1
|
Lee M, Vindenes HK, Fouladi F, Shigdel R, Ward JM, Peddada SD, London SJ, Bertelsen RJ. Oral microbiota related to allergy in Norwegian adults. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2025; 4:100435. [PMID: 40103748 PMCID: PMC11914992 DOI: 10.1016/j.jacig.2025.100435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 03/20/2025]
Abstract
Background Oral microbiome composition has been linked to onset and progression of several localized and systemic diseases. Associations with allergy in adults have been less explored. Objective We sought to identify oral microbiota associated with allergy outcomes in adults using high-throughput sequencing data. Methods We characterized bacterial communities of gingival samples from 453 Norwegian adults (average age, 28 years) using 16S rRNA gene amplicon sequencing. We examined more than 2200 bacterial taxa in relation to self-reported current asthma, eczema, or rhinitis, and seroatopy (IgE > 0.70 kU/L). We used linear regression to determine whether overall bacterial diversity differed by each allergic outcome and analysis of composition of microbiomes with bias correction (ANCOM-BC2) to identify differentially abundant taxa. Results Less diverse oral bacterial communities were observed (P < .05) in individuals with atopy or rhinitis compared with those without. Bacterial diversity did not differ by asthma and eczema status. While no bacterial taxa were differentially abundant by asthma, many were differentially abundant (P < .05 after multiple-testing correction) in relation to atopy, eczema, and rhinitis. These taxa include several from the genera Leptotrichia and Fusobacterium. Some, including Streptococcus, were previously implicated in respiratory health, whereas others were novel. We also found taxa related to nasal medication use in individuals with rhinitis. Notably, microbial network interconnections differed by allergy status. Conclusions Bacterial community compositions of oral gingival samples may play a role in allergic outcomes in adults. These findings could contribute to the development of novel treatment strategies.
Collapse
Affiliation(s)
- Mikyeong Lee
- Immunity Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | - Hilde Kristin Vindenes
- Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Farnaz Fouladi
- Biostatistics & Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | - Rajesh Shigdel
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - James M Ward
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | - Shayamal D Peddada
- Biostatistics & Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | - Stephanie J London
- Immunity Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | - Randi Jacobsen Bertelsen
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Oral Health Centre of Expertise in Western Norway-Vestland, Bergen, Norway
| |
Collapse
|
2
|
Escuela-Escobar A, Perez-Garcia J, Martín-González E, González Martín C, Hernández-Pérez JM, González Pérez R, Sánchez Machín I, Poza Guedes P, Mederos-Luis E, Pino-Yanes M, Lorenzo-Díaz F, González Carracedo MA, Pérez Pérez JA. Impact of Saharan Dust and SERPINA1 Gene Variants on Bacterial/Fungal Balance in Asthma Patients. Int J Mol Sci 2025; 26:2158. [PMID: 40076778 PMCID: PMC11899813 DOI: 10.3390/ijms26052158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/19/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
The Canary Islands, a region with high asthma prevalence, are frequently exposed to Saharan Dust Intrusions (SDIs), as are a wide range of countries in Europe. Alpha-1 antitrypsin (SERPINA1 gene) regulates the airway's inflammatory response. This study analyzed the combined effect of SDI exposure and SERPINA1 variants on bacterial/fungal DNA concentrations in saliva and pharyngeal samples from asthmatic patients. Bacterial and fungal DNAs were quantified by qPCR in 211 asthmatic patients (GEMAS study), grouped based on their exposure to daily PM10 concentrations. Associations between SDI exposure, microbial DNA concentrations, and nine variants in SERPINA1 were tested using linear regression models adjusted for confounders. The ratio between bacterial and fungal DNA was similar in saliva and pharyngeal samples. SDI exposure for 1-3 days was enough to observe significant microbial DNA change. Increased bacterial DNA concentration was detected when SDI exposure occurred 4-10 days prior to sampling, while exposure between days 1 and 3 led to a reduction in the fungal DNA concentration. The T-allele of SERPINA1 SNV rs2854254 prevented the increase in the bacterial/fungal DNA ratio in pharyngeal samples after SDI exposure. The bacterial/fungal DNA ratio represents a potential tool to monitor changes in the microbiome of asthmatic patients.
Collapse
Affiliation(s)
- Ainhoa Escuela-Escobar
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Spain; (A.E.-E.); (C.G.M.); (F.L.-D.); (J.A.P.P.)
