1
|
Martín-Vírgala J, Martín-Carro B, Fernández-Villabrille S, Fernández-Mariño B, Astudillo-Cortés E, Rodríguez-García M, Díaz-Corte C, Fernández-Martín JL, Gómez-Alonso C, Dusso AS, Alonso-Montes C, Naves-Díaz M, Panizo S, Carrillo-López N. Non-Invasive Assessment of Vascular Damage Through Pulse Wave Velocity and Superb Microvascular Imaging in Pre-Dialysis Patients. Biomedicines 2025; 13:621. [PMID: 40149598 PMCID: PMC11940463 DOI: 10.3390/biomedicines13030621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/11/2025] [Accepted: 02/28/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Cardiovascular disease is the main cause of morbidity and mortality in Chronic Kidney Disease (CKD), so it is of great importance to find simple and non-invasive tools to detect vascular damage in pre-dialysis CKD patients. This study aimed to assess the applicability of non-invasive techniques to evaluate vascular damage in stages CKD-2 to CKD-5 and its progression after an 18-month follow-up using (A) carotid-femoral pulse wave velocity (PWV) to assess aortic stiffness and (B) Superb Microvascular Imaging (SMI) ultrasound to assess adventitial neovascularization compared with other traditional techniques to evaluate vascular damage, such as carotid intima-media thickness and Kauppila index. Methods: The study involved 43 CKD patients in stages CKD-2 to CKD-5 and a group of 38 sex- and age-matched controls, studied at baseline and at an 18-month follow-up. Age, sex, body mass index, arterial pressure, pharmacological treatments, and blood and urinary parameters were collected. Aortic stiffness was determined by carotid-femoral PWV and abdominal aortic calcification was assessed in lateral lumbar X-rays and quantified by the Kauppila index. Carotid intima-media thickness (cIMT), the number of carotid plaques, and adventitial neovascularization were evaluated by SMI. Results: Vascular impairment was mostly detected in CKD-4 and CKD-5 stages, with increased aortic stiffness measured by PWV and increased carotid plaques and adventitial neovascularization measured by SMI ultrasound. Furthermore, CKD-5 patients showed greater abdominal aortic calcification. Interestingly, CKD patients displayed a negative correlation between serum soluble Klotho (sKlotho) and cIMT. Finally, CKD patients showed no progression of vascular impairment after the 18-month follow-up, with the exception of carotid plaques. Conclusions: Performing non-invasive PWV and SMI ultrasound might be useful to evaluate vascular damage in CKD before entering dialysis, possibly helping to prevent cardiovascular events, although future studies should clarify the use of these techniques in clinical practice.
Collapse
Grants
- PI19/00532, PI20/00633, PI22/00195, PI23/00833, RD16/0009/0017, RD21/0005/0019, RD24/0004/0006, RD24/0004/0029, CP23/00105 and CP23/00058 Instituto de Salud Carlos III
- IDI-2018-000152, IDI/2021/000080, IDE/2024/000706, BP20-081 and BP19-057 Gobierno del Principado de Asturias
- Proyecto Luis Hernando 2021 Fundación Renal
- FPU2019-00483 Ministerio de Ciencia, Innovación y Universidades
- NA Fundación para la Investigación Biosanitaria de Asturias
Collapse
Affiliation(s)
- Julia Martín-Vírgala
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Unidad Funcional de Metabolismo Óseo, Unidad de Gestión Clínica de Medicina Interna, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- RICORS 2040-RENAL, 33011 Oviedo, Spain
| | - Beatriz Martín-Carro
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Unidad Funcional de Metabolismo Óseo, Unidad de Gestión Clínica de Medicina Interna, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- RICORS 2040-RENAL, 33011 Oviedo, Spain
| | - Sara Fernández-Villabrille
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Unidad Funcional de Metabolismo Óseo, Unidad de Gestión Clínica de Medicina Interna, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- RICORS 2040-RENAL, 33011 Oviedo, Spain
| | | | - Elena Astudillo-Cortés
- Unidad de Gestión Clínica de Nefrología, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Minerva Rodríguez-García
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- RICORS 2040-RENAL, 33011 Oviedo, Spain
- Unidad de Gestión Clínica de Nefrología, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Departamento de Medicina, Universidad de Oviedo, 33011 Oviedo, Spain
| | - Carmen Díaz-Corte
- RICORS 2040-RENAL, 33011 Oviedo, Spain
- Unidad de Gestión Clínica de Nefrología, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Departamento de Medicina, Universidad de Oviedo, 33011 Oviedo, Spain
| | - José Luis Fernández-Martín
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Unidad Funcional de Metabolismo Óseo, Unidad de Gestión Clínica de Medicina Interna, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- RICORS 2040-RENAL, 33011 Oviedo, Spain
- Departamento de Medicina, Universidad de Oviedo, 33011 Oviedo, Spain
| | - Carlos Gómez-Alonso
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Unidad Funcional de Metabolismo Óseo, Unidad de Gestión Clínica de Medicina Interna, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- RICORS 2040-RENAL, 33011 Oviedo, Spain
- Departamento de Medicina, Universidad de Oviedo, 33011 Oviedo, Spain
| | - Adriana S Dusso
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Cristina Alonso-Montes
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Unidad Funcional de Metabolismo Óseo, Unidad de Gestión Clínica de Medicina Interna, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- RICORS 2040-RENAL, 33011 Oviedo, Spain
- Departamento de Medicina, Universidad de Oviedo, 33011 Oviedo, Spain
| | - Manuel Naves-Díaz
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Unidad Funcional de Metabolismo Óseo, Unidad de Gestión Clínica de Medicina Interna, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- RICORS 2040-RENAL, 33011 Oviedo, Spain
