1
|
Xu H, Wang Y, Wang W, Fu YX, Qiu J, Shi Y, Yuan L, Dong C, Hu X, Chen YG, Guo X. ILC3s promote intestinal tuft cell hyperplasia and anthelmintic immunity through RANK signaling. Sci Immunol 2025; 10:eadn1491. [PMID: 40378237 DOI: 10.1126/sciimmunol.adn1491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 08/01/2024] [Accepted: 04/24/2025] [Indexed: 05/18/2025]
Abstract
Helminth infections, particularly in developing countries, remain a notable health burden worldwide. Group 3 innate lymphoid cells (ILC3s) are enriched in the intestine and play a critical role in immunity against extracellular bacteria and fungi. However, whether ILC3s are involved in intestinal helminth infection is still unclear. Here, we report that helminth infection reprograms ILC3s, which, in turn, promote anthelmintic immunity. ILC3-derived RANKL [receptor activator of NF-κB (nuclear factor κB) ligand] synergizes with interleukin-13 (IL-13) to facilitate intestinal tuft cell expansion after helminth infection, which further activates the tuft cell-group 2 innate lymphoid cell (ILC2) circuit to control helminth infection. Deletion of RANKL in ILC3s or deletion of RANK or its downstream adaptor RelB in intestinal epithelial cells substantially diminishes tuft cell hyperplasia and dampens anthelmintic immunity. Thus, ILC3s play an indispensable role in protecting against helminth infection through the regulation of intestinal tuft cell hyperplasia and type 2 immunity.
Collapse
Affiliation(s)
- Hongkai Xu
- Institute for Immunology, Tsinghua University, Beijing 100084, China
- School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing 100084, China
- Beijing Key Laboratory of Immunological Research of Allergy (LIRA), Tsinghua University, Beijing 100084, China
| | - Yibo Wang
- Institute for Immunology, Tsinghua University, Beijing 100084, China
- School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing 100084, China
- Beijing Key Laboratory of Immunological Research of Allergy (LIRA), Tsinghua University, Beijing 100084, China
- State Key Laboratory of Molecular Oncology, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Wenyan Wang
- School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Molecular Oncology, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Yang-Xin Fu
- School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Molecular Oncology, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Ju Qiu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yan Shi
- Institute for Immunology, Tsinghua University, Beijing 100084, China
- School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing 100084, China
- Beijing Key Laboratory of Immunological Research of Allergy (LIRA), Tsinghua University, Beijing 100084, China
| | - Lei Yuan
- Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Chen Dong
- Westlake University, Hangzhou 310030, China
| | - Xiaoyu Hu
- Institute for Immunology, Tsinghua University, Beijing 100084, China
- School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing 100084, China
- Beijing Key Laboratory of Immunological Research of Allergy (LIRA), Tsinghua University, Beijing 100084, China
| | - Ye-Guang Chen
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiaohuan Guo
- Institute for Immunology, Tsinghua University, Beijing 100084, China
- School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing 100084, China
- Beijing Key Laboratory of Immunological Research of Allergy (LIRA), Tsinghua University, Beijing 100084, China
- State Key Laboratory of Molecular Oncology, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| |
Collapse
|
2
|
Ryanto GRT, Suraya R, Nagano T. The Importance of Lung Innate Immunity During Health and Disease. Pathogens 2025; 14:91. [PMID: 39861052 PMCID: PMC11768135 DOI: 10.3390/pathogens14010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
The lung is a vital organ for the body as the main source of oxygen input. Importantly, it is also an internal organ that has direct contact with the outside world. Innate immunity is a vital protective system in various organs, whereas, in the case of the lung, it helps maintain a healthy, functioning cellular and molecular environment and prevents any overt damage caused by pathogens or other inflammatory processes. Disturbances in lung innate immunity properties and processes, whether over-responsiveness of the process triggered by innate immunity or lack of responses due to dysfunctions in the immune cells that make up the innate immunity system of the lung, could be correlated to various pathological conditions. In this review, we discuss globally how the components of lung innate immunity are important not only for maintaining lung homeostasis but also during the pathophysiology of notable lung diseases beyond acute pulmonary infections, including chronic obstructive pulmonary disease (COPD), asthma, and pulmonary fibrosis.