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Spain; (J.P.-G.); (E.M.-G.); (M.P.-Y.)
| | - Javier Perez-Garcia
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Spain; (J.P.-G.); (E.M.-G.); (M.P.-Y.)
| | - Elena Martín-González
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Spain; (J.P.-G.); (E.M.-G.); (M.P.-Y.)
| | - Cristina González Martín
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Spain; (A.E.-E.); (C.G.M.); (F.L.-D.); (J.A.P.P.)
| | - José M. Hernández-Pérez
- Pulmonology Unit, Hospital Universitario N. S. de Candelaria (HUNSC), 38010 Santa Cruz de Tenerife, Spain;
| | - Ruperto González Pérez
- Allergy Department, Complejo Hospitalario Universitario de Canarias (HUC), 38320 San Cristóbal de La Laguna, Spain; (R.G.P.); (I.S.M.); (P.P.G.); (E.M.-L.)
| | - Inmaculada Sánchez Machín
- Allergy Department, Complejo Hospitalario Universitario de Canarias (HUC), 38320 San Cristóbal de La Laguna, Spain; (R.G.P.); (I.S.M.); (P.P.G.); (E.M.-L.)
| | - Paloma Poza Guedes
- Allergy Department, Complejo Hospitalario Universitario de Canarias (HUC), 38320 San Cristóbal de La Laguna, Spain; (R.G.P.); (I.S.M.); (P.P.G.); (E.M.-L.)
| | - Elena Mederos-Luis
- Allergy Department, Complejo Hospitalario Universitario de Canarias (HUC), 38320 San Cristóbal de La Laguna, Spain; (R.G.P.); (I.S.M.); (P.P.G.); (E.M.-L.)
| | - María Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Spain; (J.P.-G.); (E.M.-G.); (M.P.-Y.)
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Spain
| | - Fabian Lorenzo-Díaz
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Spain; (A.E.-E.); (C.G.M.); (F.L.-D.); (J.A.P.P.)
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Spain; (J.P.-G.); (E.M.-G.); (M.P.-Y.)
| | - Mario A. González Carracedo
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Spain; (A.E.-E.); (C.G.M.); (F.L.-D.); (J.A.P.P.)
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Spain; (J.P.-G.); (E.M.-G.); (M.P.-Y.)
| | - José A. Pérez Pérez
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Spain; (A.E.-E.); (C.G.M.); (F.L.-D.); (J.A.P.P.)
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Spain; (J.P.-G.); (E.M.-G.); (M.P.-Y.)
| |
Collapse
|
3
|
Kim YJ, Bunyavanich S. Microbial influencers: the airway microbiome's role in asthma. J Clin Invest 2025; 135:e184316. [PMID: 39959969 PMCID: PMC11827842 DOI: 10.1172/jci184316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025] Open
Abstract
Asthma is a common chronic respiratory disease affecting people of all ages globally. The airway hosts diverse microbial communities increasingly recognized as influential in the development and disease course of asthma. Here, we review recent findings on the airway microbiome in asthma. As relationships between the airway microbiome and respiratory health take root early in life, we first provide an overview of the early-life airway microbiome and asthma development, where multiple cohort studies have identified bacterial genera in the infant airway associated with risk of future wheeze and asthma. We then address current understandings of interactions between environmental factors, the airway microbiome, and asthma, including the effects of rural/urban environments, pet ownership, smoking, viral illness, and antibiotics. Next, we delve into what has been observed about the airway microbiome and asthma phenotypes and endotypes, as airway microbiota have been associated with asthma control, severity, obesity-related asthma, and treatment effects as well as with type 2 high, type 2 low, and more newly described multi-omic asthma endotypes. We then discuss emerging approaches to shape the microbiome for asthma therapy and conclude the Review with perspectives on future research directions.
Collapse
Affiliation(s)
- Young Jin Kim
- Division of Allergy and Immunology, Department of Pediatrics, and
| | - Supinda Bunyavanich
- Division of Allergy and Immunology, Department of Pediatrics, and
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
4
|
Perez-Garcia J, Cardenas A, Lorenzo-Diaz F, Pino-Yanes M. Precision medicine for asthma treatment: Unlocking the potential of the epigenome and microbiome. J Allergy Clin Immunol 2025; 155:298-315. [PMID: 38906272 PMCID: PMC12002393 DOI: 10.1016/j.jaci.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Asthma is a leading worldwide biomedical concern. Patients can experience life-threatening worsening episodes (exacerbations) usually controlled by anti-inflammatory and bronchodilator drugs. However, substantial heterogeneity in treatment response exists, and a subset of patients with unresolved asthma carry the major burden of this disease. The study of the epigenome and microbiome might bridge the gap between human genetics and environmental exposure to partially explain the heterogeneity in drug response. This review aims to provide a critical examination of the existing literature on the microbiome and epigenetic studies examining associations with asthma treatments and drug response, highlight convergent pathways, address current challenges, and offer future perspectives. Current epigenetic and microbiome studies have shown the bilateral relationship between asthma pharmacologic interventions and the human epigenome and microbiome. These studies, focusing on corticosteroids and to a lesser extent on bronchodilators, azithromycin, immunotherapy, and mepolizumab, have improved the understanding of the molecular basis of treatment response and identified promising biomarkers for drug response prediction. Immune and inflammatory pathways (eg, IL-2, TNF-α, NF-κB, and C/EBPs) underlie microbiome-epigenetic associations with asthma treatment, representing potential therapeutic pathways to be targeted. A comprehensive evaluation of these omics biomarkers could significantly contribute to precision medicine and new therapeutic target discovery.
