1
|
Kimura T, Miyashita K, Fukamachi I, Fukamachi K, Ogura K, Yokoyama E, Tsunekawa K, Nagasawa T, Ploug M, Yang Y, Song W, Young SG, Beigneux AP, Nakajima K, Murakami M. Quantification of lipoprotein lipase in mouse plasma with a sandwich enzyme-linked immunosorbent assay. J Lipid Res 2024; 65:100532. [PMID: 38608546 PMCID: PMC11017283 DOI: 10.1016/j.jlr.2024.100532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 04/14/2024] Open
Abstract
To support in vivo and in vitro studies of intravascular triglyceride metabolism in mice, we created rat monoclonal antibodies (mAbs) against mouse LPL. Two mAbs, mAbs 23A1 and 31A5, were used to develop a sandwich ELISA for mouse LPL. The detection of mouse LPL by the ELISA was linear in concentrations ranging from 0.31 ng/ml to 20 ng/ml. The sensitivity of the ELISA made it possible to quantify LPL in serum and in both pre-heparin and post-heparin plasma samples (including in grossly lipemic samples). LPL mass and activity levels in the post-heparin plasma were lower in Gpihbp1-/- mice than in wild-type mice. In both groups of mice, LPL mass and activity levels were positively correlated. Our mAb-based sandwich ELISA for mouse LPL will be useful for any investigator who uses mouse models to study LPL-mediated intravascular lipolysis.
Collapse
Affiliation(s)
- Takao Kimura
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan; Clinical Laboratory Center, Gunma University Hospital, Maebashi, Gunma, Japan.
| | | | | | | | - Kazumi Ogura
- Immuno-Biological Laboratories, Fujioka, Gunma, Japan
| | | | - Katsuhiko Tsunekawa
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan; Clinical Laboratory Center, Gunma University Hospital, Maebashi, Gunma, Japan
| | - Takumi Nagasawa
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan; Clinical Laboratory Center, Gunma University Hospital, Maebashi, Gunma, Japan
| | - Michael Ploug
- Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Ye Yang
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Wenxin Song
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Stephen G Young
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Anne P Beigneux
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Katsuyuki Nakajima
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Masami Murakami
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan; Clinical Laboratory Center, Gunma University Hospital, Maebashi, Gunma, Japan
| |
Collapse
|
2
|
Tokita Y, Miyashita K, Nakajima K, Takahashi S, Tanaka A. Quantification of soluble very low-density lipoprotein receptor in human serum using a sandwich enzyme-linked immunosorbent assay. Pract Lab Med 2023; 37:e00337. [PMID: 37781344 PMCID: PMC10539655 DOI: 10.1016/j.plabm.2023.e00337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023] Open
Abstract
To investigate the regulation of soluble very low-density lipoprotein receptor (sVLDL-R), which is cleaved mostly from the extracellular domain of VLDL-R II, we generated two rat monoclonal antibodies (mAbs) against human sVLDL-R, and used them to develop a sandwich enzyme-linked immunosorbent assay (ELISA) to measure sVLDL-R levels in human serum or plasma. The ELISA had a linear range from 0.20 ng/mL to 13.02 ng/mL and allowed for the quantification of sVLDL-R in serum and culture cell medium. The coefficient of variation (CV) was less than 10% for both the intra- and inter-assays. The bililubin F, and C, triglyceride (TG), and hemoglobin levels did not affect assay precision. The sVLDL-R concentration was negatively associated with body fat percentage, TG, and HbA1c, suggesting the possibility of obesity and diabetes in middle-aged Japanese women.
