1
|
Ruan C, Sun J, Liang X, Huang H, Zhang M, Zhang S. Associations of Palmito-leic Acid and Nervonic Acid Hexosylceramides with Type 2 Diabetes Mellitus in a Prospective Nested Case-control Study Among Chinese Population. Endocr Res 2025; 50:109-117. [PMID: 40088080 DOI: 10.1080/07435800.2025.2479256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/05/2025] [Accepted: 02/21/2025] [Indexed: 03/17/2025]
Abstract
OBJECTIVES We aimed to evaluate the associations of hexosylceramides (HexCers) and their ratio with incident type 2 diabetes mellitus (T2DM) and explore underlying mechanisms. METHODS We conducted a nested case-control study using the Suzhou chronic disease cohort including 234 T2DM cases and 468 controls, 1:2 matched on age (±2 y) and sex. HexCer(d18:1/16:1) and HexCer(d18:1/24:1) were measured by targeted UPLC-MS/MS. Multivariable conditional logistic regression was used to estimate the associations of these HexCer species and their ratio with T2DM risk. RESULTS After adjustment for potential confounders, compared with the lowest quartile, the highest quartile of HexCer(d18:1/24:1) was positively associated with T2DM risk (OR: 1.91; 95%CI, 1.12, 3.26; P-trend <0.05). The ratio of HexCer(d18:1/24:1) to HexCer(d18:1/16:1) showed a positive association with T2DM risk (OR: 1.89; 95%CI, 1.13, 3.18; P-trend <0.05). On the natural log scale, each SD increases in HexCer(d18:1/24:1) and its ratio to HexCer(d18:1/16:1) increased by 29% and 30%, respectively. No significant association for HexCer(d18:1/16:1) was found. Additive value of HexCer(d18:1/24:1) or HexCer(d18:1/24:1)/HexCer(d18:1/16:1) ratio for prediction of T2DM above traditional risk factors. CONCLUSIONS HexCer(d18:1/24:1) and its ratio to HexCer(d18:1/16:1) are positively associated with incident T2DM in a community-based Chinese population. Future studies are warranted to confirm our findings.
Collapse
Affiliation(s)
- Chuyi Ruan
- Department of Epidemiology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jun Sun
- Department of Medical Service, Kunshan First People's Hospital, Kunshan, Jiangsu, China
| | - Xiaoqing Liang
- Department of Epidemiology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Hong Huang
- Department of Epidemiology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Mingzhi Zhang
- Department of Epidemiology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Shaoyan Zhang
- Department of Epidemiology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| |
Collapse
|
2
|
Kryska A, Sawic M, Depciuch J, Sosnowski P, Szałaj K, Paja W, Khalavka M, Sroka-Bartnicka A. Machine learning-driven Raman spectroscopy: A novel approach to lipid profiling in diabetic kidney disease. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2025; 64:102804. [PMID: 39855441 DOI: 10.1016/j.nano.2025.102804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/09/2024] [Accepted: 12/29/2024] [Indexed: 01/27/2025]
Abstract
Diabetes mellitus is a chronic metabolic disease that increasingly affects people every year. It is known that with its progression and poor management, metabolic changes can lead to organ dysfunctions, including kidneys. The study aimed to combine Raman spectroscopy and biochemical lipid profiling, complemented by machine learning (ML) techniques to evaluate chemical composition changes in kidneys induced by Type 2 Diabetes mellitus (T2DM). Raman spectroscopy identified significant differences in lipid content and specific molecular vibrations, with the 1777 cm-1 band emerging as a potential spectroscopic marker for diabetic kidney damage. The integration of ML algorithms improved the analysis, providing high accuracy, selectivity, and specificity in detecting these changes. Moreover, lipids metabolic profiling revealed distinct variations in the concentration of 11 phosphatydylocholines and 9 acyl-alkylphosphatidylcholines glycerophospholipids. Importantly, the correlation between Raman data and lipids metabolic profiling differed for control and T2DM groups. This study underscores the combined power of Raman spectroscopy and ML in offering a low-cost, fast, precise, and comprehensive approach to diagnosing and monitoring diabetic nephropathy, paving the way for improved clinical interventions. However, taking into account small number of data related to ethical committee approvals, the study should be verified on a larger number of cases.
Collapse
Affiliation(s)
- Adrianna Kryska
- Independent Unit of Spectroscopy and Chemical Imaging, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Magdalena Sawic
- Independent Unit of Spectroscopy and Chemical Imaging, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Joanna Depciuch
- Institute of Nuclear Physics, Polish Academy of Sciences, Walerego Eljasza - Radzikowskiego 152, 31-342 Kraków, Poland; Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| | - Piotr Sosnowski
- Department of Bioanalytics, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Klaudia Szałaj
- Department of Bioanalytics, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Wiesław Paja
- Institute of Computer Science, University of Rzeszow, Pigonia 1, 35-310 Rzeszów, Poland
| | - Maryna Khalavka
- Independent Unit of Spectroscopy and Chemical Imaging, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Anna Sroka-Bartnicka
- Independent Unit of Spectroscopy and Chemical Imaging, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland.
| |
Collapse
|
3
|
Li Z, Wang H, Liu N, Lan X, Xie A, Yuan G, Li B, Geng J, Liu X. Renal Lipid Alterations From Diabetes to Early-Stage Diabetic Kidney Disease and Mitophagy: Focus on Cardiolipin. J Cell Mol Med 2025; 29:e70419. [PMID: 39936909 PMCID: PMC11816159 DOI: 10.1111/jcmm.70419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 01/23/2025] [Accepted: 01/30/2025] [Indexed: 02/13/2025] Open
Abstract
Lipotoxicity plays a crucial role in the progression of diabetic kidney disease (DKD), yet the dynamic changes in renal lipid composition from diabetes to early-stage DKD remain unclear. Free fatty acids, lactosylceramides and cardiolipin (CL) were identified as the most significantly altered lipids by quantitatively comparing targeted lipids in the renal cortex of the classic spontaneous diabetic db/db mice using high-coverage targeted lipidomics. Further investigation into the causes and effects of decreased CL, which is a unique mitochondrial phospholipid, was conducted in mitochondria-rich renal proximal tubular cells by using western blotting, real-time PCR, immunohistochemistry and transmission electron microscopy. Reduced expression of cardiolipin synthase, a key enzyme in the CL synthesis pathway, and inhibition of CL-related mitophagy were confirmed under high glucose conditions. In addition, the protective effect of CL-targeted Szeto-Schiller 31 in preserving mitophagy was demonstrated in both in vivo and in vitro studies. These findings provide new insights into the pathogenesis of early-stage DKD from a lipid perspective and offer a theoretical basis for discovering new treatments.
