wheeze (MTW). We compared lower airway inflammation and infection in different clinical diagnoses and undertook data-driven analyses to determine clusters of pathophysiological features, and we investigated their relationships with prespecified diagnostic labels. Measurements and Main Results: Blood eosinophil counts and percentages and allergic sensitization were significantly higher in children with RSW than in children with a NWRD. Blood neutrophil counts and percentages, BAL eosinophil and neutrophil percentages, and positive bacterial culture and virus detection rates were similar between groups. However, pathogen distribution differed significantly, with higher detection of rhinovirus in children with RSW and higher detection of Moraxella in sensitized children with RSW. Children with EVW and children with MTW did not differ in terms of blood or BAL-sample inflammation, or bacteria or virus detection. The Partition around Medoids algorithm revealed four clusters of pathophysiological features: 1) atopic (17.9%), 2) nonatopic with a low infection rate and high use of inhaled corticosteroids (31.3%), 3) nonatopic with a high infection rate (23.1%), and 4) nonatopic with a low infection rate and no use of inhaled corticosteroids (27.6%). Cluster allocation differed significantly between the RSW and NWRD groups (RSW was evenly distributed across clusters, and 60% of the NWRD group was assigned to cluster 4; P < 0.001). There was no difference in cluster membership between the EVW and MTW groups. Cluster 1 was dominated by Moraxella detection (P = 0.04), and cluster 3 was dominated by Haemophilus or Staphylococcus or Streptococcus detection (P = 0.02). Conclusions: We identified four clusters of severe preschool wheeze, which were distinguished by using sensitization, peripheral eosinophilia, lower airway neutrophilia, and bacteriology.
Collapse
Affiliation(s)
- Polly F M Robinson
- Imperial College London, National Heart and Lung Institute, London, United Kingdom of Great Britain and Northern Ireland
| | - Sara Fontanella
- Imperial College London, Department of Paediatrics, London, United Kingdom of Great Britain and Northern Ireland
| | - Sachin Ananth
- Imperial College London, National Heart and Lung Institute, London, United Kingdom of Great Britain and Northern Ireland
| | - Aldara Martin Alonso
- Imperial College London, London, United Kingdom of Great Britain and Northern Ireland
| | - James Cook
- Royal Brompton and Harefield NHS Foundation Trust, 4964, Paediatric Respiratory Medicine, London, United Kingdom of Great Britain and Northern Ireland
| | - Daphne Kaya-de Vries
- Imperial College London, National Heart and Lung Institute, London, United Kingdom of Great Britain and Northern Ireland.,Royal Brompton and Harefield NHS Foundation Trust, 4964, Paediatric Respiratory Medicine, London, United Kingdom of Great Britain and Northern Ireland
| | - Luisa Polo Silveira
- Imperial College London, National Heart and Lung Institute, London, United Kingdom of Great Britain and Northern Ireland
| | - Lisa Gregory
- Imperial College, Leukocyte Biology, South Kensington, United Kingdom of Great Britain and Northern Ireland
| | - Clare Lloyd
- Imperial College, Leukocyte Biology, London, United Kingdom of Great Britain and Northern Ireland
| | - Louise Fleming
- Royal BRompton Hospital, Respiratory Paediatrics, London, United Kingdom of Great Britain and Northern Ireland
| | - Andrew Bush
- Imperial College and Royal Brompton Hospital, London, London, United Kingdom of Great Britain and Northern Ireland
| | - Adnan Custovic
- Imperial College London, 4615, National Heart and Lung Institute, London, United Kingdom of Great Britain and Northern Ireland
| | - Sejal Saglani
- Royal Brompton Hospital, Respiratory Paediatrics, London, United Kingdom of Great Britain and Northern Ireland;
| |
Collapse
|
27
|
Fontanella S, Cucco A, Custovic A. Machine learning in asthma research: moving toward a more integrated approach. Expert Rev Respir Med 2021; 15:609-621. [PMID: 33618597 DOI: 10.1080/17476348.2021.1894133] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Big data are reshaping the future of medicine. The growing availability and increasing complexity of data have favored the adoption of modern analytical and computational methodologies in every area of medicine. Over the past decades, asthma research has been characterized by a shift in the way studies are conducted and data are analyzed. Motivated by the assumptions that 'data will speak for themselves', hypothesis-driven approaches have been replaced by data-driven hypotheses-generating methods to explore hidden patterns and underlying mechanisms. However, even with all the advancement in technologies and the new important insight that we gained to understand and characterize asthma heterogeneity, very few research findings have been translated into clinically actionable solutions.Areas covered: To investigate some of the fundamental analytical approaches adopted in the current literature and appraise their impact and usefulness in medicine, we conducted a bibliometric analysis of big data analytics in asthma research in the past 50 years.Expert opinion: No single data source or methodology can uncover the complexity of human health and disease. To fully capitalize on the potential of 'big data', we will have to embrace the collaborative science and encourage the creation of integrated cross-disciplinary teams brought together around technological advances.