Collapse
Affiliation(s)
- Yoshiharu Tokita
- Faculty of Medical Technology and Clinical Engineering, Gunma University of Health and Welfare, Gunma, Japan
- Kagawa Nutrition University, Tokyo, Japan
| | | | - Katsuyuki Nakajima
- Department of Clinical Laboratory Medicine, Gunma University, Graduate School of Medicine, Gunma, Japan
| | - Sadao Takahashi
- Kagawa Nutrition University, Tokyo, Japan
- Ageo Central General Hospital, Saitama, Japan
- Takasaki University of Health and Welfare, Gumma, Japan
| | - Akira Tanaka
- Kichijoji Futaba Professional and Vocational College of Culinary Nutrition, Tokyo, Japan
| |
Collapse
|
3
|
Kurooka N, Eguchi J, Wada J. Role of glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 in hypertriglyceridemia and diabetes. J Diabetes Investig 2023; 14:1148-1156. [PMID: 37448184 PMCID: PMC10512915 DOI: 10.1111/jdi.14056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
In diabetes, the impairment of insulin secretion and insulin resistance contribute to hypertriglyceridemia, as the enzymatic activity of lipoprotein lipase (LPL) depends on insulin action. The transport of LPL to endothelial cells and its enzymatic activity are maintained by the formation of lipolytic complex depending on the multiple positive (glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 [GPIHBP1], apolipoprotein C-II [APOC2], APOA5, heparan sulfate proteoglycan [HSPG], lipase maturation factor 1 [LFM1] and sel-1 suppressor of lin-12-like [SEL1L]) and negative regulators (APOC1, APOC3, angiopoietin-like proteins [ANGPTL]3, ANGPTL4 and ANGPTL8). Among the regulators, GPIHBP1 is a crucial molecule for the translocation of LPL from parenchymal cells to the luminal surface of capillary endothelial cells, and maintenance of lipolytic activity; that is, hydrolyzation of triglyceride into free fatty acids and monoglyceride, and conversion from chylomicron to chylomicron remnant in the exogenous pathway and from very low-density lipoprotein to low-density lipoprotein in the endogenous pathway. The null mutation of GPIHBP1 causes severe hypertriglyceridemia and pancreatitis, and GPIGBP1 autoantibody syndrome also causes severe hypertriglyceridemia and recurrent episodes of acute pancreatitis. In patients with type 2 diabetes, the elevated serum triglyceride levels negatively correlate with circulating LPL levels, and positively with circulating APOC1, APOC3, ANGPTL3, ANGPTL4 and ANGPTL8 levels. In contrast, circulating GPIHBP1 levels are not altered in type 2 diabetes patients with higher serum triglyceride levels, whereas they are elevated in type 2 diabetes patients with diabetic retinopathy and nephropathy. The circulating regulators of lipolytic complex might be new biomarkers for lipid and glucose metabolism, and diabetic vascular complications.
Collapse
Affiliation(s)
- Naoko Kurooka
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Jun Eguchi
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| |
Collapse
|
4
|
Nozue T, Tada H, Murakami M, Michishita I. A case of hyperchylomicronemia associated with GPIHBP1 autoantibodies and fluctuating thyroid autoimmune disease. J Clin Lipidol 2023; 17:68-72. [PMID: 36402671 DOI: 10.1016/j.jacl.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Recent studies have reported that patients with autoimmune hyperchylomicronemia caused by glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 (GPIHBP1) autoantibodies are associated with rheumatoid arthritis, systemic lupus erythematosus, Sjogren's syndrome, Hashimoto's thyroiditis, Basedow's disease, and immune thrombocytopenia. We report a rare case of hyperchylomicronemia due to GPIHBP1 autoantibodies and fluctuating thyroid autoimmune disease. A 28-year-old woman, diagnosed with Hashimoto's thyroiditis at 26 years of age, started taking 50 µg/day of levothyroxine sodium. She had an episode of acute pancreatitis at 27 years of age; her serum triglyceride (TG) level was 1291 mg/dL at that time. The patient was referred to our hospital because her hyperchylomicronemia (hypertriglyceridemia) did not improve on treatment with pemafibrate and eicosapentaenoic acid (EPA). Serum total cholesterol and TG levels were 237 mg/dL and 2535 mg/dL, respectively, while plasma pre-heparin lipoprotein lipase (LPL) mass was 15 ng/mL (26.5-105.5 ng/mL). We diagnosed her as Basedow's disease based on autoimmune antibodies and ultrasound examination. Targeted exome sequencing revealed no pathogenic variants in the LPL or GPIHBP1 genes. The serum GPIHBP1 autoantibody level was 686.0 U/mL (<58.4 U/mL) and GPIHBP1 mass was 301.9 pg/mL (570.6-1625.6 pg/mL). The patient showed hyperchylomicronemia during periods of hypothyroidism and hyperthyroidism, whereas GPIHBP1 autoantibodies were positive during episode of hyperchylomicronemia but negative during periods of normal TG levels. Based on these findings, the patient was diagnosed with hyperchylomicronemia due to GPIHBP1 autoantibodies and treated with rituximab. GPIHBP1 autoantibodies remained undetectable and TG levels were controlled at approximately 200 mg/dL.
