1
|
Jiang S, Ren Z, Yang Y, Liu Q, Zhou S, Xiao Y. The GPIHBP1-LPL complex and its role in plasma triglyceride metabolism: Insights into chylomicronemia. Biomed Pharmacother 2023; 169:115874. [PMID: 37951027 DOI: 10.1016/j.biopha.2023.115874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/13/2023] Open
Abstract
GPIHBP1 is a protein found in the endothelial cells of capillaries that is anchored by glycosylphosphatidylinositol and binds to high-density lipoproteins. GPIHBP1 attaches to lipoprotein lipase (LPL), subsequently carrying the enzyme and anchoring it to the capillary lumen. Enabling lipid metabolism is essential for the marginalization of lipoproteins alongside capillaries. Studies underscore the significance of GPIHBP1 in transporting, stabilizing, and aiding in the marginalization of LPL. The intricate interplay between GPIHBP1 and LPL has provided novel insights into chylomicronemia in recent years. Mutations hindering the formation or reducing the efficiency of the GPIHBP1-LPL complex are central to the onset of chylomicronemia. This review delves into the structural nuances of the GPIHBP1-LPL interaction, the consequences of mutations in the complex leading to chylomicronemia, and cutting-edge advancements in chylomicronemia treatment.
Collapse
Affiliation(s)
- Shali Jiang
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Zhuoqun Ren
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Yutao Yang
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Qiming Liu
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China
| | - Shenghua Zhou
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China
| | - Yichao Xiao
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China.
| |
Collapse
|
2
|
Sustar U, Groselj U, Khan SA, Shafi S, Khan I, Kovac J, Bizjan BJ, Battelino T, Sadiq F. A homozygous variant in the GPIHBP1 gene in a child with severe hypertriglyceridemia and a systematic literature review. Front Genet 2022; 13:983283. [PMID: 36051701 PMCID: PMC9424485 DOI: 10.3389/fgene.2022.983283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Due to nonspecific symptoms, rare dyslipidaemias are frequently misdiagnosed, overlooked, and undertreated, leading to increased risk for severe cardiovascular disease, pancreatitis and/or multiple organ failures before diagnosis. Better guidelines for the recognition and early diagnosis of rare dyslipidaemias are urgently required. Methods: Genomic DNA was isolated from blood samples of a Pakistani paediatric patient with hypertriglyceridemia, and from his parents and siblings. Next-generation sequencing (NGS) was performed, and an expanded dyslipidaemia panel was employed for genetic analysis. Results: The NGS revealed the presence of a homozygous missense pathogenic variant c.230G>A (NM_178172.6) in exon 3 of the GPIHBP1 (glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1) gene resulting in amino acid change p.Cys77Tyr (NP_835466.2). The patient was 5.5 years old at the time of genetic diagnosis. The maximal total cholesterol and triglyceride levels were measured at the age of 10 months (850.7 mg/dl, 22.0 mmol/L and 5,137 mg/dl, 58.0 mmol/L, respectively). The patient had cholesterol deposits at the hard palate, eruptive xanthomas, lethargy, poor appetite, and mild splenomegaly. Both parents and sister were heterozygous for the familial variant in the GPIHBP1 gene. Moreover, in the systematic review, we present 62 patients with pathogenic variants in the GPIHBP1 gene and clinical findings, associated with hyperlipoproteinemia. Conclusion: In a child with severe hypertriglyceridemia, we identified a pathogenic variant in the GPIHBP1 gene causing hyperlipoproteinemia (type 1D). In cases of severe elevations of plasma cholesterol and/or triglycerides genetic testing for rare dyslipidaemias should be performed as soon as possible for optimal therapy and patient management.