- Departamento de Medicina, Universidad de Oviedo, 33011 Oviedo, Spain
| | - Sara Panizo
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Unidad Funcional de Metabolismo Óseo, Unidad de Gestión Clínica de Medicina Interna, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- RICORS 2040-RENAL, 33011 Oviedo, Spain
- Departamento de Medicina, Universidad de Oviedo, 33011 Oviedo, Spain
| | - Natalia Carrillo-López
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Unidad Funcional de Metabolismo Óseo, Unidad de Gestión Clínica de Medicina Interna, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- RICORS 2040-RENAL, 33011 Oviedo, Spain
- Departamento de Medicina, Universidad de Oviedo, 33011 Oviedo, Spain
| |
Collapse
|
2
|
Cui L, Liu R, Zhou F, Tian B, Chen Y, Xing Y. Incremental clinical value of intraplaque neovascularization in predicting recurrent ischemic stroke. Ann Clin Transl Neurol 2025; 12:291-299. [PMID: 39556520 PMCID: PMC11822802 DOI: 10.1002/acn3.52255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/14/2024] [Accepted: 11/02/2024] [Indexed: 11/20/2024] Open
Abstract
OBJECTIVE Carotid intraplaque neovascularization (IPN) detected by contrast-enhanced ultrasound (CEUS) is a risk factor for recurrent ischemic stroke. However, it is still unclear whether IPN can be used to accurately identify patients with recurrent ischemic stroke in clinical practice. Herein, we investigated the clinical predictive value of IPN for recurrent ischemic stroke in a real-world setting. METHODS We enrolled 200 patients with ischemic stroke and atherosclerotic carotid stenosis who were followed up for 2 years. The endpoint was recurrent ischemic stroke. Cox regression and subgroup analyses were employed to assess whether treatment affected the relationship between IPN and recurrent ischemic stroke. The net classification index (NRI) and integrated discriminant improvement index (IDI) were used to validate the additional clinical value of IPN in identifying recurrent ischemic stroke. RESULTS During the 2-year follow-up, 36 patients experienced recurrent ischemic stroke. Cox regression analyses showed that IPN (grade 2), hypoechoic plaque, high homocysteine levels, and smoking were independent risk factors for recurrent ischemic stroke. Additional IPN evaluation may increase the NRI (0.512; 95% confidence interval [CI]: 0.083-0.624) and IDI (0.151; 95% CI: 0.010-0.213) for identifying high-risk patients with recurrent ischemic stroke. In addition, in the subgroup undergoing revascularization, the proportion of IPN (grade 2) was significantly higher in patients with recurrent ischemic stroke than in patients with nonrecurrent ischemic stroke (p = 0.001). INTERPRETATION In clinical settings, IPN, assessed by CEUS, may provide additional clinical value for predicting recurrent ischemic stroke, helping to identify patients with ischemic stroke who require close follow-up.
Collapse
Affiliation(s)
- Liuping Cui
- Department of Vascular Ultrasound, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Department of NeurologyThe First Hospital of Jilin UniversityChangchunChina
| | - Ran Liu
- Department of Vascular Ultrasound, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Fubo Zhou
- Department of Vascular Ultrasound, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Bing Tian
- Department of Vascular Ultrasound, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Ying Chen
- Department of NeurologyThe First Hospital of Jilin UniversityChangchunChina
| | - Yingqi Xing
- Department of Vascular Ultrasound, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Diagnostic Center of Vascular UltrasoundBeijingChina
- Center of Vascular UltrasoundBeijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical UniversityBeijingChina
| |
Collapse
|
3
|
Ugusman A, Hisam NSN, Othman NS, Anuar NNM, Hamid AA, Kumar J, Razmi MM, Aminuddin A. Pharmacological interventions for intraplaque neovascularization in atherosclerosis. Pharmacol Ther 2024; 261:108685. [PMID: 38977083 DOI: 10.1016/j.pharmthera.2024.108685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
Advanced atherosclerosis is linked to plaque instability, which can result in rupture and the onset of a heart attack. Evidence gathered from human atheroma plaques indicates that intraplaque neovascularization poses a risk to plaque stability and may lead to plaque hemorrhage. Hence, targeting the neovascularization within the atheroma plaque has the potential to mitigate the plaque's vulnerability. While neovascularization has been extensively explored in the context of cancer, research on pharmacological inhibition of this phenomenon in atherosclerosis remains limited. This systematic review aimed to comprehensively assess current and emerging pharmacological interventions for inhibiting intraplaque neovascularization in preclinical settings. Electronic databases (Web of Science, PubMed, Scopus, and Ovid) were searched from January 2013 until February 1, 2024. Preclinical studies reporting the effect of any pharmacological interventions targeting intraplaque neovascularization were included. A total of 10 articles involving in vivo animal studies were eligible for inclusion, with five of them incorporating in vitro experiments to complement their in vivo findings. The pharmacological interventions studied were axitinib, ghrelin, K5, rosuvastatin, atorvastatin, 3PO, everolimus, melatonin, Si-Miao-Yong-A, and protocatechuic aldehyde. All the interventions showed a positive impact in inhibiting intraplaque neovascularization in various atherosclerotic animal models through various signaling pathways. This review provides valuable insights into pharmacological approaches to attenuate intraplaque neovascularization that could serve as a promising therapeutic avenue to enhance plaque stability.