Collapse
Affiliation(s)
- Javier Perez-Garcia
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology, and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain.
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University, Stanford, Calif
| | - Fabian Lorenzo-Diaz
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology, and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain
| | - Maria Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology, and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain; CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
5
|
Alizadeh Bahmani AH, Abdel-Aziz MI, Hashimoto S, Bang C, Brandstetter S, Corcuera-Elosegui P, Franke A, Gorenjak M, Harner S, Kheiroddin P, López-Fernández L, Neerincx AH, Pino-Yanes M, Potočnik U, Sardón-Prado O, Toncheva AA, Wolff C, Kabesch M, Kraneveld AD, Vijverberg SJH, Maitland-van der Zee AH. Association of Corticosteroid Inhaler Type with Saliva Microbiome in Moderate-to-Severe Pediatric Asthma. Biomedicines 2025; 13:89. [PMID: 39857673 PMCID: PMC11761874 DOI: 10.3390/biomedicines13010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/19/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Metered-dose inhalers (MDIs) and dry powder inhalers (DPIs) are common inhaled corticosteroid (ICS) inhaler devices. The difference in formulation and administration technique of these devices may influence oral cavity microbiota composition. We aimed to compare the saliva microbiome in children with moderate-to-severe asthma using ICS via MDIs versus DPIs. Methods: Saliva samples collected from 143 children (6-17 yrs) with moderate-to-severe asthma across four European countries (The Netherlands, Germany, Spain, and Slovenia) as part of the SysPharmPediA cohort were subjected to 16S rRNA sequencing. The microbiome was compared using global diversity (α and β) between two groups of participants based on inhaler devices (MDI (n = 77) and DPI (n = 65)), and differential abundance was compared using the Analysis of Compositions of Microbiomes with the Bias Correction (ANCOM-BC) method. Results: No significant difference was observed in α-diversity between the two groups. However, β-diversity analysis revealed significant differences between groups using both Bray-Curtis and weighted UniFrac methods (adjusted p-value = 0.015 and 0.044, respectively). Significant differential abundance between groups, with higher relative abundance in the MDI group compared to the DPI group, was detected at the family level [Carnobacteriaceae (adjusted p = 0.033)] and at the genus level [Granulicatella (adjusted p = 0.021) and Aggregatibacter (adjusted p = 0.011)]. Conclusions: Types of ICS devices are associated with different saliva microbiome compositions in moderate-to-severe pediatric asthma. The causal relation between inhaler types and changes in saliva microbiota composition needs to be further evaluated, as well as whether this leads to different potential adverse effects in terms of occurrence and level of severity.
Collapse
Affiliation(s)
- Amir Hossein Alizadeh Bahmani
- Department of Pulmonary Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Public Health, Personalized Medicine, 1105 AZ Amsterdam, The Netherlands
| | - Mahmoud I. Abdel-Aziz
- Department of Pulmonary Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Public Health, Personalized Medicine, 1105 AZ Amsterdam, The Netherlands
| | - Simone Hashimoto
- Department of Pulmonary Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Department of Pediatric Pulmonology and Allergy, Emma Children’s Hospital, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, D-24105 Kiel, Germany
| | - Susanne Brandstetter
- University Children’s Hospital Regensburg (KUNO), University of Regensburg, D-93049 Regensburg, Germany
| | - Paula Corcuera-Elosegui
- Division of Pediatric Respiratory Medicine, Hospital Universitario Donostia, 20014 San Sebastián, Spain
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, D-24105 Kiel, Germany
| | - Mario Gorenjak
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| | - Susanne Harner
- Department of Pediatric Pneumology and Allergy, University Children’s Hospital Regensburg (KUNO), D-93049 Regensburg, Germany
| | - Parastoo Kheiroddin
- Department of Pediatric Pneumology and Allergy, University Children’s Hospital Regensburg (KUNO), D-93049 Regensburg, Germany
| | - Leyre López-Fernández
- Division of Pediatric Respiratory Medicine, Hospital Universitario Donostia, 20014 San Sebastián, Spain
| | - Anne H. Neerincx
- Department of Pulmonary Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Maria Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), 38200 Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna (ULL), 38200 La Laguna, Spain
| | - Uroš Potočnik
