1
|
Hindi NN, Alenbawi J, Nemer G. Pharmacogenomics Variability of Lipid-Lowering Therapies in Familial Hypercholesterolemia. J Pers Med 2021; 11:jpm11090877. [PMID: 34575654 PMCID: PMC8468752 DOI: 10.3390/jpm11090877] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 01/10/2023] Open
Abstract
The exponential expansion of genomic data coupled with the lack of appropriate clinical categorization of the variants is posing a major challenge to conventional medications for many common and rare diseases. To narrow this gap and achieve the goals of personalized medicine, a collaborative effort should be made to characterize the genomic variants functionally and clinically with a massive global genomic sequencing of "healthy" subjects from several ethnicities. Familial-based clustered diseases with homogenous genetic backgrounds are amongst the most beneficial tools to help address this challenge. This review will discuss the diagnosis, management, and clinical monitoring of familial hypercholesterolemia patients from a wide angle to cover both the genetic mutations underlying the phenotype, and the pharmacogenomic traits unveiled by the conventional and novel therapeutic approaches. Achieving a drug-related interactive genomic map will potentially benefit populations at risk across the globe who suffer from dyslipidemia.
Collapse
Affiliation(s)
- Nagham N. Hindi
- Division of Genomics and Translational Biomedicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar; (N.N.H.); (J.A.)
| | - Jamil Alenbawi
- Division of Genomics and Translational Biomedicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar; (N.N.H.); (J.A.)
| | - Georges Nemer
- Division of Genomics and Translational Biomedicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar; (N.N.H.); (J.A.)
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut DTS-434, Lebanon
- Correspondence: ; Tel.: +974-445-41330
| |
Collapse
|
2
|
Pek SLT, Yap F, Sreedharan AV, Choo JTL, Tavintharan S. Persistent hypercholesterolemia in child with homozygous autosomal recessive hypercholesterolemia: A decade of lipid management. J Clin Lipidol 2021; 15:441-446. [PMID: 33994332 DOI: 10.1016/j.jacl.2021.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 10/21/2022]
Abstract
Autosomal recessive hypercholesterolemia (ARH) is a rare form of genetic hypercholesterolemia caused by mutations in low density lipoprotein receptor adaptor protein 1 (LDLRAP1). The proband first presented with linear eruptive xanthomas over her ankles, knees and elbows, with low density lipoprotein cholesterol (LDL-C) of 16.0 mmol/L (618.7 mg/dL), at 2.5 years old. Next generation sequencing revealed a novel homozygous mutation in LDLRAP1 exon 5 (c.466delG). In the first year, drug regimens of either cholestyramine or simvastatin, reduced her LDL-C to 10.5 mmol/L (406 mg/dL) and 11.7 mmol/L (452.4 mg/dL), respectively. Combination simvastatin and ezetimibe was the mainstay of therapy from age 5 - 10 years. Her lowest achieved LDL-C was 6.3 mmol/L (243.6 mg/dL). Switching to atorvastatin did not lead to further reduction. Carotid intima-media thickness was 0.47 mm (> 97th percentile) and 0.32 mm (75 - 95th percentile) at ages 8 years and 11 years, respectively. Addition of monthly injections of evolocumab for 3 months, led to an increase in LDL-C, from 7.0 mmol/L (270.7 mg/dL) to a range of [(8.4 - 9.1) mmol/L or (324.8 - 351.9) mg/dL]. In this report, a decade-long lipid management is described in a patient with ARH. Residual activity of LDLRAP1 is a likely determinant of her response. Clinical management remains sub-optimal and options for the paediatric population are limited. Novel classes of cholesterol-lowering medications are needed for this ultra-rare and severe hypercholesterolemia.
Collapse
Affiliation(s)
| | - Fabian Yap
- Department of Paediatrics - Endocrinology Service, KK Women's and Children's Hospital, Singapore 229899; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Aravind Venkatesh Sreedharan
- Department of Paediatrics - Endocrinology Service, KK Women's and Children's Hospital, Singapore 229899; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Jonathan Tze Liang Choo
- Department of Paediatric Subspecialties - Cardiology Service, KK Women's and Children's Hospital, Singapore 229899
| | - S Tavintharan
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore 768828; Diabetes Centre, Admiralty Medical Centre, Singapore, Singapore 730676; Department of Medicine, Division of Endocrinology. Khoo Teck Puat Hospital, Singapore 768828.