Collapse
Affiliation(s)
- Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Nur Syahidah Nor Hisam
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia; Programme of Biomedical Science, Centre for Toxicology & Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Nur Syakirah Othman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Nur Najmi Mohamad Anuar
- Programme of Biomedical Science, Centre for Toxicology & Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Adila A Hamid
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Maisarah Md Razmi
- Programme of Biomedical Science, Centre for Toxicology & Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Amilia Aminuddin
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|
4
|
Cui E, Kersche G, Grubic N, Hétu MF, Pang SC, Sillesen H, Johri AM. Effect of pharmacologic anti-atherosclerotic therapy on carotid intraplaque neovascularization: A systematic review. J Clin Lipidol 2023; 17:315-326. [PMID: 37173161 DOI: 10.1016/j.jacl.2023.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/07/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023]
Abstract
Intraplaque neovascularization (IPN), a key feature of vulnerable carotid plaque, is associated with adverse cardiovascular (CV) events. Statin therapy has been shown to diminish and stabilize atherosclerotic plaque, but its effect on IPN is uncertain. This review investigated the effects of common pharmacologic anti-atherosclerotic therapies on carotid IPN. Electronic databases (MEDLINE, EMBASE and Cochrane Library) were searched from inception until July 13, 2022. Studies evaluating the effect of anti-atherosclerotic therapy on carotid IPN among adults with carotid atherosclerosis were included. Sixteen studies were eligible for inclusion. Contrast-enhanced ultrasound (CEUS) was the most common IPN assessment modality (n=8), followed by dynamic contrast-enhanced MRI (DCE-MRI) (n=4), excised plaque histology (n=3) and superb microvascular imaging (n=2). In fifteen studies, statins were the therapy of interest and one study assessed PCSK9 inhibitors. Among CEUS studies, baseline statin use was associated with a lower frequency of carotid IPN (median OR = 0.45). Prospective studies showed regression of IPN after 6-12 months of lipid-lowering therapy, with more regression observed in treated participants compared to untreated controls. Our findings suggest that lipid-lowering therapy with statins or PCSK9 inhibitors is associated with IPN regression. However, there was no correlation between change in IPN parameters and change in serum lipids and inflammatory markers in statin-treated participants, so it is unclear whether these factors are mediators in the observed IPN changes. Lastly, this review was limited by study heterogeneity and small sample sizes, so larger trials are needed to validate findings.
Collapse
Affiliation(s)
- Edward Cui
- Department of Medicine, Cardiovascular Imaging Network at Queen's (CINQ), Queen's University, Kingston, Canada (Drs Cui, Kersche, Grubic, Hétu, Johri)
| | - Georgia Kersche
- Department of Medicine, Cardiovascular Imaging Network at Queen's (CINQ), Queen's University, Kingston, Canada (Drs Cui, Kersche, Grubic, Hétu, Johri)
| | - Nicholas Grubic
- Department of Medicine, Cardiovascular Imaging Network at Queen's (CINQ), Queen's University, Kingston, Canada (Drs Cui, Kersche, Grubic, Hétu, Johri)
| | - Marie-France Hétu
- Department of Medicine, Cardiovascular Imaging Network at Queen's (CINQ), Queen's University, Kingston, Canada (Drs Cui, Kersche, Grubic, Hétu, Johri)
| | - Stephen C Pang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada (Dr Pang)
| | - Henrik Sillesen
- Department of Vascular Surgery, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark (Dr Sillesen); Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark (Dr Sillesen)
| | - Amer M Johri
- Department of Medicine, Cardiovascular Imaging Network at Queen's (CINQ), Queen's University, Kingston, Canada (Drs Cui, Kersche, Grubic, Hétu, Johri).