Collapse
Affiliation(s)
- Sara Fontanella
- National Heart and Lung Institute, Imperial College London, UK
| | - Alex Cucco
- National Heart and Lung Institute, Imperial College London, UK
| | - Adnan Custovic
- National Heart and Lung Institute, Imperial College London, UK
| |
Collapse
|
28
|
Elisyutina O, Lupinek C, Fedenko E, Litovkina A, Smolnikov E, Ilina N, Kudlay D, Shilovskiy I, Valenta R, Khaitov M. IgE-reactivity profiles to allergen molecules in Russian children with and without symptoms of allergy revealed by micro-array analysis. Pediatr Allergy Immunol 2021; 32:251-263. [PMID: 32869350 PMCID: PMC7891667 DOI: 10.1111/pai.13354] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/26/2020] [Accepted: 08/18/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND The analysis of longitudinal birth cohorts with micro-arrayed allergen molecules has provided interesting information about the evolution of IgE sensitization in children. However, so far no cross-sectional study has been performed comparing IgE sensitization profiles in children with and without symptoms of allergy. Furthermore, no data are available regarding molecular IgE sensitization profiles in children from Russia. METHODS We recruited two groups of age- and gender-matched children, one (Group 1: n = 103; 12.24 ± 2.23 years; male/female: 58/45) with symptoms and a second (Group 2: n = 97; 12.78 ± 2.23 years; male/female: 53/44), without symptoms of allergy according to international ISAAC questionnaire. Children were further studied regarding symptoms of allergy (rhinitis, asthma, atopic dermatitis) according to international guidelines, and skin prick testing with a panel of aeroallergen extracts was performed before sera were analyzed in an investigator-blinded manner for IgE specific to more than 160 micro-arrayed allergen molecules using ImmunoCAP ISAC technology. RESULTS IgE sensitization = or >0.3 ISU to at least one of the micro-arrayed allergen molecules was found in 100% of the symptomatic children and in 36% of the asymptomatic children. Symptomatic and asymptomatic children showed a comparable IgE sensitization profile; however, frequencies of IgE sensitization and IgE levels to the individual allergen molecules were higher in the symptomatic children. Aeroallergen sensitization was dominated by sensitization to major birch pollen allergen, Bet v 1, and major cat allergen, Fel d 1. Food allergen sensitization was due to cross-sensitization to PR10 pollen and food allergens whereas genuine peanut sensitization was absent. CONCLUSION This is the first study analyzing molecular IgE sensitization profiles to more than 160 allergen molecules in children with and without symptoms of allergy. It detects similar molecular IgE sensitization profiles in symptomatic and asymptomatic children and identifies Bet v 1 and Fel d 1 as the predominant respiratory allergen molecules and PR10 proteins as the major food allergens and absence of genuine peanut allergy in Moscow region (Russia).
Collapse
Affiliation(s)
| | - Christian Lupinek
- Division of ImmunopathologyDepartment of Pathophysiology and Allergy ResearchCentre for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Elena Fedenko
- NRC Institute of Immunology FMBA of RussiaMoscowRussia
| | | | | | | | - Dmitry Kudlay
- NRC Institute of Immunology FMBA of RussiaMoscowRussia
| | | | - Rudolf Valenta
- NRC Institute of Immunology FMBA of RussiaMoscowRussia
- Division of ImmunopathologyDepartment of Pathophysiology and Allergy ResearchCentre for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
- Sechenov First State Medical UniversityMoscowRussia
- Karl Landsteiner University for Health SciencesKremsAustria
| | - Musa Khaitov
- NRC Institute of Immunology FMBA of RussiaMoscowRussia
| |
Collapse
|
29
|
Schoos AMM, Nwaru BI, Borres MP. Component-resolved diagnostics in pet allergy: Current perspectives and future directions. J Allergy Clin Immunol 2021; 147:1164-1173. [PMID: 33444632 DOI: 10.1016/j.jaci.2020.12.640] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/30/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022]
Abstract
Furry mammals kept as pets are important allergen sources. The prevalence of sensitization to dander from various animals appears to be increasing worldwide. Several mammalian allergens from diverse species and distinct protein families have been characterized, and some are available for component-resolved diagnostics (CRD). This review presents an overview of mammalian aeroallergens, with a focus on cat, dog, and horse allergens. The potential of CRD in fine-tuning the diagnostic workup following traditional methods based on whole- allergen extracts and allergen immunotherapy is discussed. The review highlights the clinical utility of CRD, particularly as a marker/predictor of increased asthma risk and disease severity. Finally, several perspectives of the future implications of CRD are offered in the context of furry animal allergens.