Collapse
Affiliation(s)
- Zhijie Li
- Department of NephrologyThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Hongmiao Wang
- Department of NephrologyThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Nan Liu
- Department of NephrologyThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Xiayuchen Lan
- Department of NephrologyThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Ailing Xie
- Department of NephrologyThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Ge Yuan
- Department of NephrologyThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Bowen Li
- LipidALL Technologies Company LimitedChangzhouJiangsuChina
| | - Jiaxin Geng
- LipidALL Technologies Company LimitedChangzhouJiangsuChina
| | - Xiaodan Liu
- Department of NephrologyThe First Hospital of China Medical UniversityShenyangLiaoningChina
| |
Collapse
|
4
|
E J, Liu SY, Ma DN, Zhang GQ, Cao SL, Li B, Lu XH, Luo HY, Bao L, Lan XM, Fu RG, Zheng YL. Nanopore-based full-length transcriptome sequencing for understanding the underlying molecular mechanisms of rapid and slow progression of diabetes nephropathy. BMC Med Genomics 2024; 17:246. [PMID: 39379958 PMCID: PMC11463056 DOI: 10.1186/s12920-024-02006-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 09/05/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) has been a major factor in the outbreak of end-stage renal disease for decades. As the underlying mechanisms of DN development remains unclear, there is no ideal methods for the diagnosis and therapy. OBJECTIVE We aimed to explore the key genes and pathways that affect the rate progression of DN. METHODS Nanopore-based full-length transcriptome sequencing was performed with serum samples from DN patients with slow progression (DNSP, n = 5) and rapid progression (DNRP, n = 6). RESULTS Here, transcriptome proclaimed 22,682 novel transcripts and obtained 45,808 simple sequence repeats, 1,815 transcription factors, 5,993 complete open reading frames, and 1,050 novel lncRNA from the novel transcripts. Moreover, a total of 341 differentially expressed transcripts (DETs) and 456 differentially expressed genes (DEGs) between the DNSP and DNRP groups were identified. Functional analyses showed that DETs mainly involved in ferroptosis-related pathways such as oxidative phosphorylation, iron ion binding, and mitophagy. Moreover, Functional analyses revealed that DEGs mainly involved in oxidative phosphorylation, lipid metabolism, ferroptosis, autophagy/mitophagy, apoptosis/necroptosis pathway. CONCLUSION Collectively, our study provided a full-length transcriptome data source for the future DN research, and facilitate a deeper understanding of the molecular mechanisms underlying the differences in fast and slow progression of DN.
Collapse
Affiliation(s)
- Jing E
- Department of Nephrology, People's Hospital of Ningxia Hui Autonomous Region, People's Hospital of Ningxia Hui Autonomous Region, No.157, West 5th Road, Yinchuan, 750002, China
- Department of clinical medicine, Xi'an Jiaotong University, Xi'an, China
| | - Shun-Yao Liu
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Nephrology, Jinan, China
| | - Dan-Na Ma
- Department of Nephrology, People's Hospital of Ningxia Hui Autonomous Region, People's Hospital of Ningxia Hui Autonomous Region, No.157, West 5th Road, Yinchuan, 750002, China
- Department of clinical medicine, Xi'an Jiaotong University, Xi'an, China
| | - Guo-Qing Zhang
- Department of Nephrology, People's Hospital of Ningxia Hui Autonomous Region, People's Hospital of Ningxia Hui Autonomous Region, No.157, West 5th Road, Yinchuan, 750002, China
- The Third Clinical Medical College of Ningxia Medical University, Yinchuan, China
| | - Shi-Lu Cao
- Department of Nephrology, Chengdu first people's hospital, Chengdu, Sichuan, 610000, China
| | - Bo Li
- Department of Nephrology, People's Hospital of Ningxia Hui Autonomous Region, People's Hospital of Ningxia Hui Autonomous Region, No.157, West 5th Road, Yinchuan, 750002, China
- Department of clinical medicine, Xi'an Jiaotong University, Xi'an, China
| | - Xiao-Hua Lu
- Department of Nephrology, People's Hospital of Ningxia Hui Autonomous Region, People's Hospital of Ningxia Hui Autonomous Region, No.157, West 5th Road, Yinchuan, 750002, China
| | - Hong-Yan Luo
- Department of Nephrology, People's Hospital of Ningxia Hui Autonomous Region, People's Hospital of Ningxia Hui Autonomous Region, No.157, West 5th Road, Yinchuan, 750002, China
| | - Li Bao
- Department of Nephrology, People's Hospital of Ningxia Hui Autonomous Region, People's Hospital of Ningxia Hui Autonomous Region, No.157, West 5th Road, Yinchuan, 750002, China
| | - Xiao-Mei Lan
- Department of clinical medicine, Xi'an Jiaotong University, Xi'an, China
- Department of Geriatrics, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Rong-Guo Fu
- Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Ya-Li Zheng
- Department of Nephrology, People's Hospital of Ningxia Hui Autonomous Region, People's Hospital of Ningxia Hui Autonomous Region, No.157, West 5th Road, Yinchuan, 750002, China.
| |
Collapse
|
5
|
Šakić Z, Atić A, Potočki S, Bašić-Jukić N. Sphingolipids and Chronic Kidney Disease. J Clin Med 2024; 13:5050. [PMID: 39274263 PMCID: PMC11396415 DOI: 10.3390/jcm13175050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
Sphingolipids (SLs) are bioactive signaling molecules essential for various cellular processes, including cell survival, proliferation, migration, and apoptosis. Key SLs such as ceramides, sphingosine, and their phosphorylated forms play critical roles in cellular integrity. Dysregulation of SL levels is implicated in numerous diseases, notably chronic kidney disease (CKD). This review focuses on the role of SLs in CKD, highlighting their potential as biomarkers for early detection and prognosis. SLs maintain renal function by modulating the glomerular filtration barrier, primarily through the activity of podocytes. An imbalance in SLs can lead to podocyte damage, contributing to CKD progression. SL metabolism involves complex enzyme-catalyzed pathways, with ceramide serving as a central molecule in de novo and salvage pathways. Ceramides induce apoptosis and are implicated in oxidative stress and inflammation, while sphingosine-1-phosphate (S1P) promotes cell survival and vascular health. Studies have shown that SL metabolism disorders are linked to CKD progression, diabetic kidney disease, and glomerular diseases. Targeting SL pathways could offer novel therapeutic approaches for CKD. This review synthesizes recent research on SL signaling regulation in kidney diseases, emphasizing the importance of maintaining SL balance for renal health and the potential therapeutic benefits of modulating SL pathways.
Collapse
Affiliation(s)
- Zrinka Šakić
- Vuk Vrhovac University Clinic, Dugi dol 4a, 10000 Zagreb, Croatia
| | - Armin Atić
- Division of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, 10000 Zagreb, Croatia
| | - Slavica Potočki
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Nikolina Bašić-Jukić
- Division of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
6
|
D’Elia JA, Weinrauch LA. Lipid Toxicity in the Cardiovascular-Kidney-Metabolic Syndrome (CKMS). Biomedicines 2024; 12:978. [PMID: 38790940 PMCID: PMC11118768 DOI: 10.3390/biomedicines12050978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 05/26/2024] Open
Abstract
Recent studies of Cardiovascular-Kidney-Metabolic Syndrome (CKMS) indicate that elevated concentrations of derivatives of phospholipids (ceramide, sphingosine), oxidized LDL, and lipoproteins (a, b) are toxic to kidney and heart function. Energy production for renal proximal tubule resorption of critical fuels and electrolytes is required for homeostasis. Cardiac energy for ventricular contraction/relaxation is preferentially supplied by long chain fatty acids. Metabolism of long chain fatty acids is accomplished within the cardiomyocyte cytoplasm and mitochondria by means of the glycolytic, tricarboxylic acid, and electron transport cycles. Toxic lipids and excessive lipid concentrations may inhibit cardiac function. Cardiac contraction requires calcium movement from the sarcoplasmic reticulum from a high to a low concentration at relatively low energy cost. Cardiac relaxation involves calcium return to the sarcoplasmic reticulum from a lower to a higher concentration and requires more energy consumption. Diastolic cardiac dysfunction occurs when cardiomyocyte energy conversion is inadequate. Diastolic dysfunction from diminished ATP availability occurs in the presence of inadequate blood pressure, glycemia, or lipid control and may lead to heart failure. Similar disruption of renal proximal tubular resorption of fuels/electrolytes has been found to be associated with phospholipid (sphingolipid) accumulation. Elevated concentrations of tissue oxidized low-density lipoprotein cholesterols are associated with loss of filtration efficiency at the level of the renal glomerular podocyte. Macroscopically excessive deposits of epicardial and intra-nephric adipose are associated with vascular pathology, fibrosis, and inhibition of essential functions in both heart and kidney. Chronic triglyceride accumulation is associated with fibrosis of the liver, cardiac and renal structures. Successful liver, kidney, or cardiac allograft of these vital organs does not eliminate the risk of lipid toxicity. Lipid lowering therapy may assist in protecting vital organ function before and after allograft transplantation.