| |
Collapse
|
5
|
Chen J, Zhao F, Lei C, Qi T, Xue X, Meng Y, Zhang W, Zhang H, Wang J, Zhu H, Cheng C, Wang Q, Bi C, Song B, Jin C, Niu Q, An F, Li B, Huo X, Zhao Y, Li B. Effect of evolocumab on the progression of intraplaque neovascularization of the carotid based on contrast-enhanced ultrasonography (EPIC study): A prospective single-arm, open-label study. Front Pharmacol 2023; 13:999224. [PMID: 36686711 PMCID: PMC9846542 DOI: 10.3389/fphar.2022.999224] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023] Open
Abstract
Background and Purpose: The aim of this study was to explore the effect of half a year of evolocumab plus moderate-intensity statin treatment on carotid intraplaque neovascularization (IPN) and blood lipid levels. Methods: A total of 31 patients with 33 carotid plaques who received evolocumab plus statin treatment were included. Blood lipid levels, B-mode ultrasound and contrast-enhanced ultrasonography (CEUS) at baseline and after half a year of evolocumab plus statin therapy were collected. The area under the curve (AUC) reflected the total amount of acoustic developer entering the plaque or lumen within the 180 s measurement period. The enhanced intensity reflected the peak blood flow intensity during the monitoring period, and the contrast agent area reflected the area of vessels in the plaques. Results: Except for high-density lipoprotein cholesterol (HDL-c), all other lipid indices decreased. Compared with baseline, low-density lipoprotein cholesterol (LDL-c) decreased by approximately 57% (p < 0.001); total cholesterol (TC) decreased by approximately 34% (p < 0.001); small dense low-density lipoprotein (sd-LDL) decreased by approximately 52% (p < 0.001); and HDL-c increased by approximately 20% (p < 0.001). B-mode ultrasonography showed that the length and thickness of the plaque and the hypoechoic area ratio were reduced (p < 0.05). The plaque area, calcified area ratio, and lumen cross-sectional area changed little (p > 0.05). CEUS revealed that the area under the curve of plaque/lumen [AUC (P/L)] decreased from 0.27 ± 0.13 to 0.19 ± 0.11 (p < 0.001). The enhanced intensity ratio of plaque/lumen [intensity ratio (P/L)] decreased from 0.37 ± 0.16 to 0.31 ± 0.14 (p = 0.009). The contrast agent area in plaque/area of plaque decreased from 19.20 ± 13.23 to 12.66 ± 9.59 (p = 0.003). The neovascularization score decreased from 2.64 ± 0.54 to 2.06 ± 0.86 (p < 0.001). Subgroup analysis based on statin duration (<6 months and ≥6 months) showed that there was no significant difference in the AUC (P/L) or intensity ratio (P/L) at baseline or after half a year of evolocumab treatment. Conclusion: This study found that evolocumab combined with moderate-intensity statins significantly improved the blood lipid profile and reduced carotid IPN. Clinical Trial Registration: https://www.clinicaltrials.gov; identifier: NCT04423406.
Collapse
Affiliation(s)
- Ju Chen
- Department of Medical Ultrasonics, Zibo Central Hospital, Zibo, China
| | - Faming Zhao
- Department of Cardiology, Zibo Central Hospital, Zibo, China
- Department of Infectious Disease, Zibo Infectious Disease Hospital, Zibo, China
| | - Chengbin Lei
- Laboratory Department, Zibo Central Hospital, Zibo, China
| | - Tianjun Qi
- Department of Cardiology, Zibo Central Hospital, Zibo, China
| | - Xin Xue
- Laboratory Department, Zibo Central Hospital, Zibo, China
| | - Yuan Meng
- Laboratory Department, Zibo Central Hospital, Zibo, China
| | - Wenzhong Zhang
- Department of Medical Ultrasonics, Zibo Central Hospital, Zibo, China
| | - Hui Zhang
- Department of Cardiology, Zibo Central Hospital, Zibo, China
| | - Jian Wang
- Department of Cardiology, Zibo Central Hospital, Zibo, China
| | - Haijun Zhu
- Department of Cardiology, Zibo Central Hospital, Zibo, China
| | - Cheng Cheng
- Department of Cardiology, Zibo Central Hospital, Zibo, China
| | - Qilei Wang
- Department of Cardiology, Zibo Central Hospital, Zibo, China
| | - Chenglong Bi
- Department of Cardiology, Zibo Central Hospital, Zibo, China
| | - Beibei Song
- Department of Cardiology, Zibo Central Hospital, Zibo, China
| | - Chengwei Jin
- Department of Cardiology, Zibo Central Hospital, Zibo, China
| | - Qiang Niu
- Department of Cardiology, Zibo Central Hospital, Zibo, China
| | - Fengshuang An
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Bin Li
- Department of Cardiology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xiaoguang Huo
- Department of Medical Ultrasonics, Zibo Central Hospital, Zibo, China
| | - Yunhe Zhao
- Department of Cardiology, Zibo Central Hospital, Zibo, China
| | - Bo Li
- Department of Cardiology, Zibo Central Hospital, Zibo, China
| |
Collapse
|
6
|
Hubbard Cristinacce PL, Keaveney S, Aboagye EO, Hall MG, Little RA, O'Connor JPB, Parker GJM, Waterton JC, Winfield JM, Jauregui-Osoro M. Clinical translation of quantitative magnetic resonance imaging biomarkers - An overview and gap analysis of current practice. Phys Med 2022; 101:165-182. [PMID: 36055125 DOI: 10.1016/j.ejmp.2022.08.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/05/2022] [Accepted: 08/17/2022] [Indexed: 10/14/2022] Open
Abstract