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| | - Olaia Sardón-Prado
- Division of Pediatric Respiratory Medicine, Hospital Universitario Donostia, 20014 San Sebastián, Spain
- Department of Pediatrics, School of Medicine and Nursery, University of te Basque Country, 20014 San Sebastián, Spain
| | - Antoaneta A. Toncheva
- Department of Pediatric Pneumology and Allergy, University Children’s Hospital Regensburg (KUNO), D-93049 Regensburg, Germany
| | - Christine Wolff
- Department of Pediatric Pneumology and Allergy, University Children’s Hospital Regensburg (KUNO), D-93049 Regensburg, Germany
| | - Michael Kabesch
- Department of Pediatric Pneumology and Allergy, University Children’s Hospital Regensburg (KUNO), D-93049 Regensburg, Germany
| | - Aletta D. Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Susanne J. H. Vijverberg
- Department of Pulmonary Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Public Health, Personalized Medicine, 1105 AZ Amsterdam, The Netherlands
| | - Anke H. Maitland-van der Zee
- Department of Pulmonary Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Public Health, Personalized Medicine, 1105 AZ Amsterdam, The Netherlands
| | | |
Collapse
|
6
|
Saito H, Tamari M, Motomura K, Ikutani M, Nakae S, Matsumoto K, Morita H. Omics in allergy and asthma. J Allergy Clin Immunol 2024; 154:1378-1390. [PMID: 39384073 DOI: 10.1016/j.jaci.2024.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/11/2024]
Abstract
This review explores the transformative impact of omics technologies on allergy and asthma research in recent years, focusing on advancements in high-throughput technologies related to genomics and transcriptomics. In particular, the rapid spread of single-cell RNA sequencing has markedly advanced our understanding of the molecular pathology of allergic diseases. Furthermore, high-throughput genome sequencing has accelerated the discovery of monogenic disorders that were previously overlooked as ordinary intractable allergic diseases. We also introduce microbiomics, proteomics, lipidomics, and metabolomics, which are quickly growing areas of research interest, although many of their current findings remain inconclusive as solid evidence. By integrating these omics data, we will gain deeper insights into disease mechanisms, leading to the development of precision medicine approaches that promise to enhance treatment outcomes.
Collapse
Affiliation(s)
- Hirohisa Saito
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan; Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Masato Tamari
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kenichiro Motomura
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Masashi Ikutani
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Susumu Nakae
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan; Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hideaki Morita
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan; Allergy Center, National Center for Child Health and Development, Tokyo, Japan.
| |
Collapse
|
7
|
Marriott H, Duchesne M, Moitra S, Okoye I, Gerla L, Mayers I, Moolji J, Adatia A, Lacy P. Upper Airway Alarmin Cytokine Expression in Asthma of Different Severities. J Clin Med 2024; 13:3721. [PMID: 38999286 PMCID: PMC11242732 DOI: 10.3390/jcm13133721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
Background: The secretion of alarmin cytokines by epithelial cells, including thymic stromal lymphopoietin (TSLP), interleukin (IL)-25, and IL-33, initiates inflammatory cascades in asthma. However, alarmin cytokine expression in the upper airways in asthma remains largely unknown. Methods: We recruited 40 participants with asthma into four groups as per the Global Initiative for Asthma (GINA) steps (10 in each group of GINA 1/2, 3, 4, and 5). Cells were derived from nasal, buccal, and throat brushings. Intracellular cytokine expression (TSLP, IL-25, and IL-33) was assessed by flow cytometry in cytokeratin 8+ (Ck8+) epithelial cells immediately following collection. Results: TSLP was significantly increased (p < 0.001) in GINA 5 patients across nasal, buccal, and throat Ck8+ epithelial cells, while IL-25 was elevated in nasal and throat samples (p < 0.003), and IL-33 levels were variable, compared with GINA 1-4 patients. Individual GINA subgroup comparison showed that TSLP levels in nasal samples from GINA 5 patients were significantly (p = 0.03) elevated but did not differ between patients with and without nasal comorbidities. IL-25 and IL-33 (obtained from nasal, buccal, and throat samples) were not significantly different in individual groups. Conclusions: Our study demonstrates for the first time that Ck8+ nasal epithelial cells from GINA 5 asthma patients express elevated levels of TSLP.