Collapse
Affiliation(s)
- Gusty Rizky Teguh Ryanto
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| | - Ratoe Suraya
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Tatsuya Nagano
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| |
Collapse
|
3
|
Koprivica I, Stanisavljević S, Mićanović D, Jevtić B, Stojanović I, Miljković Đ. ILC3: a case of conflicted identity. Front Immunol 2023; 14:1271699. [PMID: 37915588 PMCID: PMC10616800 DOI: 10.3389/fimmu.2023.1271699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023] Open
Abstract
Innate lymphoid cells type 3 (ILC3s) are the first line sentinels at the mucous tissues, where they contribute to the homeostatic immune response in a major way. Also, they have been increasingly appreciated as important modulators of chronic inflammatory and autoimmune responses, both locally and systemically. The proper identification of ILC3 is of utmost importance for meaningful studies on their role in immunity. Flow cytometry is the method of choice for the detection and characterization of ILC3. However, the analysis of ILC3-related papers shows inconsistency in ILC3 phenotypic definition, as different inclusion and exclusion markers are used for their identification. Here, we present these discrepancies in the phenotypic characterization of human and mouse ILC3s. We discuss the pros and cons of using various markers for ILC3 identification. Furthermore, we consider the possibilities for the efficient isolation and propagation of ILC3 from different organs and tissues for in-vitro and in-vivo studies. This paper calls upon uniformity in ILC3 definition, isolation, and propagation for the increased possibility of confluent interpretation of ILC3's role in immunity.
Collapse
Affiliation(s)
| | | | | | | | | | - Đorđe Miljković
- Department of Immunology, Institute for Biological Research “Siniša Stanković” - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
4
|
Yin Z, Zhou Y, Turnquist HR, Liu Q. Neuro-epithelial-ILC2 crosstalk in barrier tissues. Trends Immunol 2022; 43:901-916. [PMID: 36253275 DOI: 10.1016/j.it.2022.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 01/12/2023]
Abstract
Group 2 innate lymphoid cells (ILC2s) contribute to the maintenance of mammalian barrier tissue homeostasis. We review how ILC2s integrate epithelial signals and neurogenic components to preserve the tissue microenvironment and modulate inflammation. The epithelium that overlies barrier tissues, including the skin, lungs, and gut, generates epithelial cytokines that elicit ILC2 activation. Sympathetic, parasympathetic, sensory, and enteric fibers release neural signals to modulate ILC2 functions. We also highlight recent findings suggesting neuro-epithelial-ILC2 crosstalk and its implications in immunity, inflammation and resolution, tissue repair, and restoring homeostasis. We further discuss the pathogenic effects of disturbed ILC2-centered neuro-epithelial-immune cell interactions and putative areas for therapeutic targeting.
Collapse
Affiliation(s)
- Ziyi Yin
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen Key Laboratory of Cardiovascular Health and Precision Medicine, Shenzhen, Guangdong Province 518055, China
| | - Yawen Zhou
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen Key Laboratory of Cardiovascular Health and Precision Medicine, Shenzhen, Guangdong Province 518055, China
| | - Hēth R Turnquist
- Thomas E. Starzl Transplantation Institute and Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Quan Liu
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen Key Laboratory of Cardiovascular Health and Precision Medicine, Shenzhen, Guangdong Province 518055, China.