Collapse
Affiliation(s)
- Tsuyoshi Nozue
- Division of Cardiology, Department of Internal Medicine, Yokohama Sakae Kyosai Hospital, Yokohama, Japan.
| | - Hayato Tada
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Masami Murakami
- Department of Clinical Laboratory Medicine, Gunma University, Graduate School of Medicine, Maebashi, Japan
| | - Ichiro Michishita
- Division of Cardiology, Department of Internal Medicine, Yokohama Sakae Kyosai Hospital, Yokohama, Japan
| |
Collapse
|
5
|
Minamizuka T, Kobayashi J, Tada H, Koshizaka M, Maezawa Y, Yokote K. Homozygous familial lipoprotein lipase deficiency without obvious coronary artery stenosis. Clin Biochem 2022; 108:42-45. [PMID: 35820489 DOI: 10.1016/j.clinbiochem.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 11/27/2022]
Abstract
The prevalence of familial lipoprotein lipase deficiency (LPLD) is approximately one in 1,000,000 in the general population. There are conflicting reports on whether or not LPLD is atherogenic. We conducted coronary computed tomographic (CT) angiography on two patients in their 70 s who had genetically confirmed LPLD. Patient 1 was a 73 year old woman with a body mass index (BMI) of 27.5 kg/m2, no history of diabetes mellitus and no history of drinking alcohol or smoking. At the time of her first visit, her serum total cholesterol, triglycerides and high-density lipoprotein cholesterol levels were 4.8 mmol/L, 17.3 mmol/L, and 0.5 mmol/L, respectively. She was treated with a lipid-restricted diet and fibrate but her serum TG levels remained extremely high. Next-generation sequencing analysis revealed a missense mutation (homo) in the LPL gene, c.662T>C (p. Ile221Thr), leading to the diagnosis of homozygous familial LPL deficiency (LPLD). Patient 2 was another 73- year- old woman. She also had marked hypertriglyceridemia with no history of diabetes mellitus, drinking alcohol, or smoking. Previous genetic studies showed she had a nonsense mutation (homozygous) in the LPL gene, c.1277G>A (p.Trp409Ter). To clarify the degree of coronary artery stenosis in these two cases, we conducted coronary CT angiography and found that no coronary artery stenosis in either the right or left coronary arteries. Based on the findings in these two elderly women along with previous reports on patients in their 60 s with LPLD and hypertriglyceridemia, we suggest that LPLD may not be associated with the development or progression of coronary artery disease.
Collapse
Affiliation(s)
- Takuya Minamizuka
- Department of Endocrinology, Metabolism, Hematology and Geriatrics, Chiba University Graduate School of Medicine, 1-8-1, Inohana, Chuo-ku, Chiba City, Chiba 260-0856, Japan
| | - Junji Kobayashi
- Department of Endocrinology, Metabolism, Hematology and Geriatrics, Chiba University Graduate School of Medicine, 1-8-1, Inohana, Chuo-ku, Chiba City, Chiba 260-0856, Japan.
| | - Hayato Tada
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medicine, 13-1 Takara-machi, Kanazawa City, Ishikawa 920-8640, Japan
| | - Masaya Koshizaka
- Department of Endocrinology, Metabolism, Hematology and Geriatrics, Chiba University Graduate School of Medicine, 1-8-1, Inohana, Chuo-ku, Chiba City, Chiba 260-0856, Japan
| | - Yoshiro Maezawa
- Department of Endocrinology, Metabolism, Hematology and Geriatrics, Chiba University Graduate School of Medicine, 1-8-1, Inohana, Chuo-ku, Chiba City, Chiba 260-0856, Japan
| | - Koutaro Yokote
- Department of Endocrinology, Metabolism, Hematology and Geriatrics, Chiba University Graduate School of Medicine, 1-8-1, Inohana, Chuo-ku, Chiba City, Chiba 260-0856, Japan
| |
Collapse
|
6
|
Kovrov O, Landfors F, Saar-Kovrov V, Näslund U, Olivecrona G. Lipoprotein size is a main determinant for the rate of hydrolysis by exogenous LPL in human plasma. J Lipid Res 2022; 63:100144. [PMID: 34710432 PMCID: PMC8953621 DOI: 10.1016/j.jlr.2021.100144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/19/2022] Open
Abstract
LPL is a key player in plasma triglyceride metabolism. Consequently, LPL is regulated by several proteins during synthesis, folding, secretion, and transport to its site of action at the luminal side of capillaries, as well as during the catalytic reaction. Some proteins are well known, whereas others have been identified but are still not fully understood. We set out to study the effects of the natural variations in the plasma levels of all known LPL regulators on the activity of purified LPL added to samples of fasted plasma taken from 117 individuals. The enzymatic activity was measured at 25°C using isothermal titration calorimetry. This method allows quantification of the ability of an added fixed amount of exogenous LPL to hydrolyze triglyceride-rich lipoproteins in plasma samples by measuring the heat produced. Our results indicate that, under the conditions used, the normal variation in the endogenous levels of apolipoprotein C1, C2, and C3 or the levels of angiopoietin-like proteins 3, 4, and 8 in the fasted plasma samples had no significant effect on the recorded activity of the added LPL. Instead, the key determinant for the LPL activity was a lipid signature strongly correlated to the average size of the VLDL particles. The signature involved not only several lipoprotein and plasma lipid parameters but also apolipoprotein A5 levels. While the measurements cannot fully represent the action of LPL when attached to the capillary wall, our study provides knowledge on the interindividual variation of LPL lipolysis rates in human plasma.