PURPOSE This overview of the current landscape of quantitative magnetic resonance imaging biomarkers (qMR IBs) aims to support the standardisation of academic IBs to assist their translation to clinical practice. METHODS We used three complementary approaches to investigate qMR IB use and quality management practices within the UK: 1) a literature search of qMR and quality management terms during 2011-2015 and 2016-2020; 2) a database search for clinical research studies using qMR IBs during 2016-2020; and 3) a survey to ascertain the current availability and quality management practices for clinical MRI scanners and associated equipment at research institutions across the UK. RESULTS The analysis showed increased use of all qMR methods between the periods 2011-2015 and 2016-2020 and diffusion-tensor MRI and volumetry to be popular methods. However, the "translation ratio" of journal articles to clinical research studies was higher for qMR methods that have evidence of clinical translation via a commercial route, such as fat fraction and T2 mapping. The number of journal articles citing quality management terms doubled between the periods 2011-2015 and 2016-2020; although, its proportion relative to all journal articles only increased by 3.0%. The survey suggested that quality assurance (QA) and quality control (QC) of data acquisition procedures are under-reported in the literature and that QA/QC of acquired data/data analysis are under-developed and lack consistency between institutions. CONCLUSIONS We summarise current attempts to standardise and translate qMR IBs, and conclude by outlining the ideal quality management practices and providing a gap analysis between current practice and a metrological standard.
Collapse
Affiliation(s)
| | - Sam Keaveney
- MRI Unit, Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT, UK; Division of Radiotherapy and Imaging, The Institute of Cancer Research, 123 Old Brompton Road, London SW7 3RP, UK
| | - Eric O Aboagye
- Department of Surgery & Cancer, Division of Cancer, Imperial College London, W12 0NN London, UK
| | - Matt G Hall
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK
| | - Ross A Little
- Division of Cancer Sciences, The University of Manchester, Manchester M13 9PT, UK
| | - James P B O'Connor
- Division of Cancer Sciences, The University of Manchester, Manchester M13 9PT, UK; Division of Radiotherapy and Imaging, The Institute of Cancer Research, 123 Old Brompton Road, London SW7 3RP, UK
| | - Geoff J M Parker
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, 90 High Holborn, London WC1V 6LJ, UK; Bioxydyn Ltd, Manchester M15 6SZ, UK
| | - John C Waterton
- Bioxydyn Ltd, Manchester M15 6SZ, UK; Division of Informatics, Imaging and Data Sciences, The University of Manchester, Manchester M13 9PT, UK
| | - Jessica M Winfield
- MRI Unit, Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT, UK; Division of Radiotherapy and Imaging, The Institute of Cancer Research, 123 Old Brompton Road, London SW7 3RP, UK
| | - Maite Jauregui-Osoro
- Department of Surgery & Cancer, Division of Cancer, Imperial College London, W12 0NN London, UK
| |
Collapse
|
7
|
Impact of statins in patients with vasospastic angina: A multicenter registry study of the Japanese Coronary Spasm Association. J Cardiol 2022; 80:226-231. [DOI: 10.1016/j.jjcc.2022.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/21/2022] [Accepted: 03/09/2022] [Indexed: 12/24/2022]
|
8
|
Bonati LH, Brown MM. Carotid Artery Disease. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00022-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
9
|
Zhou P, Wang Y, Sun J, Yu Y, Mossa-Basha M, Zhu C. Assessment of Therapeutic Response to Statin Therapy in Patients With Intracranial or Extracranial Carotid Atherosclerosis by Vessel Wall MRI: A Systematic Review and Updated Meta-Analysis. Front Cardiovasc Med 2021; 8:742935. [PMID: 34778404 PMCID: PMC8578267 DOI: 10.3389/fcvm.2021.742935] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Background and Aims: Statin therapy is an essential component of cardiovascular preventive care. In recent years, various vessel wall MRI (VW-MRI) techniques have been used to monitor atherosclerosis progression or regression in patients with extracranial or intracranial large-artery atherosclerosis. We aimed to perform a systematic review and meta-analysis on the effects of statin therapy on plaque evolution as assessed by VW-MRI. Materials and Methods: Prospective studies investigating carotid and intracranial atherosclerotic plaques in patients on statin therapy monitored by serial VW-MRI were systematically identified in the literature. The plaque burden and lipid-rich necrotic core (LRNC) volume of carotid plaque and the imaging features of intracranial plaques were extracted and summarized. For studies investigating carotid artery wall volume and LRNC volume, combined estimates were derived by meta-analysis. Results: The study identified 21 studies of carotid plaque and two studies of intracranial plaque. While 16 studies investigating carotid plaques that included 780 patients by High-resolution VW-MRI were included in the meta-analysis. There was no significant change in carotid wall volume from baseline to 12 months. A significant change in LRNC volume was observed at > 12 months compared with baseline (Effect = −10.69, 95% CI = −19.11, −2.28, P < 0.01), while no significant change in LRNC volume at 3–6 months or 7–12 months after statin therapy initiation in 6 studies. Increases in fibrous tissue and calcium and reduction in neovascularization density of the plaque were seen in 2/3 studies (including 48/59 patients), 1/3 studies (including 17/54 patients), and 2/2 studies (including 71 patients) after statin therapy, respectively. Two studies with 257 patients in intracranial atherosclerosis showed that statins could effectively decrease wall volume and plaque enhancement volume. Conclusions: Collective data indicated that statins could potentially stabilize carotid plaques by significantly reducing LRNC with 1 year of therapy as shown on serial carotid VW-MRI. There was no significant decrease in wall volume, which nonetheless indicated that plaque composition changes might be more sensitive to response monitoring than wall volume. It is likely that more sensitive, clinically relevant, and preferably quantitative indicators of therapeutic effects on intracranial vessel plaque morphology will be developed in the future.