Collapse
Affiliation(s)
- Hazel Marriott
- Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Marc Duchesne
- Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Subhabrata Moitra
- Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Isobel Okoye
- Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Luke Gerla
- Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Irvin Mayers
- Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Jalal Moolji
- Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Adil Adatia
- Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Paige Lacy
- Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
| |
Collapse
|
8
|
van Beveren GJ, de Steenhuijsen Piters WAA, Boeschoten SA, Louman S, Chu ML, Arp K, Fraaij PL, de Hoog M, Buysse C, van Houten MA, Sanders EAM, Merkus PJFM, Boehmer AL, Bogaert D. Nasopharyngeal microbiota in children is associated with severe asthma exacerbations. J Allergy Clin Immunol 2024; 153:1574-1585.e14. [PMID: 38467291 DOI: 10.1016/j.jaci.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 02/08/2024] [Accepted: 02/16/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND The respiratory microbiome has been associated with the etiology and disease course of asthma. OBJECTIVE We sought to assess the nasopharyngeal microbiota in children with a severe asthma exacerbation and their associations with medication, air quality, and viral infection. METHODS A cross-sectional study was performed among children aged 2 to 18 years admitted to the medium care unit (MCU; n = 84) or intensive care unit (ICU; n = 78) with an asthma exacerbation. For case-control analyses, we matched all cases aged 2 to 6 years (n = 87) to controls in a 1:2 ratio. Controls were participants of either a prospective case-control study or a longitudinal birth cohort (n = 182). The nasopharyngeal microbiota was characterized by 16S-rRNA-gene sequencing. RESULTS Cases showed higher Shannon diversity index (ICU and MCU combined; P = .002) and a distinct microbial community composition when compared with controls (permutational multivariate ANOVA R2 = 1.9%; P < .001). We observed significantly higher abundance of Staphylococcus and "oral" taxa, including Neisseria, Veillonella, and Streptococcus spp. and a lower abundance of Dolosigranulum pigrum, Corynebacterium, and Moraxella spp. (MaAsLin2; q < 0.25) in cases versus controls. Furthermore, Neisseria abundance was associated with more severe disease (ICU vs MCU MaAslin2, P = .03; q = 0.30). Neisseria spp. abundance was also related with fine particulate matter exposure, whereas Haemophilus and Streptococcus abundances were related with recent inhaled corticosteroid use. We observed no correlations with viral infection. CONCLUSIONS Our results demonstrate that children admitted with asthma exacerbations harbor a microbiome characterized by overgrowth of Staphylococcus and "oral" microbes and an underrepresentation of beneficial niche-appropriate commensals. Several of these associations may be explained by (environmental or medical) exposures, although cause-consequence relationships remain unclear and require further investigations.
Collapse
Affiliation(s)
- Gina J van Beveren
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, The Netherlands; Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands; Department of Paediatrics, Spaarne Hospital, Haarlem, The Netherlands
| | - Wouter A A de Steenhuijsen Piters
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, The Netherlands; Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Shelley A Boeschoten
- Department of Neonatal and Paediatric Intensive Care, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Sam Louman
- Department of Paediatrics, Spaarne Hospital, Haarlem, The Netherlands
| | - Mei Ling Chu
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, The Netherlands; Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Kayleigh Arp
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, The Netherlands; Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Pieter L Fraaij
- Pediatric Infectious Diseases & Immunology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands; Department of Viroscience, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Matthijs de Hoog
- Department of Neonatal and Paediatric Intensive Care, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Corinne Buysse
- Department of Neonatal and Paediatric Intensive Care, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | | | - Elisabeth A M Sanders
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, The Netherlands; Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Peter J F M Merkus
- Division of Respiratory Medicine, Department of Paediatrics, Radboudumc Amalia Children's Hospital, Nijmegen, The Netherlands
| | - Annemie L Boehmer
- Department of Paediatrics, Spaarne Hospital, Haarlem, The Netherlands; Department of Paediatrics, Maasstad Hospital, Rotterdam, The Netherlands
| | - Debby Bogaert
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, The Netherlands; Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
9
|
Georas SN, Khurana S. Update on asthma biology. J Allergy Clin Immunol 2024; 153:1215-1228. [PMID: 38341182 DOI: 10.1016/j.jaci.2024.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024]
Abstract
This is an exciting time to be conducting asthma research. The recent development of targeted asthma biologics has validated the power of basic research to discover new molecules amenable to therapeutic intervention. Advances in high-throughput sequencing are providing a wealth of "omics" data about genetic and epigenetic underpinnings of asthma, as well as about new cellular interacting networks and potential endotypes in asthma. Airway epithelial cells have emerged not only as key sensors of the outside environment but also as central drivers of dysregulated mucosal immune responses in asthma. Emerging data suggest that the airway epithelium in asthma remembers prior encounters with environmental exposures, resulting in potentially long-lasting changes in structure and metabolism that render asthmatic individuals susceptible to subsequent exposures. Here we summarize recent insights into asthma biology, focusing on studies using human cells or tissue that were published in the past 2 years. The studies are organized thematically into 6 content areas to draw connections and spur future research (on genetics and epigenetics, prenatal and early-life origins, microbiome, immune and inflammatory pathways, asthma endotypes and biomarkers, and lung structural alterations). We highlight recent studies of airway epithelial dysfunction and response to viral infections and conclude with a framework for considering how bidirectional interactions between alterations in airway structure and mucosal immunity can lead to sustained lung dysfunction in asthma.