Collapse
Affiliation(s)
- Oleg Kovrov
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Fredrik Landfors
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Valeria Saar-Kovrov
- Department of Medical Biosciences, Umeå University, Umeå, Sweden; Department of Pathology, CARIM School for Cardiovascular Diseases MUMC+, Maastricht University, Maastricht, The Netherlands
| | - Ulf Näslund
- Heart Centre and Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | | |
Collapse
|
7
|
Circulating GPIHBP1 levels and microvascular complications in patients with type 2 diabetes: A cross-sectional study. J Clin Lipidol 2022; 16:237-245. [DOI: 10.1016/j.jacl.2022.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/27/2021] [Accepted: 01/12/2022] [Indexed: 11/18/2022]
|
8
|
The antagonic behavior of GPIHBP1 between EAT and circulation does not reflect lipolytic enzymes levels in the tissue and serum from coronary patients. Clin Chim Acta 2020; 510:423-429. [DOI: 10.1016/j.cca.2020.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/22/2020] [Accepted: 08/04/2020] [Indexed: 12/24/2022]
|
9
|
Miyashita K, Lutz J, Hudgins LC, Toib D, Ashraf AP, Song W, Murakami M, Nakajima K, Ploug M, Fong LG, Young SG, Beigneux AP. Chylomicronemia from GPIHBP1 autoantibodies. J Lipid Res 2020; 61:1365-1376. [PMID: 32948662 PMCID: PMC7604722 DOI: 10.1194/jlr.r120001116] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Some cases of chylomicronemia are caused by autoantibodies against glycosylphosphatidylinositol-anchored HDL binding protein 1 (GPIHBP1), an endothelial cell protein that shuttles LPL to the capillary lumen. GPIHBP1 autoantibodies prevent binding and transport of LPL by GPIHBP1, thereby disrupting the lipolytic processing of triglyceride-rich lipoproteins. Here, we review the "GPIHBP1 autoantibody syndrome" and summarize clinical and laboratory findings in 22 patients. All patients had GPIHBP1 autoantibodies and chylomicronemia, but we did not find a correlation between triglyceride levels and autoantibody levels. Many of the patients had a history of pancreatitis, and most had clinical and/or serological evidence of autoimmune disease. IgA autoantibodies were present in all patients, and IgG4 autoantibodies were present in 19 of 22 patients. Patients with GPIHBP1 autoantibodies had low plasma LPL levels, consistent with impaired delivery of LPL into capillaries. Plasma levels of GPIHBP1, measured with a monoclonal antibody-based ELISA, were very low in 17 patients, reflecting the inability of the ELISA to detect GPIHBP1 in the presence of autoantibodies (immunoassay interference). However, GPIHBP1 levels were very high in five patients, indicating little capacity of their autoantibodies to interfere with the ELISA. Recently, several GPIHBP1 autoantibody syndrome patients were treated successfully with rituximab, resulting in the disappearance of GPIHBP1 autoantibodies and normalization of both plasma triglyceride and LPL levels. The GPIHBP1 autoantibody syndrome should be considered in any patient with newly acquired and unexplained chylomicronemia.
