1
|
Santopetro NJ, Thompson B, Garron A, Keith L, Brush CJ, Schmidt B, Hajcak G. Systematic review and meta-analysis: Impact of unipolar depression on P300 amplitude and latency. Neurosci Biobehav Rev 2025; 175:106230. [PMID: 40412458 DOI: 10.1016/j.neubiorev.2025.106230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 05/05/2025] [Accepted: 05/21/2025] [Indexed: 05/27/2025]
Abstract
Depression is characterized by impairments of cognitive systems such as significant deficits in attention, memory, and cognitive control. The P300 (or P3) event-related potential (ERP) component has been extensively investigated over the past four decades to elucidate the underpinnings of these cognitive dysfunctions. Many studies have observed reduced P300 amplitude and prolonged P300 latency in individuals experiencing depression. The current study provides a comprehensive systematic quantitative review (i.e., meta-analysis) of the depression and P300 literature from 1981 to 2023 employing PubMed and ProQuest databases. Included articles quantitatively measured depression and P300 amplitude or latency. In total, 127 studies (total N = 12,722) comprised the current analyses (i.e., 116 examining P300 amplitude and 51 examining P300 latency), resulting in 601 effect sizes (i.e., 464 depression and P300 amplitude; 137 depression and P300 latency). Robust variance meta-regression results revealed a small significant negative effect size (r = -.15) between P300 amplitude and depression even after correcting for publication bias. There was a similar small significant positive effect size (r = .15) between P300 latency and depression. Findings from moderator analyses indicated that stimulus modality, medication use, and age impacted the P300 amplitude and depression effect size; no moderators of the P300 latency and depression relationship were observed. Regarding limitations, we did not exhaustively test all possible factors that may impact P300 and depression association. The current quantitative review confirms significant differences in P300 (both amplitude and latency) attributed to cognitive dysfunctions common in depression as well as guides future study designs and methodological approaches.
Collapse
Affiliation(s)
| | - Brittney Thompson
- Department of Psychology, Florida State University, Tallahassee, USA
| | - Andrew Garron
- Department of Psychology, Florida State University, Tallahassee, USA
| | - Lauren Keith
- Department of Psychology, Florida State University, Tallahassee, USA
| | - C J Brush
- Department of Movement Sciences, University of Idaho, Moscow, USA
| | - Brad Schmidt
- Department of Psychology, Florida State University, Tallahassee, USA
| | - Greg Hajcak
- School of Education and Counseling Psychology, Santa Clara University, Santa Clara, CA, USA
| |
Collapse
|
2
|
Jiao D, Xu L, Gu Z, Yan H, Shen D, Gu X. Pathogenesis, diagnosis, and treatment of epilepsy: electromagnetic stimulation-mediated neuromodulation therapy and new technologies. Neural Regen Res 2025; 20:917-935. [PMID: 38989927 PMCID: PMC11438347 DOI: 10.4103/nrr.nrr-d-23-01444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/31/2023] [Accepted: 01/18/2024] [Indexed: 07/12/2024] Open
Abstract
Epilepsy is a severe, relapsing, and multifactorial neurological disorder. Studies regarding the accurate diagnosis, prognosis, and in-depth pathogenesis are crucial for the precise and effective treatment of epilepsy. The pathogenesis of epilepsy is complex and involves alterations in variables such as gene expression, protein expression, ion channel activity, energy metabolites, and gut microbiota composition. Satisfactory results are lacking for conventional treatments for epilepsy. Surgical resection of lesions, drug therapy, and non-drug interventions are mainly used in clinical practice to treat pain associated with epilepsy. Non-pharmacological treatments, such as a ketogenic diet, gene therapy for nerve regeneration, and neural regulation, are currently areas of research focus. This review provides a comprehensive overview of the pathogenesis, diagnostic methods, and treatments of epilepsy. It also elaborates on the theoretical basis, treatment modes, and effects of invasive nerve stimulation in neurotherapy, including percutaneous vagus nerve stimulation, deep brain electrical stimulation, repetitive nerve electrical stimulation, in addition to non-invasive transcranial magnetic stimulation and transcranial direct current stimulation. Numerous studies have shown that electromagnetic stimulation-mediated neuromodulation therapy can markedly improve neurological function and reduce the frequency of epileptic seizures. Additionally, many new technologies for the diagnosis and treatment of epilepsy are being explored. However, current research is mainly focused on analyzing patients' clinical manifestations and exploring relevant diagnostic and treatment methods to study the pathogenesis at a molecular level, which has led to a lack of consensus regarding the mechanisms related to the disease.
Collapse
Affiliation(s)
- Dian Jiao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Lai Xu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Zhen Gu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Hua Yan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Dingding Shen
- Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Xiaosong Gu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| |
Collapse
|
3
|
Torres Sánchez A, Dawant M, Danthine V, Cakiroglu I, Santalucia R, Germany Morrison EI, Nonclercq A, Tahry RE. VNS-induced dose-dependent pupillary response in refractory epilepsy. Clin Neurophysiol 2025; 171:67-75. [PMID: 39884165 DOI: 10.1016/j.clinph.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/08/2025] [Accepted: 01/18/2025] [Indexed: 02/01/2025]
Abstract
PURPOSE The Locus Coeruleus (LC) plays a vital role by releasing norepinephrine, which contributes to the antiepileptic effects of Vagus Nerve Stimulation (VNS). LC activity also influences pupil dilation. Investigating VNS dose-dependent Pupillary Dilation Response (PDR) may provide novel neurophysiological insights into therapeutic response and allow for an objective and personalized optimization of stimulation parameters. METHODS Fourteen VNS-implanted patients (9 responders, 5 non-responders) treated for at least 6 months were retrospectively recruited. VNS intensities were adjusted from 0.25 mA to 2.25 mA, or to the highest tolerable level. Concurrently, we tracked pupil size in the left eye and gathered patients' subjective perception scores. Individual curve fitting was used to explore the relationship between VNS intensity and PDR. RESULTS PDR increased with stimulation intensity, particularly in responders. In 6 patients, an inverted U-shaped relationship between intensity and PDR was observed 2-3 s after stimulation onset. A significant interaction was found between VNS intensity and responder status, independent of subjective perception. CONCLUSIONS VNS induces a dose-dependent PDR, which differs between responders and non-responders. In nearly half the patients, the dose-response relationship was characterized by an inverted U-shape with a maximal VNS effect. SIGNIFICANCE We propose VNS-induced PDR as a novel biomarker of VNS response.
Collapse
Affiliation(s)
- Andrés Torres Sánchez
- Institute of Neuroscience (IoNS), Catholic University of Louvain, Brussels, Belgium; Innoviris, Brussels Institute for Research and Innovation, Chaussée de Charleroi 112, 1060, Brussels, Belgium.
| | - Marie Dawant
- Innoviris, Brussels Institute for Research and Innovation, Chaussée de Charleroi 112, 1060, Brussels, Belgium; Bio- Electro- and Mechanical Systems (BEAMS), Université Libre de Bruxelles, Brussels, Belgium
| | - Venethia Danthine
- Institute of Neuroscience (IoNS), Catholic University of Louvain, Brussels, Belgium
| | - Inci Cakiroglu
- Institute of Neuroscience (IoNS), Catholic University of Louvain, Brussels, Belgium; Walloon Excellence in Life Sciences and Biotechnology (WELBIO) Department, WEL Research Institute, Avenue Pasteur 6, 1300 Wavre, Belgium
| | - Roberto Santalucia
- Institute of Neuroscience (IoNS), Catholic University of Louvain, Brussels, Belgium; Department of Child Neurology, Cliniques Universitaires Saint-Luc, Brussels, Belgium; Center for Refractory Epilepsy, Department of Neurology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Enrique Ignacio Germany Morrison
- Institute of Neuroscience (IoNS), Catholic University of Louvain, Brussels, Belgium; Walloon Excellence in Life Sciences and Biotechnology (WELBIO) Department, WEL Research Institute, Avenue Pasteur 6, 1300 Wavre, Belgium
| | - Antoine Nonclercq
- Bio- Electro- and Mechanical Systems (BEAMS), Université Libre de Bruxelles, Brussels, Belgium
| | - Riëm El Tahry
- Institute of Neuroscience (IoNS), Catholic University of Louvain, Brussels, Belgium; Walloon Excellence in Life Sciences and Biotechnology (WELBIO) Department, WEL Research Institute, Avenue Pasteur 6, 1300 Wavre, Belgium; Center for Refractory Epilepsy, Department of Neurology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
4
|
Bömmer T, Schmidt LM, Meier K, Kricheldorff J, Stecher H, Herrmann CS, Thiel CM, Janitzky K, Witt K. Impact of Stimulation Duration in taVNS-Exploring Multiple Physiological and Cognitive Outcomes. Brain Sci 2024; 14:875. [PMID: 39335371 PMCID: PMC11430400 DOI: 10.3390/brainsci14090875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Transcutaneous auricular vagus nerve stimulation (taVNS) is a non-invasive neuromodulation technique that modulates the noradrenergic activity of the locus coeruleus (LC). Yet, there is still uncertainty about the most effective stimulation and reliable outcome parameters. In a double blind, sham-controlled study including a sample of healthy young individuals (N = 29), we compared a shorter (3.4 s) and a longer (30 s) stimulation duration and investigated the effects of taVNS (real vs. sham) on saliva samples (alpha amylase and cortisol concentration), pupil (pupillary light reflex and pupil size at rest) and EEG data (alpha and theta activity at rest, ERPs for No-Go signals), and cognitive tasks (Go/No-Go and Stop Signal Tasks). Salivary alpha amylase concentration was significantly increased in the real as compared to sham stimulation for the 30 s stimulation condition. In the 3.4 s stimulation condition, we found prolonged reaction times and increased error rates in the Go/No-Go task and increased maximum acceleration in the pupillary light reflex. For the other outcomes, no significant differences were found. Our results show that prolonged stimulation increases salivary alpha-amylase, which was expected from the functional properties of the LC. The finding of longer response times to short taVNS stimulation was not expected and cannot be explained by an increase in LC activity. We also discuss the difficulties in assessing pupil size as an expression of taVNS-mediated LC functional changes.