Collapse
Affiliation(s)
- Steve N Georas
- Division of Pulmonary and Critical Care Medicine, University of Rochester Medical Center, Rochester, NY.
| | - Sandhya Khurana
- Division of Pulmonary and Critical Care Medicine, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
10
|
Yue M, Tao S, Gaietto K, Chen W. Omics approaches in asthma research: Challenges and opportunities. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2024; 2:1-9. [PMID: 39170962 PMCID: PMC11332849 DOI: 10.1016/j.pccm.2024.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Indexed: 08/23/2024]
Abstract
Asthma, a chronic respiratory disease with a global prevalence of approximately 300 million individuals, presents a significant societal and economic burden. This multifaceted syndrome exhibits diverse clinical phenotypes and pathogenic endotypes influenced by various factors. The advent of omics technologies has revolutionized asthma research by delving into the molecular foundation of the disease to unravel its underlying mechanisms. Omics technologies are employed to systematically screen for potential biomarkers, encompassing genes, transcripts, methylation sites, proteins, and even the microbiome components. This review provides an insightful overview of omics applications in asthma research, with a special emphasis on genetics, transcriptomics, epigenomics, and the microbiome. We explore the cutting-edge methods, discoveries, challenges, and potential future directions in the realm of asthma omics research. By integrating multi-omics and non-omics data through advanced statistical techniques, we aspire to advance precision medicine in asthma, guiding diagnosis, risk assessment, and personalized treatment strategies for this heterogeneous condition.
Collapse
Affiliation(s)
- Molin Yue
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Shiyue Tao
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Kristina Gaietto
- Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Wei Chen
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15224, USA
- Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15224, USA
| |
Collapse
|
11
|
Li J, Zhang C, Tang J, He M, He C, Pu G, Liu L, Sun J. Causal associations between gut microbiota, metabolites and asthma: a two-sample Mendelian randomization study. BMC Pulm Med 2024; 24:72. [PMID: 38326796 PMCID: PMC10848467 DOI: 10.1186/s12890-024-02898-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 02/05/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND While several traditional observational studies have suggested associations between gut microbiota and asthma, these studies are limited by factors such as participant selection bias, confounders, and reverse causality. Therefore, the causal relationship between gut microbiota and asthma remains uncertain. METHODS We performed two-sample bi-directional Mendelian randomization (MR) analysis to investigate the potential causal relationships between gut microbiota and asthma as well as its phenotypes. We also conducted MR analysis to evaluate the causal effect of gut metabolites on asthma. Genetic variants for gut microbiota were obtained from the MiBioGen consortium, GWAS summary statistics for metabolites from the TwinsUK study and KORA study, and GWAS summary statistics for asthma from the FinnGen consortium. The causal associations between gut microbiota, gut metabolites and asthma were examined using inverse variance weighted, maximum likelihood, MR-Egger, weighted median, and weighted model and further validated by MR-Egger intercept test, Cochran's Q test, and "leave-one-out" sensitivity analysis. RESULTS We identified nine gut microbes whose genetically predicted relative abundance causally impacted asthma risk. After FDR correction, significant causal relationships were observed for two of these microbes, namely the class Bacilli (OR = 0.84, 95%CI = 0.76-0.94, p = 1.98 × 10-3) and the order Lactobacillales (OR = 0.83, 95%CI = 0.74-0.94, p = 1.92 × 10-3). Additionally, in a reverse MR analysis, we observed a causal effect of genetically predicted asthma risk on the abundance of nine gut microbes, but these associations were no longer significant after FDR correction. No significant causal effect of gut metabolites was found on asthma. CONCLUSIONS Our study provides insights into the development mechanism of microbiota-mediated asthma, as well as into the prevention and treatment of asthma through targeting specific gut microbiota.
Collapse
Affiliation(s)
- Jingli Li
- Department of Pulmonary and Critical Care Medicine, Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China
| | - Chunyi Zhang
- Department of Pulmonary and Critical Care Medicine, Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China
| | - Jixian Tang
- Department of Pulmonary and Critical Care Medicine, Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China
| | - Meng He
- Department of Pulmonary and Critical Care Medicine, Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China
| | - Chunxiao He
- Department of Pulmonary and Critical Care Medicine, Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China
| | - Guimei Pu
- Department of Pulmonary and Critical Care Medicine, Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China
| | - Lingjing Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Jian Sun
- Department of Pulmonary and Critical Care Medicine, Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China.