Collapse
Affiliation(s)
- Kazuya Miyashita
- Department of Clinical Laboratory Medicine, Gunma University, Graduate School of Medicine, Maebashi, Japan
- Immuno-Biological Laboratories (IBL), Fujioka, Gunma, Japan
| | - Jens Lutz
- Medical Clinic, Nephrology-Infectious Diseases, Central Rhine Hospital Group, Koblenz, Germany
| | - Lisa C Hudgins
- Rogosin Institute, Weill Cornell Medical College, New York, NY, USA
| | - Dana Toib
- Department of Pediatrics, Drexel University, Philadelphia, PA, USA
- Section of Pediatric Rheumatology, St. Christopher's Hospital for Children, Philadelphia, PA, USA
| | - Ambika P Ashraf
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Wenxin Song
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Masami Murakami
- Department of Clinical Laboratory Medicine, Gunma University, Graduate School of Medicine, Maebashi, Japan
| | - Katsuyuki Nakajima
- Department of Clinical Laboratory Medicine, Gunma University, Graduate School of Medicine, Maebashi, Japan
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark
- Biotechnology Research Innovation Center, Copenhagen University, Copenhagen, Denmark
| | - Loren G Fong
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Stephen G Young
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Anne P Beigneux
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
10
|
Minamizuka T, Kobayashi J, Tada H, Miyashita K, Koshizaka M, Maezawa Y, Ono H, Yokote K. Detailed analysis of lipolytic enzymes in a Japanese woman of familial lipoprotein lipase deficiency - Effects of pemafibrate treatment. Clin Chim Acta 2020; 510:216-219. [PMID: 32682802 DOI: 10.1016/j.cca.2020.07.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/29/2020] [Accepted: 07/14/2020] [Indexed: 01/11/2023]
Abstract
BACKGROUND We present here a 72-y-old Japanese woman with lipoprotein lipase (LPL) deficiency and analyzed her lipolytic enzymes in detail before and after pemafibrate treatment. METHODS She had a serum triglycerides (TG) of 22.6 mmol/l at a medical checkup at the age of 52 y. She was referred to our hospital at the age of 61 y. Her serum lipoprotein lipase (LPL) concentration was extremely low, suggesting the clinical diagnosis of LPL deficiency. She experienced an event of acute pancreatitis at the age of 65 y. RESULTS Next-generation sequencing analysis revealed a homozygous nonsense mutation in the LPL gene, c.1277G > A (p.Trp409Ter). Her serum TG, LPL and hepatic lipase (HL) concentrations were 15.0 mmol/l, 23 ng/ml and 66 ng/ml, respectively. Fifteen minutes after intravenous heparin injection (30 U/kg), her serum TG, LPL and HL concentrations turned to 14.1 mmol/l, 20 ng/ml and 660 ng/ml, respectively. Eight weeks of pemafibrate treatment (0.2 mg/day) caused a modest reductions in serum TG (15.02 → 13.58 mmol/l) and considerable increases in preheparin HL (66 → 76 ng/ml) and PHP-HL (660 → 1118 ng/ml) concentrations and PHP-HL activities (253 → 369U/l) despite almost no effect on LPL concentrations and activities. CONCLUSIONS These findings suggest that HL may contribute to the reduction of plasma TG in LPL deficiency.
Collapse
Affiliation(s)
- Takuya Minamizuka
- Graduate School of Medicine, Chiba University Endocrine Metabolism/Hematology/Geriatric Medicine, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba 260-8677, Japan
| | - Junji Kobayashi
- Graduate School of Medicine, Chiba University Endocrine Metabolism/Hematology/Geriatric Medicine, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba 260-8677, Japan.
| | - Hayato Tada
- Graduate School of Medicine, Kanazawa University Cardiovascular Medicine, Kanazawa City, Japan
| | | | - Masaya Koshizaka
- Graduate School of Medicine, Chiba University Endocrine Metabolism/Hematology/Geriatric Medicine, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba 260-8677, Japan
| | - Yoshiro Maezawa
- Graduate School of Medicine, Chiba University Endocrine Metabolism/Hematology/Geriatric Medicine, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba 260-8677, Japan
| | - Hiraku Ono
- Graduate School of Medicine, Chiba University Endocrine Metabolism/Hematology/Geriatric Medicine, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba 260-8677, Japan
| | - Koutaro Yokote
- Graduate School of Medicine, Chiba University Endocrine Metabolism/Hematology/Geriatric Medicine, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba 260-8677, Japan
| |
Collapse
|
11
|
Unfolding of monomeric lipoprotein lipase by ANGPTL4: Insight into the regulation of plasma triglyceride metabolism. Proc Natl Acad Sci U S A 2020; 117:4337-4346. [PMID: 32034094 DOI: 10.1073/pnas.1920202117] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The binding of lipoprotein lipase (LPL) to GPIHBP1 focuses the intravascular hydrolysis of triglyceride-rich lipoproteins on the surface of capillary endothelial cells. This process provides essential lipid nutrients for vital tissues (e.g., heart, skeletal muscle, and adipose tissue). Deficiencies in either LPL or GPIHBP1 impair triglyceride hydrolysis, resulting in severe hypertriglyceridemia. The activity of LPL in tissues is regulated by angiopoietin-like proteins 3, 4, and 8 (ANGPTL). Dogma has held that these ANGPTLs inactivate LPL by converting LPL homodimers into monomers, rendering them highly susceptible to spontaneous unfolding and loss of enzymatic activity. Here, we show that binding of an LPL-specific monoclonal antibody (5D2) to the tryptophan-rich lipid-binding loop in the carboxyl terminus of LPL prevents homodimer formation and forces LPL into a monomeric state. Of note, 5D2-bound LPL monomers are as stable as LPL homodimers (i.e., they are not more prone to unfolding), but they remain highly susceptible to ANGPTL4-catalyzed unfolding and inactivation. Binding of GPIHBP1 to LPL alone or to 5D2-bound LPL counteracts ANGPTL4-mediated unfolding of LPL. In conclusion, ANGPTL4-mediated inactivation of LPL, accomplished by catalyzing the unfolding of LPL, does not require the conversion of LPL homodimers into monomers. Thus, our findings necessitate changes to long-standing dogma on mechanisms for LPL inactivation by ANGPTL proteins. At the same time, our findings align well with insights into LPL function from the recent crystal structure of the LPL•GPIHBP1 complex.