Collapse
Affiliation(s)
- Ursa Sustar
- Department of Endocrinology, Diabetes and Metabolism, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Urh Groselj
- Department of Endocrinology, Diabetes and Metabolism, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
- *Correspondence: Urh Groselj, ; Fouzia Sadiq,
| | - Sabeen Abid Khan
- Department of Paediatrics, Shifa College of Medicine, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Saeed Shafi
- Department of Anatomy, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Iqbal Khan
- Department of Vascular Surgery, Shifa International Hospital, Islamabad, Pakistan
- Department of Vascular Surgery, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Jernej Kovac
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Barbara Jenko Bizjan
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Tadej Battelino
- Department of Endocrinology, Diabetes and Metabolism, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Fouzia Sadiq
- Directorate of Research, Shifa Tameer-e-Millat University, Islamabad, Pakistan
- *Correspondence: Urh Groselj, ; Fouzia Sadiq,
| |
Collapse
|
3
|
Kim B, Arany Z. Endothelial Lipid Metabolism. Cold Spring Harb Perspect Med 2022; 12:a041162. [PMID: 35074792 PMCID: PMC9310950 DOI: 10.1101/cshperspect.a041162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Endothelial cells (ECs) line all vessels of all vertebrates and are fundamental to organismal metabolism. ECs rely on their metabolism both to transport nutrients in and out of underlying parenchyma, and to support their own cellular activities, including angiogenesis. ECs primarily consume glucose, and much is known of how ECs transport and consume glucose and other carbohydrates. In contrast, how lipids are transported, and the role of lipids in normal EC function, has garnered less attention. We review here recent developments on the role of lipids in endothelial metabolism, with a focus on lipid uptake and transport in quiescent endothelium, and the use of lipid pathways during angiogenesis.
Collapse
Affiliation(s)
- Boa Kim
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Zolt Arany
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
4
|
Borén J, Taskinen MR, Björnson E, Packard CJ. Metabolism of triglyceride-rich lipoproteins in health and dyslipidaemia. Nat Rev Cardiol 2022; 19:577-592. [PMID: 35318466 DOI: 10.1038/s41569-022-00676-y] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/02/2022] [Indexed: 02/07/2023]
Abstract
Accumulating evidence points to the causal role of triglyceride-rich lipoproteins and their cholesterol-enriched remnants in atherogenesis. Genetic studies in particular have not only revealed a relationship between plasma triglyceride levels and the risk of atherosclerotic cardiovascular disease, but have also identified key proteins responsible for the regulation of triglyceride transport. Kinetic studies in humans using stable isotope tracers have been especially useful in delineating the function of these proteins and revealing the hitherto unappreciated complexity of triglyceride-rich lipoprotein metabolism. Given that triglyceride is an essential energy source for mammals, triglyceride transport is regulated by numerous mechanisms that balance availability with the energy demands of the body. Ongoing investigations are focused on determining the consequences of dysregulation as a result of either dietary imprudence or genetic variation that increases the risk of atherosclerosis and pancreatitis. The identification of molecular control mechanisms involved in triglyceride metabolism has laid the groundwork for a 'precision-medicine' approach to therapy. Novel pharmacological agents under development have specific molecular targets within a regulatory framework, and their deployment heralds a new era in lipid-lowering-mediated prevention of disease. In this Review, we outline what is known about the dysregulation of triglyceride transport in human hypertriglyceridaemia.
Collapse
Affiliation(s)
- Jan Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden.
| | - Marja-Riitta Taskinen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Elias Björnson
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Chris J Packard
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
5
|
Song W, Beigneux AP, Winther AML, Kristensen KK, Grønnemose AL, Yang Y, Tu Y, Munguia P, Morales J, Jung H, de Jong PJ, Jung CJ, Miyashita K, Kimura T, Nakajima K, Murakami M, Birrane G, Jiang H, Tontonoz P, Ploug M, Fong LG, Young SG. Electrostatic sheathing of lipoprotein lipase is essential for its movement across capillary endothelial cells. J Clin Invest 2022; 132:157500. [PMID: 35229724 PMCID: PMC8884915 DOI: 10.1172/jci157500] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/19/2022] [Indexed: 12/18/2022] Open
Abstract
GPIHBP1, an endothelial cell (EC) protein, captures lipoprotein lipase (LPL) within the interstitial spaces (where it is secreted by myocytes and adipocytes) and transports it across ECs to its site of action in the capillary lumen. GPIHBP1’s 3-fingered LU domain is required for LPL binding, but the function of its acidic domain (AD) has remained unclear. We created mutant mice lacking the AD and found severe hypertriglyceridemia. As expected, the mutant GPIHBP1 retained the capacity to bind LPL. Unexpectedly, however, most of the GPIHBP1 and LPL in the mutant mice was located on the abluminal surface of ECs (explaining the hypertriglyceridemia). The GPIHBP1-bound LPL was trapped on the abluminal surface of ECs by electrostatic interactions between the large basic patch on the surface of LPL and negatively charged heparan sulfate proteoglycans (HSPGs) on the surface of ECs. GPIHBP1 trafficking across ECs in the mutant mice was normalized by disrupting LPL-HSPG electrostatic interactions with either heparin or an AD peptide. Thus, GPIHBP1’s AD plays a crucial function in plasma triglyceride metabolism; it sheathes LPL’s basic patch on the abluminal surface of ECs, thereby preventing LPL-HSPG interactions and freeing GPIHBP1-LPL complexes to move across ECs to the capillary lumen.