Collapse
Affiliation(s)
- Pengyu Zhou
- Department of Radiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuting Wang
- Department of Radiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jie Sun
- Department of Radiology, University of Washington, Seattle, WA, United States
| | - Yannan Yu
- Internal Medicine Department, University of Massachusetts Memorial Medical Center, Worcester, MA, United States
| | - Mahmud Mossa-Basha
- Department of Radiology, University of Washington, Seattle, WA, United States
| | - Chengcheng Zhu
- Department of Radiology, University of Washington, Seattle, WA, United States
| |
Collapse
|
10
|
Good E, Ziegler M, Warntjes M, Dyverfeldt P, de Muinck E. Quantitative Magnetic Resonance Imaging Assessment of the Relationships Between Fat Fraction and R2* Inside Carotid Plaques, and Circulating Lipoproteins. J Magn Reson Imaging 2021; 55:1260-1270. [PMID: 34390516 DOI: 10.1002/jmri.27890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Lipid-rich necrotic core (LRNC) and intraplaque hemorrhage (IPH) are morphological features of high-risk atherosclerotic plaques. However, their relationship to circulating lipoproteins is unclear. PURPOSE To study associations between changes in lipoproteins vs. changes in LRNC (represented by fat fraction [FF]) and IPH (represented by R2*). STUDY TYPE Prospective. SUBJECTS Fifty-two patients with carotid plaques, 33 males (63.5%), mean age 72 (±5). FIELD STRENGTH/SEQUENCE Four-point fast gradient Dixon magnetic resonance imaging (MRI) was used to quantify FF and R2* (to measure IPH) inside plaques and in vessel wall. Turbo-spin echo was used for T1 weighted sequences to guide manual segmentation. ASSESSMENT Carotid MRI and serum lipid levels were assessed at baseline and at 1-year follow-up. For patients, lipid-lowering therapy was customized to reduce low-density lipoprotein (LDL) levels below 1.8 mmol/L. Segmentation was performed with one set of regions of interest for the plaque and one for the vessel wall at the location of the plaque. Thereby MRI data for FF, R2*, and volumes in plaque- and vessel-wall segmentations could be obtained from baseline and follow-up, as well as changes over the study year. STATISTICAL TESTS Pearson correlation coefficient for correlations. Paired samples t-test for changes over time. Significance at P < 0.05, 95% confidence interval. RESULTS LDL decreased significantly (2.19-1.88 mmol/L, Z - 2.9), without correlation to changes in plaque composition, nor to the significant reduction in vessel-wall volume (-106.3 mm3 ). Plaque composition remained unchanged, FF +8.5% (P = 0.366) and R2* +3.5% (P = 0.304). Compared to plaque segmentations, R2* was significantly lower in the vessel-wall segmentations both at baseline (-9.3%) and at follow-up (-9.1%). DATA CONCLUSION The absence of correlations between changes in lipoproteins and changes in plaque composition indicates more complex relationships between these parameters than previously anticipated. The significant differences in both R2* and volume dynamics comparing plaque segmentations and vessel-wall segmentations suggest differences in their pathobiology of atherosclerosis. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY: Stage 4.