| |
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW This review summarizes the current knowledge regarding autosomal recessive hypercholesterolemia (ARH) and provides new insight into the natural history and therapeutic management of this lipid disorder. RECENT FINDINGS Novel homozygous and compound heterozygous ARH-causing mutations have been reported in the literature, to date. The long-term follow-up of a cohort of ARH patients demonstrated that, despite intensive treatment with conventional lipid-lowering therapies, their low-density lipoprotein (LDL) cholesterol levels remain far from target and this translates into a poor cardiovascular prognosis. ARH is also associated with increased risk of developing aortic valve stenosis. However, lomitapide, a microsomal triglyceride transfers protein inhibitor, may represent a new opportunity for the effective treatment of ARH. SUMMARY ARH is an ultrarare disorder of LDL metabolism caused by mutations in the LDLRAP1 gene. It is inherited as a recessive trait and causative mutations, though heterogeneous, are all predicted to be loss-of-function. Recent investigations have demonstrated that ARH can be considered a phenocopy of homozygous familial hypercholesterolemia, where the risk of atherosclerotic cardiovascular diseases and aortic valve stenosis remains elevated despite conventional therapies. The combination of lomitapide with the conventional LDL-C-lowering medications appears to be a promising approach to treat this condition.
Collapse
Affiliation(s)
- Laura D'Erasmo
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | | | | |
Collapse
|
4
|
Tang Y, Li SL, Hu JH, Sun KJ, Liu LL, Xu DY. Research progress on alternative non-classical mechanisms of PCSK9 in atherosclerosis in patients with and without diabetes. Cardiovasc Diabetol 2020; 19:33. [PMID: 32169071 PMCID: PMC7071562 DOI: 10.1186/s12933-020-01009-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 02/29/2020] [Indexed: 12/13/2022] Open
Abstract
The proprotein convertase subtilisin/kexin type 9 (PCSK9) acts via a canonical pathway to regulate circulating low-density lipoprotein-cholesterol (LDL-C) via degradation of the LDL receptor (LDLR) on the liver cell surface. Published research has shown that PCSK9 is involved in atherosclerosis via a variety of non-classical mechanisms that involve lysosomal, inflammatory, apoptotic, mitochondrial, and immune pathways. In this review paper, we summarized these additional mechanisms and described how anti-PCSK9 therapy exerts effects through these mechanisms. These additional pathways further illustrate the regulatory role of PCSK9 in atherosclerosis and offer an in-depth interpretation of how the PCSK9 inhibitor exerts effects on the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Ying Tang
- Department of Internal Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Sheng-Lan Li
- Department of Internal Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Jia-Hui Hu
- Department of Internal Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Kai-Jun Sun
- Department of Internal Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Lei-Ling Liu
- Department of Internal Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Dan-Yan Xu
- Department of Internal Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
5
|
Abstract
Loss-of-function variants in PCSK9 (proprotein convertase subtilisin-kexin type 9) are associated with lower lifetime risk of atherosclerotic cardiovascular disease) events. Confirmation of these genetic observations in large, prospective clinical trials in participants with atherosclerotic cardiovascular disease has provided guidance on risk stratification and enhanced our knowledge on hitherto unresolved and contentious issues concerning the efficacy and safety of markedly lowering LDL-C (low-density lipoprotein cholesterol). PCSK9 has a broad repertoire of molecular effects. Furthermore, clinical trials with PCSK9 inhibitors demonstrate that reductions in atherosclerotic cardiovascular disease events are more effective in patients with recent myocardial infarction, multiple myocardial infarctions, multivessel coronary artery disease, and lower extremity arterial disease. The potent LDL-C lowering efficacy of PCSK9 inhibitors provides the opportunity for more aggressive LDL-lowering strategies in high-risk patients with atherosclerotic cardiovascular disease and supports the notion that there is no lower limit for LDL-C. Aggressive LDL-C lowering with fully human PCSK9 monoclonal antibodies has been associated by a safety profile superior to that of other classes of LDL-lowering agents. These clinical trials provide evidence that LDL lowering with PCSK9 inhibitors is an effective therapy for lowering cardiovascular events in high-risk patients with LDL-C levels ≥70 mg/dL on maximally tolerated oral therapies, including statins and ezetimibe.