Collapse
Affiliation(s)
- Till Bömmer
- Department of Neurology, Carl von Ossietzky University, 26121 Oldenburg, Germany
- University Clinic for Neurology at the Evangelical Hospital, 26121 Oldenburg, Germany
| | - Luisa M Schmidt
- Department of Neurology, Carl von Ossietzky University, 26121 Oldenburg, Germany
- University Clinic for Neurology at the Evangelical Hospital, 26121 Oldenburg, Germany
| | - Katharina Meier
- Department of Neurology, Carl von Ossietzky University, 26121 Oldenburg, Germany
| | - Julius Kricheldorff
- Department of Neurology, Carl von Ossietzky University, 26121 Oldenburg, Germany
| | - Heiko Stecher
- Experimental Psychology Lab, Department of Psychology, Carl von Ossietzky University, 26129 Oldenburg, Germany
| | - Christoph S Herrmann
- Experimental Psychology Lab, Department of Psychology, Carl von Ossietzky University, 26129 Oldenburg, Germany
- Research Center Neurosensory Science, Carl von Ossietzky University, 26129 Oldenburg, Germany
| | - Christiane M Thiel
- Biological Psychology Lab, Department of Psychology, Carl von Ossietzky University, 26129 Oldenburg, Germany
| | - Kathrin Janitzky
- Department of Neurology, Carl von Ossietzky University, 26121 Oldenburg, Germany
- University Clinic for Neurology at the Evangelical Hospital, 26121 Oldenburg, Germany
| | - Karsten Witt
- Department of Neurology, Carl von Ossietzky University, 26121 Oldenburg, Germany
- University Clinic for Neurology at the Evangelical Hospital, 26121 Oldenburg, Germany
- Research Center Neurosensory Science, Carl von Ossietzky University, 26129 Oldenburg, Germany
| |
Collapse
|
5
|
Giraudier M, Ventura-Bort C, Weymar M. Effects of Transcutaneous Auricular Vagus Nerve Stimulation on the P300: Do Stimulation Duration and Stimulation Type Matter? Brain Sci 2024; 14:690. [PMID: 39061430 PMCID: PMC11274684 DOI: 10.3390/brainsci14070690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Non-invasive transcutaneous auricular vagus nerve stimulation (taVNS) has attracted increasing interest as a neurostimulation tool with potential applications in modulating cognitive processes such as attention and memory, possibly through the modulation of the locus-coeruleus noradrenaline system. Studies examining the P300 brain-related component as a correlate of noradrenergic activity, however, have yielded inconsistent findings, possibly due to differences in stimulation parameters, thus necessitating further investigation. In this event-related potential study involving 61 participants, therefore, we examined how changes in taVNS parameters, specifically stimulation type (interval vs. continuous stimulation) and duration, influence P300 amplitudes during a visual novelty oddball task. Although no effects of stimulation were found over the whole cluster and time window of the P300, cluster-based permutation tests revealed a distinct impact of taVNS on the P300 response for a small electrode cluster, characterized by larger amplitudes observed for easy targets (i.e., stimuli that are easily discernible from standards) following taVNS compared to sham stimulation. Notably, our findings suggested that the type of stimulation significantly modulated taVNS effects on the P300, with continuous stimulation showing larger P300 differences (taVNS vs. sham) for hard targets and standards compared to interval stimulation. We observed no interaction effects of stimulation duration on the target-related P300. While our findings align with previous research, further investigation is warranted to fully elucidate the influence of taVNS on the P300 component and its potential utility as a reliable marker for neuromodulation in this field.
Collapse
Affiliation(s)
- Manon Giraudier
- Department of Biological Psychology and Affective Science, Faculty of Human Sciences, University of Potsdam, Campus Golm, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany; (C.V.-B.); (M.W.)
| | | | | |
Collapse
|
6
|
Jigo M, Carmel JB, Wang Q, Rodenkirch C. Transcutaneous cervical vagus nerve stimulation improves sensory performance in humans: a randomized controlled crossover pilot study. Sci Rep 2024; 14:3975. [PMID: 38368486 PMCID: PMC10874458 DOI: 10.1038/s41598-024-54026-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 02/07/2024] [Indexed: 02/19/2024] Open
Abstract
Accurate senses depend on high-fidelity encoding by sensory receptors and error-free processing in the brain. Progress has been made towards restoring damaged sensory receptors. However, methods for on-demand treatment of impaired central sensory processing are scarce. Prior invasive studies demonstrated that continuous vagus nerve stimulation (VNS) in rodents can activate the locus coeruleus-norepinephrine system to rapidly improve central sensory processing. Here, we investigated whether transcutaneous VNS improves sensory performance in humans. We conducted three sham-controlled experiments, each with 12 neurotypical adults, that measured the effects of transcutaneous VNS on metrics of auditory and visual performance, and heart rate variability (HRV). Continuous stimulation was delivered to cervical (tcVNS) or auricular (taVNS) branches of the vagus nerve while participants performed psychophysics tasks or passively viewed a display. Relative to sham stimulation, tcVNS improved auditory performance by 37% (p = 0.00052) and visual performance by 23% (p = 0.038). Participants with lower performance during sham conditions experienced larger tcVNS-evoked improvements (p = 0.0040). Lastly, tcVNS increased HRV during passive viewing, corroborating vagal engagement. No evidence for an effect of taVNS was observed. These findings validate the effectiveness of tcVNS in humans and position it as a method for on-demand interventions of impairments associated with central sensory processing dysfunction.
Collapse
Affiliation(s)
| | - Jason B Carmel
- Sharper Sense, Inc., New York, NY, USA
- Department of Neurology and Orthopedics, Columbia University Medical Center, New York, NY, USA
| | - Qi Wang
- Sharper Sense, Inc., New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Charles Rodenkirch
- Sharper Sense, Inc., New York, NY, USA.
- The Jacobs Technion-Cornell Institute at Cornell Tech, New York, NY, USA.
| |
Collapse
|
7
|
Jigo M, Carmel JB, Wang Q, Rodenkirch C. Transcutaneous cervical vagus nerve stimulation improves sensory performance in humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.08.552508. [PMID: 37609169 PMCID: PMC10441305 DOI: 10.1101/2023.08.08.552508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Accurate senses depend on high-fidelity encoding by sensory receptors and error-free processing in the brain. Progress has been made towards restoring damaged sensory receptors. However, methods for on-demand treatment of impaired central sensory processing are scarce. Prior invasive studies demonstrated that continuous vagus nerve stimulation (VNS) in rodents can activate the locus coeruleus-norepinephrine system to rapidly improve central sensory processing. Here, we investigated whether transcutaneous VNS improves sensory performance in humans. We conducted three sham-controlled experiments, each with 12 neurotypical adults, that measured the effects of transcutaneous VNS on metrics of auditory and visual performance, and heart rate variability (HRV). Continuous stimulation was delivered to cervical (tcVNS) or auricular (taVNS) branches of the vagus nerve while participants performed psychophysics tasks or passively viewed a display. Relative to sham stimulation, tcVNS improved auditory performance by 37% (p=0.00052) and visual performance by 23% (p=0.038). Participants with lower performance during sham conditions experienced larger tcVNS-evoked improvements (p=0.0040). Lastly, tcVNS increased HRV during passive viewing, corroborating vagal engagement. No evidence for an effect of taVNS was observed. These findings validate the effectiveness of tcVNS in humans and position it as a method for on-demand interventions of impairments associated with central sensory processing dysfunction.