Collapse
Affiliation(s)
- Elin Good
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.,Department of Cardiology in Linköping, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Magnus Ziegler
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Marcel Warntjes
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.,SyntheticMR AB, Linköping, Sweden
| | - Petter Dyverfeldt
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Ebo de Muinck
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.,Department of Cardiology in Linköping, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
11
|
Saba L, Brinjikji W, Spence JD, Wintermark M, Castillo M, Borst GJD, Yang Q, Yuan C, Buckler A, Edjlali M, Saam T, Saloner D, Lal BK, Capodanno D, Sun J, Balu N, Naylor R, Lugt AVD, Wasserman BA, Kooi ME, Wardlaw J, Gillard J, Lanzino G, Hedin U, Mikulis D, Gupta A, DeMarco JK, Hess C, Goethem JV, Hatsukami T, Rothwell P, Brown MM, Moody AR. Roadmap Consensus on Carotid Artery Plaque Imaging and Impact on Therapy Strategies and Guidelines: An International, Multispecialty, Expert Review and Position Statement. AJNR Am J Neuroradiol 2021; 42:1566-1575. [PMID: 34326105 DOI: 10.3174/ajnr.a7223] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/26/2021] [Indexed: 12/19/2022]
Abstract
Current guidelines for primary and secondary prevention of stroke in patients with carotid atherosclerosis are based on the quantification of the degree of stenosis and symptom status. Recent publications have demonstrated that plaque morphology and composition, independent of the degree of stenosis, are important in the risk stratification of carotid atherosclerotic disease. This finding raises the question as to whether current guidelines are adequate or if they should be updated with new evidence, including imaging for plaque phenotyping, risk stratification, and clinical decision-making in addition to the degree of stenosis. To further this discussion, this roadmap consensus article defines the limits of luminal imaging and highlights the current evidence supporting the role of plaque imaging. Furthermore, we identify gaps in current knowledge and suggest steps to generate high-quality evidence, to add relevant information to guidelines currently based on the quantification of stenosis.
Collapse
Affiliation(s)
- L Saba
- From the Department of Radiology (L.S.), University of Cagliari, Cagliari, Italy
| | | | - J D Spence
- Stroke Prevention and Atherosclerosis Research Centre (J.D.S.), Robarts Research Institute, Western University, London, Ontario, Canada
| | - M Wintermark
- Department of Neuroradiology (M.W.), Stanford University and Healthcare System, Stanford, California
| | - M Castillo
- Department of Radiology (M.C.), University of North Carolina, Chapel Hill, North Carolina
| | - G J D Borst
- Department of Vascular Surgery (G.J.D.B.), University Medical Center Utrecht, Utrecht, the Netherlands
| | - Q Yang
- Department of Radiology (Q.Y.), Xuanwu Hospital, Capital Medical University, Beijing, China
| | - C Yuan
- Departments of Radiology (C.Y., J.S., N.B.)
| | - A Buckler
- Elucid Bioimaging (A.B.), Boston, Massachusetts
| | - M Edjlali
- Department of Neuroradiology (M.E.), Université Paris-Descartes-Sorbonne-Paris-Cité, IMABRAIN-INSERM-UMR1266, DHU-Neurovasc, Centre Hospitalier Sainte-Anne, Paris, France
| | - T Saam
- Department of Radiology (T.S.), University Hospital, Ludwig Maximilian University of Munich, Munich, Germany.,Radiologisches Zentrum (T.S.), Rosenheim, Germany
| | - D Saloner
- Departments of Radiology and Biomedical Imaging (D.S., C.H.), University of California San Francisco, San Francisco, California
| | - B K Lal
- Department of Vascular Surgery (B.K.L.), University of Maryland School of Medicine, Baltimore, Maryland
| | - D Capodanno
- Division of Cardiology (D.C.), A.O.U. Policlinico "G. Rodolico-San Marco," University of Catania, Italy
| | - J Sun
- Departments of Radiology (C.Y., J.S., N.B.)
| | - N Balu
- Departments of Radiology (C.Y., J.S., N.B.)
| | - R Naylor
- The Leicester Vascular Institute (R.N.), Glenfield Hospital, Leicester, UK
| | - A V D Lugt
- Department of Radiology and Nuclear Medicine (A.v.d.L.), Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - B A Wasserman
- The Russell H. Morgan Department of Radiology and Radiological Science (B.A.W.), Johns Hopkins Hospital, Baltimore, Maryland
| | - M E Kooi
- Department of Radiology and Nuclear Medicine (M.E.K.), CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, the Netherlands
| | - J Wardlaw
- Centre for Clinical Brain Sciences (J.W.), United Kingdom Dementia Research Institute and Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| | - J Gillard
- Christ's College (J.G.), Cambridge, UK
| | - G Lanzino
- Neurosurgery (G.L.) Mayo Clinic, Rochester, Minnesota
| | - U Hedin
- Department of Molecular Medicine and Surgery (U.H.), Karolinska Institutet, Stockholm, Sweden.,Department of Vascular Surgery (U.H.), Karolinska University Hospital and Karolinska Institute, Stockholm, Sweden
| | - D Mikulis
- Joint Department of Medical Imaging and the Functional Neuroimaging Laboratory (D.M.), University Health Network, Toronto, Ontario, Canada
| | - A Gupta
- Department of Radiology (A.G.), Weill Cornell Medical College, New York, New York
| | - J K DeMarco
- Walter Reed National Military Medical Center and Uniformed Services University of the Health Sciences (J.K.D.), Bethesda, Maryland
| | - C Hess
- Departments of Radiology and Biomedical Imaging (D.S., C.H.), University of California San Francisco, San Francisco, California
| | - J V Goethem
- Faculty of Biomedical Sciences (J.V.G.), University of Antwerp, Antwerp, Belgium
| | - T Hatsukami