| |
Collapse
|
5
|
Xiong L, Nutt SL, Seillet C. Innate lymphoid cells: More than just immune cells. Front Immunol 2022; 13:1033904. [PMID: 36389661 PMCID: PMC9643152 DOI: 10.3389/fimmu.2022.1033904] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/10/2022] [Indexed: 11/21/2022] Open
Abstract
Since their discovery, innate lymphoid cells (ILCs) have been described as the innate counterpart of the T cells. Indeed, ILCs and T cells share many features including their common progenitors, transcriptional regulation, and effector cytokine secretion. Several studies have shown complementary and redundant roles for ILCs and T cells, leaving open questions regarding why these cells would have been evolutionarily conserved. It has become apparent in the last decade that ILCs, and rare immune cells more generally, that reside in non-lymphoid tissue have non-canonical functions for immune cells that contribute to tissue homeostasis and function. Viewed through this lens, ILCs would not be just the innate counterpart of T cells, but instead act as a link between sensory cells that monitor any changes in the environment that are not necessarily pathogenic and instruct effector cells that act to maintain body homeostasis. As these non-canonical functions of immune cells are operating in absence of pathogenic signals, it opens great avenues of research for immunologists that they now need to identify the physiological cues that regulate these cells and how the process confers a finer level of control and a greater flexibility that enables the organism to adapt to changing environmental conditions. In the review, we highlight how ILCs participate in the physiologic function of the tissue in which they reside and how physiological cues, in particular neural inputs control their homeostatic activity.
Collapse
Affiliation(s)
- Le Xiong
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Stephen L. Nutt
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Cyril Seillet
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
- *Correspondence: Cyril Seillet,
| |
Collapse
|
6
|
Coordination of Mucosal Immunity by Innate Lymphoid Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1365:113-134. [DOI: 10.1007/978-981-16-8387-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Taylor M, Pillaye J, Horsnell WGC. Inherent maternal type 2 immunity: Consequences for maternal and offspring health. Semin Immunol 2021; 53:101527. [PMID: 34838445 DOI: 10.1016/j.smim.2021.101527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 02/08/2023]
Abstract
An inherent elevation in type 2 immunity is a feature of maternal and offspring immune systems. This has diverse implications for maternal and offspring biology including influencing success of pregnancy, offspring immune development and maternal and offspring ability to control infection and diseases such as allergies. In this review we provide a broad insight into how this immunological feature of pregnancy and early life impacts both maternal and offspring biology. We also suggest how understanding of this axis of immune influence is and may be utilised to improve maternal and offspring health.
Collapse
Affiliation(s)
- Matthew Taylor
- Institute of Immunology and Infection Research, Ashworth Laboratories, The Kings Buildings, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JT, UK.
| | - Jamie Pillaye
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - William Gordon Charles Horsnell
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK; Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine (IDM), Department of Pathology, Division of Immunology, Faculty of Health Science, University of Cape Town, Cape Town, 7925, South Africa.
| |
Collapse
|
8
|
Jakob MO, Kofoed-Branzk M, Deshpande D, Murugan S, Klose CSN. An Integrated View on Neuronal Subsets in the Peripheral Nervous System and Their Role in Immunoregulation. Front Immunol 2021; 12:679055. [PMID: 34322118 PMCID: PMC8312561 DOI: 10.3389/fimmu.2021.679055] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/15/2021] [Indexed: 12/21/2022] Open
Abstract
The peripheral nervous system consists of sensory circuits that respond to external and internal stimuli and effector circuits that adapt physiologic functions to environmental challenges. Identifying neurotransmitters and neuropeptides and the corresponding receptors on immune cells implies an essential role for the nervous system in regulating immune reactions. Vice versa, neurons express functional cytokine receptors to respond to inflammatory signals directly. Recent advances in single-cell and single-nuclei sequencing have provided an unprecedented depth in neuronal analysis and allowed to refine the classification of distinct neuronal subsets of the peripheral nervous system. Delineating the sensory and immunoregulatory capacity of different neuronal subsets could inform a better understanding of the response happening in tissues that coordinate physiologic functions, tissue homeostasis and immunity. Here, we summarize current subsets of peripheral neurons and discuss neuronal regulation of immune responses, focusing on neuro-immune interactions in the gastrointestinal tract. The nervous system as a central coordinator of immune reactions and tissue homeostasis may predispose for novel promising therapeutic approaches for a large variety of diseases including but not limited to chronic inflammation.
Collapse
Affiliation(s)
- Manuel O Jakob
- Department of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michael Kofoed-Branzk
- Department of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Divija Deshpande
- Department of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Shaira Murugan
- Department of BioMedical Research, Group of Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | - Christoph S N Klose
- Department of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|