Collapse
Affiliation(s)
| | - Larry A. Weinrauch
- Kidney and Hypertension Section, E P Joslin Research Laboratory, Joslin Diabetes Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
7
|
Lopes-Virella MF, Hammad SM, Baker NL, Klein RL, Hunt KJ. Circulating Lipoprotein Sphingolipids in Chronic Kidney Disease with and without Diabetes. Biomedicines 2024; 12:190. [PMID: 38255295 PMCID: PMC10813484 DOI: 10.3390/biomedicines12010190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/25/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Abnormalities of sphingolipid metabolism play an important role in diabetes. We compared sphingolipid levels in plasma and in isolated lipoproteins between healthy control subjects and two groups of patients, one with chronic kidney disease without diabetes (ND-CKD), and the other with type 2 diabetes and macroalbuminuria (D-MA). Ceramides, sphingomyelins, and sphingoid bases and their phosphates in LDL were higher in ND-CKD and in D-MA patients compared to controls. However, ceramides and sphingoid bases in HDL2 and HDL3 were lower in ND-CKD and in D-MA patients than in controls. Sphingomyelins in HDL2 and HDL3 were lower in D-MA patients than in controls but were normal in ND-CKD patients. Compared to controls, lactosylceramides in LDL and VLDL were higher in ND-CKD patients but not in D-MA patients. However, lactosylceramides in HDL2 and HDL3 were lower in both ND-CKD and D-MA patients than in controls. Plasma hexosylceramides in ND-CKD patients were increased and sphingoid bases decreased in both ND-CKD and D-MA patients. However, hexosylceramides in LDL, HDL2, and HDL3 were higher in ND-CKD patients than in controls. In D-MA patients, only C16:0 hexosylceramide in LDL was higher than in controls. The data suggest that sphingolipid measurement in lipoproteins, rather than in whole plasma, is crucial to decipher the role of sphingolipids in kidney disease.
Collapse
Affiliation(s)
- Maria F. Lopes-Virella
- Department of Medicine, Division of Diabetes, Endocrinology and Medical Genetics, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Johnson VA Medical Center, Charleston, SC 29401, USA;
| | - Samar M. Hammad
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Nathaniel L. Baker
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Richard L. Klein
- Department of Medicine, Division of Diabetes, Endocrinology and Medical Genetics, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Johnson VA Medical Center, Charleston, SC 29401, USA;
| | - Kelly J. Hunt
- Ralph H. Johnson VA Medical Center, Charleston, SC 29401, USA;
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA;
| |
Collapse
|
8
|
Jeziorny K, Pietrowska K, Sieminska J, Zmyslowska-Polakowska E, Kretowski A, Ciborowski M, Zmyslowska A. Serum metabolomics identified specific lipid compounds which may serve as markers of disease progression in patients with Alström and Bardet-Biedl syndromes. Front Mol Biosci 2023; 10:1251905. [PMID: 38028552 PMCID: PMC10657895 DOI: 10.3389/fmolb.2023.1251905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Objectives: Alström syndrome (ALMS) and Bardet-Biedl syndrome (BBS) are among the so-called ciliopathies and are associated with the development of multiple systemic abnormalities, including early childhood obesity and progressive neurodegeneration. Given the progressive deterioration of patients' quality of life, in the absence of defined causal treatment, it seems reasonable to identify the metabolic background of these diseases and search for their progression markers. The aim of this study was to find metabolites characteristic to ALMS and BBS, correlating with clinical course parameters, and related to the diseases progression. Methods: Untargeted metabolomics of serum samples obtained from ALMS and BBS patients (study group; n = 21) and obese/healthy participants (control group; each of 35 participants; n = 70) was performed using LC-QTOF-MS method at the study onset and after 4 years of follow-up. Results: Significant differences in such metabolites as valine, acylcarnitines, sphingomyelins, phosphatidylethanolamines, phosphatidylcholines, as well as lysophosphatidylethanolamines and lysophosphatidylcholines were observed when the study group was compared to both control groups. After a follow-up of the study group, mainly changes in the levels of lysophospholipids and phospholipids (including oxidized phospholipids) were noted. In addition, in case of ALMS/BBS patients, correlations were observed between selected phospholipids and glucose metabolism parameters. We also found correlations of several LPEs with patients' age (p < 0.05), but the level of only one of them (hexacosanoic acid) correlated negatively with age in the ALMS/BBS group, but positively in the other groups. Conclusion: Patients with ALMS/BBS have altered lipid metabolism compared to controls or obese subjects. As the disease progresses, they show elevated levels of lipid oxidation products, which may suggest increased oxidative stress. Selected lipid metabolites may be considered as potential markers of progression of ALMS and BBS syndromes.
Collapse
Affiliation(s)
- Krzysztof Jeziorny
- Department of Endocrinology and Metabolic Diseases, Polish Mother’s Memorial Hospital–Research Institute, Lodz, Poland
- Department of Paediatric Endocrinology, Medical University of Lodz, Lodz, Poland
| | - Karolina Pietrowska
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Julia Sieminska
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | | | - Adam Kretowski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Michal Ciborowski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | | |
Collapse
|
9
|
Hammad SM, Lopes-Virella MF. Circulating Sphingolipids in Insulin Resistance, Diabetes and Associated Complications. Int J Mol Sci 2023; 24:14015. [PMID: 37762318 PMCID: PMC10531201 DOI: 10.3390/ijms241814015] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Sphingolipids play an important role in the development of diabetes, both type 1 and type 2 diabetes, as well as in the development of both micro- and macro-vascular complications. Several reviews have been published concerning the role of sphingolipids in diabetes but most of the emphasis has been on the possible mechanisms by which sphingolipids, mainly ceramides, contribute to the development of diabetes. Research on circulating levels of the different classes of sphingolipids in serum and in lipoproteins and their importance as biomarkers to predict not only the development of diabetes but also of its complications has only recently emerged and it is still in its infancy. This review summarizes the previously published literature concerning sphingolipid-mediated mechanisms involved in the development of diabetes and its complications, focusing on how circulating plasma sphingolipid levels and the relative content carried by the different lipoproteins may impact their role as possible biomarkers both in the development of diabetes and mainly in the development of diabetic complications. Further studies in this field may open new therapeutic avenues to prevent or arrest/reduce both the development of diabetes and progression of its complications.
Collapse
Affiliation(s)
- Samar M. Hammad
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Maria F. Lopes-Virella
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Johnson VA Medical Center, Charleston, SC 29425, USA
| |
Collapse
|
10
|
Sojo L, Santos-González E, Riera L, Aguilera A, Barahona R, Pellicer P, Buxó M, Mayneris-Perxachs J, Fernandez-Balsells M, Fernández-Real JM. Plasma Lipidomics Profiles Highlight the Associations of the Dual Antioxidant/Pro-oxidant Molecules Sphingomyelin and Phosphatidylcholine with Subclinical Atherosclerosis in Patients with Type 1 Diabetes. Antioxidants (Basel) 2023; 12:antiox12051132. [PMID: 37237999 DOI: 10.3390/antiox12051132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Here, we report on our study of plasma lipidomics profiles of patients with type 1 diabetes (T1DM) and explore potential associations. One hundred and seven patients with T1DM were consecutively recruited. Ultrasound imaging of peripheral arteries was performed using a high image resolution B-mode ultrasound system. Untargeted lipidomics analysis was performed using UHPLC coupled to qTOF/MS. The associations were evaluated using machine learning algorithms. SM(32:2) and ether lipid species (PC(O-30:1)/PC(P-30:0)) were significantly and positively associated with subclinical atherosclerosis (SA). This association was further confirmed in patients with overweight/obesity (specifically with SM(40:2)). A negative association between SA and lysophosphatidylcholine species was found among lean subjects. Phosphatidylcholines (PC(40:6) and PC(36:6)) and cholesterol esters (ChoE(20:5)) were associated positively with intima-media thickness both in subjects with and without overweight/obesity. In summary, the plasma antioxidant molecules SM and PC differed according to the presence of SA and/or overweight status in patients with T1DM. This is the first study showing the associations in T1DM, and the findings may be useful in the targeting of a personalized approach aimed at preventing cardiovascular disease in these patients.