Collapse
Affiliation(s)
- Wenxin Song
- Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Anne P Beigneux
- Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Anne-Marie L Winther
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Kristian K Kristensen
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Anne L Grønnemose
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Ye Yang
- Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Yiping Tu
- Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Priscilla Munguia
- Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Jazmin Morales
- Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Hyesoo Jung
- Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Pieter J de Jong
- Children's Hospital Oakland Research Institute, Oakland, California, USA
| | - Cris J Jung
- Children's Hospital Oakland Research Institute, Oakland, California, USA
| | - Kazuya Miyashita
- Department of Clinical Laboratory Medicine, Gunma University, Graduate School of Medicine, Maebashi, Gunma, Japan.,Immuno-Biological Laboratories (IBL), Fujioka, Gunma, Japan
| | - Takao Kimura
- Department of Clinical Laboratory Medicine, Gunma University, Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Katsuyuki Nakajima
- Department of Clinical Laboratory Medicine, Gunma University, Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Masami Murakami
- Department of Clinical Laboratory Medicine, Gunma University, Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Gabriel Birrane
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Haibo Jiang
- Department of Chemistry, The University of Hong Kong, Hong Kong
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, California, USA
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Loren G Fong
- Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Stephen G Young
- Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA.,Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| |
Collapse
|
6
|
Liu S, Wang Z, Zheng X, Zhang Y, Wei S, OuYang H, Liang J, Chen N, Zeng W, Jiang J. Case Report: Successful Management of a 29-Day-Old Infant With Severe Hyperlipidemia From a Novel Homozygous Variant of GPIHBP1 Gene. Front Pediatr 2022; 10:792574. [PMID: 35359903 PMCID: PMC8960264 DOI: 10.3389/fped.2022.792574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 02/03/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Severe hyperlipidemia is characterized by markedly elevated blood triglyceride levels and severe early-onset cardiovascular diseases, pancreatitis, pancreatic necrosis or persistent multiple organ failure if left untreated. It is a rare autosomal recessive metabolic disorder originated from the variants of lipoprotein lipase gene, and previous studies have demonstrated that most cases with severe hyperlipidemia are closely related to the variants of some key genes for lipolysis, such as LPL, APOC2, APOA5, LMF1, and GPIHBP1. Meanwhile, other unidentified causes also exist and are equally worthy of attention. METHODS The 29-day-old infant was diagnosed with severe hyperlipidemia, registering a plasma triglyceride level as high as 25.46 mmol/L. Whole exome sequencing was conducted to explore the possible pathogenic gene variants for this patient. RESULTS The infant was put on a low-fat diet combined with pharmacological therapy, which was successful in restraining the level of serum triglyceride and total cholesterol to a low to medium range during the follow-ups. The patient was found to be a rare novel homozygous duplication variant-c.45_48dupGCGG (Pro17Alafs*22) in GPIHBP1 gene-leading to a frameshift which failed to form the canonical termination codon TGA. The mutant messenger RNA should presumably produce a peptide consisting of 16 amino acids at the N-terminus, with 21 novel amino acids on the heels of the wild-type protein. CONCLUSIONS Our study expands on the spectrum of GPIHBP1 variants and contributes to a more comprehensive understanding of the genetic diagnosis, genetic counseling, and multimodality therapy of families with severe hyperlipidemia. Our experience gained in this study is also contributory to a deeper insight into severe hyperlipidemia and highlights the importance of molecular genetic tests.