Collapse
|
12
|
Young SG, Fong LG, Beigneux AP, Allan CM, He C, Jiang H, Nakajima K, Meiyappan M, Birrane G, Ploug M. GPIHBP1 and Lipoprotein Lipase, Partners in Plasma Triglyceride Metabolism. Cell Metab 2019; 30:51-65. [PMID: 31269429 PMCID: PMC6662658 DOI: 10.1016/j.cmet.2019.05.023] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lipoprotein lipase (LPL), identified in the 1950s, has been studied intensively by biochemists, physiologists, and clinical investigators. These efforts uncovered a central role for LPL in plasma triglyceride metabolism and identified LPL mutations as a cause of hypertriglyceridemia. By the 1990s, with an outline for plasma triglyceride metabolism established, interest in triglyceride metabolism waned. In recent years, however, interest in plasma triglyceride metabolism has awakened, in part because of the discovery of new molecules governing triglyceride metabolism. One such protein-and the focus of this review-is GPIHBP1, a protein of capillary endothelial cells. GPIHBP1 is LPL's essential partner: it binds LPL and transports it to the capillary lumen; it is essential for lipoprotein margination along capillaries, allowing lipolysis to proceed; and it preserves LPL's structure and activity. Recently, GPIHBP1 was the key to solving the structure of LPL. These developments have transformed the models for intravascular triglyceride metabolism.
Collapse
Affiliation(s)
- Stephen G Young
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Loren G Fong
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Anne P Beigneux
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Christopher M Allan
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Cuiwen He
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Haibo Jiang
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; School of Molecular Sciences, University of Western Australia, Crawley 6009, Australia
| | - Katsuyuki Nakajima
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Department of Medicine, Maebashi, Gunma 371-0805, Japan
| | - Muthuraman Meiyappan
- Discovery Therapeutics, Takeda Pharmaceutical Company Ltd., Cambridge, MA 02142, USA
| | - Gabriel Birrane
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, Copenhagen DK-2200, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen DK-2200, Denmark.