Collapse
Affiliation(s)
- Lidia Sojo
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta Hospital, 17007 Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), 17007 Girona, Spain
| | - Elena Santos-González
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta Hospital, 17007 Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), 17007 Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Lídia Riera
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta Hospital, 17007 Girona, Spain
| | - Alex Aguilera
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta Hospital, 17007 Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), 17007 Girona, Spain
- Department of Medical Sciences, School of Medicine, 17003 Girona, Spain
| | - Rebeca Barahona
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta Hospital, 17007 Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), 17007 Girona, Spain
- Department of Medical Sciences, School of Medicine, 17003 Girona, Spain
| | - Paula Pellicer
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta Hospital, 17007 Girona, Spain
| | - Maria Buxó
- Girona Biomedical Research Institute (IDIBGI), 17007 Girona, Spain
| | - Jordi Mayneris-Perxachs
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta Hospital, 17007 Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), 17007 Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Mercè Fernandez-Balsells
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta Hospital, 17007 Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), 17007 Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
- Department of Medical Sciences, School of Medicine, 17003 Girona, Spain
| | - José-Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta Hospital, 17007 Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), 17007 Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
- Department of Medical Sciences, School of Medicine, 17003 Girona, Spain
| |
Collapse
|
11
|
Péricat D, Leon-Icaza SA, Sanchez Rico M, Mühle C, Zoicas I, Schumacher F, Planès R, Mazars R, Gros G, Carpinteiro A, Becker KA, Izopet J, Strub-Wourgaft N, Sjö P, Neyrolles O, Kleuser B, Limosin F, Gulbins E, Kornhuber J, Meunier E, Hoertel N, Cougoule C. Antiviral and Anti-Inflammatory Activities of Fluoxetine in a SARS-CoV-2 Infection Mouse Model. Int J Mol Sci 2022; 23:13623. [PMID: 36362409 PMCID: PMC9657171 DOI: 10.3390/ijms232113623] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/11/2022] [Accepted: 10/26/2022] [Indexed: 08/27/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic continues to cause significant morbidity and mortality worldwide. Since a large portion of the world's population is currently unvaccinated or incompletely vaccinated and has limited access to approved treatments against COVID-19, there is an urgent need to continue research on treatment options, especially those at low cost and which are immediately available to patients, particularly in low- and middle-income countries. Prior in vitro and observational studies have shown that fluoxetine, possibly through its inhibitory effect on the acid sphingomyelinase/ceramide system, could be a promising antiviral and anti-inflammatory treatment against COVID-19. In this report, we evaluated the potential antiviral and anti-inflammatory activities of fluoxetine in a K18-hACE2 mouse model of SARS-CoV-2 infection, and against variants of concern in vitro, i.e., SARS-CoV-2 ancestral strain, Alpha B.1.1.7, Gamma P1, Delta B1.617 and Omicron BA.5. Fluoxetine, administrated after SARS-CoV-2 infection, significantly reduced lung tissue viral titres and expression of several inflammatory markers (i.e., IL-6, TNFα, CCL2 and CXCL10). It also inhibited the replication of all variants of concern in vitro. A modulation of the ceramide system in the lung tissues, as reflected by the increase in the ratio HexCer 16:0/Cer 16:0 in fluoxetine-treated mice, may contribute to explain these effects. Our findings demonstrate the antiviral and anti-inflammatory properties of fluoxetine in a K18-hACE2 mouse model of SARS-CoV-2 infection, and its in vitro antiviral activity against variants of concern, establishing fluoxetine as a very promising candidate for the prevention and treatment of SARS-CoV-2 infection and disease pathogenesis.
Collapse
Affiliation(s)
- David Péricat
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, 31000 Toulouse, France
| | - Stephen Adonai Leon-Icaza
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, 31000 Toulouse, France
| | - Marina Sanchez Rico
- Faculté de Santé, Université Paris Cité, 75006 Paris, France
- Département de Psychiatrie et d’Addictologie de l’Adulte et du Sujet Agé, Assistance Publique-Hôpitaux de Paris (AP-HP), DMU Psychiatrie et Addictologie, Hôpital Corentin-Celton, 92130 Issy-les-Moulineaux, France
- INSERM, Institut de Psychiatrie et Neurosciences de Paris (IPNP), UMR_S1266, 75014 Paris, France
| | - Christiane Mühle
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Iulia Zoicas
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Fabian Schumacher
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2-4, 14195 Berlin, Germany
| | - Rémi Planès
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, 31000 Toulouse, France
| | - Raoul Mazars
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, 31000 Toulouse, France
| | - Germain Gros
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, 31000 Toulouse, France
| | - Alexander Carpinteiro
- Institute for Molecular Biology, University Medicine Essen, University of Duisburg-Essen, 47057 Essen, Germany
| | - Katrin Anne Becker
- Institute for Molecular Biology, University Medicine Essen, University of Duisburg-Essen, 47057 Essen, Germany
| | - Jacques Izopet
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), Université Toulouse, CNRS, INSERM, UPS, 31300 Toulouse, France
- Laboratoire de Virologie, CHU Toulouse, Hôpital Purpan, 31300 Toulouse, France
| | | | - Peter Sjö
- Drugs for Neglected Diseases Initiative, 1202 Geneva, Switzerland
| | - Olivier Neyrolles
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, 31000 Toulouse, France
| | - Burkhard Kleuser
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2-4, 14195 Berlin, Germany
| | - Frédéric Limosin
- Faculté de Santé, Université Paris Cité, 75006 Paris, France
- Département de Psychiatrie et d’Addictologie de l’Adulte et du Sujet Agé, Assistance Publique-Hôpitaux de Paris (AP-HP), DMU Psychiatrie et Addictologie, Hôpital Corentin-Celton, 92130 Issy-les-Moulineaux, France
- INSERM, Institut de Psychiatrie et Neurosciences de Paris (IPNP), UMR_S1266, 75014 Paris, France
| | - Erich Gulbins
- Institute for Molecular Biology, University Medicine Essen, University of Duisburg-Essen, 47057 Essen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Etienne Meunier
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, 31000 Toulouse, France
| | - Nicolas Hoertel
- Faculté de Santé, Université Paris Cité, 75006 Paris, France
- Département de Psychiatrie et d’Addictologie de l’Adulte et du Sujet Agé, Assistance Publique-Hôpitaux de Paris (AP-HP), DMU Psychiatrie et Addictologie, Hôpital Corentin-Celton, 92130 Issy-les-Moulineaux, France
- INSERM, Institut de Psychiatrie et Neurosciences de Paris (IPNP), UMR_S1266, 75014 Paris, France
| | - Céline Cougoule
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, 31000 Toulouse, France
| |
Collapse
|
12
|
A Comprehensive Profiling of Cellular Sphingolipids in Mammalian Endothelial and Microglial Cells Cultured in Normal and High-Glucose Conditions. Cells 2022; 11:cells11193082. [PMID: 36231042 PMCID: PMC9563724 DOI: 10.3390/cells11193082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Sphingolipids (SPLs) play a diverse role in maintaining cellular homeostasis. Dysregulated SPL metabolism is associated with pathological changes in stressed and diseased cells. This study investigates differences in SPL metabolism between cultured human primary retinal endothelial (HREC) and murine microglial cells (BV2) in normal conditions (normal glucose, NG, 5 mM) and under high-glucose (HG, 25 mM)-induced stress by sphingolipidomics, immunohistochemistry, biochemical, and molecular assays. Measurable differences were observed in SPL profiles between HREC and BV2 cells. High-glucose treatment caused a >2.5-fold increase in the levels of Lactosyl-ceramide (LacCer) in HREC, but in BV2 cells, it induced Hexosyl-Ceramides (HexCer) by threefold and a significant increase in Sphingosine-1-phosphate (S1P) compared to NG. Altered SPL profiles coincided with changes in transcript levels of inflammatory and vascular permeability mediators in HREC and inflammatory mediators in BV2 cells. Differences in SPL profiles and differential responses to HG stress between endothelial and microglial cells suggest that SPL metabolism and signaling differ in mammalian cell types and, therefore, their pathological association with those cell types.