Collapse
Affiliation(s)
- Shu Liu
- Children Inherited Metabolism and Endocrine Department, Guangdong Women and Children Hospital, Guangzhou, China
| | - Zhiqing Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xianhua Zheng
- Department of Clinical Laboratory, Guangdong Women and Children Hospital, Guangzhou, China
| | - Ye Zhang
- Children Inherited Metabolism and Endocrine Department, Guangdong Women and Children Hospital, Guangzhou, China
| | - Sisi Wei
- Children Inherited Metabolism and Endocrine Department, Guangdong Women and Children Hospital, Guangzhou, China
| | - Haimei OuYang
- Children Inherited Metabolism and Endocrine Department, Guangdong Women and Children Hospital, Guangzhou, China
| | - Jinqun Liang
- Children Inherited Metabolism and Endocrine Department, Guangdong Women and Children Hospital, Guangzhou, China
| | - Nuan Chen
- Children Inherited Metabolism and Endocrine Department, Guangdong Women and Children Hospital, Guangzhou, China
| | - Weihong Zeng
- Children Inherited Metabolism and Endocrine Department, Guangdong Women and Children Hospital, Guangzhou, China
| | - Jianhui Jiang
- Children Inherited Metabolism and Endocrine Department, Guangdong Women and Children Hospital, Guangzhou, China
| |
Collapse
|
7
|
Baass A, Paquette M, Bernard S, Hegele RA. Familial chylomicronemia syndrome: an under-recognized cause of severe hypertriglyceridaemia. J Intern Med 2020; 287:340-348. [PMID: 31840878 DOI: 10.1111/joim.13016] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Familial chylomicronemia syndrome (FCS) is a rare autosomal recessive disorder of chylomicron metabolism causing severe elevation of triglyceride (TG) levels (>10 mmol L-1 ). This condition is associated with a significant risk of recurrent acute pancreatitis (AP). AP caused by hypertriglyceridaemia (HTG) has been associated with a worse prognosis and higher mortality rates compared to pancreatitis of other aetiology. Despite its association with poor quality of life and increased lifelong risk of HTG-AP, few healthcare providers are familiar with FCS. Because this condition is under-recognized, the majority of FCS patients are diagnosed after age 20 often after consulting several physicians. Although other forms of severe HTG such as multifactorial chylomicronemia have been associated with high atherosclerotic cardiovascular disease (ASCVD) risk and metabolic abnormalities, ASCVD and metabolic syndrome are not usually observed in FCS patients. Because FCS is a genetic condition, the optimal diagnosis strategy remains genetic testing. The presence of bi-allelic pathogenic mutations in LPL, APOC2, GPIHBP1, APOA5 or LMF1 genes confirms the diagnosis. However, some cases of FCS caused by autoantibodies against LPL or GPIHBP1 proteins have also been reported. Furthermore, a clinical score for the diagnosis of FCS has been proposed but needs further validation. Available treatment options to lower triglycerides such as fibrates or omega-3 fatty acids are not efficacious in FCS patients. Currently, the cornerstone of treatment remains a lifelong very low-fat diet, which prevents the formation of chylomicrons. Finally, inhibitors of apo C-III and ANGPTL3 are in development and may eventually constitute additional treatment options for FCS patients.