Collapse
Affiliation(s)
- Robert S Rosenson
- From the Zena and Michael A. Wiener Cardiovascular Institute and Marie-Josee and Henry R. Kravis Center for Cardiovascular Health, Mount Sinai Hospital, Icahn School of Medicine at Mount Sinai, New York, NY (R.S.R.)
| | - Robert A Hegele
- Department of Medicine and Robarts Research Institute, Schulich School of Medicine, Western University, London, Ontario, Canada
| | - Wolfgang Koenig
- Deutsches Herzzentrum München, Technische Universität München, Munich, Germany (W.K.).,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany (W.K.).,Institute of Epidemiology and Biostatistics, University of Ulm, Germany (W.K.)
| |
Collapse
|
6
|
Petrulioniene Z, Gargalskaite U, Mikstiene V, Norvilas R, Skiauteryte E, Utkus A. Autosomal recessive hypercholesterolemia: Case report. J Clin Lipidol 2019; 13:887-893. [PMID: 31734096 DOI: 10.1016/j.jacl.2019.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Autosomal recessive hypercholesterolemia (ARH; OMIM #603813) is a very rare monogenic disorder affecting less than 1 in 1000,000 people and is characterized by very high levels of low-density lipoprotein cholesterol (LDL-C), leading to aggressive and premature atherosclerotic cardiovascular disease if left untreated. Lowering of LDL-C is the main target of the treatment. We report on a 29-year-old male patient born in nonconsanguineous Lithuanian family homo(hemi-)zygous for LDLRAP1 gene variant causing ARH. This variant is not present in population databases and, to our knowledge, has not been reported in scientific literature before. METHODS AND RESULTS The earliest clinical sign, noticed at the age of 5 years, was painful and enlarging nodules on Achilles tendons. At the age of 10 years, xanthomas of the metacarpal joint area on both hands emerged. The first lipid panel was performed at the age of 12 years. In accordance with Dutch Lipid Clinic Network diagnostic criteria for familial hypercholesterolemia (FH), definite FH (type IIA hyperlipoproteinemia) was diagnosed and the treatment with cholestyramine 4 grams per day was initiated. As the patient was 15 years old, direct adsorption of low-density lipoprotein apheresis was started and repeated monthly. At the age of 20 years, along with lipoprotein apheresis, 10 mg of rosuvastatin daily intake was prescribed. At the age of 28 years, the dose of rosuvastatin was increased to 40 mg per day, and 10 mg of ezetimibe daily intake was added. At the age of 28 years, homozygous LDLRAP1 gene variant NM_015627.2:c.488A>C, NP_056442.2:p.(Gln163Pro) causing autosomal recessive hypercholesterolemia was determined by genetic testing. CONCLUSIONS This case report implies that ARH, being an extremely rare disorder, is a severe disease. As there is limited routine testing, including genetic testing, patients suffering from both this disease and FH may remain undiagnosed. Cascade screening and genetic counseling differ for ARH as compared with FH, as the carrier of a pathogenic variant in the LDLRAP1 gene does not have marked total cholesterol and LDL-C elevations. However, genetic testing of the proband and their relatives is essential to evaluate the risk of development of FH and to provide prognosis as well as adequate, timely treatment. To improve the quality of life of patients with FH and prolong their life expectancy, national registries of FH and wider laboratory and genetic testing are undoubtedly necessary. A national FH screening program was set up in Lithuania, which helps to identify, monitor, and treat subjects with FH.
Collapse
Affiliation(s)
- Zaneta Petrulioniene
- Vilnius University Faculty of Medicine, Vilnius, Lithuania; Clinic for Cardiovascular Disease, Center of Cardiology and Angiology, Vilnius, Lithuania
| | - Urte Gargalskaite
- Vilnius University Faculty of Medicine, Vilnius, Lithuania; Clinic for Cardiovascular Disease, Center of Cardiology and Angiology, Vilnius, Lithuania.