Collapse
|
13
|
Zdanowicz K, Bobrus-Chcociej A, Pogodzinska K, Blachnio-Zabielska A, Zelazowska-Rutkowska B, Lebensztejn DM, Daniluk U. Analysis of Sphingolipids in Pediatric Patients with Cholelithiasis—A Preliminary Study. J Clin Med 2022; 11:jcm11195613. [PMID: 36233480 PMCID: PMC9570855 DOI: 10.3390/jcm11195613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 12/18/2022] Open
Abstract
(1) Background: Disturbances in the sphingolipid profile are observed in many diseases. There are currently no data available on the evaluation of sphingolipids and ceramides in cholelithiasis in children. The aim of this study was to evaluate the concentrations of sphingolipids in the sera of pediatric patients with gallstones. We determined their relationship with anthropometric and biochemical parameters. (2) Methods: The concentrations of sphingolipids in serum samples were evaluated using a quantitative method, ultra-high-performance liquid chromatography–tandem mass spectrometry. (3) Results: The prospective study included 48 children and adolescents diagnosed with gallstones and 38 controls. Serum concentrations of total cholesterol (TC); sphinganine (SPA); ceramides—C14:0-Cer, C16:0-Cer, C18:1-Cer, C18:0-Cer, C20:0-Cer and C24:1-Cer; and lactosylceramides—C16:0-LacCer, C18:0-LacCer, C18:1-LacCer, C24:0-LacCer and C24:1-LacCer differed significantly between patients with cholelithiasis and without cholelithiasis. After adjusting for age, gender, obesity and TC and TG levels, we found the best differentiating sphingolipids for cholelithiasis in the form of decreased SPA, C14:0-Cer, C16:0-Cer, C24:1-LacCer and C24:0-LacCer concentration and increased C20:0-Cer, C24:1-Cer, C16:0-LacCer and C18:1-LacCer. The highest area under the curve (AUC), specificity and sensitivity were determined for C16:0-Cer with cholelithiasis diagnosis. (4) Conclusions: Our results suggest that serum sphingolipids may be potential biomarkers in pediatric patients with cholelithiasis.
Collapse
Affiliation(s)
- Katarzyna Zdanowicz
- Department of Pediatrics, Gastroenterology, Hepatology, Nutrition and Allergology, Medical University of Bialystok, 15-274 Bialystok, Poland
- Correspondence: ; Tel.: +48-857450710
| | - Anna Bobrus-Chcociej
- Department of Pediatrics, Gastroenterology, Hepatology, Nutrition and Allergology, Medical University of Bialystok, 15-274 Bialystok, Poland
| | - Karolina Pogodzinska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, 15-22 Bialystok, Poland
| | - Agnieszka Blachnio-Zabielska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, 15-22 Bialystok, Poland
| | - Beata Zelazowska-Rutkowska
- Department of Pediatric Laboratory Diagnostics, Medical University of Bialystok, 15-274 Bialystok, Poland
| | - Dariusz Marek Lebensztejn
- Department of Pediatrics, Gastroenterology, Hepatology, Nutrition and Allergology, Medical University of Bialystok, 15-274 Bialystok, Poland
| | - Urszula Daniluk
- Department of Pediatrics, Gastroenterology, Hepatology, Nutrition and Allergology, Medical University of Bialystok, 15-274 Bialystok, Poland
| |
Collapse
|
14
|
Simeone CA, Wilkerson JL, Poss AM, Banks JA, Varre JV, Guevara JL, Hernandez EJ, Gorsi B, Atkinson DL, Turapov T, Frodsham SG, Morales JCF, O'Neil K, Moore B, Yandell M, Summers SA, Krolewski AS, Holland WL, Pezzolesi MG. A dominant negative ADIPOQ mutation in a diabetic family with renal disease, hypoadiponectinemia, and hyperceramidemia. NPJ Genom Med 2022; 7:43. [PMID: 35869090 PMCID: PMC9307825 DOI: 10.1038/s41525-022-00314-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 07/06/2022] [Indexed: 01/26/2023] Open
Abstract
Adiponectin, encoded by ADIPOQ, is an insulin-sensitizing, anti-inflammatory, and renoprotective adipokine that activates receptors with intrinsic ceramidase activity. We identified a family harboring a 10-nucleotide deletion mutation in ADIPOQ that cosegregates with diabetes and end-stage renal disease. This mutation introduces a frameshift in exon 3, resulting in a premature termination codon that disrupts translation of adiponectin's globular domain. Subjects with the mutation had dramatically reduced circulating adiponectin and increased long-chain ceramides levels. Functional studies suggest that the mutated protein acts as a dominant negative through its interaction with non-mutated adiponectin, decreasing circulating adiponectin levels, and correlating with metabolic disease.
Collapse
Affiliation(s)
- Christopher A Simeone
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, 84132, USA
| | - Joseph L Wilkerson
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, UT, 84112, USA
| | - Annelise M Poss
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, UT, 84112, USA
| | - James A Banks
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, UT, 84112, USA
| | - Joseph V Varre
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, UT, 84112, USA
| | - Jose Lazaro Guevara
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, 84132, USA
| | - Edgar Javier Hernandez
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
- Utah Center for Genetic Discovery, Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Bushra Gorsi
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
- Utah Center for Genetic Discovery, Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Donald L Atkinson
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, UT, 84112, USA
| | - Tursun Turapov
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, UT, 84112, USA
| | - Scott G Frodsham
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, 84132, USA
| | - Julio C Fierro Morales
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, 84132, USA
| | - Kristina O'Neil
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center, Boston, MA, 02115, USA
| | - Barry Moore
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
- Utah Center for Genetic Discovery, Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Mark Yandell
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
- Utah Center for Genetic Discovery, Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, UT, 84112, USA
| | - Andrzej S Krolewski
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center, Boston, MA, 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - William L Holland
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, UT, 84112, USA
| | - Marcus G Pezzolesi
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA.
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, 84132, USA.
- Diabetes and Metabolism Research Center, University of Utah School of Medicine, Salt Lake City, UT, 84108, USA.
| |
Collapse
|
15
|
Mallela SK, Merscher S, Fornoni A. Implications of Sphingolipid Metabolites in Kidney Diseases. Int J Mol Sci 2022; 23:ijms23084244. [PMID: 35457062 PMCID: PMC9025012 DOI: 10.3390/ijms23084244] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 12/18/2022] Open
Abstract
Sphingolipids, which act as a bioactive signaling molecules, are involved in several cellular processes such as cell survival, proliferation, migration and apoptosis. An imbalance in the levels of sphingolipids can be lethal to cells. Abnormalities in the levels of sphingolipids are associated with several human diseases including kidney diseases. Several studies demonstrate that sphingolipids play an important role in maintaining proper renal function. Sphingolipids can alter the glomerular filtration barrier by affecting the functioning of podocytes, which are key cellular components of the glomerular filtration barrier. This review summarizes the studies in our understanding of the regulation of sphingolipid signaling in kidney diseases, especially in glomerular and tubulointerstitial diseases, and the potential to target sphingolipid pathways in developing therapeutics for the treatment of renal diseases.