Collapse
Affiliation(s)
| | - Jason B. Carmel
- Sharper Sense, Inc., New York, NY
- Department of Neurology and Orthopedics, Columbia University Medical Center, New York, NY
| | - Qi Wang
- Sharper Sense, Inc., New York, NY
- Department of Biomedical Engineering, Columbia University, New York, NY
| | - Charles Rodenkirch
- Sharper Sense, Inc., New York, NY
- The Jacobs Technion-Cornell Institute at Cornell Tech, New York, NY
| |
Collapse
|
8
|
Lloyd B, Wurm F, de Kleijn R, Nieuwenhuis S. Short-term transcutaneous vagus nerve stimulation increases pupil size but does not affect EEG alpha power: A replication of Sharon et al. (2021, Journal of Neuroscience). Brain Stimul 2023; 16:1001-1008. [PMID: 37348704 DOI: 10.1016/j.brs.2023.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/29/2023] [Accepted: 06/18/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND Transcutaneous auricular vagus nerve stimulation (taVNS) has been tested as a potential treatment for pharmaco-resistant epilepsy and depression. Its clinical efficacy is thought to depend on taVNS-induced activation of the locus coeruleus and other neuromodulator systems. However, unlike for invasive VNS in rodents, there is little evidence for an effect of taVNS on noradrenergic activity. OBJECTIVE We attempted to replicate recently published findings by Sharon et al. (2021), showing that short bursts of taVNS transiently increased pupil size and decreased EEG alpha power, two correlates of central noradrenergic activity. METHODS Following the original study, we used a single-blind, sham-controlled, randomized cross-over design. Human volunteers (n = 29) received short-term (3.4 s) taVNS at the maximum level below the pain threshold, while we collected resting-state pupil-size and EEG data. To analyze the data, we used scripts provided by Sharon and colleagues. RESULTS Consistent with Sharon et al. (2021), pupil dilation was significantly larger during taVNS than during sham stimulation (p = .009; Bayes factor supporting the difference = 7.45). However, we failed to replicate the effect of taVNS on EEG alpha power (p = .37); the data were four times more likely under the null hypothesis (BF10 = 0.28). CONCLUSION Our findings support the effectiveness of short-term taVNS in inducing transient pupil dilation, a correlate of phasic noradrenergic activity. However, we failed to replicate the recent finding by Sharon et al. (2021) that taVNS attenuates EEG alpha activity. Overall, this study highlights the need for continued research on the neural mechanisms underlying taVNS efficacy and its potential as a treatment option for pharmaco-resistant conditions. It also highlights the need for direct replications of influential taVNS studies.
Collapse
Affiliation(s)
- Beth Lloyd
- Institute of Psychology, Leiden University, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, Leiden University, Leiden, the Netherlands.
| | - Franz Wurm
- Institute of Psychology, Leiden University, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, Leiden University, Leiden, the Netherlands
| | - Roy de Kleijn
- Institute of Psychology, Leiden University, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, Leiden University, Leiden, the Netherlands
| | - Sander Nieuwenhuis
- Institute of Psychology, Leiden University, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, Leiden University, Leiden, the Netherlands
| |
Collapse
|
9
|
Giraudier M, Ventura-Bort C, Burger AM, Claes N, D'Agostini M, Fischer R, Franssen M, Kaess M, Koenig J, Liepelt R, Nieuwenhuis S, Sommer A, Usichenko T, Van Diest I, von Leupoldt A, Warren CM, Weymar M. Evidence for a modulating effect of transcutaneous auricular vagus nerve stimulation (taVNS) on salivary alpha-amylase as indirect noradrenergic marker: A pooled mega-analysis. Brain Stimul 2022; 15:1378-1388. [PMID: 36183953 DOI: 10.1016/j.brs.2022.09.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Non-invasive transcutaneous auricular vagus nerve stimulation (taVNS) has received tremendous attention as a potential neuromodulator of cognitive and affective functions, which likely exerts its effects via activation of the locus coeruleus-noradrenaline (LC-NA) system. Reliable effects of taVNS on markers of LC-NA system activity, however, have not been demonstrated yet. METHODS The aim of the present study was to overcome previous limitations by pooling raw data from a large sample of ten taVNS studies (371 healthy participants) that collected salivary alpha-amylase (sAA) as a potential marker of central NA release. RESULTS While a meta-analytic approach using summary statistics did not yield any significant effects, linear mixed model analyses showed that afferent stimulation of the vagus nerve via taVNS increased sAA levels compared to sham stimulation (b = 0.16, SE = 0.05, p = 0.001). When considering potential confounders of sAA, we further replicated previous findings on the diurnal trajectory of sAA activity. CONCLUSION(S) Vagal activation via taVNS increases sAA release compared to sham stimulation, which likely substantiates the assumption that taVNS triggers NA release. Moreover, our results highlight the benefits of data pooling and data sharing in order to allow stronger conclusions in research.
Collapse
Affiliation(s)
- Manon Giraudier
- Department of Biological Psychology and Affective Science, Faculty of Human Sciences, University of Potsdam, Potsdam, Germany.
| | - Carlos Ventura-Bort
- Department of Biological Psychology and Affective Science, Faculty of Human Sciences, University of Potsdam, Potsdam, Germany
| | | | - Nathalie Claes
- Research Group Health Psychology, KU Leuven, Leuven, Belgium
| | | | - Rico Fischer
- Department of Psychology, University of Greifswald, Greifswald, Germany
| | | | - Michael Kaess
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Department of Child and Adolescent Psychiatry, Centre for Psychosocial Medicine, University of Heidelberg, Heidelberg, Germany
| | - Julian Koenig
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Cologne, Germany
| | - Roman Liepelt
- Department of General Psychology: Judgment, Decision Making, Action, Faculty of Psychology, University of Hagen (FernUniversität in Hagen), Hagen, Germany
| | - Sander Nieuwenhuis
- Institute of Psychology, Leiden University, Netherlands; Leiden Institute for Brain and Cognition, Leiden University, Netherlands
| | - Aldo Sommer
- Department of General Psychology: Judgment, Decision Making, Action, Faculty of Psychology, University of Hagen (FernUniversität in Hagen), Hagen, Germany; Department of Exercise Physiology, German Sport University Cologne, Cologne, Germany
| | - Taras Usichenko
- Department of Anesthesiology, University Medicine of Greifswald, Greifswald, Germany; Department of Anesthesia, McMaster University, Hamilton, Canada
| | - Ilse Van Diest
- Research Group Health Psychology, KU Leuven, Leuven, Belgium
| | | | - Christopher M Warren
- Emma Eccles Jones College of Education and Human Services, Utah State University, United States
| | - Mathias Weymar
- Department of Biological Psychology and Affective Science, Faculty of Human Sciences, University of Potsdam, Potsdam, Germany; Faculty of Health Sciences Brandenburg, University of Potsdam, Potsdam, Germany.
| |
Collapse
|
10
|
Rodenkirch C, Carmel JB, Wang Q. Rapid Effects of Vagus Nerve Stimulation on Sensory Processing Through Activation of Neuromodulatory Systems. Front Neurosci 2022; 16:922424. [PMID: 35864985 PMCID: PMC9294458 DOI: 10.3389/fnins.2022.922424] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/15/2022] [Indexed: 12/13/2022] Open
Abstract
After sensory information is encoded into neural signals at the periphery, it is processed through multiple brain regions before perception occurs (i.e., sensory processing). Recent work has begun to tease apart how neuromodulatory systems influence sensory processing. Vagus nerve stimulation (VNS) is well-known as an effective and safe method of activating neuromodulatory systems. There is a growing body of studies confirming VNS has immediate effects on sensory processing across multiple sensory modalities. These immediate effects of VNS on sensory processing are distinct from the more well-documented method of inducing lasting neuroplastic changes to the sensory pathways through repeatedly delivering a brief VNS burst paired with a sensory stimulus. Immediate effects occur upon VNS onset, often disappear upon VNS offset, and the modulation is present for all sensory stimuli. Conversely, the neuroplastic effect of pairing sub-second bursts of VNS with a sensory stimulus alters sensory processing only after multiple pairing sessions, this alteration remains after cessation of pairing sessions, and the alteration selectively affects the response properties of neurons encoding the specific paired sensory stimulus. Here, we call attention to the immediate effects VNS has on sensory processing. This review discusses existing studies on this topic, provides an overview of the underlying neuromodulatory systems that likely play a role, and briefly explores the potential translational applications of using VNS to rapidly regulate sensory processing.
Collapse
Affiliation(s)
- Charles Rodenkirch
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
- Jacobs Technion-Cornell Institute, Cornell Tech, New York, NY, United States
- *Correspondence: Charles Rodenkirch,
| | - Jason B. Carmel
- Department of Neurology and Orthopedics, Columbia University Medical Center, New York, NY, United States
| | - Qi Wang
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
- Qi Wang,
| |
Collapse
|
11
|
Transcutaneous vagus nerve stimulation in patients with attention-deficit/hyperactivity disorder: A viable option? PROGRESS IN BRAIN RESEARCH 2021; 264:171-190. [PMID: 34167655 DOI: 10.1016/bs.pbr.2021.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Individuals with attention-deficit/hyperactivity disorder (ADHD) suffer from a range of cognitive and behavioral problems that severely impair their educational and occupational attainment. ADHD symptoms have been linked to structural and functional changes within and between different brain regions, particularly the prefrontal cortex. At the system level, reduced availability of the neurotransmitters dopamine (DA) and norepinephrine (NE) but also γ-aminobutyric acid (GABA) have been repeatedly demonstrated. Recently, non-invasive brain stimulation (NIBS) techniques have been explored as treatment alternatives to alter dysfunctional activation patterns in specified brain areas or networks. In the current paper, we introduce transcutaneous vagus nerve stimulation (tVNS) as a systemic approach to directly affect NE and GABA neurotransmission. TVNS is a non-drug intervention with low risk and proven efficacy in improving cognitive particularly executive functions. It is easy to apply and therefore well-suited to provide home-based or mobile treatment options allowing a significant increase in treatment intensity and providing easier access to medical care for individuals who are unable to regularly visit a clinician. We describe in detail the underlying mechanisms of tVNS and current fields of application and discuss its potential as an adjuvant treatment for ADHD.