| |
Collapse
|
12
|
Campbell RG, Auyeung T, Katsoulotos GP. Pulmonology for the rhinologist. Curr Opin Otolaryngol Head Neck Surg 2024; 32:20-27. [PMID: 37997890 DOI: 10.1097/moo.0000000000000944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
PURPOSE OF REVIEW The upper and lower airways are inter-related despite serving different functions and can no longer be considered separately. Rhinologists are becoming increasingly aware of the role the lower airway plays in optimizing outcomes for their patients. This review highlights recent developments in pulmonology that impact rhinologic conditions. RECENT FINDINGS The unified airway concept now supports the multidisciplinary management of respiratory and rhinologic pathologies. Biomarkers, biologics and the concept of treatable traits have permitted the development of personalized and precise treatment of the entire respiratory tract. The concept of corticosteroid stewardship, the introduction of steroid sparing agents for the treatment of respiratory diseases and the development of biomarkers, now forces us to be more considerate and precise with oral corticosteroid (OCS) prescribing and to consider reduction regimens. Finally, current research on climate change and vaping will allow us to better educate and prepare our patients to improve adherence and avoid exacerbations to maintain optimal global respiratory health. SUMMARY The inter-relatedness of the upper and lower airway has encouraged a multidisciplinary focus in respiratory medicine. More research is required to improve the precision respiratory medicine model, particularly in the realm of biomarkers and endotyping. These developments must also consider the impact of climate change, pollution and toxins for us to provide optimum care for our patients.
Collapse
Affiliation(s)
- Raewyn G Campbell
- Faculty of Medicine, Health and Human Sciences, Macquarie University
- Department of Otolaryngology Head and Neck Surgery, Royal Prince Alfred Hospital, Sydney
| | - Titus Auyeung
- Concord Clinical School, The University of Sydney, Sydney, NSW
| | - Gregory P Katsoulotos
- Department of Otolaryngology Head and Neck Surgery, Royal Prince Alfred Hospital, Sydney
- Woolcock Institute of Medical Research, University of Sydney, Glebe, NSW
- The University of Notre Dame, Sydney, WA
- St Vincent's Clinic, Darlinghurst, NSW
| |
Collapse
|
13
|
Perez-Garcia J, Pino-Yanes M, Lorenzo-Diaz F. Reply. J Allergy Clin Immunol 2023; 152:1683-1685. [PMID: 37747396 DOI: 10.1016/j.jaci.2023.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023]
Affiliation(s)
- Javier Perez-Garcia
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain.
| | - Maria Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain; CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Tecnologías Biomédicas, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain
| | - Fabian Lorenzo-Diaz
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain
| |
Collapse
|
14
|
Sardon-Prado O, Diaz-Garcia C, Corcuera-Elosegui P, Korta-Murua J, Valverde-Molina J, Sanchez-Solis M. Severe Asthma and Biological Therapies: Now and the Future. J Clin Med 2023; 12:5846. [PMID: 37762787 PMCID: PMC10532431 DOI: 10.3390/jcm12185846] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Recognition of phenotypic variability in pediatric asthma allows for a more personalized therapeutic approach. Knowledge of the underlying pathophysiological and molecular mechanisms (endotypes) of corresponding biomarkers and new treatments enables this strategy to progress. Biologic therapies for children with severe asthma are becoming more relevant in this sense. The T2 phenotype is the most prevalent in childhood and adolescence, and non-T2 phenotypes are usually rare. This document aims to review the mechanism of action, efficacy, and potential predictive and monitoring biomarkers of biological drugs, focusing on the pediatric population. The drugs currently available are omalizumab, mepolizumab, benralizumab, dupilumab, and 1ezepelumab, with some differences in administrative approval prescription criteria between the U.S. Food and Drug Administration (FDA) and the European Medicines Agency (EMA). Previously, we described the characteristics of severe asthma in children and its diagnostic and therapeutic management.
Collapse
Affiliation(s)
- Olaia Sardon-Prado
- Division of Paediatric Respiratory Medicine, Donostia University Hospital, 20014 San Sebastián, Spain; (O.S.-P.); (P.C.-E.); (J.K.-M.)
- Department of Pediatrics, University of the Basque Country (UPV/EHU), 20014 Leioa, Spain
| | - Carolina Diaz-Garcia
- Paediatric Pulmonology and Allergy Unit, Santa Lucia General University Hospital, 30202 Cartagena, Spain;
| | - Paula Corcuera-Elosegui
- Division of Paediatric Respiratory Medicine, Donostia University Hospital, 20014 San Sebastián, Spain; (O.S.-P.); (P.C.-E.); (J.K.-M.)
| | - Javier Korta-Murua
- Division of Paediatric Respiratory Medicine, Donostia University Hospital, 20014 San Sebastián, Spain; (O.S.-P.); (P.C.-E.); (J.K.-M.)