| | - Violeta Mikstiene
- Clinic for Cardiovascular Disease, Center of Cardiology and Angiology, Vilnius, Lithuania; Faculty of Medicine, Department of Human and Medical Genetics, Vilnius University, Institute of Biomedical Sciences, Vilnius, Lithuania
| | - Rimvydas Norvilas
- Clinic for Cardiovascular Disease, Center of Cardiology and Angiology, Vilnius, Lithuania; Faculty of Medicine, Department of Human and Medical Genetics, Vilnius University, Institute of Biomedical Sciences, Vilnius, Lithuania; Department of Experimental, Preventive, and Clinical Medicine, State Research Institute, Center for Innovative Medicine, Vilnius, Lithuania
| | - Egle Skiauteryte
- Clinic for Cardiovascular Disease, Center of Cardiology and Angiology, Vilnius, Lithuania
| | - Algirdas Utkus
- Department of Experimental, Preventive, and Clinical Medicine, State Research Institute, Center for Innovative Medicine, Vilnius, Lithuania
| |
Collapse
|
7
|
Evaluation of the role of STAP1 in Familial Hypercholesterolemia. Sci Rep 2019; 9:11995. [PMID: 31427613 PMCID: PMC6700100 DOI: 10.1038/s41598-019-48402-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 08/02/2019] [Indexed: 02/02/2023] Open
Abstract
Familial hypercholesterolemia (FH) is characterised by elevated serum levels of low-density lipoprotein cholesterol (LDL-C) and a substantial risk for cardiovascular disease. The autosomal-dominant FH is mostly caused by mutations in LDLR (low density lipoprotein receptor), APOB (apolipoprotein B), and PCSK9 (proprotein convertase subtilisin/kexin). Recently, STAP1 has been suggested as a fourth causative gene. We analyzed STAP1 in 75 hypercholesterolemic patients from Berlin, Germany, who are negative for mutations in canonical FH genes. In 10 patients with negative family history, we additionally screened for disease causing variants in LDLRAP1 (low density lipoprotein receptor adaptor protein 1), associated with autosomal-recessive hypercholesterolemia. We identified one STAP1 variant predicted to be disease causing. To evaluate association of serum lipid levels and STAP1 carrier status, we analyzed 20 individuals from a population based cohort, the Cooperative Health Research in South Tyrol (CHRIS) study, carrying rare STAP1 variants. Out of the same cohort we randomly selected 100 non-carriers as control. In the Berlin FH cohort STAP1 variants were rare. In the CHRIS cohort, we obtained no statistically significant differences between carriers and non-carriers of STAP1 variants with respect to lipid traits. Until such an association has been verified in more individuals with genetic variants in STAP1, we cannot estimate whether STAP1 generally is a causative gene for FH.
Collapse
|
8
|
Del Pinto R, Grassi D, Properzi G, Desideri G, Ferri C. Low Density Lipoprotein (LDL) Cholesterol as a Causal Role for Atherosclerotic Disease: Potential Role of PCSK9 Inhibitors. High Blood Press Cardiovasc Prev 2019; 26:199-207. [PMID: 31236902 DOI: 10.1007/s40292-019-00323-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/18/2019] [Indexed: 02/07/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9)-related discoveries of the turn of the century have translated into substantial novelty in dyslipidemia treatment in the last 5 years. With chronic preventable atherosclerotic cardiovascular diseases (ASCVD) representing an epidemic of morbidity and mortality worldwide, low-density lipoprotein cholesterol (LDL-c) reduction represents a public health priority. By overcoming two major statin-related issues, namely intolerance and ineffectiveness, PCSK9 inhibitors have offered a safe and effective option in selected clinical settings where LDL-c reduction is required. Herein, we recapitulate recent findings, clinical applications, and ASCVD prevention potential of PCSK9 inhibition, with focus on anti-PCSK9 monoclonal antibodies, evolocumab and alirocumab.
Collapse
Affiliation(s)
- Rita Del Pinto
- Department of Life, Health and Environmental Sciences, San Salvatore Hospital, University of L'Aquila, Building Delta 6, L'Aquila, Italy.