Collapse
|
12
|
Farmer AD, Strzelczyk A, Finisguerra A, Gourine AV, Gharabaghi A, Hasan A, Burger AM, Jaramillo AM, Mertens A, Majid A, Verkuil B, Badran BW, Ventura-Bort C, Gaul C, Beste C, Warren CM, Quintana DS, Hämmerer D, Freri E, Frangos E, Tobaldini E, Kaniusas E, Rosenow F, Capone F, Panetsos F, Ackland GL, Kaithwas G, O'Leary GH, Genheimer H, Jacobs HIL, Van Diest I, Schoenen J, Redgrave J, Fang J, Deuchars J, Széles JC, Thayer JF, More K, Vonck K, Steenbergen L, Vianna LC, McTeague LM, Ludwig M, Veldhuizen MG, De Couck M, Casazza M, Keute M, Bikson M, Andreatta M, D'Agostini M, Weymar M, Betts M, Prigge M, Kaess M, Roden M, Thai M, Schuster NM, Montano N, Hansen N, Kroemer NB, Rong P, Fischer R, Howland RH, Sclocco R, Sellaro R, Garcia RG, Bauer S, Gancheva S, Stavrakis S, Kampusch S, Deuchars SA, Wehner S, Laborde S, Usichenko T, Polak T, Zaehle T, Borges U, Teckentrup V, Jandackova VK, Napadow V, Koenig J. International Consensus Based Review and Recommendations for Minimum Reporting Standards in Research on Transcutaneous Vagus Nerve Stimulation (Version 2020). Front Hum Neurosci 2021; 14:568051. [PMID: 33854421 PMCID: PMC8040977 DOI: 10.3389/fnhum.2020.568051] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/01/2020] [Indexed: 12/18/2022] Open
Abstract
Given its non-invasive nature, there is increasing interest in the use of transcutaneous vagus nerve stimulation (tVNS) across basic, translational and clinical research. Contemporaneously, tVNS can be achieved by stimulating either the auricular branch or the cervical bundle of the vagus nerve, referred to as transcutaneous auricular vagus nerve stimulation(VNS) and transcutaneous cervical VNS, respectively. In order to advance the field in a systematic manner, studies using these technologies need to adequately report sufficient methodological detail to enable comparison of results between studies, replication of studies, as well as enhancing study participant safety. We systematically reviewed the existing tVNS literature to evaluate current reporting practices. Based on this review, and consensus among participating authors, we propose a set of minimal reporting items to guide future tVNS studies. The suggested items address specific technical aspects of the device and stimulation parameters. We also cover general recommendations including inclusion and exclusion criteria for participants, outcome parameters and the detailed reporting of side effects. Furthermore, we review strategies used to identify the optimal stimulation parameters for a given research setting and summarize ongoing developments in animal research with potential implications for the application of tVNS in humans. Finally, we discuss the potential of tVNS in future research as well as the associated challenges across several disciplines in research and clinical practice.
Collapse
Affiliation(s)
- Adam D. Farmer
- Department of Gastroenterology, University Hospitals of North Midlands NHS Trust, Stoke on Trent, United Kingdom
| | - Adam Strzelczyk
- Department of Neurology, Epilepsy Center Frankfurt Rhine-Main, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | | | - Alexander V. Gourine
- Department of Neuroscience, Physiology and Pharmacology, Centre for Cardiovascular and Metabolic Neuroscience, University College London, London, United Kingdom
| | - Alireza Gharabaghi
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tuebingen, Tuebingen, Germany
| | - Alkomiet Hasan
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, University of Augsburg, Augsburg, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Andreas M. Burger
- Laboratory for Biological Psychology, Faculty of Psychology and Educational Sciences, University of Leuven, Leuven, Belgium
| | | | - Ann Mertens
- Department of Neurology, Institute for Neuroscience, 4Brain, Ghent University Hospital, Gent, Belgium
| | - Arshad Majid
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Bart Verkuil
- Clinical Psychology and the Leiden Institute of Brain and Cognition, Leiden University, Leiden, Netherlands
| | - Bashar W. Badran
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, United States
| | - Carlos Ventura-Bort
- Department of Biological Psychology and Affective Science, Faculty of Human Sciences, University of Potsdam, Potsdam, Germany
| | - Charly Gaul
- Migraine and Headache Clinic Koenigstein, Königstein im Taunus, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | | | - Daniel S. Quintana
- NORMENT, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Dorothea Hämmerer
- Medical Faculty, Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
- Center for Behavioral Brain Sciences Magdeburg (CBBS), Otto-von-Guericke University, Magdeburg, Germany
| | - Elena Freri
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Eleni Frangos
- Pain and Integrative Neuroscience Branch, National Center for Complementary and Integrative Health, NIH, Bethesda, MD, United States
| | - Eleonora Tobaldini
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Eugenijus Kaniusas
- Institute of Electrodynamics, Microwave and Circuit Engineering, TU Wien, Vienna, Austria
- SzeleSTIM GmbH, Vienna, Austria
| | - Felix Rosenow
- Department of Neurology, Epilepsy Center Frankfurt Rhine-Main, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Fioravante Capone
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Fivos Panetsos
- Faculty of Biology and Faculty of Optics, Complutense University of Madrid and Institute for Health Research, San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Gareth L. Ackland
- Translational Medicine and Therapeutics, Barts and The London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Gaurav Kaithwas
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, India
| | - Georgia H. O'Leary
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, United States
| | - Hannah Genheimer
- Department of Biological Psychology, Clinical Psychology and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Heidi I. L. Jacobs
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, Netherlands
| | - Ilse Van Diest
- Research Group Health Psychology, Faculty of Psychology and Educational Sciences, University of Leuven, Leuven, Belgium
| | - Jean Schoenen
- Headache Research Unit, Department of Neurology-Citadelle Hospital, University of Liège, Liège, Belgium
| | - Jessica Redgrave
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Jiliang Fang
- Functional Imaging Lab, Department of Radiology, Guang An Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jim Deuchars
- School of Biomedical Science, Faculty of Biological Science, University of Leeds, Leeds, United Kingdom
| | - Jozsef C. Széles
- Division for Vascular Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Julian F. Thayer
- Department of Psychological Science, University of California, Irvine, Irvine, CA, United States
| | - Kaushik More
- Institute for Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Neuromodulatory Networks, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Kristl Vonck
- Department of Neurology, Institute for Neuroscience, 4Brain, Ghent University Hospital, Gent, Belgium
| | - Laura Steenbergen
- Clinical and Cognitive Psychology and the Leiden Institute of Brain and Cognition, Leiden University, Leiden, Netherlands
| | - Lauro C. Vianna
- NeuroV̇ASQ̇ - Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasilia, Brasilia, Brazil
| | - Lisa M. McTeague
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, United States
| | - Mareike Ludwig
- Department of Anatomy, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Maria G. Veldhuizen
- Mental Health and Wellbeing Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Marijke De Couck
- Faculty of Health Care, University College Odisee, Aalst, Belgium
- Division of Epileptology, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - Marina Casazza
- Department of Neurosurgery, University of Tübingen, Tübingen, Germany
| | - Marius Keute
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tuebingen, Tuebingen, Germany
| | - Marom Bikson
- Department of Biomedical Engineering, City College of New York, New York, NY, United States
| | - Marta Andreatta
- Department of Biological Psychology, Clinical Psychology and Psychotherapy, University of Würzburg, Würzburg, Germany
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, Netherlands
| | - Martina D'Agostini
- Research Group Health Psychology, Faculty of Psychology and Educational Sciences, University of Leuven, Leuven, Belgium
| | - Mathias Weymar
- Department of Biological Psychology and Affective Science, Faculty of Human Sciences, University of Potsdam, Potsdam, Germany
- Faculty of Health Sciences Brandenburg, University of Potsdam, Potsdam, Germany
| | - Matthew Betts
- Department of Anatomy, Faculty of Medicine, Mersin University, Mersin, Turkey
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Magdeburg, Germany
- Center for Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, Germany
| | - Matthias Prigge
- Neuromodulatory Networks, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Michael Kaess
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Section for Translational Psychobiology in Child and Adolescent Psychiatry, Department of Child and Adolescent Psychiatry, Centre for Psychosocial Medicine, University of Heidelberg, Heidelberg, Germany
| | - Michael Roden
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Munich, Germany
| | - Michelle Thai
- Department of Psychology, College of Liberal Arts, University of Minnesota, Minneapolis, MN, United States
| | - Nathaniel M. Schuster
- Department of Anesthesiology, Center for Pain Medicine, University of California, San Diego Health System, La Jolla, CA, United States
| | - Nicola Montano
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Niels Hansen
- Department of Psychiatry and Psychotherapy, University of Göttingen, Göttingen, Germany
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIPLab), University of Göttingen, Göttingen, Germany
| | - Nils B. Kroemer
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Peijing Rong
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Rico Fischer
- Department of Psychology, University of Greifswald, Greifswald, Germany
| | - Robert H. Howland
- Department of Psychiatry, University of Pittsburgh School of Medicine, UPMC Western Psychiatric Hospital, Pittsburgh, PA, United States
| | - Roberta Sclocco
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
- Department of Radiology, Logan University, Chesterfield, MO, United States
| | - Roberta Sellaro
- Cognitive Psychology Unit, Institute of Psychology, Leiden University, Leiden, Netherlands