| | - Jose Valverde-Molina
- Department of Paediatrics, Santa Lucía General University Hospital, 30202 Cartagena, Spain
- IMIB Biomedical Research Institute, 20120 Murcia, Spain;
| | - Manuel Sanchez-Solis
- IMIB Biomedical Research Institute, 20120 Murcia, Spain;
- Department of Pediatrics, University of Murcia, 20120 Murcia, Spain
- Paediatric Allergy and Pulmonology Units, Virgen de la Arrixaca University Children’s Hospital, 20120 Murcia, Spain
| |
Collapse
|
15
|
Perez-Garcia J, Espuela-Ortiz A, Hernández-Pérez JM, González-Pérez R, Poza-Guedes P, Martin-Gonzalez E, Eng C, Sardón-Prado O, Mederos-Luis E, Corcuera-Elosegui P, Sánchez-Machín I, Korta-Murua J, Villar J, Burchard EG, Lorenzo-Diaz F, Pino-Yanes M. Human genetics influences microbiome composition involved in asthma exacerbations despite inhaled corticosteroid treatment. J Allergy Clin Immunol 2023; 152:799-806.e6. [PMID: 37301411 PMCID: PMC10522330 DOI: 10.1016/j.jaci.2023.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/21/2023] [Accepted: 05/11/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND The upper-airway microbiome is involved in asthma exacerbations despite inhaled corticosteroid (ICS) treatment. Although human genetics regulates microbiome composition, its influence on asthma-related airway bacteria remains unknown. OBJECTIVE We sought to identify genes and biological pathways regulating airway-microbiome traits involved in asthma exacerbations and ICS response. METHODS Saliva, nasal, and pharyngeal samples from 257 European patients with asthma were analyzed. The association of 6,296,951 genetic variants with exacerbation-related microbiome traits despite ICS treatment was tested through microbiome genome-wide association studies. Variants with 1 × 10-4 RESULTS Genes associated with exacerbation-related airway-microbiome traits were enriched in asthma comorbidities development (ie, reflux esophagitis, obesity, and smoking), and were likely regulated by trichostatin A and the nuclear factor-κB, the glucocorticosteroid receptor, and CCAAT/enhancer-binding protein transcription factors (7.8 × 10-13 ≤ false discovery rate ≤ 0.022). Enrichment in smoking, trichostatin A, nuclear factor-κB, and glucocorticosteroid receptor were replicated in the saliva samples from diverse populations (4.42 × 10-9 ≤ P ≤ .008). The ICS-response-associated single nucleotide polymorphisms rs5995653 (APOBEC3B-APOBEC3C), rs6467778 (TRIM24), and rs5752429 (TPST2) were identified as microbiome quantitative trait loci of Streptococcus, Tannerella, and Campylobacter in the upper airway (0.027 ≤ false discovery rate ≤ 0.050). CONCLUSIONS Genes associated with asthma exacerbation-related microbiome traits might influence asthma comorbidities. We reinforced the therapeutic interest of trichostatin A, nuclear factor-κB, the glucocorticosteroid receptor, and CCAAT/enhancer-binding protein in asthma exacerbations.
Collapse
Affiliation(s)
- Javier Perez-Garcia
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain
| | - Antonio Espuela-Ortiz
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain
| | - José M Hernández-Pérez
- Pulmonary Medicine Service, Hospital Universitario N.S de Candelaria, La Laguna, Tenerife, Spain; Pulmonary Medicine Section, Hospital Universitario de La Palma, La Palma, Spain
| | - Ruperto González-Pérez
- Severe Asthma Unit, Allergy Department, Hospital Universitario de Canarias, La Laguna, Tenerife, Spain
| | - Paloma Poza-Guedes
- Severe Asthma Unit, Allergy Department, Hospital Universitario de Canarias, La Laguna, Tenerife, Spain
| | - Elena Martin-Gonzalez
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain
| | - Celeste Eng
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, Calif
| | - Olaia Sardón-Prado
- Division of Pediatric Respiratory Medicine, Hospital Universitario Donostia, San Sebastián, Spain; Department of Pediatrics, University of the Basque Country (UPV/EHU), San Sebastián, Spain
| | - Elena Mederos-Luis
- Allergy Department, Hospital Universitario de Canarias, La Laguna, Tenerife, Spain
| | - Paula Corcuera-Elosegui
- Division of Pediatric Respiratory Medicine, Hospital Universitario Donostia, San Sebastián, Spain
| | | | - Javier Korta-Murua
- Division of Pediatric Respiratory Medicine, Hospital Universitario Donostia, San Sebastián, Spain
| | - Jesús Villar
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain; Multidisciplinary Organ Dysfunction Evaluation Research Network, Research Unit, Hospital Universitario Dr. Negrín, Las Palmas de Gran Canaria, Spain; Li Ka Shing Knowledge Institute at the St. Michael's Hospital, Toronto, Ontario, Canada
| | - Esteban G Burchard
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, Calif; Department of Bioengineering and Therapeutic Sciences, University of California San Francisco (UCSF), San Francisco, Calif
| | - Fabian Lorenzo-Diaz
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain.
| | - Maria Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain; CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Tecnologías Biomédicas, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain.
| |
Collapse
|