- Surgery (T.H.), University of Washington, Seattle, Washington
| | - P Rothwell
- Centre for Prevention of Stroke and Dementia (P.R.), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, UK
| | - M M Brown
- Stroke Research Centre (M.M.B.), Department of Brain Repair and Rehabilitation, University College of London Queen Square Institute of Neurology, University College London, UK
| | - A R Moody
- Department of Medical Imaging (A.R.M.), University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Cignarella A, Fadini GP, Bolego C, Trevisi L, Boscaro C, Sanga V, Seccia TM, Rosato A, Rossi GP, Barton M. Clinical Efficacy and Safety of Angiogenesis Inhibitors: Sex Differences and Current Challenges. Cardiovasc Res 2021; 118:988-1003. [PMID: 33739385 DOI: 10.1093/cvr/cvab096] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/16/2021] [Indexed: 12/14/2022] Open
Abstract
Vasoactive molecules, such as vascular endothelial growth factor (VEGF) and endothelins, share cytokine-like activities and regulate endothelial cell (EC) growth, migration and inflammation. Some endothelial mediators and their receptors are targets for currently approved angiogenesis inhibitors, drugs that are either monoclonal antibodies raised towards VEGF, or inhibitors of vascular receptor protein kinases and signaling pathways. Pharmacological interference with the protective functions of ECs results in a similar spectrum of adverse effects. Clinically, the most common side effects of VEGF signaling pathway inhibition include an increase in arterial pressure, left ventricular (LV) dysfunction ultimately causing heart failure, and thromboembolic events, including pulmonary embolism, stroke, and myocardial infarction. Sex steroids such as androgens, progestins, and estrogen and their receptors (ERα, ERβ, GPER; PR-A, PR-B; AR) have been identified as important modifiers of angiogenesis, and sex differences have been reported for anti-angiogenic drugs. This review article discusses the current challenges clinicians are facing with regard to angiogenesis inhibitor treatments, including the need to consider sex differences affecting clinical efficacy and safety. We also propose areas for future research taking into account the role of sex hormone receptors and sex chromosomes. Development of new sex-specific drugs with improved target and cell-type selectivity likely will open the way personalized medicine in men and women requiring antiangiogenic therapy and result in reduced adverse effects and improved therapeutic efficacy.
Collapse
Affiliation(s)
| | - Gian Paolo Fadini
- Department of Medicine, University of Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy
| | - Chiara Bolego
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Italy
| | - Lucia Trevisi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Italy
| | - Carlotta Boscaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Italy
| | - Viola Sanga
- Department of Medicine, University of Padova, Italy
| | | | - Antonio Rosato
- Venetian Cancer Institute IOV - IRCCS, Padova, Italy.,Department of Surgery, Oncology and Gastroenterology, University of Padova, Italy
| | | | - Matthias Barton
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Italy.,Molecular Internal Medicine, University of Zürich, Switzerland.,Andreas Grüntzig Foundation, Zürich, Switzerland
| |
Collapse
|
13
|
Paraskevas KI, Veith FJ, Eckstein HH, Ricco JB, Mikhailidis DP. Cholesterol, carotid artery disease and stroke: what the vascular specialist needs to know. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1265. [PMID: 33178797 PMCID: PMC7607102 DOI: 10.21037/atm.2020.02.176] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Hypercholesterolemia is a risk factor for carotid artery stenosis and stroke. Statins are the main drugs for the management of hypercholesterolemia and they are strongly recommended by international guidelines for the management of vascular patients. The present review will focus on the associations between cholesterol, carotid artery stenosis and stroke and will cover several topics, including the conservative and perioperative/periprocedural management of carotid patients, the effect of statins on contrast-induced nephropathy developing after endovascular carotid interventions, the role of statin loading prior to endovascular procedures, as well as the indirect beneficial effects of statin treatment on renal function. It will also discuss the topics of statin intolerance and alternative cholesterol-lowering options for statin-intolerant vascular patients. Cholesterol levels play a prognostic role in carotid patients with regards to both short- and long-term stroke and mortality rates. Physicians should keep in mind the pivotal role of cholesterol levels in determining cardiovascular outcomes and the pleiotropic beneficial effects associated with statin use and should not miss the opportunity for cardiovascular risk reduction with aggressive statin treatment.
Collapse
Affiliation(s)
- Kosmas I Paraskevas
- Department of General and Vascular Surgery, Central Clinic of Athens, Athens, Greece
| | - Frank J Veith
- Division of Vascular Surgery, New York University Langone Medical Center, NY, USA.,Division of Vascular Surgery, The Cleveland Clinic, Cleveland, OH, USA
| | - Hans-Henning Eckstein
- Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jean-Baptiste Ricco
- Department of Clinical Research, University of Poitiers, CHU de Poitiers, Poitiers, France
| | - Dimitri P Mikhailidis
- Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, UK
| |
Collapse
|
14
|
From the editor: Considering less carbohydrate. J Clin Lipidol 2019; 13:673-674. [PMID: 31783973 DOI: 10.1016/j.jacl.2019.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|