| |
Collapse
|
13
|
Matsumoto R, Tsunekawa K, Shoho Y, Yanagawa Y, Kotajima N, Matsumoto S, Araki O, Kimura T, Nakajima K, Murakami M. Association between skeletal muscle mass and serum concentrations of lipoprotein lipase, GPIHBP1, and hepatic triglyceride lipase in young Japanese men. Lipids Health Dis 2019; 18:84. [PMID: 30947712 PMCID: PMC6449999 DOI: 10.1186/s12944-019-1014-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 03/08/2019] [Indexed: 12/15/2022] Open
Abstract
Background Two important regulators for circulating lipid metabolisms are lipoprotein lipase (LPL) and hepatic triglyceride lipase (HTGL). In relation to this, glycosylphosphatidylinositol anchored high-density lipoprotein binding protein 1 (GPIHBP1) has been shown to have a vital role in LPL lipolytic processing. However, the relationships between skeletal muscle mass and lipid metabolism, including LPL, GPIHBP1, and HTGL, remain to be elucidated. Demonstration of these relationships may lead to clarification of the metabolic dysfunctions caused by sarcopenia. In this study, these relationships were investigated in young Japanese men who had no age-related factors; participants included wrestling athletes with abundant skeletal muscle. Methods A total of 111 young Japanese men who were not taking medications were enrolled; 70 wrestling athletes and 41 control students were included. The participants’ body compositions, serum concentrations of lipoprotein, LPL, GPIHBP1 and HTGL and thyroid function test results were determined under conditions of no extreme dietary restrictions and exercises. Results Compared with the control participants, wrestling athletes had significantly higher skeletal muscle index (SMI) (p < 0.001), higher serum concentrations of LPL (p < 0.001) and GPIHBP1 (p < 0.001), and lower fat mass index (p = 0.024). Kruskal–Wallis tests with Bonferroni multiple comparison tests showed that serum LPL and GPIHBP1 concentrations were significantly higher in the participants with higher SMI. Spearman’s correlation analyses showed that SMI was positively correlated with LPL (ρ = 0.341, p < 0.001) and GPIHBP1 (ρ = 0.309, p = 0.001) concentration. The serum concentrations of LPL and GPIHBP1 were also inversely correlated with serum concentrations of triglyceride (LPL, ρ = − 0.198, p = 0.037; GPIHBP1, ρ = − 0.249, p = 0.008). Serum HTGL concentration was positively correlated with serum concentrations of total cholesterol (ρ = 0.308, p = 0.001), low-density lipoprotein-cholesterol (ρ = 0.336, p < 0.001), and free 3,5,3′-triiodothyronine (ρ = 0.260, p = 0.006), but not with SMI. Conclusions The results suggest that increased skeletal muscle mass leads to improvements in energy metabolism by promoting triglyceride-rich lipoprotein hydrolysis through the increase in circulating LPL and GPIHBP1.
Collapse
Affiliation(s)
- Ryutaro Matsumoto
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, 371-8511, Japan
| | - Katsuhiko Tsunekawa
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, 371-8511, Japan.
| | - Yoshifumi Shoho
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, 371-8511, Japan.,Faculty of Education, Ikuei University, Takasaki, 370-0011, Japan
| | - Yoshimaro Yanagawa
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, 371-8511, Japan.,Faculty of Education, Ikuei University, Takasaki, 370-0011, Japan
| | - Nobuo Kotajima
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, 371-8511, Japan.,School of Medical Technology, Faculty of Health Science, Gunma Paz University, Takasaki, 370-0006, Japan
| | - Shingo Matsumoto
- Graduate School of Health and Sport Science, Nippon Sport Science University, Yokohama, 227-0033, Japan
| | - Osamu Araki
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, 371-8511, Japan
| | - Takao Kimura
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, 371-8511, Japan
| | - Katsuyuki Nakajima
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, 371-8511, Japan
| | - Masami Murakami
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, 371-8511, Japan
| |
Collapse
|
14
|
GPIHBP1 autoantibody syndrome during interferon β1a treatment. J Clin Lipidol 2018; 13:62-69. [PMID: 30514621 DOI: 10.1016/j.jacl.2018.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/21/2018] [Accepted: 10/12/2018] [Indexed: 01/15/2023]
Abstract
BACKGROUND Autoantibodies against glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPIHBP1) cause chylomicronemia by blocking the ability of GPIHBP1 to bind lipoprotein lipase (LPL) and transport the enzyme to its site of action in the capillary lumen. OBJECTIVE A patient with multiple sclerosis developed chylomicronemia during interferon (IFN) β1a therapy. The chylomicronemia resolved when the IFN β1a therapy was discontinued. Here, we sought to determine whether the drug-induced chylomicronemia was caused by GPIHBP1 autoantibodies. METHODS We tested plasma samples collected during and after IFN β1a therapy for GPIHBP1 autoantibodies (by western blotting and with enzyme-linked immunosorbent assays). We also tested whether the patient's plasma blocked the binding of LPL to GPIHBP1 on GPIHBP1-expressing cells. RESULTS During IFN β1a therapy, the plasma contained GPIHBP1 autoantibodies, and those autoantibodies blocked GPIHBP1's ability to bind LPL. Thus, the chylomicronemia was because of the GPIHBP1 autoantibody syndrome. Consistent with that diagnosis, the plasma levels of GPIHBP1 and LPL were very low. After IFN β1a therapy was stopped, the plasma triglyceride levels returned to normal, and GPIHBP1 autoantibodies were undetectable. CONCLUSION The appearance of GPIHBP1 autoantibodies during IFN β1a therapy caused chylomicronemia. The GPIHBP1 autoantibodies disappeared when the IFN β1a therapy was stopped, and the plasma triglyceride levels fell within the normal range.