- Leiden Institute for Brain and Cognition, Leiden, Netherlands
- Department of Developmental Psychology and Socialisation, University of Padova, Padova, Italy
| | - Ronald G. Garcia
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Sebastian Bauer
- Department of Neurology, Epilepsy Center Frankfurt Rhine-Main, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Sofiya Gancheva
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- Heart Rhythm Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Stavros Stavrakis
- Faculty of Biological Science, School of Biomedical Science, University of Leeds, Leeds, United Kingdom
| | - Stefan Kampusch
- Institute of Electrodynamics, Microwave and Circuit Engineering, TU Wien, Vienna, Austria
- SzeleSTIM GmbH, Vienna, Austria
| | - Susan A. Deuchars
- School of Biomedical Science, Faculty of Biological Science, University of Leeds, Leeds, United Kingdom
| | - Sven Wehner
- Department of Surgery, University Hospital Bonn, Bonn, Germany
| | - Sylvain Laborde
- Department of Performance Psychology, Institute of Psychology, Deutsche Sporthochschule, Köln, Germany
| | - Taras Usichenko
- Department of Anesthesiology, University Medicine Greifswald, Greifswald, Germany
- Department of Anesthesia, McMaster University, Hamilton, ON, Canada
| | - Thomas Polak
- Laboratory of Functional Neurovascular Diagnostics, AG Early Diagnosis of Dementia, Department of Psychiatry, Psychosomatics and Psychotherapy, University Clinic Würzburg, Würzburg, Germany
| | - Tino Zaehle
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Uirassu Borges
- Department of Performance Psychology, Institute of Psychology, Deutsche Sporthochschule, Köln, Germany
- Department of Social and Health Psychology, Institute of Psychology, Deutsche Sporthochschule, Köln, Germany
| | - Vanessa Teckentrup
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Vera K. Jandackova
- Department of Epidemiology and Public Health, Faculty of Medicine, University of Ostrava, Ostrava, Czechia
- Department of Human Movement Studies, Faculty of Education, University of Ostrava, Ostrava, Czechia
| | - Vitaly Napadow
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
- Department of Radiology, Logan University, Chesterfield, MO, United States
| | - Julian Koenig
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Section for Experimental Child and Adolescent Psychiatry, Department of Child and Adolescent Psychiatry, Centre for Psychosocial Medicine, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
13
|
Pihlaja M, Failla L, Peräkylä J, Hartikainen KM. Reduced Frontal Nogo-N2 With Uncompromised Response Inhibition During Transcutaneous Vagus Nerve Stimulation-More Efficient Cognitive Control? Front Hum Neurosci 2020; 14:561780. [PMID: 33132877 PMCID: PMC7573492 DOI: 10.3389/fnhum.2020.561780] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022] Open
Abstract
We have previously shown invasive vagus nerve stimulation to improve attention and working memory and alter emotion-attention interaction in patients with refractory epilepsy, suggesting that VNS might be useful in the treatment of cognitive impairment. The current research focuses on whether non-invasive, transcutaneous vagus nerve stimulation (tVNS) has similar effects to VNS. Furthermore, we aimed to assess whether tVNS has an impact on cognitive control in general or on underlying brain physiology in a task that mimics everyday life demands where multiple executive functions are engaged while encountering intervening emotional stimuli. Event-related potentials (ERP) evoked in such a task, specifically centro-parietal P3 and frontal N2 were used as biomarkers for attention allocation and cognitive control required to carry out the task. A single-blinded, sham-controlled, within-subject study on healthy subjects (n = 25) was conducted using Executive Reaction Time Test (RT-test), a Go/NoGo task engaging multiple executive functions along with intervening threat-related distractors while EEG was recorded. tVNS at the left tragus and sham stimulation at the left ear lobe was alternately delivered throughout the task. To assess the impact of tVNS on neural activity underlying attention and cognitive control, centro-parietal P3 and frontal N2 peak amplitudes were measured in Go and NoGo conditions. Task performance was assessed with RTs and different error types reflecting cognitive control in general and distinct executive functions, such as working memory and response inhibition.No significant effects due to tVNS on performance in the Executive RT-test were observed. For N2 there was a main effect of stimulator status and a significant interaction of trial type (Go, NoGo) and stimulator status. Post hoc analysis revealed that tVNS resulted in a significant reduction of frontal N2 only in the NoGo condition. No significant effects were observed for P3 nor were there any effects of emotion. Diminished NoGo-N2 potential along with unaltered task performance during tVNS suggests fewer cognitive control resources were required to successfully withhold a prepotent response. Though caution is warranted, we suggest that tVNS may lead to more efficient neural processing with fewer resources needed for successful cognitive control, providing promise for its potential use in cognitive enhancement.
Collapse
Affiliation(s)
- Mia Pihlaja
- Behavioral Neurology Research Unit, Tampere University Hospital, Tampere, Finland.,Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Laura Failla
- Behavioral Neurology Research Unit, Tampere University Hospital, Tampere, Finland.,Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Jari Peräkylä
- Behavioral Neurology Research Unit, Tampere University Hospital, Tampere, Finland.,Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Kaisa M Hartikainen
- Behavioral Neurology Research Unit, Tampere University Hospital, Tampere, Finland.,Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
14
|
Burger AM, D'Agostini M, Verkuil B, Van Diest I. Moving beyond belief: A narrative review of potential biomarkers for transcutaneous vagus nerve stimulation. Psychophysiology 2020; 57:e13571. [PMID: 32202671 DOI: 10.1111/psyp.13571] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/15/2020] [Accepted: 02/01/2020] [Indexed: 12/25/2022]
Abstract
Transcutaneous vagus nerve stimulation (tVNS) is a non-invasive neurostimulation technique that is currently being tested as a potential treatment for a myriad of neurological and psychiatric disorders. However, the working mechanisms underlying tVNS are poorly understood and it remains unclear whether stimulation activates the vagus nerve for every participant. Finding a biological marker of tVNS is imperative, as it can help guide research on clinical applications and can inform researchers on optimal stimulation sites and parameters to further optimize treatment efficacy. In this narrative review, we discuss five potential biomarkers for tVNS and review currently available evidence for these markers for both invasive and tVNS. While some of these biomarkers hold promise from a theoretical perspective, none of the potential biomarkers provide clear and definitive indications that tVNS increases the vagal activity or augments activity in the locus coeruleus-noradrenaline network. We conclude the review by providing several recommendations for how to tackle the challenges and opportunities when researching potential biomarkers for the effects of tVNS.
Collapse
Affiliation(s)
- Andreas Michael Burger
- Health Psychology Research Group, Faculty of Psychology and Educational Sciences, University of Leuven, Leuven, Belgium.,Biological Psychology Research Group, Faculty of Psychology and Educational Sciences, University of Leuven, Leuven, Belgium
| | - Martina D'Agostini
- Health Psychology Research Group, Faculty of Psychology and Educational Sciences, University of Leuven, Leuven, Belgium
| | - Bart Verkuil
- Department of Clinical Psychology, Leiden University, Leiden, the Netherlands
| | - Ilse Van Diest
- Health Psychology Research Group, Faculty of Psychology and Educational Sciences, University of Leuven, Leuven, Belgium
| |
Collapse
|
15
|
Dibué-Adjei M, Kamp MA, Vonck K. 30 years of vagus nerve stimulation trials in epilepsy: Do we need neuromodulation-specific trial designs? Epilepsy Res 2019; 153:71-75. [DOI: 10.1016/j.eplepsyres.2019.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/28/2019] [Accepted: 02/19/2019] [Indexed: 01/27/2023]
|
16
|
Warren CM, Tona KD, Ouwerkerk L, van Paridon J, Poletiek F, van Steenbergen H, Bosch JA, Nieuwenhuis S. The neuromodulatory and hormonal effects of transcutaneous vagus nerve stimulation as evidenced by salivary alpha amylase, salivary cortisol, pupil diameter, and the P3 event-related potential. Brain Stimul 2018; 12:635-642. [PMID: 30591360 DOI: 10.1016/j.brs.2018.12.224] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/07/2018] [Accepted: 12/12/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Transcutaneous vagus nerve stimulation (tVNS) is a new, non-invasive technique being investigated as an intervention for a variety of clinical disorders, including epilepsy and depression. It is thought to exert its therapeutic effect by increasing central norepinephrine (NE) activity, but the evidence supporting this notion is limited. OBJECTIVE In order to test for an impact of tVNS on psychophysiological and hormonal indices of noradrenergic function, we applied tVNS in concert with assessment of salivary alpha amylase (SAA) and cortisol, pupil size, and electroencephalograph (EEG) recordings. METHODS Across three experiments, we applied real and sham tVNS to 61 healthy participants while they performed a set of simple stimulus-discrimination tasks. Before and after the task, as well as during one break, participants provided saliva samples and had their pupil size recorded. EEG was recorded throughout the task. The target for tVNS was the cymba conchae, which is heavily innervated by the auricular branch of the vagus nerve. Sham stimulation was applied to the ear lobe. RESULTS P3 amplitude was not affected by tVNS (Experiment 1A: N = 24; Experiment 1B: N = 20; Bayes factor supporting null model = 4.53), nor was pupil size (Experiment 2: N = 16; interaction of treatment and time: p = .79). However, tVNS increased SAA (Experiments 1A and 2: N = 25) and attenuated the decline of salivary cortisol compared to sham (Experiment 2: N = 17), as indicated by significant interactions involving treatment and time (p = .023 and p = .040, respectively). CONCLUSION These findings suggest that tVNS modulates hormonal indices but not psychophysiological indices of noradrenergic function.