| | - Davide Grassi
- Department of Life, Health and Environmental Sciences, San Salvatore Hospital, University of L'Aquila, Building Delta 6, L'Aquila, Italy
| | - Giuliana Properzi
- Department of Life, Health and Environmental Sciences, San Salvatore Hospital, University of L'Aquila, Building Delta 6, L'Aquila, Italy
| | - Giovambattista Desideri
- Department of Life, Health and Environmental Sciences, San Salvatore Hospital, University of L'Aquila, Building Delta 6, L'Aquila, Italy
| | - Claudio Ferri
- Department of Life, Health and Environmental Sciences, San Salvatore Hospital, University of L'Aquila, Building Delta 6, L'Aquila, Italy
| |
Collapse
|
9
|
Chemello K, Martín C, Lambert G. PCSK9 inhibition for autosomal recessive hypercholesterolemia. Atherosclerosis 2019; 284:209-211. [DOI: 10.1016/j.atherosclerosis.2019.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 02/12/2019] [Indexed: 10/27/2022]
|
10
|
Rodríguez-Jiménez C, Gómez-Coronado D, Frías Vargas M, Cerrato F, Lahoz C, Saban-Ruiz J, González-Nieto D, Lasunción MA, Mostaza JM, Rodríguez-Nóvoa S. A new variant (c.1A>G) in LDLRAP1 causing autosomal recessive hypercholesterolemia: Characterization of the defect and response to PCSK9 inhibition. Atherosclerosis 2019; 284:223-229. [PMID: 30777337 DOI: 10.1016/j.atherosclerosis.2019.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/12/2018] [Accepted: 01/10/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND AND AIMS Autosomal recessive hypercholesterolemia (ARH) is a rare disorder caused by mutations in LDLRAP1, which impairs internalization of hepatic LDL receptor (LDLR). ARH patients respond relatively well to statins or the combination of statins and Ezetimibe, but scarce and variable data on treatment with PCSK9 inhibitors is available. We aimed to identify and characterize the defect in a hypercholesterolemic patient with premature cardiovascular disease and determine the response to lipid-lowering treatment. METHODS AND RESULTS Gene sequencing revealed a homozygous c.1A > G:p.? variant in LDLRAP1. Primary lymphocytes were isolated from the ARH patient, one control and two LDLR-defective subjects, one LDLR:p.(Cys352Ser) heterozygote and one LDLR:p.(Asn825Lys) homozygote. The patient had undetectable full-length ARH protein by Western blotting, but expressed a lower-than-normal molecular weight peptide. LDLR activity was measured by flow cytometry, which showed that LDL binding and uptake were reduced in lymphocytes from the ARH patient as compared to control lymphocytes, but were slightly higher than in those from the LDLR:p.(Cys352Ser) heterozygote. Despite the analogous internalization defect predicted in ARH and homozygous LDLR:p.(Asn825Lys) lymphocytes, LDL uptake was higher in the former than in the latter. LDL-cholesterol levels were markedly reduced by the successive therapy with Atorvastatin and Atorvastatin plus Ezetimibe, and the addition of Evolocumab biweekly decreased LDL-cholesterol by a further 39%. CONCLUSIONS The LDLRAP1:c.1A > G variant is associated with the appearance of an N-terminal truncated ARH protein and to reduced, although still significant, LDLR activity in lymphocytes. Residual LDLR activity may be relevant for the substantial response of the patient to Evolocumab.
Collapse
Affiliation(s)
- Carmen Rodríguez-Jiménez
- Department of Genetics of Metabolic Diseases, Institute of Medical & Molecular Genetics (INGEMM), Hospital Universitario La Paz, IdiPAZ, Madrid, Spain
| | - Diego Gómez-Coronado
- Department of Biochemistry-Research, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Spain
| | | | - Francisca Cerrato
- Department of Biochemistry-Research, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - Carlos Lahoz
- Department of Internal Medicine, Hospital Carlos III-La Paz, Madrid, Spain
| | - Jose Saban-Ruiz
- Endothelium and Cardiometabolic Medicine Unit, Department of Internal Medicine, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Daniel González-Nieto
- Center for Biomedical Technology, Photonics Technology and Bioengineering Department, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, and CIBERBBN, Spain
| | - Miguel A Lasunción
- Department of Biochemistry-Research, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Spain
| | - José M Mostaza
- Department of Internal Medicine, Hospital Carlos III-La Paz, Madrid, Spain
| | - Sonia Rodríguez-Nóvoa
- Department of Genetics of Metabolic Diseases, Institute of Medical & Molecular Genetics (INGEMM), Hospital Universitario La Paz, IdiPAZ, Madrid, Spain.
| |
Collapse
|
11
|
Vaverkova H, Tichy L, Karasek D, Freiberger T. A case of autosomal recessive hypercholesterolemia caused by a new variant in the LDL receptor adaptor protein 1 gene. J Clin Lipidol 2019; 13:405-410. [PMID: 30876877 DOI: 10.1016/j.jacl.2019.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/08/2018] [Accepted: 02/10/2019] [Indexed: 01/26/2023]
Abstract
We report a new variant in the LDLRAP1 gene associated with autosomal recessive hypercholesterolemia in a woman of central European ancestry.