Collapse
Affiliation(s)
- Shamroop kumar Mallela
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- Peggy and Harold Katz Family Drug Discovery Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Sandra Merscher
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- Peggy and Harold Katz Family Drug Discovery Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Correspondence: (S.M.); (A.F.); Tel.: +1-305-243-6567 (S.M.); +1-305-243-3583 (A.F.); Fax: +1-305-243-3209 (S.M.); +1-305-243-3506 (A.F.)
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- Peggy and Harold Katz Family Drug Discovery Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Correspondence: (S.M.); (A.F.); Tel.: +1-305-243-6567 (S.M.); +1-305-243-3583 (A.F.); Fax: +1-305-243-3209 (S.M.); +1-305-243-3506 (A.F.)
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Multiple studies have shown a strong association between lipids and diabetes. These are usually described through the effects of cholesterol content of lipid particles and in particular low-density lipoprotein. However, lipoprotein particles contain other components, such as phospholipids and more complex lipid species, such as ceramides and sphingolipids. Ceramides, such as sphingolipids are also produced intracellularly and have signalling actions in regulating cell metabolism including effects on inflammation, and potentially have a mechanistic role in the development of insulin resistance. RECENT FINDINGS Recently, techniques have been developed to analyse detailed molecular profiles of lipid particles - lipidomics. Proteomics has confirmed the different proteins associated with different particles but far less is known about the relationship of individual lipid species with diabetes and cardiovascular risk. A number of studies have now shown that the plasma lipidome, and in particular, ceramides and sphingolipids may predict the development of diabetes. SUMMARY Lipidomics had identified ceramides and sphingolipids as potential mediators of cellular dysfunction in diabetes. Further work is required to ascertain whether they have clinical utility.
Collapse
Affiliation(s)
- Eun Ji Kim
- Department of Metabolic Medicine/Chemical Pathology Guy's & St Thomas' Hospitals, London, UK
| | | | | |
Collapse
|
17
|
Hammad SM, Hunt KJ, Baker NL, Klein RL, Lopes-Virella MF. Diabetes and kidney dysfunction markedly alter the content of sphingolipids carried by circulating lipoproteins. J Clin Lipidol 2022; 16:173-183. [DOI: 10.1016/j.jacl.2021.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/18/2021] [Accepted: 12/28/2021] [Indexed: 10/19/2022]
|
18
|
Parnell LD, Noel SE, Bhupathiraju SN, Smith CE, Haslam DE, Zhang X, Tucker KL, Ordovas JM, Lai CQ. Metabolite patterns link diet, obesity, and type 2 diabetes in a Hispanic population. Metabolomics 2021; 17:88. [PMID: 34553271 PMCID: PMC8458177 DOI: 10.1007/s11306-021-01835-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 09/01/2021] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Obesity is a precursor of type 2 diabetes (T2D). OBJECTIVES Our aim was to identify metabolic signatures of T2D and dietary factors unique to obesity. METHODS We examined a subsample of the Boston Puerto Rican Health Study (BPRHS) population with a high prevalence of obesity and T2D at baseline (n = 806) and participants (without T2D at baseline) at 5-year follow-up (n = 412). We determined differences in metabolite profiles between T2D and non-T2D participants of the whole sample and according to abdominal obesity status. Enrichment analysis was performed to identify metabolic pathways that were over-represented by metabolites that differed between T2D and non-T2D participants. T2D-associated metabolites unique to obesity were examined for correlation with dietary food groups to understand metabolic links between dietary intake and T2D risk. False Discovery Rate method was used to correct for multiple testing. RESULTS Of 526 targeted metabolites, 179 differed between T2D and non-T2D in the whole sample, 64 in non-obese participants and 120 unique to participants with abdominal obesity. Twenty-four of 120 metabolites were replicated and were associated with T2D incidence at 5-year follow-up. Enrichment analysis pointed to three metabolic pathways that were overrepresented in obesity-associated T2D: phosphatidylethanolamine (PE), long-chain fatty acids, and glutamate metabolism. Elevated intakes of three food groups, energy-dense takeout food, dairy intake and sugar-sweetened beverages, associated with 13 metabolites represented by the three pathways. CONCLUSION Metabolic signatures of lipid and glutamate metabolism link obesity to T2D, in parallel with increased intake of dairy and sugar-sweetened beverages, thereby providing insight into the relationship between dietary habits and T2D risk.
Collapse
Affiliation(s)
- Laurence D Parnell
- USDA Agricultural Research Service, Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Sabrina E Noel
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA, USA
| | - Shilpa N Bhupathiraju
- Channing Division of Network Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Caren E Smith
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center On Aging at Tufts University, Boston, MA, USA
| | - Danielle E Haslam
- Channing Division of Network Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Xiyuang Zhang
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA, USA
| | - Katherine L Tucker
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA, USA
| | - Jose M Ordovas
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center On Aging at Tufts University, Boston, MA, USA
- IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Chao-Qiang Lai
- USDA Agricultural Research Service, Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA.
| |
Collapse
|
19
|
Hammad SM, Harden OC, Wilson DA, Twal WO, Nietert PJ, Oates JC. Plasma Sphingolipid Profile Associated With Subclinical Atherosclerosis and Clinical Disease Markers of Systemic Lupus Erythematosus: Potential Predictive Value. Front Immunol 2021; 12:694318. [PMID: 34367153 PMCID: PMC8335560 DOI: 10.3389/fimmu.2021.694318] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/05/2021] [Indexed: 12/01/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that affects females more than males, with African Americans developing more severe manifestation of the disease. SLE patients are at increased risk for cardiovascular disease (CVD), and SLE women 35-44 years old have 50 fold the incidence rate of CVD. Because SLE patients do not follow the typical age and gender pattern for CVD, but instead an accelerated disease course, the traditional biomarkers of elevated LDL and total cholesterol levels do not accurately assess their CVD risk. Recently, we have reported that African American SLE patients had higher ceramide, hexosylceramide, sphingosine and dihydrosphingosine 1-phosphate levels compared to their healthy controls, and those with atherosclerosis had higher sphingomyelin and sphingoid bases levels than those without (PLoS One. 2019; e0224496). In the current study, we sought to identify sphingolipid species that correlate with and pose the potential to predict atherosclerosis severity in African American SLE patients. Plasma samples from a group of African American predominantly female SLE patients with well-defined carotid atherosclerotic plaque burden were analyzed for sphingolipidomics using targeted mass spectroscopy. The data demonstrated that at baseline, plaque area and C3 values correlated inversely with most lactoceramide species. After one-year follow-up visit, values of the change of plaque area correlated positively with the lactoceramide species. There was no correlation between LDL-C concentrations and lactoceramide species. Taken together, lactocylcermide levels may have a ‘predictive’ value and sphingolipidomics have an added benefit to currently available tools in early diagnosis and prognosis of African American SLE patients with CVD.