Collapse
Affiliation(s)
- C M Warren
- Institute of Psychology, Leiden University, Leiden, 2333, AK, Netherlands; Leiden Institute for Brain and Cognition, Leiden University, Leiden, 2300, RC, Netherlands.
| | - K D Tona
- Institute of Psychology, Leiden University, Leiden, 2333, AK, Netherlands; Leiden Institute for Brain and Cognition, Leiden University, Leiden, 2300, RC, Netherlands
| | - L Ouwerkerk
- Institute of Psychology, Leiden University, Leiden, 2333, AK, Netherlands
| | - J van Paridon
- Institute of Psychology, Leiden University, Leiden, 2333, AK, Netherlands; Max Planck Institute of Psycholinguistics, Nijmegen, 6525, XD, Netherlands
| | - F Poletiek
- Institute of Psychology, Leiden University, Leiden, 2333, AK, Netherlands; Max Planck Institute of Psycholinguistics, Nijmegen, 6525, XD, Netherlands
| | - Henk van Steenbergen
- Institute of Psychology, Leiden University, Leiden, 2333, AK, Netherlands; Leiden Institute for Brain and Cognition, Leiden University, Leiden, 2300, RC, Netherlands
| | - J A Bosch
- Department of Clinical Psychology, University of Amsterdam, Amsterdam, 1018, XA, Netherlands; Mannheim Institute of Public Health, Heidelberg University, Mannheim, 68167, Germany
| | - S Nieuwenhuis
- Institute of Psychology, Leiden University, Leiden, 2333, AK, Netherlands; Leiden Institute for Brain and Cognition, Leiden University, Leiden, 2300, RC, Netherlands
| |
Collapse
|
17
|
Lewine JD, Paulson K, Bangera N, Simon BJ. Exploration of the Impact of Brief Noninvasive Vagal Nerve Stimulation on EEG and Event‐Related Potentials. Neuromodulation 2018; 22:564-572. [DOI: 10.1111/ner.12864] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 08/02/2018] [Accepted: 08/15/2018] [Indexed: 01/25/2023]
Affiliation(s)
- Jeffrey D. Lewine
- The Mind Research Network Albuquerque NM USA
- The Lovelace Family of Companies Albuquerque NM USA
- The Department of Neurology and the Department of PsychologyUniversity of New Mexico Albuquerque NM USA
| | - Kim Paulson
- The Mind Research Network Albuquerque NM USA
| | | | | |
Collapse
|
18
|
Ventura-Bort C, Wirkner J, Genheimer H, Wendt J, Hamm AO, Weymar M. Effects of Transcutaneous Vagus Nerve Stimulation (tVNS) on the P300 and Alpha-Amylase Level: A Pilot Study. Front Hum Neurosci 2018; 12:202. [PMID: 29977196 PMCID: PMC6021745 DOI: 10.3389/fnhum.2018.00202] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 04/30/2018] [Indexed: 11/30/2022] Open
Abstract
Recent research suggests that the P3b may be closely related to the activation of the locus coeruleus-norepinephrine (LC-NE) system. To further study the potential association, we applied a novel technique, the non-invasive transcutaneous vagus nerve stimulation (tVNS), which is speculated to increase noradrenaline levels. Using a within-subject cross-over design, 20 healthy participants received continuous tVNS and sham stimulation on two consecutive days (stimulation counterbalanced across participants) while performing a visual oddball task. During stimulation, oval non-targets (standard), normal-head (easy) and rotated-head (difficult) targets, as well as novel stimuli (scenes) were presented. As an indirect marker of noradrenergic activation we also collected salivary alpha-amylase (sAA) before and after stimulation. Results showed larger P3b amplitudes for target, relative to standard stimuli, irrespective of stimulation condition. Exploratory post hoc analyses, however, revealed that, in comparison to standard stimuli, easy (but not difficult) targets produced larger P3b (but not P3a) amplitudes during active tVNS, compared to sham stimulation. For sAA levels, although main analyses did not show differential effects of stimulation, direct testing revealed that tVNS (but not sham stimulation) increased sAA levels after stimulation. Additionally, larger differences between tVNS and sham stimulation in P3b magnitudes for easy targets were associated with larger increase in sAA levels after tVNS, but not after sham stimulation. Despite preliminary evidence for a modulatory influence of tVNS on the P3b, which may be partly mediated by activation of the noradrenergic system, additional research in this field is clearly warranted. Future studies need to clarify whether tVNS also facilitates other processes, such as learning and memory, and whether tVNS can be used as therapeutic tool.
Collapse
Affiliation(s)
| | - Janine Wirkner
- Department of Psychology, University of Greifswald, Greifswald, Germany
| | - Hannah Genheimer
- Department of Psychology, University of Würzburg, Würzburg, Germany
| | - Julia Wendt
- Department of Psychology, University of Greifswald, Greifswald, Germany
| | - Alfons O. Hamm
- Department of Psychology, University of Greifswald, Greifswald, Germany
| | - Mathias Weymar
- Department of Psychology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
19
|
Influence of dual-tasking with different levels of attention diversion on characteristics of the movement-related cortical potential. Brain Res 2017; 1674:10-19. [DOI: 10.1016/j.brainres.2017.08.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 08/11/2017] [Accepted: 08/12/2017] [Indexed: 11/21/2022]
|
20
|
Carrette S, Boon P, Vonck K. A prestimulation evaluation protocol for patients with drug resistant epilepsy. Seizure 2017; 44:137-142. [DOI: 10.1016/j.seizure.2016.10.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 10/16/2016] [Indexed: 12/29/2022] Open
|
21
|
Schevernels H, van Bochove ME, De Taeye L, Bombeke K, Vonck K, Van Roost D, De Herdt V, Santens P, Raedt R, Boehler CN. The effect of vagus nerve stimulation on response inhibition. Epilepsy Behav 2016; 64:171-179. [PMID: 27743550 DOI: 10.1016/j.yebeh.2016.09.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 08/27/2016] [Accepted: 09/06/2016] [Indexed: 11/15/2022]
Abstract
In the current study, we explored whether vagus nerve stimulation (VNS) in patients with epilepsy, which is believed to increase norepinephrine (NE) levels via activation of the locus coeruleus, would positively affect response inhibition. Moreover, we tried to identify the dynamics of the underlying neural processes by investigating event-related potentials (ERPs) and pupil size. Patients performed a stop-signal task once when stimulation was switched on and once when it was switched off. We found a correlational pattern suggesting that patients who clinically benefit more from VNS treatment also show a larger behavioral advantage, in terms of faster response inhibition, when the vagus nerve is being stimulated. Event-related potential (ERP) results suggested more pronounced reactive inhibition when stimulation was switched on, independent of the individual amount of seizure reduction. Transient go-locked pupil size was increased from go trials to successful stop trials to unsuccessful stop trials but without displaying a clear VNS effect, which however, might relate to limited sensitivity. We conclude that VNS likely has a positive effect on response inhibition, at least in patients with epilepsy that benefit clinically from the treatment, presumably relating to enhancements of response-inhibition mechanisms and, therefore, identify enhanced response inhibition as a possible cognitive benefit of VNS.