Collapse
Affiliation(s)
- A Baass
- From the, Lipids, Nutrition and Cardiovascular Prevention Clinic, Montreal Clinical Research Institute, Québec, Canada.,Divisions of Experimental Medicine and Medical Biochemistry, Department of Medicine, McGill University, Québec, Canada
| | - M Paquette
- From the, Lipids, Nutrition and Cardiovascular Prevention Clinic, Montreal Clinical Research Institute, Québec, Canada
| | - S Bernard
- From the, Lipids, Nutrition and Cardiovascular Prevention Clinic, Montreal Clinical Research Institute, Québec, Canada.,Division of Endocrinology, Department of Medicine, Université de Montreal, Montreal, Canada
| | - R A Hegele
- Department of Medicine, University of Western Ontario and Robarts Research Institute, Ontario, Canada
| |
Collapse
|
8
|
Dron JS, Wang J, McIntyre AD, Iacocca MA, Robinson JF, Ban MR, Cao H, Hegele RA. Six years' experience with LipidSeq: clinical and research learnings from a hybrid, targeted sequencing panel for dyslipidemias. BMC Med Genomics 2020; 13:23. [PMID: 32041611 PMCID: PMC7011550 DOI: 10.1186/s12920-020-0669-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 01/23/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND In 2013, our laboratory designed a targeted sequencing panel, "LipidSeq", to study the genetic determinants of dyslipidemia and metabolic disorders. Over the last 6 years, we have analyzed 3262 patient samples obtained from our own Lipid Genetics Clinic and international colleagues. Here, we highlight our findings and discuss research benefits and clinical implications of our panel. METHODS LipidSeq targets 69 genes and 185 single-nucleotide polymorphisms (SNPs) either causally related or associated with dyslipidemia and metabolic disorders. This design allows us to simultaneously evaluate monogenic-caused by rare single-nucleotide variants (SNVs) or copy-number variants (CNVs)-and polygenic forms of dyslipidemia. Polygenic determinants were assessed using three polygenic scores, one each for low-density lipoprotein cholesterol, triglyceride, and high-density lipoprotein cholesterol. RESULTS Among 3262 patient samples evaluated, the majority had hypertriglyceridemia (40.1%) and familial hypercholesterolemia (28.3%). Across all samples, we identified 24,931 unique SNVs, including 2205 rare variants predicted disruptive to protein function, and 77 unique CNVs. Considering our own 1466 clinic patients, LipidSeq results have helped in diagnosis and improving treatment options. CONCLUSIONS Our LipidSeq design based on ontology of lipid disorders has enabled robust detection of variants underlying monogenic and polygenic dyslipidemias. In more than 50 publications related to LipidSeq, we have described novel variants, the polygenic nature of many dyslipidemias-some previously thought to be primarily monogenic-and have uncovered novel mechanisms of disease. We further demonstrate several tangible clinical benefits of its use.
Collapse
Affiliation(s)
- Jacqueline S. Dron
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond St, London, ON N6A 5B7 Canada
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, ON N6A 5B7 Canada
| | - Jian Wang
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond St, London, ON N6A 5B7 Canada
| | - Adam D. McIntyre
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond St, London, ON N6A 5B7 Canada
| | - Michael A. Iacocca
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond St, London, ON N6A 5B7 Canada
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, ON N6A 5B7 Canada
- Department of Biomedical Data Science, Stanford School of Medicine, Stanford University, 450 Serra Mall, Stanford, CA 94305 USA
| | - John F. Robinson
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond St, London, ON N6A 5B7 Canada
| | - Matthew R. Ban
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond St, London, ON N6A 5B7 Canada
| | - Henian Cao
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond St, London, ON N6A 5B7 Canada
| | - Robert A. Hegele
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond St, London, ON N6A 5B7 Canada
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, ON N6A 5B7 Canada
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond St, London, ON N6A 5B7 Canada
| |
Collapse
|
9
|
Liu X, Li J, Liao J, Wang H, Huang X, Dong Z, Shen Q, Zhang L, Wang Y, Kong W, Liu G, Huang W. Gpihbp1 deficiency accelerates atherosclerosis and plaque instability in diabetic Ldlr -/- mice. Atherosclerosis 2019; 282:100-109. [PMID: 30721842 DOI: 10.1016/j.atherosclerosis.2019.01.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 12/29/2018] [Accepted: 01/15/2019] [Indexed: 01/17/2023]
Abstract