Collapse
Affiliation(s)
- Samar M Hammad
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Olivia C Harden
- Medical University of South Carolina, Charleston, SC, United States
| | - Dulaney A Wilson
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Waleed O Twal
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Paul J Nietert
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Jim C Oates
- Department of Medicine, Division of Rheumatology & Immunology, Medical University of South Carolina, Charleston, SC, United States.,Medical Service, Rheumatology Section, Ralph H. Johnson VA Medical Center, Charleston, SC, United States
| |
Collapse
|
20
|
Mitrofanova A, Burke G, Merscher S, Fornoni A. New insights into renal lipid dysmetabolism in diabetic kidney disease. World J Diabetes 2021; 12:524-540. [PMID: 33995842 PMCID: PMC8107981 DOI: 10.4239/wjd.v12.i5.524] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/31/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023] Open
Abstract
Lipid dysmetabolism is one of the main features of diabetes mellitus and manifests by dyslipidemia as well as the ectopic accumulation of lipids in various tissues and organs, including the kidney. Research suggests that impaired cholesterol metabolism, increased lipid uptake or synthesis, increased fatty acid oxidation, lipid droplet accumulation and an imbalance in biologically active sphingolipids (such as ceramide, ceramide-1-phosphate and sphingosine-1-phosphate) contribute to the development of diabetic kidney disease (DKD). Currently, the literature suggests that both quality and quantity of lipids are associated with DKD and contribute to increased reactive oxygen species production, oxidative stress, inflammation, or cell death. Therefore, control of renal lipid dysmetabolism is a very important therapeutic goal, which needs to be archived. This article will review some of the recent advances leading to a better understanding of the mechanisms of dyslipidemia and the role of particular lipids and sphingolipids in DKD.
Collapse
Affiliation(s)
- Alla Mitrofanova
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL 33136, United States
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL 33136, United States
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, FL 33136, United States
| | - George Burke
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, FL 33136, United States
- Diabetes Research Institute, University of Miami, Miller School of Medicine, Miami, FL 33136, United States
| | - Sandra Merscher
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL 33136, United States
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL 33136, United States
| | - Alessia Fornoni
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL 33136, United States
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL 33136, United States
| |
Collapse
|
21
|
Metabolic Signatures Associated with Severity in Hospitalized COVID-19 Patients. Int J Mol Sci 2021; 22:ijms22094794. [PMID: 33946479 PMCID: PMC8124482 DOI: 10.3390/ijms22094794] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/11/2022] Open
Abstract
The clinical evolution of COVID-19 pneumonia is poorly understood. Identifying the metabolic pathways that are altered early with viral infection and their association with disease severity is crucial to understand COVID-19 pathophysiology, and guide clinical decisions. This study aimed at assessing the critical metabolic pathways altered with disease severity in hospitalized COVID-19 patients. Forty-nine hospitalized patients with COVID-19 pneumonia were enrolled in a prospective, observational, single-center study in Barcelona, Spain. Demographic, clinical, and analytical data at admission were registered. Plasma samples were collected within the first 48 h following hospitalization. Patients were stratified based on the severity of their evolution as moderate (N = 13), severe (N = 10), or critical (N = 26). A panel of 221 biomarkers was measured by targeted metabolomics in order to evaluate metabolic changes associated with subsequent disease severity. Our results show that obesity, respiratory rate, blood pressure, and oxygen saturation, as well as some analytical parameters and radiological findings, were all associated with disease severity. Additionally, ceramide metabolism, tryptophan degradation, and reductions in several metabolic reactions involving nicotinamide adenine nucleotide (NAD) at inclusion were significantly associated with respiratory severity and correlated with inflammation. In summary, assessment of the metabolomic profile of COVID-19 patients could assist in disease severity stratification and even in guiding clinical decisions.
Collapse
|
22
|
Fridman V, Zarini S, Sillau S, Harrison K, Bergman BC, Feldman EL, Reusch JEB, Callaghan BC. Altered plasma serine and 1-deoxydihydroceramide profiles are associated with diabetic neuropathy in type 2 diabetes and obesity. J Diabetes Complications 2021; 35:107852. [PMID: 33485750 PMCID: PMC8114795 DOI: 10.1016/j.jdiacomp.2021.107852] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/29/2020] [Accepted: 01/01/2021] [Indexed: 01/02/2023]
Abstract
Recent studies suggest that the accumulation of atypical, 1-deoxysphingolipids that lack the C1 hydroxyl group may be associated with diabetic neuropathy (DN). We hypothesized that specific plasma 1-deoxysphingolipids associate with DN severity, and that alterations in plasma serine and alanine associate with 1-deoxysphingolipid elevation in patients with type 2 diabetes (T2D). We examined individual 1-deoxysphingolipid species using LC/MS/MS in plasma samples from 75 individuals including lean controls (LC, n = 19), those with obesity (n = 19), obesity with T2D without DN (ob/T2D, n = 18), and obesity with T2D with DN (Ob/T2D/DN, n = 19). We observed a step wise increase in 1-deoxydihydroceramides across these four groups (spearman correlation coefficient r = 0.41, p = 0.0002). Mean total concentrations of 1-deoxydihydroceramides, and most individual 1-deoxydihydroceramide species, were higher in ob/T2D/DN versus LC group (8.939 vs. 5.195 pmol/100 μL for total 1-deoxydihydroceramides p = 0.005). No significant differences in 1-deoxydihydroceramides were observed between the ob/T2D and ob/T2D/DN groups. l-alanine was higher and l-serine lower in ob/T2D/DN versus LC groups (326.2 vs. 248.0 μM, p = 0.0086 and 70.2 vs. 89.8 μM, p = 0.0110), consistent with a potential contribution of these changes to the observed 1-deoxysphingolipids profiles. 1-deoxydihydroceramides correlated inversely with leg intraepidermal nerve fiber density (CC -0.40, p = 0.003). These findings indicate that 1-deoxydihydroceramides may be important biomarkers and/or mediators of DN.
Collapse
Affiliation(s)
- V Fridman
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - S Zarini
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - S Sillau
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - K Harrison
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - B C Bergman
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - J E B Reusch
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Rocky Mountain Regional VA, Aurora, CO, USA
| | | |
Collapse
|
23
|
Mandal N, Grambergs R, Mondal K, Basu SK, Tahia F, Dagogo-Jack S. Role of ceramides in the pathogenesis of diabetes mellitus and its complications. J Diabetes Complications 2021; 35:107734. [PMID: 33268241 PMCID: PMC8663915 DOI: 10.1016/j.jdiacomp.2020.107734] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022]
Abstract
Diabetes mellitus (DM) is a systemic metabolic disease that affects 463 million adults worldwide and is a leading cause of cardiovascular disease, blindness, nephropathy, peripheral neuropathy, and lower-limb amputation. Lipids have long been recognized as contributors to the pathogenesis and pathophysiology of DM and its complications, but recent discoveries have highlighted ceramides, a class of bioactive sphingolipids with cell signaling and second messenger capabilities, as particularly important contributors to insulin resistance and the underlying mechanisms of DM complications. Besides their association with insulin resistance and pathophysiology of type 2 diabetes, evidence is emerging that certain species of ceramides are mediators of cellular mechanisms involved in the initiation and progression of microvascular and macrovascular complications of DM. Advances in our understanding of these associations provide unique opportunities for exploring ceramide species as potential novel therapeutic targets and biomarkers. This review discusses the links between ceramides and the pathogenesis of DM and diabetic complications and identifies opportunities for novel discoveries and applications.