Collapse
Affiliation(s)
- Helena Vaverkova
- Third Department of Internal Medicine - NRE, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic.
| | - Lukas Tichy
- Department of Internal Medicine, Hematology and Oncology, Centre of Molecular Biology and Therapy, University Hospital Brno, Brno, Czech Republic
| | - David Karasek
- Third Department of Internal Medicine - NRE, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Tomas Freiberger
- Centre for Cardiovascular Surgery and Transplantation, Brno, Czech Republic; Central European Institute of Technology and Medical Faculty, Masaryk University, Brno, Czech Republic
| |
Collapse
|
12
|
Update on the diagnosis, treatment and management of rare genetic lipid disorders. Pathology 2019; 51:193-201. [DOI: 10.1016/j.pathol.2018.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/06/2018] [Accepted: 11/06/2018] [Indexed: 02/03/2023]
|
13
|
Affiliation(s)
- Jacqueline S Dron
- From the Department of Biochemistry (J.S.D., J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Robarts Research Institute (J.S.D., J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Julieta Lazarte
- From the Department of Biochemistry (J.S.D., J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Robarts Research Institute (J.S.D., J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Medicine (J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Robert A Hegele
- From the Department of Biochemistry (J.S.D., J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Robarts Research Institute (J.S.D., J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Medicine (J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
14
|
Saeed A, Virani SS, Jones PH, Ballantyne CM, Nambi V. Case reports of proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition nonresponse. J Clin Lipidol 2018; 12:1141-1145. [PMID: 30318064 DOI: 10.1016/j.jacl.2018.05.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 05/14/2018] [Accepted: 05/22/2018] [Indexed: 10/14/2022]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, a novel class of monoclonal antibodies, reduces low-density lipoprotein cholesterol levels and improves cardiovascular outcomes. Given the short time frame, these agents have been available for use; reports of nonresponse to the PCSK9 inhibitor therapy are scarce in literature. We describe 2 cases with substantially lesser than expected low-density lipoprotein cholesterol lowering on PCSK9 therapy. Nonresponse to PCSK9 inhibition was attributed to autosomal recessive hypercholesterolemia (secondary to low-density lipoprotein receptor adaptor protein 1 mutation) and plasmapheresis after PCSK9 inhibitor drug injections. Additional PCSK9 inhibitor nonresponders are likely to emerge as the use of these agents increases overtime.
Collapse
Affiliation(s)
- Anum Saeed
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Center for Cardiovascular Disease Prevention, Methodist DeBakey Heart and Vascular Center, Houston, TX, USA
| | - Salim S Virani
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Center for Cardiovascular Disease Prevention, Methodist DeBakey Heart and Vascular Center, Houston, TX, USA; Section of Cardiology, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA; Health Policy, Quality & Informatics Program, Michael E. DeBakey Veterans Affairs Medical Center Health Services Research and Development Center for Innovations, Houston, TX, USA; Section of Health Services Research, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Peter H Jones
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Christie M Ballantyne
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Center for Cardiovascular Disease Prevention, Methodist DeBakey Heart and Vascular Center, Houston, TX, USA; Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Vijay Nambi
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Center for Cardiovascular Disease Prevention, Methodist DeBakey Heart and Vascular Center, Houston, TX, USA; Section of Cardiology, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA; Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
15
|
Sánchez-Hernández RM, Prieto-Matos P, Civeira F, Lafuente EE, Vargas MF, Real JT, Goicoechea FG, Fuentes FJ, Pocovi M, Boronat M, Wägner AM, Masana L. Autosomal recessive hypercholesterolemia in Spain. Atherosclerosis 2018; 269:1-5. [PMID: 29245109 DOI: 10.1016/j.atherosclerosis.2017.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/21/2017] [Accepted: 12/05/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND AND AIMS Autosomal recessive hypercholesterolemia (ARH) is a very rare disease, caused by mutations in LDL protein receptor adaptor 1 (LDLRAP1). It is characterized by high levels of low-density lipoprotein cholesterol (LDL-C) and increased risk of premature cardiovascular disease. We aimed to characterize ARH in Spain. METHODS Data were collected from the Dyslipidemia Registry of the Spanish Atherosclerosis Society. A literature search was performed up to June 2017, and all diagnostic genetic studies for familial hypercholesterolemia of Spain were reviewed. RESULTS Seven patients with ARH were identified, 6 true homozygous and one compound heterozygous with a novel mutation: c.[863C>T];p.[Ser288Leu]. High genetic heterogeneity was found in this cohort. True homozygous subjects for LDLRAP1 have more severe phenotypes than the compound heterozygous patient, but similar to patients with homozygous familial hypercholesterolemia (HoFH). Cardiovascular disease was present in 14% of the ARH patients. LDL-C under treatment was above 185 mg/dl and the response to PCSK9 inhibitors was heterogeneous. Finally, the estimated prevalence in Spain is very low, with just 1 case per 6.5 million people. CONCLUSIONS ARH is a very rare disease in Spain, showing high genetic heterogeneity, similarly high LDL-C concentrations, but lower incidence of ASCVD than HoFH.