Collapse
Affiliation(s)
- Ann-Marie M Schoos
- COpenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark; Department of Pediatrics, Slagelse Sygehus, Slagelse, Denmark.
| | - Bright I Nwaru
- Krefting Research Centre, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Magnus P Borres
- Thermo Fisher Scientific, Uppsala, Sweden; Department of Maternal and Child Health, Uppsala University, Uppsala, Sweden
| |
Collapse
|
30
|
Custovic A, Custovic D, Kljaić Bukvić B, Fontanella S, Haider S. Atopic phenotypes and their implication in the atopic march. Expert Rev Clin Immunol 2020; 16:873-881. [PMID: 32856959 DOI: 10.1080/1744666x.2020.1816825] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Eczema, allergic rhinitis, and asthma are traditionally considered atopic (or allergic) diseases. They are complex, multifactorial, and are caused by a variety of different mechanisms, which result in multiple heterogeneous clinical phenotypes. Atopic march is usually interpreted as the sequential development of symptoms from eczema in infancy, to asthma, and then allergic rhinitis. Areas covered: The authors reviewed the evidence on the multimorbidity of eczema, asthma, and rhinitis, and the implication of results of data-driven analyses on the concept framework of atopic march. A literature search was conducted in the PubMed and Web of Science for peer-reviewed articles published until July 2020. Application of Bayesian machine learning framework to rich phenotypic data from birth cohorts demonstrated that the postulated linear progression of symptoms (atopic march) does not capture the heterogeneity of allergic phenotypes. Expert opinion: Eczema, wheeze, and rhinitis co-exist more often than would be expected by chance, but their relationship can be best understood in a multimorbidity framework, rather than through atopic march sequence. The observation of their co-occurrence does not imply any specific relationship between them, and certainly not a progressive or causal one. It is unlikely that a sngle mechanism such as allergic sensitization underpins different multimorbidity manifestations.
Collapse
Affiliation(s)
- Adnan Custovic
- National Heart and Lung Institute, Imperial College London , London, UK
| | - Darije Custovic
- Department of Brain Sciences, Imperial College London , London, UK
| | - Blazenka Kljaić Bukvić
- Department of Pediatrics, General Hospital Dr Josip Benčević , Slavonski Brod, Croatia.,Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek , Osijek, Croatia.,Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek , Osijek, Croatia
| | - Sara Fontanella
- National Heart and Lung Institute, Imperial College London , London, UK
| | - Sadia Haider
- National Heart and Lung Institute, Imperial College London , London, UK
| |
Collapse
|
31
|
Kids, Difficult Asthma and Fungus. J Fungi (Basel) 2020; 6:jof6020055. [PMID: 32349347 PMCID: PMC7345103 DOI: 10.3390/jof6020055] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 12/28/2022] Open
Abstract
Fungi have many potential roles in paediatric asthma, predominantly by being a source of allergens (severe asthma with fungal sensitization, SAFS), and also directly damaging the epithelial barrier and underlying tissue by releasing proteolytic enzymes (fungal bronchitis). The umbrella term ‘fungal asthma’ is proposed for these manifestations. Allergic bronchopulmonary aspergillosis (ABPA) is not a feature of childhood asthma, for unclear reasons. Diagnostic criteria for SAFS are based on sensitivity to fungal allergen(s) demonstrated either by skin prick test or specific IgE. In children, there are no exclusion criteria on total IgE levels or IgG precipitins because of the rarity of ABPA. Diagnostic criteria for fungal bronchitis are much less well established. Data in adults and children suggest SAFS is associated with worse asthma control and greater susceptibility to asthma attacks than non-sensitized patients. The data on whether anti-fungal therapy is beneficial are conflicting. The pathophysiology of SAFS is unclear, but the epithelial alarmin interleukin-33 is implicated. However, whether individual fungi have different pathobiologies is unclear. There are many unanswered questions needing further research, including how fungi interact with other allergens, bacteria, and viruses, and what optimal therapy should be, including whether anti-neutrophilic strategies, such as macrolides, should be used. Considerable further research is needed to unravel the complex roles of different fungi in severe asthma.
Collapse
|