Collapse
Affiliation(s)
- Nawajes Mandal
- The University of Tennessee Health Science Center, Department of Ophthalmology, Memphis, TN 38163, USA.; The University of Tennessee Health Science Center, Department of Anatomy and Neurobiology, Memphis, TN 38163, USA..
| | - Richard Grambergs
- The University of Tennessee Health Science Center, Department of Ophthalmology, Memphis, TN 38163, USA
| | - Koushik Mondal
- The University of Tennessee Health Science Center, Department of Ophthalmology, Memphis, TN 38163, USA
| | - Sandip K Basu
- The University of Tennessee Health Science Center, Department of Ophthalmology, Memphis, TN 38163, USA
| | - Faiza Tahia
- The University of Tennessee Health Science Center, Department of Ophthalmology, Memphis, TN 38163, USA.; The University of Tennessee Health Science Center, Department of Pharmaceutical Sciences, College of Pharmacy, Memphis, TN 38163, USA
| | - Sam Dagogo-Jack
- The University of Tennessee Health Science Center, Division of Endocrinology, Memphis, TN 38163, USA.; The University of Tennessee Health Science Center, Clinical Research Center, Memphis, TN 38163, USA..
| |
Collapse
|
24
|
Nicholson RJ, Pezzolesi MG, Summers SA. Rotten to the Cortex: Ceramide-Mediated Lipotoxicity in Diabetic Kidney Disease. Front Endocrinol (Lausanne) 2021; 11:622692. [PMID: 33584550 PMCID: PMC7876379 DOI: 10.3389/fendo.2020.622692] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/11/2020] [Indexed: 12/11/2022] Open
Abstract
Diabetic kidney disease (DKD) is a prevalent and progressive comorbidity of diabetes mellitus that increases one's risk of developing renal failure. Progress toward development of better DKD therapeutics is limited by an incomplete understanding of forces driving and connecting the various features of DKD, which include renal steatosis, fibrosis, and microvascular dysfunction. Herein we review the literature supporting roles for bioactive ceramides as inducers of local and systemic DKD pathology. In rodent models of DKD, renal ceramides are elevated, and genetic and pharmacological ceramide-lowering interventions improve kidney function and ameliorate DKD histopathology. In humans, circulating sphingolipid profiles distinguish human DKD patients from diabetic controls. These studies highlight the potential for ceramide to serve as a central and therapeutically tractable lipid mediator of DKD.
Collapse
Affiliation(s)
- Rebekah J. Nicholson
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, United States
- Diabetes and Metabolism Research Center, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Marcus G. Pezzolesi
- Diabetes and Metabolism Research Center, University of Utah School of Medicine, Salt Lake City, UT, United States
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
| | - Scott A. Summers
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, United States
- Diabetes and Metabolism Research Center, University of Utah School of Medicine, Salt Lake City, UT, United States
| |
Collapse
|
25
|
Mitrofanova A, Drexler Y, Merscher S, Fornoni A. Role of Sphingolipid Signaling in Glomerular Diseases: Focus on DKD and FSGS. JOURNAL OF CELLULAR SIGNALING 2020; 1:56-69. [PMID: 32914148 PMCID: PMC7480905 DOI: 10.33696/signaling.1.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sphingolipids are well-recognized as major players in the pathogenesis of many human diseases, including chronic kidney disease. The kidney is a very sensitive organ to alterations in sphingolipid metabolism. The critical issues to be addressed in this review relate to the role of sphingolipids and enzymes involved in sphingolipid metabolism in the pathogenesis of glomerular diseases with a special focus on podocytes, a key cellular component of the glomerular filtration barrier. Among several sphingolipids, we will highlight the role of ceramide, sphingosine, sphingosine-1-phosphate and ceramide-1-phosphate. Additionally, we will summarize the current knowledge with regard to the use of sphingolipids as therapeutic agents for the treatment of podocyte injury in kidney disease.
Collapse
Affiliation(s)
- Alla Mitrofanova
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Yelena Drexler
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Sandra Merscher
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
26
|
Transcriptomics Reveal Altered Metabolic and Signaling Pathways in Podocytes Exposed to C16 Ceramide-Enriched Lipoproteins. Genes (Basel) 2020; 11:genes11020178. [PMID: 32045989 PMCID: PMC7073971 DOI: 10.3390/genes11020178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 11/16/2022] Open
Abstract
Sphingolipids are bioactive lipids associated with cellular membranes and plasma lipoproteins, and their synthesis and degradation are tightly regulated. We have previously determined that low plasma concentrations of certain ceramide species predict the development of nephropathy in diabetes patients with normal albumin excretion rates at baseline. Herein, we tested the hypothesis that altering the sphingolipid content of circulating lipoproteins can alter the metabolic and signaling pathways in podocytes, whose dysfunction leads to an impairment of glomerular filtration. Cultured human podocytes were treated with lipoproteins from healthy subjects enriched in vitro with C16 ceramide, or D-erythro 2-hydroxy C16 ceramide, a ceramide naturally found in skin. The RNA-Seq data demonstrated differential expression of genes regulating sphingolipid metabolism, sphingolipid signaling, and mTOR signaling pathways. A multiplex analysis of mTOR signaling pathway intermediates showed that the majority (eight) of the pathway phosphorylated proteins measured (eleven) were significantly downregulated in response to C16 ceramide-enriched HDL2 compared to HDL2 alone and hydroxy ceramide-enriched HDL2. In contrast, C16 ceramide-enriched HDL3 upregulated the phosphorylation of four intermediates in the mTOR pathway. These findings highlight a possible role for lipoprotein-associated sphingolipids in regulating metabolic and signaling pathways in podocytes and could lead to novel therapeutic targets in glomerular kidney diseases.
Collapse
|
27
|
Hammad SM, Hardin JR, Wilson DA, Twal WO, Nietert PJ, Oates JC. Race disparity in blood sphingolipidomics associated with lupus cardiovascular comorbidity. PLoS One 2019; 14:e0224496. [PMID: 31747417 PMCID: PMC6867606 DOI: 10.1371/journal.pone.0224496] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/15/2019] [Indexed: 11/18/2022] Open
Abstract
Systemic lupus erythematous (SLE) is a chronic multi-organ autoimmune disease. Genetic and environmental factors contribute to disease onset and severity. Sphingolipids are signaling molecules involved in regulating cell functions and have been associated with multiple genetic disease processes. African-Americans are more likely to suffer from SLE morbidity than Whites. The Medical University of South Carolina has banked plasma samples from a well-characterized lupus cohort that includes African-Americans and Whites. This study examined the influence of race on plasma sphingolipid profiles in SLE patients and association of sphingolipid levels with comorbid atherosclerosis and SLE disease activity. Mass spectrometry revealed that healthy African-Americans had higher sphingomyelin levels and lower lactosylcermide levels compared to healthy Whites. SLE patients, irrespective of race, had higher levels of ceramides, and sphingoid bases (sphingosine and dihydrosphingosine) and their phosphates compared to healthy subjects. Compared to African-American controls, African-American SLE patients had higher levels of ceramides, hexosylceramides, sphingosine and dihydrosphingosine 1-phosphate. Compared to White controls, White SLE patients exhibited higher levels of sphingoid bases and their phosphates, but lower ratios of C16:0 ceramide/sphingosine 1-phosphate and C24:1 ceramide/sphingosine 1-phosphate. White SLE patients with atherosclerosis exhibited lower levels of sphingoid bases compared to White SLE patients without atherosclerosis. In contrast, African-American SLE patients with atherosclerosis had higher levels of sphingoid bases and sphingomyelins compared to African-American SLE patients without atherosclerosis. Compared to White SLE patients with atherosclerosis, African-American SLE patients with atherosclerosis had higher levels of select sphingolipids. Plasma levels of sphingosine, C16:0 ceramide/sphingosine 1-phosphate ratio and C24:1 ceramide/sphingosine 1-phosphate ratio significantly correlated with SLEDAI in the African-American but not White SLE patients. The C16:0 ceramide/sphingosine 1-phosphate ratio in SLE patients, and levels of C18:1 and C26:1 lactosylcermides, C20:0 hexosylceramide, and sphingoid bases in SLE patients with atherosclerosis could be dependent on race. Further ethnic studies in SLE cohorts are necessary to verify use of sphingolipidomics as complementary diagnostic tool.
Collapse
Affiliation(s)
- Samar M. Hammad
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Jasmyn R. Hardin
- College of Graduate Studies/Summer Undergraduate Research Program, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Dulaney A. Wilson
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Waleed O. Twal
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Paul J. Nietert
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - James C. Oates
- Department of Medicine, Division of Rheumatology & Immunology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| |
Collapse
|
28
|
Matanes F, Twal WO, Hammad SM. Sphingolipids as Biomarkers of Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1159:109-138. [DOI: 10.1007/978-3-030-21162-2_7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|