Collapse
|
15
|
Miyashita K, Fukamachi I, Machida T, Nakajima K, Young SG, Murakami M, Beigneux AP, Nakajima K. An ELISA for quantifying GPIHBP1 autoantibodies and making a diagnosis of the GPIHBP1 autoantibody syndrome. Clin Chim Acta 2018; 487:174-178. [PMID: 30287259 DOI: 10.1016/j.cca.2018.09.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/27/2018] [Accepted: 09/28/2018] [Indexed: 01/04/2023]
Abstract
BACKGROUND Autoantibodies against GPIHBP1, the endothelial cell transporter for lipoprotein lipase (LPL), cause severe hypertriglyceridemia ("GPIHBP1 autoantibody syndrome"). Affected patients have low serum GPIHBP1 and LPL levels. We report the development of a sensitive and specific ELISA, suitable for routine clinical use, to detect GPIHBP1 autoantibodies in serum and plasma. METHODS Serum and plasma samples were added to wells of an ELISA plate that had been coated with recombinant human GPIHBP1. GPIHBP1 autoantibodies bound to GPIHBP1 were detected with an HRP-labeled antibody against human immunoglobulin. Sensitivity, specificity, and reproducibility of the ELISA was evaluated with plasma or serum samples from patients with the GPIHBP1 autoantibody syndrome. RESULTS A solid-phase ELISA to detect and quantify GPIHBP1 autoantibodies in human plasma and serum was developed. Spiking recombinant human GPIHBP1 into the samples reduced the ability of the ELISA to detect GPIHBP1 autoantibodies. The ELISA is reproducible and sensitive; it can detect GPIHBP1 autoantibodies in samples diluted by >1000-fold. CONCLUSION We have developed a sensitive and specific ELISA for detecting GPIHBP1 autoantibodies in human serum and plasma; this assay will make it possible to rapidly diagnose the GPIHBP1 autoantibody syndrome.
Collapse
Affiliation(s)
| | | | - Tetsuo Machida
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Kiyomi Nakajima
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Stephen G Young
- Department of Medicine and David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90025, United States; Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90025, United States
| | - Masami Murakami
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Anne P Beigneux
- Department of Medicine and David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90025, United States.
| | - Katsuyuki Nakajima
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.
| |
Collapse
|
16
|
Liu C, Li L, Guo D, Lv Y, Zheng X, Mo Z, Xie W. Lipoprotein lipase transporter GPIHBP1 and triglyceride-rich lipoprotein metabolism. Clin Chim Acta 2018; 487:33-40. [PMID: 30218660 DOI: 10.1016/j.cca.2018.09.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/11/2018] [Accepted: 09/11/2018] [Indexed: 02/05/2023]
Abstract
Increased plasma triglyceride serves as an independent risk factor for cardiovascular disease (CVD). Lipoprotein lipase (LPL), which hydrolyzes circulating triglyceride, plays a crucial role in normal lipid metabolism and energy balance. Hypertriglyceridemia is possibly caused by gene mutations resulting in LPL dysfunction. There are many factors that both positively and negatively interact with LPL thereby impacting TG lipolysis. Glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPIHBP1), a newly identified factor, appears essential for transporting LPL to the luminal side of the blood vessel and offering a platform for TG hydrolysis. Numerous lines of evidence indicate that GPIHBP1 exerts distinct functions and plays diverse roles in human triglyceride-rich lipoprotein (TRL) metabolism. In this review, we discuss the GPIHBP1 gene, protein, its expression and function and subsequently focus on its regulation and provide critical evidence supporting its role in TRL metabolism. Underlying mechanisms of action are highlighted, additional studies discussed and potential therapeutic targets reviewed.
Collapse
Affiliation(s)
- Chuhao Liu
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, Hunan, China; 2016 Class of Excellent Doctor, University of South China, Hengyang 421001, Hunan, China
| | - Liang Li
- Department of Pathophysiology, University of South China, Hengyang 421001, Hunan, China
| | - Dongming Guo
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, Hunan, China
| | - Yuncheng Lv
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, Hunan, China
| | - XiLong Zheng
- Department of Biochemistry and Molecular Biology, The Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Health Sciences Center, 3330 Hospital Dr NW, Calgary T2N 4N1, Alberta, Canada; Key Laboratory of Molecular Targets & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Zhongcheng Mo
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, Hunan, China.
| | - Wei Xie
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, Hunan, China.
| |
Collapse
|