Collapse
Affiliation(s)
- Hanne Schevernels
- Department of Experimental Psychology, Ghent University, 9000 Ghent, Belgium.
| | - Marlies E van Bochove
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 HR Nijmegen, The Netherlands
| | - Leen De Taeye
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology (LCEN3), Ghent University, 9000 Ghent, Belgium
| | - Klaas Bombeke
- Department of Experimental Psychology, Ghent University, 9000 Ghent, Belgium
| | - Kristl Vonck
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology (LCEN3), Ghent University, 9000 Ghent, Belgium
| | - Dirk Van Roost
- Department of Neurosurgery, Ghent University Hospital, 9000 Ghent, Belgium
| | - Veerle De Herdt
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology (LCEN3), Ghent University, 9000 Ghent, Belgium
| | - Patrick Santens
- Department of Neurology, Ghent University Hospital, 9000 Gent, Belgium
| | - Robrecht Raedt
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology (LCEN3), Ghent University, 9000 Ghent, Belgium
| | - C Nico Boehler
- Department of Experimental Psychology, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
22
|
Wostyn S, Staljanssens W, De Taeye L, Strobbe G, Gadeyne S, Van Roost D, Raedt R, Vonck K, van Mierlo P. EEG Derived Brain Activity Reflects Treatment Response from Vagus Nerve Stimulation in Patients with Epilepsy. Int J Neural Syst 2016; 27:1650048. [PMID: 27712133 DOI: 10.1142/s0129065716500489] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mechanism of action of vagus nerve stimulation (VNS) is yet to be elucidated. To that end, the effects of VNS on the brain of epileptic patients were studied. Both when VNS was switched "On" and "Off", the brain activity of responders (R, seizure frequency reduction of over 50%) was compared to the brain activity of nonresponders (NR, seizure frequency reduction of less than 50%). Using EEG recordings, a significant increase in P300 amplitude for R and a significant decrease in P300 amplitude for NR were found. We found biomarkers for checking the efficacy of VNS with accuracy up to 94%. The results show that P300 features recorded in nonmidline electrodes are better P300 biomarkers for VNS efficacy than P300 features recorded in midline electrodes. Using source localization and connectivity analyses, the activity of the limbic system, insula and orbitofrontal cortex was found to be dependent on VNS switched "On" versus "Off" or patient group (R versus NR). The results suggest an important role for these areas in the mechanism of action of VNS, although a larger patient study should be done to confirm the findings.
Collapse
Affiliation(s)
- Simon Wostyn
- * MEDISIP, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium.,† iMinds Medical IT Department, Ghent University, Ghent, Belgium
| | - Willeke Staljanssens
- * MEDISIP, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium.,† iMinds Medical IT Department, Ghent University, Ghent, Belgium
| | - Leen De Taeye
- ‡ LCEN3, Department of Neurology, Ghent University, Ghent, Belgium
| | - Gregor Strobbe
- * MEDISIP, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| | - Stefanie Gadeyne
- ‡ LCEN3, Department of Neurology, Ghent University, Ghent, Belgium
| | - Dirk Van Roost
- § Department of Neurosurgery, Ghent University Hospital, Ghent, Belgium
| | - Robrecht Raedt
- ‡ LCEN3, Department of Neurology, Ghent University, Ghent, Belgium
| | - Kristl Vonck
- ‡ LCEN3, Department of Neurology, Ghent University, Ghent, Belgium
| | - Pieter van Mierlo
- * MEDISIP, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium.,† iMinds Medical IT Department, Ghent University, Ghent, Belgium.,¶ Functional Brain Mapping lab, University of Geneva, Geneva, Switzerland
| |
Collapse
|
23
|
Akhtar H, Bukhari F, Nazir M, Anwar MN, Shahzad A. Therapeutic Efficacy of Neurostimulation for Depression: Techniques, Current Modalities, and Future Challenges. Neurosci Bull 2016; 32:115-26. [PMID: 26781880 PMCID: PMC5563754 DOI: 10.1007/s12264-015-0009-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/20/2015] [Indexed: 01/30/2023] Open
Abstract
Depression is the most prevalent debilitating mental illness; it is characterized as a disorder of mood, cognitive function, and neurovegetative function. About one in ten individuals experience depression at some stage of their lives. Antidepressant drugs are used to reduce the symptoms but relapse occurs in ~20% of patients. However, alternate therapies like brain stimulation techniques have shown promising results in this regard. This review covers the brain stimulation techniques electroconvulsive therapy, transcranial direct current stimulation, repetitive transcranial magnetic stimulation, vagus nerve stimulation, and deep brain stimulation, which are used as alternatives to antidepressant drugs, and elucidates their research and clinical outcomes.
Collapse
Affiliation(s)
- Hafsah Akhtar
- Human Systems Lab, Department of Biomedical Engineering and Sciences, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan
| | - Faiza Bukhari
- Human Systems Lab, Department of Biomedical Engineering and Sciences, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan
| | - Misbah Nazir
- Human Systems Lab, Department of Biomedical Engineering and Sciences, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan
| | - Muhammad Nabeel Anwar
- Human Systems Lab, Department of Biomedical Engineering and Sciences, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan.
| | - Adeeb Shahzad
- Human Systems Lab, Department of Biomedical Engineering and Sciences, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan
| |
Collapse
|
24
|
Smart OL, Tiruvadi VR, Mayberg HS. Multimodal approaches to define network oscillations in depression. Biol Psychiatry 2015; 77:1061-70. [PMID: 25681871 PMCID: PMC5826645 DOI: 10.1016/j.biopsych.2015.01.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/18/2014] [Accepted: 01/12/2015] [Indexed: 01/26/2023]
Abstract
The renaissance in the use of encephalography-based research methods to probe the pathophysiology of neuropsychiatric disorders is well afoot and continues to advance. Building on the platform of neuroimaging evidence on brain circuit models, magnetoencephalography, scalp electroencephalography, and even invasive electroencephalography are now being used to characterize brain network dysfunctions that underlie major depressive disorder using brain oscillation measurements and associated treatment responses. Such multiple encephalography modalities provide avenues to study pathologic network dynamics with high temporal resolution and over long time courses, opportunities to complement neuroimaging methods and findings, and new approaches to identify quantitative biomarkers that indicate critical targets for brain therapy. Such goals have been facilitated by the ongoing testing of novel invasive neuromodulation therapies, notably, deep brain stimulation, where clinically relevant treatment effects can be monitored at multiple brain sites in a time-locked causal manner. We review key brain rhythms identified in major depressive disorder as foundation for development of putative biomarkers for objectively evaluating neuromodulation success and for guiding deep brain stimulation or other target-based neuromodulation strategies for treatment-resistant depression patients.
Collapse
Affiliation(s)
- Otis Lkuwamy Smart
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia
| | - Vineet Ravi Tiruvadi
- Department of Biomedical Engineering, Georgia Institute of Technology, Emory University School of Medicine, Atlanta, Georgia
| | - Helen S Mayberg
- Departments of Psychiatry, Neurology, and Radiology, Emory University School of Medicine, Atlanta, Georgia..
| |
Collapse
|
25
|
Albert U, Maina G, Aguglia A, Vitalucci A, Bogetto F, Fronda C, Ducati A, Lanotte M. Vagus nerve stimulation for treatment-resistant mood disorders: a long-term naturalistic study. BMC Psychiatry 2015; 15:64. [PMID: 25884606 PMCID: PMC4384299 DOI: 10.1186/s12888-015-0435-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 03/09/2015] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Limited therapeutic options are available for patients with treatment-refractory major depression who do not respond to routinely available therapies. Vagus nerve stimulation showed adjunctive antidepressant effect in chronic treatment resistant depression, even though available studies rarely exceed 2-year follow up. We report a naturalistic 5-year follow up of five patients who received VNS implant for resistant depression (3 patients with major depressive disorder and 2 with bipolar disorder). METHODS Response was defined as a reduction of the 17-item HDRS total score ≥50% with respect to baseline, remission as a score ≤7. RESULTS Response and remission rates were both 40% (2/5) after 1 year, and 60% (3/5) at 5 years. Two patients withdrew from the study because of side effects or inefficacy of stimulation. CONCLUSIONS Our case series showed that long-term VNS may be effective in reducing severity of depression in a small but significant minority of patients, although two patients had stimulation terminated because of adverse effects and/or refusal to continue the study.