Collapse
Affiliation(s)
- Rosa María Sánchez-Hernández
- Sección de Endocrinología y Nutrición, Complejo Hospitalario Universitario Insular Materno Infantil de Gran Canaria, Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS) de la Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.
| | - Pablo Prieto-Matos
- Unidad de Endocrinología Pediátrica, Hospital Universitario de Salamanca, Instituto de Investigación Biomédica de Salamanca, Spain
| | - Fernando Civeira
- Unidad Clínica y de Investigación en Lípidos y Arterioesclerosis, Hospital Universitario Miguel Servet, IIS Aragón, Centro de Investigación Biomedica en Red de Enfermedades Cardiovasculares (CIBERCV), Universidad de Zaragoza, Zaragoza, Spain
| | - Eduardo Esteve Lafuente
- Servicio Endocrinología y Nutrición, Hospital Universitari de Girona Dr. Josep Trueta, Spain
| | | | - José T Real
- Servicio de Endocrinología y Nutrición, Hospital Clínico Valencia, Departamento de Medicina, Universidad de Valencia, INCLIVA, Centro de Investigación Biomedica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERDEM), Spain
| | | | - Francisco J Fuentes
- Hospital Universitario Reina Sofía, Universidad de Córdoba, Centro de Investigación Biomédica en Red de Fisiopatolgía de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Instituto Maimónedes de Investigación Biomédica de Córdoba (IMIBIC), Spain
| | - Miguel Pocovi
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, IIS Aragón, CIBERCV, Zaragoza, Spain
| | - Mauro Boronat
- Sección de Endocrinología y Nutrición, Complejo Hospitalario Universitario Insular Materno Infantil de Gran Canaria, Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS) de la Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Ana María Wägner
- Sección de Endocrinología y Nutrición, Complejo Hospitalario Universitario Insular Materno Infantil de Gran Canaria, Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS) de la Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Luis Masana
- Unidad de Medicina Vascular y Metabolica, Unidad de Investigación en Lipidos y Arterioesclerosis, Hospital Universitario "Sant Joan", Universitat Rovira i Virgili, IISPV, CIBERDEM, Reus, Madrid, Spain
| |
Collapse
|
16
|
D'Erasmo L, Minicocci I, Nicolucci A, Pintus P, Roeters Van Lennep JE, Masana L, Mata P, Sánchez-Hernández RM, Prieto-Matos P, Real JT, Ascaso JF, Lafuente EE, Pocovi M, Fuentes FJ, Muntoni S, Bertolini S, Sirtori C, Calabresi L, Pavanello C, Averna M, Cefalu AB, Noto D, Pacifico AA, Pes GM, Harada-Shiba M, Manzato E, Zambon S, Zambon A, Vogt A, Scardapane M, Sjouke B, Fellin R, Arca M. Autosomal Recessive Hypercholesterolemia: Long-Term Cardiovascular Outcomes. J Am Coll Cardiol 2018; 71:279-288. [PMID: 29348020 DOI: 10.1016/j.jacc.2017.11.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/16/2017] [Accepted: 11/06/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND Autosomal recessive hypercholesterolemia (ARH) is a rare lipid disorder characterized by premature atherosclerotic cardiovascular disease (ASCVD). There are sparse data for clinical management and cardiovascular outcomes in ARH. OBJECTIVES Evaluation of changes in lipid management, achievement of low-density lipoprotein cholesterol (LDL-C) goals and cardiovascular outcomes in ARH. METHODS Published ARH cases were identified by electronic search. All corresponding authors and physicians known to treat these patients were asked to provide follow-up information, using a standardized protocol. RESULTS We collected data for 52 patients (28 females, 24 males; 31.1 ± 17.1 years of age; baseline LDL-C: 571.9 ± 171.7 mg/dl). During a mean follow-up of 14.1 ± 7.3 years, there was a significant increase in the use of high-intensity statin and ezetimibe in combination with lipoprotein apheresis; in 6 patients, lomitapide was also added. Mean LDL-C achieved at nadir was 164.0 ± 85.1 mg/dl (-69.6% from baseline), with a better response in patients taking lomitapide (-88.3%). Overall, 23.1% of ARH patients reached LDL-C of <100 mg/dl. During follow-up, 26.9% of patients had incident ASCVD, and 11.5% had a new diagnosis of aortic valve stenosis (absolute risk per year of 1.9% and 0.8%, respectively). No incident stroke was observed. Age (≥30 years) and the presence of coronary artery disease at diagnosis were the major predictors of incident ASCVD. CONCLUSIONS Despite intensive treatment, LDL-C in ARH patients remains far from targets, and this translates into a poor long-term cardiovascular prognosis. Our data highlight the importance of an early diagnosis and treatment and confirm the fact that an effective treatment protocol for ARH is still lacking.