BACKGROUND AND AIMS Glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 (GPIHBP1) plays a crucial role in triglyceride hydrolysis, and GPIHBP1 deficiency leads to severe hypertriglyceridemia (HTG). Gpihbp1 knockout (GKO) mice develop mild lesions in the aortic root at the age of 11 months. Herein, we investigated the effect of Gpihbp1 deficiency on atherosclerosis (AS) under diabetic conditions. METHODS For experiment 1, diabetes was induced in GKO and wild-type (WT) mice by injection of streptozotocin at 3 months of age and lasted for 4 months. For experiment 2, diabetes was induced in Gpihbp1/low-density lipoprotein receptor (Ldlr) double-knockout (GLDKO) mice, Ldlr knockout (LKO) mice were used as controls. The experiment was continued for 3 or 5 months. Plasma glucose and lipid levels were measured, and atherosclerotic lesions were analyzed at 3 and 5 months during the experiment. RESULTS No atherosclerotic lesions were detected in the aorta in GKO mice after 4 months of diabetes. Compared with LKO mice, GLDKO mice manifested enhanced aortic atherosclerotic lesions, decreased plaque stability, and increased oxidative stress and inflammation in plaques at 3 and 5 months after diabetes. Atherosclerotic lesions in the coronary artery and dilated remodeling in the aortic root were also found in GLDKO diabetic mice. CONCLUSIONS Gpihbp1 deficiency accelerates the development of AS in the aorta, and the instability of plaques in LKO mice and diabetes promotes these pathologic processes with coronary AS. These findings were probably associated with HTG caused by Gpihbp1 deficiency and with increased oxidative stress and inflammation in the atherosclerotic lesions.
Collapse
Affiliation(s)
- Xuejing Liu
- Institute of Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Jingyi Li
- Institute of Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Jiawei Liao
- Institute of Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Huan Wang
- Institute of Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Xiaomin Huang
- Institute of Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Zhao Dong
- Institute of Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Qiang Shen
- Institute of Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Ling Zhang
- Institute of Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Yuhui Wang
- Institute of Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Wei Kong
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - George Liu
- Institute of Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Wei Huang
- Institute of Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
10
|
Liu C, Li L, Guo D, Lv Y, Zheng X, Mo Z, Xie W. Lipoprotein lipase transporter GPIHBP1 and triglyceride-rich lipoprotein metabolism. Clin Chim Acta 2018; 487:33-40. [PMID: 30218660 DOI: 10.1016/j.cca.2018.09.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/11/2018] [Accepted: 09/11/2018] [Indexed: 02/05/2023]
Abstract
Increased plasma triglyceride serves as an independent risk factor for cardiovascular disease (CVD). Lipoprotein lipase (LPL), which hydrolyzes circulating triglyceride, plays a crucial role in normal lipid metabolism and energy balance. Hypertriglyceridemia is possibly caused by gene mutations resulting in LPL dysfunction. There are many factors that both positively and negatively interact with LPL thereby impacting TG lipolysis. Glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPIHBP1), a newly identified factor, appears essential for transporting LPL to the luminal side of the blood vessel and offering a platform for TG hydrolysis. Numerous lines of evidence indicate that GPIHBP1 exerts distinct functions and plays diverse roles in human triglyceride-rich lipoprotein (TRL) metabolism. In this review, we discuss the GPIHBP1 gene, protein, its expression and function and subsequently focus on its regulation and provide critical evidence supporting its role in TRL metabolism. Underlying mechanisms of action are highlighted, additional studies discussed and potential therapeutic targets reviewed.
Collapse
Affiliation(s)
- Chuhao Liu
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, Hunan, China; 2016 Class of Excellent Doctor, University of South China, Hengyang 421001, Hunan, China
| | - Liang Li
- Department of Pathophysiology, University of South China, Hengyang 421001, Hunan, China
| | - Dongming Guo
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, Hunan, China
| | - Yuncheng Lv
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, Hunan, China
| | - XiLong Zheng
- Department of Biochemistry and Molecular Biology, The Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Health Sciences Center, 3330 Hospital Dr NW, Calgary T2N 4N1, Alberta, Canada; Key Laboratory of Molecular Targets & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Zhongcheng Mo
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, Hunan, China.
| | - Wei Xie
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, Hunan, China.
| |
Collapse
|