Collapse
Affiliation(s)
- Umberto Albert
- Rita Levi Montalcini Department of Neuroscience, Mood and Anxiety Disorders Unit, University of Torino, via Cherasco 11, 10126, Turin, Italy.
| | - Giuseppe Maina
- Rita Levi Montalcini Department of Neuroscience, Mood and Anxiety Disorders Unit, University of Torino, via Cherasco 11, 10126, Turin, Italy.
| | - Andrea Aguglia
- Rita Levi Montalcini Department of Neuroscience, Mood and Anxiety Disorders Unit, University of Torino, via Cherasco 11, 10126, Turin, Italy.
| | - Alberto Vitalucci
- Rita Levi Montalcini Department of Neuroscience, Mood and Anxiety Disorders Unit, University of Torino, via Cherasco 11, 10126, Turin, Italy.
| | - Filippo Bogetto
- Rita Levi Montalcini Department of Neuroscience, Mood and Anxiety Disorders Unit, University of Torino, via Cherasco 11, 10126, Turin, Italy.
| | - Chiara Fronda
- Rita Levi Montalcini Department of Neuroscience, Neurosurgery Unit, University of Torino, via Cherasco 11, 10126, Turin, Italy.
| | - Alessandro Ducati
- Rita Levi Montalcini Department of Neuroscience, Neurosurgery Unit, University of Torino, via Cherasco 11, 10126, Turin, Italy.
| | - Michele Lanotte
- Rita Levi Montalcini Department of Neuroscience, Neurosurgery Unit, University of Torino, via Cherasco 11, 10126, Turin, Italy.
| |
Collapse
|
26
|
De Taeye L, Vonck K, van Bochove M, Boon P, Van Roost D, Mollet L, Meurs A, De Herdt V, Carrette E, Dauwe I, Gadeyne S, van Mierlo P, Verguts T, Raedt R. The P3 event-related potential is a biomarker for the efficacy of vagus nerve stimulation in patients with epilepsy. Neurotherapeutics 2014; 11:612-22. [PMID: 24711167 PMCID: PMC4121454 DOI: 10.1007/s13311-014-0272-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Currently, the mechanism of action of vagus nerve stimulation (VNS) is not fully understood, and it is unclear which factors determine a patient's response to treatment. Recent preclinical experiments indicate that activation of the locus coeruleus noradrenergic system is critical for the antiepileptic effect of VNS. This study aims to evaluate the effect of VNS on noradrenergic signaling in the human brain through a noninvasive marker of locus coeruleus noradrenergic activity: the P3 component of the event-related potential. We investigated whether VNS differentially modulates the P3 component in VNS responders versus VNS nonresponders. For this purpose, we recruited 20 patients with refractory epilepsy who had been treated with VNS for at least 18 months. Patients were divided into 2 groups with regard to their reduction in mean monthly seizure frequency: 10 responders (>50 %) and 10 nonresponders (≤50 %). Two stimulation conditions were compared: VNS OFF and VNS ON. In each condition, the P3 component was measured during an auditory oddball paradigm. VNS induced a significant increase of the P3 amplitude at the parietal midline electrode, in VNS responders only. In addition, logistic regression analysis showed that the increase of P3 amplitude can be used as a noninvasive indicator for VNS responders. These results support the hypothesis that activation of the locus coeruleus noradrenergic system is associated with the antiepileptic effect of VNS. Modulation of the P3 amplitude should be further investigated as a noninvasive biomarker for the therapeutic efficacy of VNS in patients with refractory epilepsy.
Collapse
Affiliation(s)
- Leen De Taeye
- LCEN3, Department of Neurology, Ghent University, De Pintelaan 185, 9000, Ghent, Belgium,
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Amar AP. Vagus nerve stimulation for the treatment of intractable epilepsy. Expert Rev Neurother 2014; 7:1763-73. [DOI: 10.1586/14737175.7.12.1763] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Pogarell O, Padberg F, Karch S, Segmiller F, Juckel G, Mulert C, Hegerl U, Tatsch K, Koch W. Dopaminergic mechanisms of target detection - P300 event related potential and striatal dopamine. Psychiatry Res 2011; 194:212-218. [PMID: 22104371 DOI: 10.1016/j.pscychresns.2011.02.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 12/30/2010] [Accepted: 02/06/2011] [Indexed: 11/26/2022]
Abstract
The P300 is a cortically generated event related potential (ERP) widely used in neurophysiological research since it is related to cognitive functions and central information processing. Intracerebral recordings and functional neuroimaging studies have demonstrated that this potential is generated by various brain regions including frontal, temporal and parietal cortices. Regarding the neurochemical background, clinical and genetic investigations suggest that dopaminergic neurons could be involved in the generation of the P300. However, there is no direct evidence in vivo that P300 amplitudes and latencies are related to dopaminergic parameters. The aim of this study was to further elucidate dopaminergic aspects of the P300 ERP by combining neurophysiological and nuclear medicine assessments in vivo. Patients with a major depressive episode underwent both P300 recordings and dynamic [¹²³I] IBZM SPECT for the evaluation of striatal dopamine D₂/D₃-receptor availability. There were statistically significant positive correlations of the striatal dopamine D₂/D₃-receptor status with P300 amplitudes and significant negative correlations with P300 latencies. Using this combined approach, the study presents direct evidence in vivo that the central dopaminergic system might play an important role in the generation of the P300 and that central dopaminergic activity could be involved in the modulation of P300 parameters. This association might be of relevance for the interpretation of P300 studies in psychiatric disorders.
Collapse
Affiliation(s)
- Oliver Pogarell
- Department of Psychiatry, Ludwig-Maximilian-University of Munich, Munich, Germany.
| | - Frank Padberg
- Department of Psychiatry, Ludwig-Maximilian-University of Munich, Munich, Germany
| | - Susanne Karch
- Department of Psychiatry, Ludwig-Maximilian-University of Munich, Munich, Germany
| | - Felix Segmiller
- Department of Psychiatry, Ludwig-Maximilian-University of Munich, Munich, Germany
| | - Georg Juckel
- Department of Psychiatry, University of Bochum, Bochum, Germany
| | - Christoph Mulert
- Department of Psychiatry, University of Hamburg, Hamburg, Germany
| | - Ulrich Hegerl
- Department of Psychiatry, University of Leipzig, Germany
| | - Klaus Tatsch
- Department of Nuclear Medicine, Ludwig-Maximilian-University of Munich, Munich, Germany; Department of Nuclear Medicine, Municipal Hospital of Karlsruhe Inc., Karlsruhe, Germany
| | - Walter Koch
- Department of Nuclear Medicine, Ludwig-Maximilian-University of Munich, Munich, Germany
| |
Collapse
|
29
|
Gao D, Zheng Z, Han M, Tang X, Sun X. Findings of P300-like and CNV-like potentials in rat model of depression following repeatedly forced swim stress. Int J Psychophysiol 2009; 72:160-165. [PMID: 19100786 DOI: 10.1016/j.ijpsycho.2008.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 11/26/2008] [Accepted: 12/02/2008] [Indexed: 01/06/2023]
Abstract
The aim of this study was to explore whether there were abnormalities of CNV-like and P(300)-like potentials in stressed rats following repeatedly forced swim stress. Forty male rats were randomly divided into 4 groups: the control groups (Control-1 and Control-2) and the stressed groups (Stress-1 and Stress-2). Rats in stressed groups were administered to repeatedly forced swim 7 or 14 days respectively. Body weight gain, saccharin preference test and open field test were performed. After being anesthetized with urethane, P(300)-like potentials were evoked by the oddball auditory stimulation and CNV-like potentials were elicited by condition-test stimulus. Results of behavioral tests displayed less body weights and less saccharine solution intake in stressed rats and significant effects of stress on the number of crossing squares, the duration of rearing and the number of grooming in open field test. Prolonged P3 latencies and decreased P3 amplitudes of P(300)-like potentials were found in the stressed rats. CNV amplitudes were lower in the stressed rats than those in control. Moreover, there were significant correlations between parameters of ERPs (including P3 latency, amplitude and CNV amplitude) and a serial of behavioral traits. This study provides an important evidence of changes of CNV-like and P(300)-like potentials in depressed rats following repeatedly forced swim stress. Based on this study, ERPs should be taken into consideration and applied as the useful tools in the research work of depressed animal models.
Collapse
Affiliation(s)
- Dong Gao
- Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | | | | | | | | |
Collapse
|
30
|
Daban C, Martinez-Aran A, Cruz N, Vieta E. Safety and efficacy of Vagus Nerve Stimulation in treatment-resistant depression. A systematic review. J Affect Disord 2008; 110:1-15. [PMID: 18374988 DOI: 10.1016/j.jad.2008.02.012] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 02/12/2008] [Accepted: 02/13/2008] [Indexed: 10/22/2022]
Abstract
OBJECTIVE The main objective of this review of the literature was to evaluate the safety and efficacy of Vagus Nerve Stimulation (VNS) in treatment-resistant depression (TRD) by means of systematic review and meta-analysis. METHODS A systematic review of the literature was made using the major databases (Medline, Psychological Abstracts, Current Contents), beginning in January 2000 and ending in September 2007. Ninety-eight references were found, but only 18 add-on studies met the required quality criteria and were included in this review. Only one double-blind, randomized study was available and therefore a meta-analysis was not feasible. RESULTS In a majority of the preliminary open studies selected for this review, VNS was associated with a significant reduction of the depressive symptoms (primary outcome: Hamilton Depression Rating Scale, HDRS) in the short and long term. Unfortunately, the only double-blind study gave rather inconclusive results. Generally, VNS is reported to be a safe and feasible procedure, despite its invasive nature. CONCLUSIONS VNS seems to be an interesting new approach to treating TRD. However, despite the promising results reported mainly in open studies, further clinical trials are needed to confirm its efficacy in major depression. Moreover, studies on its mechanism of action and cost-effectiveness are also required to better understand and develop VNS therapy for affective disorder.
Collapse
Affiliation(s)
- Claire Daban
- Bipolar Disorders Program, Hospital Clinic, University of Barcelona, IDIBAPS, CIBER-SAM, Barcelona, Spain
| | | | | | | |
Collapse
|