Collapse
Affiliation(s)
- Laura D'Erasmo
- Department of Internal Medicine and Clinical Specialties, Sapienza University of Rome, Rome, Italy.
| | - Ilenia Minicocci
- Department of Internal Medicine and Clinical Specialties, Sapienza University of Rome, Rome, Italy
| | - Antonio Nicolucci
- Center for Outcomes Research and Clinical Epidemiology, Coreresearch, Inc., Pescara, Italy
| | - Paolo Pintus
- Dipartimento Internistico, Centro per le Malattie Dismetaboliche e l'Arteriosclerosi, Cagliari, Italy
| | | | - Luis Masana
- Research Unit on Lipids and Atherosclerosis, Vascular Medicine and Metabolism Unit, Sant Joan University Hospital, Universitat Rovira i Virgili, IISPV, Reus, Spain, and Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Pedro Mata
- Fundación Hipercoesterolaemia Familiar, Madrid, Spain
| | - Rosa Maria Sánchez-Hernández
- Sección de Endocrinología y Nutrición, Complejo Hospitalario Universitario Insular Materno Infantil de Gran Canaria, Instituto Universitario de Investigación Biomédica y Sanitaria (IUIBS) de la Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Pablo Prieto-Matos
- Unidad de Endocrinología Pediátrica Hospital Universitario de Salamanca Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
| | - Josè T Real
- Servicio de Endocrinología y Nutrición, Hospital Clínico Valencia, Valencia, Spain, and Department of Medicine, University of Valencia, INCLIVA, CIBERDEM, Madrid, Spain
| | - Juan F Ascaso
- Servicio de Endocrinología y Nutrición, Hospital Clínico Valencia, Valencia, Spain, and Department of Medicine, University of Valencia, INCLIVA, CIBERDEM, Madrid, Spain
| | | | - Miguel Pocovi
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza & IIS Aragón, CIBERCV, Zaragoza, Spain
| | - Francisco J Fuentes
- Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Universidad de Córdoba, Córdoba, Spain, and Centro de Investigación Biomédica en Red de Fisiopatolgía de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Sandro Muntoni
- Department of Biomedical Sciences, University of Cagliari and Centre for Metabolic Diseases and Atherosclerosis, The ME.DI.CO Association, Cagliari, Italy
| | - Stefano Bertolini
- Department of Internal Medicine, University of Genova, Genova, Italy
| | - Cesare Sirtori
- Center E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Universita' degli Studi di Milano, and Dyslipidemia Center, Niguarda Hospital, Milan, Italy
| | - Laura Calabresi
- Center E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Universita' degli Studi di Milano, and Dyslipidemia Center, Niguarda Hospital, Milan, Italy
| | - Chiara Pavanello
- Center E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Universita' degli Studi di Milano, and Dyslipidemia Center, Niguarda Hospital, Milan, Italy
| | - Maurizio Averna
- Dipartimento Biomedico di Medicina Interna e Specialistica, Università di Palermo, Palermo, Italy
| | - Angelo Baldassare Cefalu
- Dipartimento Biomedico di Medicina Interna e Specialistica, Università di Palermo, Palermo, Italy
| | - Davide Noto
- Dipartimento Biomedico di Medicina Interna e Specialistica, Università di Palermo, Palermo, Italy
| | - Adolfo Arturo Pacifico
- Unità Operativa Diabetologia e Malattie Metaboliche, Azienda Ospedaliero Universitaria, Sassari, Italy
| | - Giovanni Mario Pes
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Mariko Harada-Shiba
- Department of Molecular Innovation in Lipidology, National Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | | | | | | | - Anja Vogt
- Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität (LMU) Klinikum der Universität München, Munich, Germany
| | - Marco Scardapane
- Center for Outcomes Research and Clinical Epidemiology, Coreresearch, Inc., Pescara, Italy
| | - Barbara Sjouke
- Department of Internal and Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Renato Fellin
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Marcello Arca
- Department of Internal Medicine and Clinical Specialties, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|